JP3697410B2 - Non-reciprocal circuit element - Google Patents

Non-reciprocal circuit element Download PDF

Info

Publication number
JP3697410B2
JP3697410B2 JP2001356617A JP2001356617A JP3697410B2 JP 3697410 B2 JP3697410 B2 JP 3697410B2 JP 2001356617 A JP2001356617 A JP 2001356617A JP 2001356617 A JP2001356617 A JP 2001356617A JP 3697410 B2 JP3697410 B2 JP 3697410B2
Authority
JP
Japan
Prior art keywords
magnetic substrate
conductor
substrate
magnetic
line conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001356617A
Other languages
Japanese (ja)
Other versions
JP2003158403A (en
Inventor
祐一 清水
晃 境
人司 大西
利男 高橋
栄一 駒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2001356617A priority Critical patent/JP3697410B2/en
Publication of JP2003158403A publication Critical patent/JP2003158403A/en
Application granted granted Critical
Publication of JP3697410B2 publication Critical patent/JP3697410B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロ波帯などの高周波帯域で使用されるアイソレータ、サーキュレータ等、非可逆回路素子に関する。
【0002】
【従来の技術】
この種のアイソレータに用いられている非可逆回路素子は、例えば図14に示す構造の磁性組立体50が備えられている。この磁性組立体50は、矩形板状のフェライトからなる磁性体基板55と、その下面に添わせて設けられた金属板からなる共通電極54と、この共通電極54から放射状に3方向に延出形成されて磁性体基板55の表面側に巻き掛けられた第1の中心導体51と第2の中心導体52と第3の中心導体53とから構成されている。
前記第1の中心導体51と第2の中心導体52と第3の中心導体53は互いに磁性体基板55の隅に沿って折り曲げられ、磁性体基板55の表面側において互いに略120゜の交差角度でもって重ねられている。なお、図面では省略されているが、中心導体51、52、53どうしは絶縁シートにより磁性体基板55の表面側において個々に絶縁されている。
【0003】
先の3つの中心導体51、52、53の先端部側は磁性体基板55の側方に突出するように配置されて各ポート部P1、P2、P3とされている。そして、各ポート部P1〜P3に図示略の整合用のコンデンサを接続し、ポート部の1つに先のコンデンサを介して終端抵抗を接続し、これらを永久磁石とともに磁気回路を構成する磁性体ヨーク内に収納し、磁性組立体50に別途配置した永久磁石で直流磁界を印加できる構成とすることでアイソレータが構成される。
前述の各中心導体51〜53は、図15の展開図で示すようにアース部となる共通電極54において連設一体化され、共通電極54から3方向に突出形成されていて、これらの中心導体51〜53は前記磁性体基板55に対して所定の角度で精度良く組み付けられるように図15の折曲部Xの位置において屈曲されるように構成されている。
【0004】
図16に先の種類の磁性組立体を備えた一般的なアイソレータの一構造例を示す。図16に示すアイソレータ60は、下ケース61と上ケース62との間に磁石部材63とスペーサ部材64と磁性組立体65とコンデンサ基板66、67、68と終端抵抗69と基板70とを介在させて構成されている。この例の磁性組立体65は先の例の磁性組立体50と同様に、磁性体基板72とそれを囲んで配置された中心導体73、74、75とから構成され、各中心導体73、74、75がスリットにより個々に2分割されている。なお、この例では磁性体基板72が円盤型とされているが、磁性体基板はこの例のような円盤型であっても先の例のような長方形板状であっても差し支えない。
また、前記基板70の上には、薄板状のコンデンサ基板66、67、68がコ字型に配置され、これらコンデンサ基板66、67、68の内側に磁性組立体65が配置され、磁性組立体65の中心導体73、74、75の各端部73a、74a、75aが磁性体基板72の側方に延出されていて、各端部73a、74a、75aがそれらの下に位置するコンデンサ基板66、67、68に半田付けされて接合されている。また、これらの上側には、凸部64a、64aを有する板状のスペーサ部材64が配置され、そのスペーサ部材64の上に磁石部材63が配置されている。
【0005】
【発明が解決しようとする課題】
