JP3697757B2 - Thermistor circuit monitoring device - Google Patents

Thermistor circuit monitoring device Download PDF

Info

Publication number
JP3697757B2
JP3697757B2 JP27532795A JP27532795A JP3697757B2 JP 3697757 B2 JP3697757 B2 JP 3697757B2 JP 27532795 A JP27532795 A JP 27532795A JP 27532795 A JP27532795 A JP 27532795A JP 3697757 B2 JP3697757 B2 JP 3697757B2
Authority
JP
Japan
Prior art keywords
resistor
thermistor
voltage
signal
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27532795A
Other languages
Japanese (ja)
Other versions
JPH09112912A (en
Inventor
秀樹 山川
光男 横畑
博之 千田
祥男 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP27532795A priority Critical patent/JP3697757B2/en
Priority to KR1019960035275A priority patent/KR100201024B1/en
Priority to CNB961113758A priority patent/CN1138098C/en
Publication of JPH09112912A publication Critical patent/JPH09112912A/en
Application granted granted Critical
Publication of JP3697757B2 publication Critical patent/JP3697757B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/14Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using thermo-sensitive resistors

Description

【0001】
【発明の属する技術分野】
本発明は、ガス燃焼機器のサーミスタ回路監視装置に関するものである。
【0002】
【従来の技術】
近年、ガス調理器の調理油過熱防止装置普及のため、より安価な過熱防止装置が必要となってきている。
【0003】
従来の過熱防止装置は、センサーとして温度変化に対する抵抗値の変化が小さい、B定数が小さなサーミスタを使用して、抵抗値の変化を電圧に変換するための分圧抵抗を1本で検知していた。
【0004】
【発明が解決しようとする課題】
しかし、より安価な過熱防止装置の必要から安価なサーミスタを使用すると、安価なサーミスタは一般にB定数が大きいため、温度変化に対する抵抗値の変化が大きく、使用温度範囲が0度から数百度とすると、抵抗値は数MΩから百数十Ωまで変化するので1本の分圧抵抗で広い温度範囲を検知しようとすると、高温または低温部で、著しく感度が悪化する。そこで、複数の分圧抵抗を切り換えることで感度の悪化を改善しようとすると、サーミスタの抵抗値が大きいときに第2の抵抗が断線した場合に、電圧監視手段の入力インピーダンスが小さいと、第1の電圧がグランド電位にまで下がらず、比較器による単純な比較のみでは、第2の抵抗が断線が検知できない。
【0005】
また、スイッチング素子のロスによる電圧降下や、サーミスタのB定数のばらつきが大きい場合、サーミスタの抵抗値が大きいと、第1の抵抗の短絡によって第2の電圧が高くなっても、スイッチング素子のロスやサーミスタのばらつきによる電圧誤差範囲と重なってしまい、第1の抵抗の短絡が検知できない。
【0006】
また、サーミスタのB定数のばらつきが大きい場合、第1の抵抗の断線によって第2の電圧が低くなっても、サーミスタのばらつきによる電圧誤差範囲と重なってしまい、第1の抵抗の断線が検知できない。
【0007】
逆にばらつきが小さなものを使用すると、高価になる。
【0008】
【課題を解決するための手段】
本発明は前記課題を解決するために、電源に接続されたスイッチング素子と、前記スイッチング素子をスイッチングさせるためのスイッチング手段と、前記スイッチング素子に直列に接続された第1の抵抗と、前記第1の抵抗に直列に接続され、他端をグランド電位に接続したサーミスタと、一端を前記第1の抵抗と前記サーミスタとの接続点に接続され、他端を前記電源に接続した第2の抵抗と、前記接続点に接続され前記接続点の信号を監視して、信号が予め決めておいた状態になるとガス通路に設けられた電磁弁を閉じる信号監視手段とを備え、前記スイッチング素子が非導通状態の前記接続点の第1の信号が所定の範囲にあり、且つ、前記スイッチング素子が導通状態の前記接続点の第2の信号との差が、所定の値以下であると、前記電磁弁を閉じる構成とした。
【0009】
この構成により、第1の電圧の範囲と、第1の電圧と第2の電圧の差とをスイッチング素子のロスによる電圧降下や、サーミスタのB定数のばらつきによる電圧誤差範囲を無視できる値にすることで、第1の抵抗の短絡検知ができる。
【0010】
【発明の実施の形態】
上記課題を解決するため、本発明の第1の手段として、電源に接続されたスイッチング素子と、そのスイッチング素子に直列に接続された第1の抵抗と、第1の抵抗とスイッチング素子が接続された端子と反対側の端子に接続され、他端を前記電源に接続された第2の抵抗と、第1の抵抗と第2の抵抗の結節点に接続され、他端をグランド電位に接続したサーミスタと、スイッチング素子をスイッチングさせるためのスイッチング手段と、第1の抵抗とサーミスタとの結節点に接続され、その結節点の電圧を監視して所定の電圧状態になるとガス通路に設けられた電磁弁を閉じる電圧監視手段により構成され、スイッチング素子が非導通状態での第1の抵抗とサーミスタとの接続点の第1の電圧が、所定の電圧範囲にあり、且つ、スイッチング素子が導通状態での第1の抵抗とサーミスタとの接続点の第2の電圧との差が、所定の電圧以下であると、電磁弁を閉じるようにした。
【0011】
また、第2の手段として、第2の電圧が、所定の電圧範囲の時に、第1の電圧と第2の電圧との差が、所定の電圧以下であると、電磁弁を閉じるようにした。
【0012】
また、第3の手段として、電源に接続されたスイッチング素子と、スイッチング素子に直列に接続された第1の抵抗と、第1の抵抗とスイッチング素子が接続された端子と反対側の端子に接続され、他端を電源に接続された第2の抵抗と、第1の抵抗と第2の抵抗との結節点に接続され、他端をグランド電位に接続したサーミスタと、スイッチング素子をスイッチングさせるためのスイッチング手段と、第1の抵抗とサーミスタとの結節点に接続され、その結節点の電圧を監視して、所定の電圧状態になると、ガス通路に設けられた電磁弁を閉じる電圧監視手段により構成され、スイッチング素子が非導通状態の第1の抵抗とサーミスタとの接続点の第1の電圧が、所定の電圧範囲の時に、スイッチング素子が導通状態での第1の抵抗とサーミスタとの接続点の第2の電圧が、所定の電圧以下であると、前記電磁弁を閉じるようにした。
【0013】
また、第4の手段として、第1の電圧が、所定の電圧範囲の時に、第2の電圧の電圧が、所定の電圧以下であると、電磁弁を閉じるようにした。
【0014】
本発明は上記した構成によって、第1の電圧の範囲と第1の電圧と第2の電圧との差をスイッチング素子のロスによる電圧降下や、サーミスタのB定数のばらつきによる電圧誤差範囲を無視できる値にすることで、第1の抵抗の短絡検知ができる。
【0015】
また、第2の電圧を適切な範囲と第1の電圧と第2の電圧との差をサーミスタのB定数のばらつきによる電圧誤差範囲を無視できる値にすることで、第1の抵抗の断線検知ができる。
【0016】
また、第1の電圧を電圧監視手段の入力インピーダンスが無視できる範囲にして、第2の電圧をサーミスタのB定数のばらつきによる電圧誤差範囲を無視できる値にすることで、第2の抵抗の断線検知ができる。
【0017】
また、第2の電圧を電圧監視手段の入力インピーダンスが無視できる範囲にして、第1の電圧をサーミスタのB定数のばらつきによる電圧誤差範囲を無視できる値にすることで、第2の抵抗の断線検知ができる。
【0018】
以下、本発明の実施の形態を図面に基づいて説明する。
図1は本発明のサーミスタ回路監視装置の一実施の形態の構成を示す図である。図1において、電源に接続されたスイッチング素子としてのトランジスタ1にはスイッチング手段5が接続され、そのトランジスタ1には、第1の抵抗2とサーミスタ4が直列に接続されている。更に、トランジスタ1と第1の抵抗2には、並列に第2の抵抗3が接続され、第1の抵抗2と第2の抵抗3とサーミスタ4の結節点には、電圧監視手段7が接続されている。スイッチング手段5は、所定の周期でトランジスタ1をオン、オフする。
【0019】
電圧監視手段7の入力信号6は、サーミスタ4の抵抗値の変化とトランジスタ1のオン、オフに応じて変化する。電圧監視手段7は、入力信号6の状態に応じて、出力信号10によりトランジスタ11を制御し、電磁弁12を開閉する。
【0020】
抵抗8、抵抗9は、電圧監視手段7の入力抵抗を表している。
図2は、装置が正常に作動している場合に、サーミスタ4の抵抗値と入力信号6との特性図である。13と14は、トランジスタ1がオンの時、15と16はトランジスタ1がオフの時の特性で、13と14、及び、15と16の幅は、サーミスタ4やトランジスタ1の飽和電圧、及び、電圧監視手段7の入力抵抗のばらつきを含んだ場合の一例である。
【0021】
図3は、第1の抵抗2が短絡した場合の図2と同様の特性図で、17と18はトランジスタ1がオンの時、19と20はトランジスタ1がオフの時の特性である。図2と図3の特性図は、範囲Aの部分において、トランジスタ1がオンの時の入力信号6に差がある。従って、トランジスタ1がオフの時の入力信号6が範囲Aにあるときに、トランジスタ1がオンの時とオフの時のそれぞれの入力信号6の差が通常の場合と異なる場合に出力信号10によってトランジスタ11をオフして電磁弁12を閉弁するように電圧監視手段7の諸定数を決めることで、第1の抵抗2の短絡が検知できる。
【0022】
図4は、第1の抵抗2または、トランジスタ1のエミッタまたはコレクタが断線した場合の図2と同様の特性図である。トランジスタ1がオンの時とオフの時の特性は重なってしまい、21及び22となる。図2と図4の特性図では、範囲Bの部分において、トランジスタ1がオンの時とオフの時の入力信号6の差に違いがある。従って、図4においてトランジスタ1がオンの時の入力信号6が範囲Bにあるときに、トランジスタ1がオンの時とオフの時のそれぞれの入力信号6の値の差が図2の時と異なった場合は、出力信号10によってトランジスタ11をオフして電磁弁12を閉弁するように電圧監視手段7の諸定数を決めることで、第1の抵抗2または、トランジスタ1のエミッタかコレクタが断線した場合、安全にガスを遮断できる。
【0023】
図5は、第2の抵抗3が断線した場合の図2と同様の特性図である。23と24は、トランジスタ1がオンの時、25と26は、トランジスタ1がオフの時の特性である。25は、電圧監視手段7の入力抵抗8及び9が入力信号6の出力抵抗に対して無視できない場合で、26は、電圧監視手段7の入力抵抗8及び9が入力信号6の出力抵抗に対して無視できる場合である。電圧監視手段7の入力抵抗8及び9が、入力信号6の出力抵抗に対して無視できない場合、図2と図5の特性図では、範囲Cの部分に、トランジスタ1がオフの時の入力信号6に差がある。従って、トランジスタ1がオフの時またはオンの時の入力信号6が範囲Cにあるときに、トランジスタ1がオンの時とオフの時のそれぞれの入力信号6の値が通常の状態と異なった場合は、出力信号10によってトランジスタ11をオフして電磁弁12を閉弁するように電圧監視手段7の諸定数を決めることで、第1の抵抗2の短絡が検知できる。
【0024】
図6は、トランジスタ1のエミッタとコレクタの間が短絡した場合の図2と同様の特性図である。トランジスタ1がオンの時とオフの時の差はなくなり、27及び28となる。図2と図5の特性図では、範囲Dの部分において、トランジスタ1がオンの時とオフの時の入力信号6の差に違いがある。従って、トランジスタ1がオンの時の入力信号6が範囲Dにあるときに、トランジスタ1がオンの時とオフの時のそれぞれの入力信号6の値の差が図2の時と異なった場合には、出力信号10によってトランジスタ11をオフして電磁弁12を閉弁するように電圧監視手段7の諸定数を決めることで、トランジスタ1のエミッタ、コレクタ間の短絡が検知できる。
【0025】
【発明の効果】
本発明のサーミスタ回路監視装置によれば、下記の効果がある。
【0026】
(1)第1の電圧の範囲と第1の電圧と第2の電圧との差を、スイッチング素子のロスによる電圧降下やサーミスタのB定数のばらつきによる電圧誤差範囲を無視できる値にすることで、第1の抵抗の短絡検知ができるので、第1の抵抗が短絡しても不安全にならず、且つ、温度変化に対する抵抗値の変化が大きな、B定数が大きいサーミスタを精度良く使用できる。
【0027】
(2)第2の電圧の範囲と第1の電圧と第2の電圧との差を、サーミスタのB定数のばらつきによる電圧誤差範囲を無視できる値にすることで、第1の抵抗が断線または、スイッチング素子が断線した場合に電磁弁を閉弁することで、不安全にならず、且つ、温度変化に対する抵抗値の変化が大きな、B定数が大きいサーミスタを精度良く使用できる。
【0028】
(3)第1の電圧を電圧監視手段の入力インピーダンスが無視できる範囲にして、第2の電圧をサーミスタのB定数のばらつきによる電圧誤差範囲を無視できる値にすることで、第2の抵抗の断線検知ができるので、第2の抵抗が断線しても不安全にならず、且つ、温度変化に対する抵抗値の変化が大きな、B定数が大きいサーミスタを精度良く使用できる。
【0029】
(4)第2の電圧を電圧監視手段の入力インピーダンスが無視できる範囲にして、第1の電圧をサーミスタのB定数のばらつきによる電圧誤差範囲を無視できる値にすることで、第2の抵抗の断線検知ができるので、第2の抵抗が断線しても不安全にならず、且つ、温度変化に対する抵抗値の変化が大きな、B定数が大きいサーミスタを精度良く使用できる。
【図面の簡単な説明】
【図1】本発明の一実施の形態のサーミスタ回路監視装置の構成を示す図
【図2】同サーミスタ回路監視装置のサーミスタの抵抗値と入力信号との関係を示す特性図
【図3】同サーミスタ回路監視装置において、第1の抵抗が短絡した場合の特性図
【図4】同サーミスタ回路監視装置において、第1の抵抗または、トランジスタ1のエミッタかコレクタが断線した場合の特性図
【図5】同サーミスタ回路監視装置において、第2の抵抗が断線した場合の特性図
【図6】同サーミスタ回路監視装置において、トランジスタ1のエミッタ、コレクタ間が短絡した場合の特性図
【符号の説明】
1、11 トランジスタ(スイッチング素子)
2 第1の抵抗
3 第2の抵抗
4 サーミスタ
5 スイッチング手段
7 電圧監視手段
8、9 抵抗
12 電磁弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermistor circuit monitoring device for gas combustion equipment.
[0002]
[Prior art]
In recent years, cheaper overheat prevention devices have become necessary for the spread of cooking oil overheat prevention devices for gas cookers.
[0003]
A conventional overheat prevention device uses a thermistor with a small resistance value change with respect to a temperature change as a sensor and a small B constant, and detects a voltage dividing resistor for converting the resistance value change into a voltage with a single resistor. It was.
[0004]
[Problems to be solved by the invention]