前記従来構成のアイソレータ60にあっては、磁性組立体65を組み立ててから基板70の中心部に配置し、磁性組立体65から側方に突出された各端部73a、74a、75aをスペーサ部材64の各凸部64aでコンデンサ基板上に押さえ付け、このスペーサ部材64で押さえ付けた状態で半田付けのためのリフロー法により溶融半田に全体を浸漬して各端部73a、74a、75aとコンデンサ基板67、66、68とを半田付けする関係から、スペーサ部材64を260℃程度の温度で数秒間耐える液晶ポリマー等の耐熱性の樹脂から構成している。
【0006】
ところで図16に示すアイソレータ60にあっては、磁性組立体65において3本の中心導体73、74、75が磁性体基板72の上面側中心部分で重ねられているために、磁性体基板72の上面側中心部分に中心導体73、74、75が重ねられて山状に盛り上がった部分が生じている。これらの中心導体73、74、75は、金属薄板の打ち抜き材からなり、ある程度の厚みを有するが、中心導体73、74、75が3本重ねられた部分は山状に盛り上がった部分として磁性体基板72上に形成され、中心導体73、74、75が磁性体基板72の上面に対して密着されずに単に軽く巻かれただけの状態とされていた。
【0007】
ところが、磁性体基板72に対する中心導体73、74、75の密着状態はアイソレータとしての損失増大に関係があり、例えば、3本の中心導体73、74、75が山状に重ねられた部分においては、磁性体基板72に最も近い側の中心導体に対して磁性体基板72から最も離れた側の中心導体の線路長が相対的に長くなってしまう問題があり、このように中心導体どうしの実効的な線路長が異なるようでは、損失が増大してアイソレータとして設計通りの性能を発揮させることが難しいという問題があった。また、中心導体73、74、75が複数重なる部分では、中心導体の底面側の平坦度を確保し難いという問題も有している。
また、中心導体73〜75による山状の重なり部分が磁性体基板72の上に存在するということは、それらの上に重ねられるスペーサ部材64と磁石部材63の平行度を高めることが難しいということも意味しており、磁石部材63によって磁性体基板72に磁界を印加する場合に均一な磁界を印加できなくなるおそれもあった。
また、この種のアイソレータは近年の高周波回路の小型化に伴い、全体として4〜5mm角程度の大きさに形成されるようになってきているが、このような微細な部品において先の中心導体73〜75の山状の重なり部分を生じることでアイソレータ全体としての薄型化の推進に悪影響を及ぼすおそれもある。
【0008】
本発明は以上の背景に基づいてなされたもので、磁性体基板に対して線路導体あるいは中心導体を緊密に巻き付けて磁性組立体を得ることができ、よって特性が良好な非可逆回路素子とアイソレータを提供することを目的の1つとする。
本発明は、磁性体基板の周囲に配する線路導体の山状の重なり部分をできるだけ小さくすることでスペーサ部材を介して配置する磁石部材と磁性体基板との平衡度を確保し、よって特性が良好な非可逆回路素子とアイソレータを提供することを目的の1つとする。
【0009】
【課題を解決するための手段】
本発明は前記課題を解決するために、長方形のケース状のヨークの内部に、長方形状の磁性体基板と、該磁性体基板表面側の対角線に沿って配置される第1の線路導体と、該磁性体基板表面側の別の対角線に沿って配置される第2の線路導体と、該磁性体基板表面側の中央部に沿って配置される第3の線路導体と、前記磁性体基板の側方に配置される長方形状の複数のコンデンサ基板と、前記磁性体基板に対して磁界を印加するための磁石部材とが具備されてなり、前記第1の線路導体の先端に設けられた第1の線路導体の先端導体が、前記磁性体基板の一方の長辺側の一側端部において前記第1の線路導体の向きから方向を変えられて前記磁性体基板の短辺の延長線とヨーク内面に沿って設けられ、前記第2の線路導体の先端に設けられた第2の線路導体の先端導体が、前記磁性体基板の一方の長辺側の他側端部において前記第2の線路導体の向きから方向を変えられて前記磁性体基板の別の短辺の延長線とヨーク内面に沿って設けられ、前記複数の線路導体の各端部が前記コンデンサ基板に接続されてなり、前記磁性体基板の長辺に沿って前記磁性体基板の両側に前記コンデンサ基板が収納され、前記磁性体基板の短辺方向において、前記磁性体基板の幅が、前記ヨークの内幅よりも小さくなるように、磁性体基板の縦横比が25%(1:4)以上、80%(4:5)以下の範囲で形成され、前記磁性体基板の長辺方向において、磁性体基板の長さと前記ヨークの内幅がほぼ同じであることを特徴とする。
【0010】
長方形状のケース状のヨークの内部に該ヨークよりも幅の小さい長方形状の磁性体基板を設け、その幅方向両側に長方形状のコンデンサ基板を収納してなるので、ヨーク内部の磁性体基板の周りの空間部にコンデンサ基板を収容することができる。
【0011】
本発明は前記課題を解決するために、前記磁性体基板の幅方向両側に配置された2つの前記コンデンサ基板のうち、一方の前記コンデンサ基板が前記複数の線路導体に接続された共通のコンデンサ基板とされ、該コンデンサ基板の両端部のうちの一方の端部に前記第1の線路導体の先端導体が、他方の端部に前記第2の線路導体の先端導体が接続されたことを特徴とする。
【0012】
共通のコンデンサ基板とすることで必要とする容量を小さなコンデンサ占有面積で稼ぐことができる。
【0020】
【発明の実施の形態】
以下に本発明を更に詳細に説明する。