However, if an inexpensive thermistor is used due to the need for a cheaper overheat prevention device, an inexpensive thermistor generally has a large B constant. Since the resistance value varies from several MΩ to hundreds of Ω, if an attempt is made to detect a wide temperature range with a single voltage dividing resistor, the sensitivity is significantly deteriorated at high or low temperature portions. In order to improve the deterioration of sensitivity by switching a plurality of voltage dividing resistors, if the second resistor is disconnected when the resistance value of the thermistor is large and the input impedance of the voltage monitoring means is small, the first The voltage of the second resistor does not drop to the ground potential, and the disconnection of the second resistor cannot be detected only by simple comparison by the comparator.
[0005]
In addition, when the voltage drop due to the loss of the switching element or the variation of the B constant of the thermistor is large, if the resistance value of the thermistor is large, even if the second voltage increases due to the short circuit of the first resistor, the loss of the switching element And a voltage error range due to variations in thermistors overlap, and a short circuit of the first resistor cannot be detected.
[0006]
Also, when the B constant of the thermistor is large, even if the second voltage is lowered due to the disconnection of the first resistor, it overlaps with the voltage error range due to the thermistor variation, and the disconnection of the first resistor cannot be detected. .
[0007]
On the other hand, it is expensive to use one with small variations.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a switching element connected to a power source, switching means for switching the switching element, a first resistor connected in series to the switching element, and the first A thermistor connected in series to the first resistor, the other end connected to the ground potential, one end connected to a connection point between the first resistor and the thermistor, and the other end connected to the power source. And a signal monitoring means for monitoring the signal of the connection point connected to the connection point and closing a solenoid valve provided in the gas passage when the signal reaches a predetermined state, and the switching element is non-conductive When the first signal at the connection point in the state is in a predetermined range and the difference from the second signal at the connection point in the conductive state is equal to or less than a predetermined value, It was closing an electromagnetic valve.
[0009]
With this configuration, the first voltage range and the difference between the first voltage and the second voltage are set to values that can ignore the voltage drop due to the loss of the switching element and the voltage error range due to variation in the B constant of the thermistor. Thus, the short circuit of the first resistor can be detected.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In order to solve the above problems, as a first means of the present invention, a switching element connected to a power source, a first resistor connected in series to the switching element, a first resistor and the switching element are connected. A second resistor connected to the power source, the other end connected to the node of the first resistor and the second resistor, and the other end connected to the ground potential. The thermistor, the switching means for switching the switching element, and the first resistor and the thermistor are connected to the nodal point. When the voltage at the nodal point is monitored and becomes a predetermined voltage state, the electromagnetic provided in the gas passage The first voltage at the connection point between the first resistor and the thermistor when the switching element is in a non-conductive state is in a predetermined voltage range, and is configured by voltage monitoring means for closing the valve. Element is the difference between the second voltage at the node between the first resistor and the thermistor in conducting state, is not more than a predetermined voltage, and to close the solenoid valve.
[0011]
As a second means, when the second voltage is within a predetermined voltage range, the electromagnetic valve is closed if the difference between the first voltage and the second voltage is equal to or less than the predetermined voltage. .
[0012]
As a third means, a switching element connected to the power source, a first resistor connected in series to the switching element, and a terminal opposite to the terminal connected to the first resistor and the switching element are connected. For switching the switching element, the second resistor having the other end connected to the power source, the thermistor having the other end connected to the ground potential, and the node connected to the ground between the first resistor and the second resistor. Switching means, and a voltage monitoring means that is connected to a node between the first resistor and the thermistor, monitors the voltage at the node, and closes an electromagnetic valve provided in the gas passage when a predetermined voltage state is reached. When the first voltage at the connection point between the first resistor and the thermistor in which the switching element is in a non-conductive state is within a predetermined voltage range, the first resistor and the circuit in which the switching element is in a conductive state. A second voltage at the node between the static is, if it is below a predetermined voltage, and to close the solenoid valve.
[0013]
As a fourth means, when the first voltage is within a predetermined voltage range, the electromagnetic valve is closed when the second voltage is equal to or lower than the predetermined voltage.
[0014]
According to the present invention, the difference between the first voltage range and the first voltage and the second voltage can be neglected by the voltage drop due to the loss of the switching element and the voltage error range due to variations in the B constant of the thermistor. By setting the value, it is possible to detect a short circuit of the first resistor.
[0015]
In addition, the disconnection of the first resistor is detected by setting the difference between the second voltage to an appropriate range and the difference between the first voltage and the second voltage so that the voltage error range due to variation in the B constant of the thermistor can be ignored. Can do.
[0016]
Further, the first resistor is set in a range where the input impedance of the voltage monitoring means can be ignored, and the second voltage is set in a value in which the voltage error range due to variation in the B constant of the thermistor can be ignored, thereby disconnecting the second resistor. Can be detected.
[0017]
In addition, the second resistor is set to a range in which the input impedance of the voltage monitoring unit can be ignored, and the first voltage is set to a value in which the voltage error range due to variation in the B constant of the thermistor can be ignored, thereby disconnecting the second resistor. Can be detected.
[0018]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing the configuration of an embodiment of the thermistor circuit monitoring device of the present invention. In FIG. 1, a switching means 5 is connected to a transistor 1 as a switching element connected to a power source, and a first resistor 2 and a thermistor 4 are connected in series to the transistor 1. Further, a second resistor 3 is connected in parallel to the transistor 1 and the first resistor 2, and a voltage monitoring means 7 is connected to a node between the first resistor 2, the second resistor 3 and the thermistor 4. Has been. The switching means 5 turns on and off the transistor 1 at a predetermined cycle.
[0019]
The input signal 6 of the voltage monitoring means 7 changes according to the change in the resistance value of the thermistor 4 and the on / off state of the transistor 1. The voltage monitoring means 7 controls the transistor 11 with the output signal 10 according to the state of the input signal 6 to open and close the electromagnetic valve 12.