図1〜図6は本発明に係る非可逆回路素子の一例であるアイソレータの第1の実施の形態を示すもので、この形態のアイソレータ1は、上ヨーク2と下ヨーク3とからケース状に構成されたヨーク(閉磁気回路)内に、永久磁石などからなる磁石部材4と強磁性体からなる磁性体基板5と線路導体6、7、8とこれら線路導体6、7、8を接続した共通電極10と磁性体基板5の周囲に配置されたコンデンサ基板11、12と終端抵抗(抵抗素子)13とを備えて構成されている。
【0021】
前記上ヨーク2と下ヨーク3は軟鉄などの強磁性体からなり、図4と図5に示すように4角形状のケース状に形成されている。なお、それらヨークの表裏面にはAgメッキなどの導電層が被覆形成されていることが好ましい。また、側面視略コ字型の上ヨーク2は側面視略コ字型の下ヨーク3に嵌め込み自在の大きさとされており、上ヨーク2と下ヨーク3の互いの開口部分を嵌め合わせることで両者を一体としてケース状のヨーク(磁気閉回路)を構成することができるように構成されている。
即ち、下ヨーク3は図4に示すように平面視矩形状の底板3aとこの底板3aの相対向する2辺側に立設された側壁部3bとから構成される側面コ字型に形成されるとともに、上ヨーク2は図5に示すように平面矩形状の天板2aとこの天板2aの相対向する2辺側に立設された側壁部2bとから構成される側面コ字型に形成され、上ヨーク2の側壁部2b、2bと下ヨーク3の側壁部3b、3bとを互い違いに配置してヨーク2、3を嵌め合わせることでケース状の磁気閉回路が構成されてるように形成されている。なお、これらのヨーク2、3の形状はこの実施形態の如くコ字型に限るものではなく、複数のヨークでケース状の閉磁器回路を構成するものであれば、任意の形状で差し支えない。
【0022】
前記の如く嵌め合わされた下ヨーク2と上ヨーク3が囲む空間には、換言すると下ヨーク2と上ヨーク3からなる閉磁気回路内には、先の磁性体基板5と3本の線路導体6、7、8とこれら線路動体6、7、8を接続した共通電極10とからなる磁性組立体15が収納されている。
前記磁性体基板5は、フェライト等の強磁性体からなり、図2に示すように平面視横長の略長方形板状とされている。より詳細には磁性体基板5は、相対向する横長の2つの長辺5a、5aと、これらの長辺5a、5aに直角向きの短辺5b、5bと、前記長辺5a、5aの両端部側に位置して各長辺5aに対して150゜の角度で傾斜し(長辺5aの延長線に対しては30°の傾斜角度で傾斜し)、個々に先の短辺5bに接続する4つの傾斜辺5cとから構成される平面視横長の略長方形状とされている。従って磁性体基板5の平面視4つのコーナ部には、それぞれ長辺5aに対する150°傾斜(短辺5bに対して130°傾斜)の傾斜面(受面)5dが形成されている。
【0023】
また、この磁性体基板5においては、その横方向、即ち長手方向の幅と、その縦方向、即ち長手方向に直交する方向の幅との比、即ち縦横比が25%(1:4)以上、80%(4:5)以下の範囲、即ち平面視横長であることが好ましい。
なお、ここで、図1に示すものは平面視横長の磁性体基板5であるが、図1を90゜回転させた横方向から見ると、磁性体基板5は縦長形状となる。よって本発明では、磁性体基板5は横長形状でも縦長形状でも全く等価のものと考える。
【0024】
先の3本の線路導体6、7、8と共通電極10は図3の展開図に示すように一体化されてなり、3本の線路導体6、7、8と共通電極10とを主体として電極部16が構成されている。この共通電極10は、平面視先の磁性体基板5とほぼ相似形状の金属板からなる本体部10Aから構成されている。即ち、本体部10Aは相対向する2つの長辺部10a、10aと、これらの長辺部10a、10aに直角向きの短辺部10b、10bと、前記長辺部10a、10aの両端部側に位置して各長辺部10aに対して150°の角度で傾斜し、先の短辺部10bに対しては130°の傾斜角度で接続する4つの傾斜部10cとから構成される平面視略長方形(矩形状)とされている。
【0025】
そして、先の共通電極10の4つのコーナ部の傾斜部10cのうち、一方の長辺部側の2つの傾斜部10cから第1の線路導体6と第2の線路導体7が延出形成されている。まず、先の2つの傾斜部10cの一方から、第1の基部導体6aと第1の中心導体6bと第1の先端部導体6cからなる第1の線路導体6が延出形成される一方、先の傾斜部10cの他方から、第2の基部導体7aと第2の中心導体7bと第2の先端部導体7cとからなる第2の線路導体7が延出形成されている。前記基部導体6a、7aはいずれも傾斜部10cを延長するように傾斜部10cと同じ幅に形成されていて、基部導体6a、7aはそれらの中心軸線を共通電極10の長辺部10aに対して150゜の傾斜角度で傾斜させて設けられている。次に、前記中心導体6b、7bはいずれも共通電極10の短辺部10bに対して平行に、換言すると基部導体6a、7aの中心軸線(長さ方向)に対して150゜の傾斜角度で形成され、更に先端部導体6c、7cはいずれも共通電極10の長辺部10aに対して150゜傾斜とされている。
これらのことから、接続導体6a、7aの中心軸線どうしがなす角度θ1は図3に示すように60°とされており、先端部導体6c、6cの中心軸線どうしがなす角度θ2は図3に示すように120゜とされている。
【0026】