[0020]
Resistors 8 and 9 represent the input resistance of the voltage monitoring means 7.
FIG. 2 is a characteristic diagram of the resistance value of the thermistor 4 and the input signal 6 when the apparatus is operating normally. 13 and 14 are characteristics when the transistor 1 is on, 15 and 16 are characteristics when the transistor 1 is off, and the widths of 13 and 14 and 15 and 16 are the saturation voltage of the thermistor 4 and the transistor 1, and This is an example in the case of including variations in the input resistance of the voltage monitoring means 7.
[0021]
FIG. 3 is a characteristic diagram similar to FIG. 2 when the first resistor 2 is short-circuited. 17 and 18 are characteristics when the transistor 1 is on, and 19 and 20 are characteristics when the transistor 1 is off. 2 and 3, there is a difference in the input signal 6 when the transistor 1 is on in the range A. Therefore, when the input signal 6 when the transistor 1 is off is in the range A, the difference between the input signals 6 when the transistor 1 is on and when the transistor 1 is off is different from the normal case by the output signal 10. By determining the constants of the voltage monitoring means 7 so that the transistor 11 is turned off and the electromagnetic valve 12 is closed, a short circuit of the first resistor 2 can be detected.
[0022]
FIG. 4 is a characteristic diagram similar to FIG. 2 when the first resistor 2 or the emitter or collector of the transistor 1 is disconnected. The characteristics when the transistor 1 is turned on and when the transistor 1 is turned off are overlapped to be 21 and 22. In the characteristic diagrams of FIG. 2 and FIG. 4, in the range B, there is a difference in the difference between the input signals 6 when the transistor 1 is on and off. Therefore, in FIG. 4, when the input signal 6 when the transistor 1 is on is in the range B, the difference between the values of the input signal 6 when the transistor 1 is on and when the transistor 1 is off is different from that in FIG. In this case, the first resistor 2 or the emitter or collector of the transistor 1 is disconnected by determining various constants of the voltage monitoring means 7 so that the transistor 11 is turned off by the output signal 10 and the solenoid valve 12 is closed. If you do, you can safely shut off the gas.
[0023]
FIG. 5 is a characteristic diagram similar to FIG. 2 when the second resistor 3 is disconnected. Reference numerals 23 and 24 are characteristics when the transistor 1 is on, and reference numerals 25 and 26 are characteristics when the transistor 1 is off. Reference numeral 25 denotes a case where the input resistances 8 and 9 of the voltage monitoring unit 7 cannot be ignored with respect to the output resistance of the input signal 6. Reference numeral 26 denotes a case where the input resistances 8 and 9 of the voltage monitoring unit 7 Can be ignored. When the input resistors 8 and 9 of the voltage monitoring means 7 cannot be ignored with respect to the output resistance of the input signal 6, in the characteristic diagrams of FIGS. There is a difference in 6. Therefore, when the input signal 6 when the transistor 1 is off or when it is on is in the range C, the value of the input signal 6 when the transistor 1 is on and when the transistor 1 is off is different from the normal state. Can detect a short circuit of the first resistor 2 by determining various constants of the voltage monitoring means 7 so that the transistor 11 is turned off and the solenoid valve 12 is closed by the output signal 10.
[0024]
FIG. 6 is a characteristic diagram similar to FIG. 2 when the emitter and collector of the transistor 1 are short-circuited. The difference between when the transistor 1 is on and when it is off is 27 and 28. In the characteristic diagrams of FIG. 2 and FIG. 5, in the range D, there is a difference in the difference of the input signal 6 when the transistor 1 is on and off. Therefore, when the input signal 6 when the transistor 1 is on is in the range D, the difference between the values of the input signal 6 when the transistor 1 is on and when the transistor 1 is off is different from that in FIG. Can determine the short circuit between the emitter and collector of the transistor 1 by determining various constants of the voltage monitoring means 7 so that the transistor 11 is turned off and the solenoid valve 12 is closed by the output signal 10.
[0025]
【The invention's effect】
The thermistor circuit monitoring device of the present invention has the following effects.
[0026]
(1) By setting the difference between the first voltage range and the first voltage and the second voltage to a value in which the voltage error range due to the voltage drop due to the loss of the switching element and the variation of the B constant of the thermistor can be ignored. Since the short circuit of the first resistor can be detected, it is not unsafe even if the first resistor is short circuited, and a thermistor having a large change in resistance value with respect to a temperature change and a large B constant can be used with high accuracy.
[0027]
(2) The difference between the second voltage range and the first voltage and the second voltage is set to a value in which the voltage error range due to variation in the B constant of the thermistor can be ignored, so that the first resistor is disconnected or By closing the solenoid valve when the switching element is disconnected, a thermistor that is not unsafe, has a large resistance value change with respect to a temperature change, and has a large B constant can be used with high accuracy.
[0028]
(3) By setting the first voltage within a range where the input impedance of the voltage monitoring means can be ignored, and setting the second voltage at a value where the voltage error range due to variations in the B constant of the thermistor can be ignored, the second resistor Since the disconnection can be detected, it is not unsafe even if the second resistor is disconnected, and a thermistor having a large resistance value change with respect to a temperature change and a large B constant can be used with high accuracy.
[0029]
(4) By setting the second voltage within a range where the input impedance of the voltage monitoring means can be ignored, and setting the first voltage at a value where the voltage error range due to variation in the B constant of the thermistor can be ignored, the second resistor Since the disconnection can be detected, it is not unsafe even if the second resistor is disconnected, and a thermistor having a large resistance value change with respect to a temperature change and a large B constant can be used with high accuracy.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a configuration of a thermistor circuit monitoring device according to an embodiment of the present invention. FIG. 2 is a characteristic diagram illustrating a relationship between a resistance value of the thermistor of the thermistor circuit monitoring device and an input signal. FIG. 4 is a characteristic diagram when the first resistor is short-circuited in the thermistor circuit monitoring device. FIG. 4 is a characteristic diagram when the first resistor or the emitter or collector of the transistor 1 is disconnected in the thermistor circuit monitoring device. ] Characteristic diagram when the second resistor is disconnected in the thermistor circuit monitoring device. [FIG. 6] Characteristic diagram when the emitter and collector of the transistor 1 are short-circuited in the thermistor circuit monitoring device.
1,11 Transistor (switching element)
2 First resistor 3 Second resistor 4 Thermistor 5 Switching means 7 Voltage monitoring means 8, 9 Resistance 12 Solenoid valve