次に、前記第1の線路導体6の幅方向中央部には、共通電極10の外周部から基部導体6aと中心導体6bを通過し先端部導体6cの基端部まで到達するスリット部18が形成され、このスリット部18を形成することにより中央部導体6bが2本の分割導体6b1、6b2に分割され、基部導体6aも2本の分割導体6a1、6a2に分割され、前記第2の線路導体7の幅方向中央部にも同様のスリット部19が形成され、このスリット部19を形成することにより中央部導体7bが2本の分割導体7b1、7b2に分割され、基部導体7aも2本の分割導体7a1、7a2に分割されている。
前記スリット部18の共通電極10側の端部は接続導体6aを通過して共通電極10の外周部から若干深い位置まで到達することで凹部18aを形成し、第1の線路導体6の線路長を若干長くしているとともに、前記スリット部19の共通電極10側の端部も接続導体7aを通過して共通電極10の外周部まで到達することで凹部19aを形成し、第2の線路導体7の線路長を若干長くしている。
【0027】
一方、前記共通電極10の他方の長辺部10a側の中央部に第3の線路導体8が延設されている。この第3の線路導体8は共通電極10から突出形成された第3の基部導体8aと第3の中心導体8bと第3の先端部導体8cとから構成されている。前記第3の基部導体8aは、共通電極10の長辺側中央部からほぼ直角に延出形成された2本の短冊状の分割導体8a1、8a2からなり、2本の分割導体8a1、8a2の間にはスリット20が形成されている。前記第3の中心導体8bは、先の分割導体8a1に接続する平面視L字状の分割導体8b1と先の分割導体8a2に接続する平面視L字状の分割導体8b2とからなり、分割導体8b1と分割導体8b2は、これら分割導体8a1、8a2の実質的な導体長を長くするために、互いの中央部を離間するようにして分割導体8a1、8a2から延設され、分割導体8b1と8b2とから菱形の中心導体8bが構成されている。
【0028】
更に、これらの分割導体8b1、8b2の先端側はL字型の第3の先端部導体8cに一体化されている。この第3の先端部導体8cは、先の分割導体8b1、8b2を一体化して先の分割導体8a1、8a2と同じ方向に向けて延出形成された接続部8c1とこの接続部8c1に対してほぼ直角方向に延出形成された接続部8c2とから構成されている。
【0029】
次に、前記共通電極10の一方の長辺部10a側において、第3の線路導体8の分割導体8a1、8a2の両側部分には、共通電極10の長辺部10aを一部切り欠く形で3つの凹部10eが形成され、これらの凹部10eを形成することで第3の線路導体8の線路長が若干長くされている。更に、前記共通電極10の一方の長辺部10aにおいて3つの凹部10eのうちの両側2つの凹部10eの外側、換言すると凹部10eと傾斜部10cとの間の部分に、先の分割導体8a1、8a2と平行な向きに台形型の支持片21が延出形成されるとともに、共通電極10の他方の長辺部10a側の中央部にも平面視長方形状の支持片22が延出形成されている。これら支持片21、22はコンデンサ基板11、12のアース電極とされており、コンデンサ基板11、12の一面に電気的に接続され、更に他面側は後述するように各先端部導体6c、7c、8cと電気的に接続されている。
【0030】
前記の如く構成された共通電極10は、その本体部10Aを磁性体基板5の裏面側(一面側)に添わせ、第1の線路導体6と第2の線路導体7と第3の線路導体8とを磁性体基板5の表面側(他面側)に折り曲げて磁性体基板5に装着され、磁性体基板5とともに磁性組立体15を構成している。即ち、第1の線路導体6の分割導体6a1、6a2を磁性体基板5の1つの傾斜面5dの縁に沿って折り曲げ、第2の線路導体7の分割導体7a1、7a2を磁性体基板5の他の1つの傾斜面5dの縁に沿って折り曲げ、第3の線路導体8の分割導体8a1、8a2を磁性体基板5の長辺5aの縁に沿って折り曲げ、第1の線路導体6の中心導体6aを磁性体基板5の表面側(他面側)に磁性体基板表面側の対角線に沿って添わせ、第2の線路導体7の中心導体7bを磁性体基板5の表面側(他面側)に磁性体基板表面の対角線に沿って添わせ、更に第3の線路導体8の中心導体8bを磁性体基板5の表面部の中央部分に沿って添わせることで共通電極10が磁性体基板5に装着されて磁性組立体15とされている。
【0031】
なお、ここで記載されている対角線とは、図2に示すように磁性体基板5を平面視した場合に、各長辺5aと各短辺5bとの延長線が交わる位置を略長方形状の磁性体基板5の頂点と仮定し、これら4つの頂点のうち、対向する頂点どうしを結ぶ線分を対角線L1、L2と定義する。
更に、前記導体部8b1、8b2は磁性体基板5の表面側に配置されるが、磁性体基板5の表面側に添わせられる分割導体8b1あるいは分割導体8b2の長さは図2に示す磁性体基板5の縦幅(横長長方形状の磁性体基板5の幅方向に沿う幅)の105%以上とすることが好ましい。このようにすることで分割導体8b1、8b2の実質的な導体長を長くして非可逆回路素子としての低周波化と小型化を両立させることが可能となる。
【0032】
以上のように第1〜第3の線路導体6、7、8を磁性体基板5の表面側に装着することで、図1Aに示すように第1の線路導体6と第2の線路導体7は個々に磁性体基板5の対角線L1、L2に沿って重ねて配置され、第1の中心導体6bと第2の中心導体7bは磁性体基板5の表面上において平面視120゜の傾斜角度で交差されて重ねられている。また、第1〜第3の中心導体6b、7b、8bの重なり状態において、第1の中心導体6bの分割導体6b1、6b2と、第2の中心導体7bの分割導体7b1、7b2とが重ねられた部分は、磁性体基板5の表面側において平面視的に全て位置ずれされて配置され、分割導体6b1、6b2と分割導体7b1、7b2とが重ねられた部分は磁性体基板5の表面上において重ならないように配置されている。
【0033】
さらに、分割導体6b1、6b2と分割導体7b1、7b2とが重ねられた部分に対してこれらの部分を避けるように第3の中心導体8bの分割導体8b1、8b2が配置されている。従って、磁性体基板5の表面上において、分割導体6b1、6b2と分割導体7b1、7b2と分割導体8b1、8b2がこれらの組み合わせのうち、2本重なって配置されることはあっても、3本が重ねられる部分は生じないように配置されている。
なお、図1(A)では略したが、磁性体基板5と第1の線路導体6と第2の線路導体7と第3の線路導体8との間には各々に図1(B)に簡略的に示すように絶縁シートZが介在されて各線路導体6、7、8は個々に電気的に絶縁されている。
【0034】
次に、前記磁性組立体15は下ヨーク3の底部中央側に配置され、下ヨーク3の底部側の磁性組立体15の両側部分には平面視細長で先の磁性体基板5の半分程度の厚さの板状のコンデンサ基板11、12が収納され、コンデンサ基板12の一側部側には終端抵抗13が収納されている。より詳細には、先の磁性組立体15の磁性体基板5の長さが下ヨーク3の内幅とほぼ同じに形成され、磁性体基板5の幅(長手方向に直交する方向の幅)が下ヨーク3の内幅よりも小さく形成されているので、磁性体基板5を下ヨーク3の内部に図1に示すように平面視横長になるように収納した状態において、磁性体基板5の幅方向両側には図1に示すようにコンデンサ基板11、12を収納可能な空間部が形成され、それらの空間部に薄板型のコンデンサ基板11、12とチップ状の終端抵抗(抵抗素子)13が収納されている。
更に、コンデンサ基板11の下側には共通電極10の支持片21、21が配置され、電気的に接続されるとともに、コンデンサ基板12の下側には共通電極10の支持片22が配置され、電気的に接続されている。
【0035】
そして、先の第1の線路導体6の先端部導体6cを先のコンデンサ基板11の一側端部に形成されている電極部11aに電気的に接続し、先の第2の線路導体7の先端部導体7cを先のコンデンサ基板11の他側端部に形成されている電極部11bに電気的に接続し、先の第3の中心導体8の先端部導体8cをコンデンサ基板12と終端抵抗13に電気的に接続して磁性組立体15にコンデンサ11、12と終端抵抗13とが接続されている。なお、この終端抵抗13を接続しなければ、サーキュレータとして作用する。
【0036】
前記先端部導体7cの部分が接続されたコンデンサ基板11の端部側にアイソレータ1としての第1ポートP1が形成され、先端部導体6cの部分が接続されたコンデンサ基板11の端部側にアイソレータ1としての第2ポートP2が形成され、先端部導体8cの部分が接続された終端抵抗13の端部側がアイソレータ(非可逆回路素子)1としての第3ポートP3とされている。
【0037】
この形態のアイソレータ1において、アイソレータの特性と、小型化を両立させるために第1ポートP1と第2ポートP2に沿う方向に平行な方向のコンデンサ基板11の長手をアイソレータ1全体の同方向の長手(換言すると、下ヨーク3の同方向の長さ)の65%以上、100%以下とすることが好ましい。この範囲の長さの中でも75%以上、100%以下であることがより好ましい。
次に第1ポートと第2ポートに沿う方向に直交する方向においては、コンデンサ基板11の幅がアイソレータ1全体の同方向の長さの(換言すると下ヨーク3の同方向の長さの)15%以上、45%以下であることが好ましい。この範囲の幅の中でも30%以上、45%以下であることがより好ましい。
【0038】
また、下ヨーク3と上ヨーク2との間の空間部において磁性組立体15はその空間部の厚さの半分程を占有する厚さに形成されているので、磁性組立体15よりも上ヨーク2側の空間部分には、図6にも示すスペーサ部材30が収納され、該スペーサ部材30に磁石部材4が設置されている。
先のスペーサ部材30は、上ヨーク2の内部に収納可能な大きさの平面視矩形板状の基板部31と、この基板部31の底部側の4隅の各コーナ部分に形成された脚部31aとからなり、基板部31において脚部(凸部)31a…が形成されていない側の面(上面)に円型の収納凹部31bが形成され、該収納凹部31bの底面側には基板部31を貫通する矩形型の透孔31cが形成されている。
【0039】
そして、先の収納凹部31bに円盤状の永久磁石からなる磁石部材4が嵌め込まれ、この磁石部材4を備えた状態のスペーサ部材30がそれらの4つの脚部(凸部)30aで先のコンデンサ基板11、12とこれらに接続されている第1の先端部導体6c、7c、並びに、終端抵抗13とこれに接続されている先端部導体8cの先端部を下ヨーク3の底部側に押さえ付け、スペーサ部材30により磁性組立体15を下ヨーク3の底面側に押さえ付けた状態でヨーク2、3の間に収納されている。
なお、スペーサ部材30の4つの脚部31aにより先のように先端部導体6c、7c、8cを押さえ付けることにより第1の線路導体6と第2の線路導体7と第3の線路導体8とに張力を付加した状態でこれらを磁性体基板5の表面側に押さえ付けていると同時に、スペーサ部材30の透孔31cを介して磁石部材4の底面により先の第1の線路導体6と第2の線路導体7と第3の線路導体8の重ねられた部分を押さえ付けることでこれらを磁性体基板5の表面側に押さえ付け、これらにより先の線路導体6、7、8を磁性体基板5の表面側に密に押し付けて密着させている。