Claims (4)

電源に接続されたスイッチング素子と、前記スイッチング素子をスイッチングさせるためのスイッチング手段と、前記スイッチング素子に直列に接続された第1の抵抗と、前記第1の抵抗に直列に接続され、他端をグランド電位に接続したサーミスタと、一端を前記第1の抵抗と前記サーミスタとの接続点に接続され、他端を前記電源に接続した第2の抵抗と、前記接続点に接続され前記接続点の信号を監視して、信号が予め決めておいた状態になるとガス通路に設けられた電磁弁を閉じる信号監視手段とを備え、前記スイッチング素子が非導通状態の前記接続点の第1の信号が所定の範囲にあり、且つ、前記スイッチング素子が導通状態の前記接続点の第2の信号との差が、所定の値以下であると、前記電磁弁を閉じることを特徴とするサーミスタ回路監視装置。A switching element connected to a power source, switching means for switching the switching element, a first resistor connected in series to the switching element, and a second resistor connected in series to the first resistor. A thermistor connected to the ground potential; one end connected to the connection point between the first resistor and the thermistor; the other end connected to the power supply; and the connection point connected to the connection point. A signal monitoring means for monitoring the signal and closing an electromagnetic valve provided in the gas passage when the signal is in a predetermined state, wherein the first signal at the connection point where the switching element is non-conductive is The solenoid valve is closed when the difference between the second signal at the connection point in the predetermined range and the switching element in the conductive state is equal to or smaller than a predetermined value. Mista circuit monitoring device. 請求項1記載のサーミスタ回路監視装置において、第2の信号が所定の範囲である場合に、第1の信号と前記第2の信号との差が所定の値以下であると、電磁弁を閉じることを特徴とするサーミスタ回路監視装置。2. The thermistor circuit monitoring device according to claim 1, wherein when the second signal is within a predetermined range, the electromagnetic valve is closed when a difference between the first signal and the second signal is equal to or less than a predetermined value. A thermistor circuit monitoring device. 電源に接続されたスイッチング素子と、前記スイッチング素子をスイッチングさせるためのスイッチング手段と、前記スイッチング素子に直列に接続された第1の抵抗と、前記第1の抵抗に直列に接続され、他端をグランド電位に接続したサーミスタと、前記第1の抵抗と前記サーミスタとの接続点に接続され、他端を前記電源に接続した第2の抵抗と、前記接続点に接続され、前記接続点の信号を監視して、信号が予め決めておいた状態になると、ガス通路に設けられた電磁弁を閉じる信号監視手段により構成され、前記スイッチング素子が非導通状態での前記接続点の第1の信号が所定の範囲の時に、前記スイッチング素子が導通状態の前記接続点の第2の信号が所定の値以下であると、前記電磁弁を閉じることを特徴とするサーミスタ回路監視装置。A switching element connected to a power source, switching means for switching the switching element, a first resistor connected in series to the switching element, and a second resistor connected in series to the first resistor. A thermistor connected to the ground potential, a second resistor connected to the connection point between the first resistor and the thermistor and the other end connected to the power supply, and a signal at the connection point connected to the connection point When the signal is in a predetermined state, the signal monitoring means closes the electromagnetic valve provided in the gas passage, and the first signal at the connection point when the switching element is in the non-conductive state The thermistor is characterized in that when the second signal at the connection point where the switching element is in a conductive state is not more than a predetermined value when Road monitoring equipment. 請求項3記載のサーミスタ回路監視装置において、第1の信号が所定の範囲である場合に、第2の信号が所定の値以下であると、電磁弁を閉じることを特徴とするサーミスタ回路監視装置。4. The thermistor circuit monitoring device according to claim 3, wherein when the first signal is within a predetermined range, the electromagnetic valve is closed when the second signal is not more than a predetermined value. .
JP27532795A 1995-10-24 1995-10-24 Thermistor circuit monitoring device Expired - Lifetime JP3697757B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP27532795A JP3697757B2 (en) 1995-10-24 1995-10-24 Thermistor circuit monitoring device
KR1019960035275A KR100201024B1 (en) 1995-10-24 1996-08-24 Thermistor circuit monitoring apparatus
CNB961113758A CN1138098C (en) 1995-10-24 1996-09-05 Monitor for thermosensitive resistor and circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27532795A JP3697757B2 (en) 1995-10-24 1995-10-24 Thermistor circuit monitoring device