なお、先の透孔31cの大きさは先の磁性体基板5よりも若干小さい矩形状、換言すると、線路導体6、7、8が重ねられた領域を取り囲むことができる程度の大きさとされている。透孔31cをこのような大きさとすることにより磁石部材4がその底面で線路導体6、7、8の重なり部分を全て磁性体基板5側に押さえ付けることができるとともに、スペーサ部材30の基板部31の底面により磁性体基板5を下ヨーク3の底面側に押し付けることができる。
【0040】
図1〜図6に示す本実施の形態のアイソレータ1は、第1の線路導体6と第2の線路導体7がいずれも磁性体基板5の平面状の受面5d、5dを介して折り曲げられ、第3の線路導体8が磁性体基板5の長辺5aに沿って折り曲げられているので、各線路導体6、7、8における中心導体6b、7b、8bの折り曲げ部分が磁性体基板5の表面側において正確な角度、例えば第1の線路導体6と第2の線路導体7においては120゜の角度に折り畳まれる。即ち、平面状の受面5dの縁の直線部分を介しての折り畳み作業となるので、中心導体6b、7bを磁性体基板5の表面側において正確に120゜の角度で交差させて折曲することが容易にできるようになる。従って、入力側の線路導体から磁性体基板5に入力された信号を出力側に効果的に伝搬させることができ、低損失でしかも広帯域な通過特性を発揮できる。従って磁性組立体15の磁気特性として好適なものが確実に得られるようになる。
【0041】
また、磁性体基板5の表面側に折り畳まれた中心導体6b、7b、8bは図1に示すように重ねられるが、この重ねた状態において、中心導体6b、7b、8bの各々において2本に分割されている分割導体6b1、6b2、7b1、7b2、8b1、8b2の各々が個々に重ねられる。しかし、これらの分割導体6b1、6b2、7b1、7b2、8b1、8b2の重ねられた部分においてはいずれかの2つの分割導体のみの重ね部とされ、3つの分割導体が重ねられてはいない。これは、2本の中心導体6、7を2分割した上に、中心導体8bを広げた状態の2分割構造として中心導体6b、7bに対する重ね部分を避けることができるように重ねた構造としたためである。
【0042】
このように重ねた構造にすることで3つの分割導体が重なることを避けることができ、これにより磁石部材4の底部で中心導体6b、7b、8bを磁性体基板5側に押し付ける際に中心導体6b、7b、8bの重なり部分を均一に押さえ付けることができる。ここで例えば、分割導体が3本重なる部分が生じると、分割導体が2本重なった部分よりも3本重なった部分の方が厚くなるので、この3本重なった部分には磁石部材4の強い押し付け力が作用する反面、他の2本重なった部分には磁石部材4の押し付け力が十分に作用しなくなるので、中心導体6b、7b、8bに均等に押さえ付け力を作用させてこれらの全てを均等に支持することができなくなるおそれが高くなる。
また、2つの分割導体が重ねられる部分のみが存在することにより、これを押さえ付けている磁石部材4を磁性体基板5に対して平行に配置することができ、この結果、磁石部材4によって磁性組立体15に磁界を印加する場合に均一な磁界を作用させることができ、非可逆回路素子としての性能向上に寄与する。
【0043】
更に、仮に3つの分割導体が重ねられた場合、磁性体基板5に最も近い側の分割導体と磁性体基板5から最も離れた側の分割導体の比較では、磁性体基板5から最も離れた側の分割導体が大きく膨らんだ状態で磁性体基板5の表面側に存在することとなるので、磁性体基板5の表面上に存在する分割導体の実効的な線路長の差異が大きくなる。これに対して分割導体どうしが2本重なる部分を形成するのみでは、重なり構造を採用する場合において最外層と最内層の分割導体の実効的な線路長の差異が最も小さくなる。このように2つの分割導体のみを重ねる構成を採用することで、分割導体の磁性体基板側の底面を概ね50%以上、確実に磁性体基板5に密着させることができる。このように分割導体を磁性体基板5に密着させることにより、分割導体での信号の伝搬を安定に行うことができ、特性のばらつきを抑えることができる。
【0044】
また、前述の如く中心導体8bの分割導体8b1、8b2を非平行もしくは平行でかつ折曲もしくは湾曲するように分割したことにより、入力側の線路導体から入力された信号を効果的に高周波フェライト製の磁性体基板5上を伝搬させ、出力することができ、広帯域な通過特性を発揮させることができる。
また、低周波化するためには各線路導体6、7、8を長くしてインダクタンスを大きくする必要があるが、本発明においては、第3の中心導体8bにおいて、第3の線路導体8が長さ方向中央部側において互いに離れる方向に折曲(屈曲)もしくは湾曲されてなるが、もしくは、互いに平行でかつ折曲もしくは湾曲されてなるが、これにより第3の線路導体8の長さが実質的に長くなって、インダクタンスが大きくなり、低周波化と小型化を両立することができる。
【0045】
次に、本実施の形態では電極部16の本体部10Aを磁性体基板5とほぼ同じ平面視形状としてあるが、このようにすることで本体部10Aがその下に位置する下ヨーク3に広い面積で接触できるので抵抗が低くなり、損失を小さくすることができる。
【0046】
次に、先に説明したごとく第1の線路導体6と第2の線路導体7と第3の線路導体8の各々の付け根の部分には、凹部18a、19a、10eが形成されており、各線路導体の線路長が若干長くされているので、各中心導体6、7、8のインダクタンスが大きくなり、共振容量の面積を小さくできる、換言するとコンデンサ基板11、12の面積を小さくできる効果があり、アイソレータ1としての全体の小型化に寄与する。
【0047】
次に、磁石部材4はその底部で線路導体6、7、8の交差部分を磁性体基板5の上面側に押さえ付けてそれらを磁性体基板5の上面側に強く押さえ付ける。これにより、線路導体6、7、8の底面、換言すると、各分割導体6b1、6b2の底面(磁性体基板側の面)と分割導体7b1、7b2の底面(磁性体基板側の面)と分割導体8b1、8b2の底面(磁性体基板側の面)を全て密に磁性体基板5側に押し付けることができる。その結果、各線路導体6、7、8の底面側の平坦度を向上させることができ、特性の均一化に寄与する。
【0048】
次に、本実施の形態の構造においては、共通電極10の支持片21にコンデンサ基板11の下面が接続され、共通電極10の支持片22にコンデンサ基板12の下面が接続されているので、本実施の形態の構造を簡略的に見ると図8Aに示すように下ヨーク3上に共通電極10の本体部10Aが設置され、共通電極10の第1又は第2ポートP1、P2と支持片21との間にコンデンサ基板11を介在させた構造とみなすことができる。ここで下ヨーク3が接地されているとすると、コンデンサ基板11は下ヨーク3にアースされる共通電極10の本体部10Aと先の第1、第2ポートP1、P2との間に介在されることとなる。
これに対し、仮に図7Bに示す構造のように支持片21が形成されていない場合、コンデンサ基板11は下ヨーク3と第1、第2ポートP1、P2との間に設けられていることとなる。
図7Aと図7Bに示す構造を比較すると、図7Bの構造ではコンデンサ基板11のグランド側が下ヨーク3に接地されているので、信号経路の一部が高電気抵抗となるのに対し、図7Aに示すようにコンデンサ基板1のアース側に共通電極10の支持片21が接続されていることで信号経路全体が低い電気特性となるので、非可逆回路素子としての損失を低減することができる。
【0049】
図8Aは、先の実施の形態のアイソレータ1が組み込まれる携帯電話装置の回路構成の一例を示すもので、この例の回路構成においては、アンテナ40にアンテナ共振器41が接続され、アンテ共振器41の出力側にローノイズアンプ(増幅器)42とフィルタ48と選択回路43を介して受信回路44が接続され、アンテナ共振器41の入力側に先の実施の形態のアイソレータ1とパワーアンプ(増幅器)45と選択回路46を介して送信回路47が接続され、選択回路43、46に分配トランス49が接続されて構成されている。
先の構成のアイソレータ1は図8Aに示すような携帯電話装置の回路に組み込まれて使用され、アイソレータ1からアンテナ共振器41側への信号は低損失で通過させるが、その逆方向の信号は損失を大きくして遮断するように作用する。これにより、増幅器45側のノイズ等の不要な信号を増幅器45側に逆入力させないという作用を奏する。
【0050】
図8Bは図1から図6に示した構成のアイソレータ1の動作原理を示すものである。図8Bに示す回路に組み込まれているアイソレータ1は、符号▲1▼で示す第1ポートP1側から符号▲2▼で示す第2ポートP2方向への信号は伝えるが、符号▲2▼の第2ポートP2側から符号▲3▼の第3ポートP3側への信号は終端抵抗13により減衰させて吸収し、終端抵抗13側の符号▲3▼で示す第3ポートP3側から符号▲1▼で示す第1ポートP1側への信号は遮断する。
従って図8(A)に示す回路に組み込んだ場合に先に説明した効果を奏することができる。
【0051】
図9は、本発明に係る第2の実施の形態の非可逆回路素子に適用される電極部35を示すもので、この形態の電極部35において先の実施の形態の電極部16と同じ構成要素には同一の符号を付してそれらの部分の説明を省略する。
この形態の電極部35において先の実施の形態の電極部16と異なるのは、第1の線路導体6と第2の線路導体7において共通電極10の本体部10Aに対する付け根の部分の各々に前記第1の基部導体6aと同じ程度の長さ(深さ)の凹部10fを各々形成し、各線路導体6、7の線路長を更に長く形成した点に特徴がある。また、第3の線路導体8の付け根の部分にも先の凹部10fと同等の長さ(深さ)の凹部10gを形成することで第3の線路導体8の線路長も更に長くされている。
【0052】
この図の実施の形態の如く、共通電極10の本体部10Aに先の実施の形態よりも更に深い凹部10f、10gを形成して線路導体6、7、8の実効の線路長を長くした構造を採用しても良い。この場合、凹部10f、10gを形成した部分側まで絶縁層を配置し、各線路導体6、7、8を磁性体基板5の裏面側において個々に絶縁する構成とする必要がある。また、線路導体8は後述する実施の形態のごとく分割導体8b1、8b2を平行に、かつ、折曲もしくは湾曲して形成させても良い。
以上の構造を採用することで、中心導体6、7、8のインダクタンスが更に大きくなるので、共振容量の面積を小さくできる、換言するとコンデンサ基板11、12の面積を小さくできる効果があり、アイソレータ1としての全体の小型化に寄与する。
【0053】
図は、本発明に係る第3の実施の形態の非可逆回路素子に適用される電極部36を示すもので、この形態の電極部36において先の第1の実施の形態の電極部16と同じ構成要素には同一の符号を付してそれらの部分の説明を省略する。