Publications (2)

Publication Number Publication Date
JPH09112912A JPH09112912A (en) 1997-05-02
JP3697757B2 true JP3697757B2 (en) 2005-09-21

Family

ID=17553920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27532795A Expired - Lifetime JP3697757B2 (en) 1995-10-24 1995-10-24 Thermistor circuit monitoring device

Country Status (3)

Country Link
JP (1) JP3697757B2 (en)
KR (1) KR100201024B1 (en)
CN (1) CN1138098C (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2155404B1 (en) * 1999-07-23 2001-12-01 Fagor S Coop CONTROL CIRCUIT FOR GAS HOBS WITH SAFETY SYSTEM BEFORE DOUBLE FAILURE.
JP5375060B2 (en) * 2008-12-09 2013-12-25 日産自動車株式会社 Anomaly detection device
CN102565534A (en) * 2010-12-23 2012-07-11 鸿富锦精密工业(深圳)有限公司 Over-temperature protection resistance detecting circuit of power supply
DE102011107206A1 (en) * 2011-07-13 2013-01-17 Howaldtswerke-Deutsche Werft Gmbh Method for checking a measuring arrangement for voltage determination and method for charging a loadable voltage source
KR101504429B1 (en) * 2013-09-02 2015-03-19 엘에스산전 주식회사 Temperature measuring apparatus using negative temperature coefficient thermistor
JP6911006B2 (en) 2016-02-29 2021-07-28 三洋電機株式会社 Temperature detection circuit
JP6950564B2 (en) * 2018-02-19 2021-10-13 株式会社ノーリツ Combustion device

Also Published As

Publication number Publication date
KR970022255A (en) 1997-05-28
CN1150633A (en) 1997-05-28
KR100201024B1 (en) 1999-06-15
JPH09112912A (en) 1997-05-02
CN1138098C (en) 2004-02-11

Similar Documents

Publication Publication Date Title
US4322970A (en) Method and apparatus for controlling start-up of airflow measuring systems in automotive vehicles
US4677281A (en) Electric heating apparatus with integrated solid state comfort control and overheat protection
US20030234582A1 (en) Fault-tolerant multi-point flame sense circuit
US4520417A (en) Electrical monitoring systems
US4353025A (en) Phase controlled voltage reducing circuit having line voltage compensation
JP3697757B2 (en) Thermistor circuit monitoring device
CA1317655C (en) Temperature sensing circuit
US5748429A (en) Self checking temperature sensing circuit
US4658120A (en) Sensor device for use with cooking appliances
US6717416B2 (en) Circuit configuration for the voltage supply of a two-wire sensor
US7116110B1 (en) Sensorless protection for electronic device
US20050126270A1 (en) Throttle position sensor
US4562313A (en) Electrical systems comprising temperature-sensitive devices
US4800292A (en) Temperature sensing circuit
JP3018894B2 (en) Temperature detector
JPS6228709Y2 (en)
US4340850A (en) Temperature responsive control circuit
JPH0317257Y2 (en)
US7046154B2 (en) Flame-monitoring device
KR930006306B1 (en) Temperature sensing circuit
US3500133A (en) Electrically controlled switch and switching arrangement
JP3101123B2 (en) Current interrupter
JPH02109288A (en) Circuit device for excessive temperature protection in resistance heating by dc current
JP2595992Y2 (en) Lightning protection device for communication type gas metering system
JPH0580990B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050627

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation of abandonment
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350