この形態の電極部36において先の実施の形態の電極部16と異なるのは、第3の線路導体80の中心導体80bが分割導体80b1と8b2に分割されている点であり、分割導体80b1は分割導体8b2と非平行ではなく、分割導体8b2に平行になるように屈曲されている。従って第3の中心導体80bはL字型に形成されている。なお、第3の中心導体80bは折曲(屈曲)された形状に記載されているが、湾曲された形状あるいは折り曲げ部分にアールが付けられた形状でも良いのは勿論である。更にこれらの分割導体はL字型に限らず、ジグザグ状、波形等に折曲された形状でも良いのは勿論である。
このような形状とした分割導体80b1、8b2を備えた第3の線路導体80を備えた構造であっても、線路導体80bの実質的な導体長を長くして非可逆回路素子としての低周波化と小型化を両立させることができる。
【0054】
図11は本発明に係る非可逆回路素子(アイソレータ)の第4の実施の形態を示すもので、この形態のアイソレータ50は、上ヨーク51と下ヨーク52とからなる閉磁気回路の内部に、換言すると、上ヨーク51と下ヨーク52の間に、4角板状の永久磁石からなる磁石部材55とスペーサ部材56と磁性組立体57とコンデンサ板58、59、60と終端抵抗61とこれらを収容する樹脂ケース62とを収容して構成されている。
前記磁性組立体57は先の第1の実施の形態の電極部16と同等の電極部16が平面視略長方形状の磁性体基板65に巻き付けられて構成されている。この磁性体基板65は先の形態の横長の磁性体基板5とほぼ同じ形状であるが若干正方形状に近い長方形板状とされている。
図11に示す構造のアイソレータ50においても先の実施の形態のアイソレータ1と同等の効果を得ることができる。
【0055】
図12は磁性体基板の他の形態を示すもので、この形態の磁性体基板60は平面視略長方形状で4つの角部にL字型の切欠状の受部61を有する形状とされ、1つの受部61を構成する2つ平面のうちの一方の平面が線路導体6を折り返すための受面61aとされ、他の1つの受部61を構成する2つ平面のうちの一方の平面が線路導体7を折り返すための受面61bとされ、これらの受面61a、61bにより電極部16の第1の中心導体6bと第2の中心導体7bとが正確に折り返されるように構成されている。
この形態の磁性体基板60においても平面視横長の略長方形状とされ、詳細には、相対向する長辺60a、60aとそれらに直角方向に延在された短辺60b、60bと先に説明した受部61を構成する2つの辺とから平面視略長方形状の磁性体基板60が構成されている。
この磁性体基板60を用いることでも先の第1の実施の形態の場合と同様の効果を得ることができる。
【0056】
図13は磁性体基板の更に他の例を示すもので、この形態の磁性体基板70は平面視略長方形状で4つの角部に平面状の受部71を有し、短辺側が曲線とされた略レーストラック形状とされている。この形状も本発明においては略長方形状の概念に含めるものとする。より詳細には、磁性体基板70は相対向する長辺70a、70aとこれらの長辺70a、70aの端部どうしを接続する楕円弧状の短辺70b、70bとからなり、長辺70a、70aの端部に形成された平面状の受部71、71と長辺70aにより先に説明した電極部16の第1の中心導体6bと第2の中心導体7bと第3の中心導体8を正確に折り返しできるように構成されている。
この磁性体基板70を用いることでも先の第1の実施の形態の場合と同様の効果を得ることができる。
【0057】
【発明の効果】
以上説明したように本発明は、長方形のケース状のヨークの内部に、長方形状の磁性体基板と、該磁性体基板表面側の対角線に沿って配置される第1の線路導体と、該磁性体基板表面側の別の対角線に沿って配置される第2の線路導体と、該磁性体基板表面側の中央部に沿って配置される第3の線路導体と、前記磁性体基板の側方に配置される長方形状の複数のコンデンサ基板と、前記磁性体基板に対して磁界を印加するための磁石部材とが具備されてなり、前記第1の線路導体の先端に設けられた第1の線路導体の先端導体が、前記磁性体基板の一方の長辺側の一側端部において前記第1の線路導体の向きから方向を変えられて前記磁性体基板の短辺の延長線とヨーク内面に沿って設けられ、前記第2の線路導体の先端に設けられた第2の線路導体の先端導体が、前記磁性体基板の一方の長辺側の他側端部において前記第2の線路導体の向きから方向を変えられて前記磁性体基板の別の短辺の延長線とヨーク内面に沿って設けられ、前記複数の線路導体の各端部が前記コンデンサ基板に接続されてなり、前記磁性体基板の長辺に沿って前記磁性体基板の両側に前記コンデンサ基板が収納され、前記磁性体基板の短辺方向において、前記磁性体基板の幅が、前記ヨークの内幅よりも小さくなるように、磁性体基板の縦横比が25%(1:4)以上、80%(4:5)以下の範囲で形成され、前記磁性体基板の長辺方向において、磁性体基板の長さと前記ヨークの内幅がほぼ同じであるので、ヨーク内部の磁性体基板の周りの空間部にコンデンサ基板を収容することができる。
更に本発明は、前記磁性体基板の幅方向両側に配置された2つの前記コンデンサ基板のうち、一方の前記コンデンサ基板が前記複数の線路導体に接続された共通のコンデンサ基板とすることで必要とする容量を小さなコンデンサ占有面積で稼ぐことができる。
【0058】
更に本発明は、線路導体の端部側を前記磁性体基板側から前記コンデンサ基板側にかけて巻き込み接続してなることで、線路導体を磁性体基板に対して押し付けることができるので、磁性体基板に対して複数の線路導体を密着させることができ、非可逆回路素子としての特性の安定化に寄与し、特性が良好で安定化された高品質の非可逆回路素子が得られる。
【0059】
更に本発明において、分割導体どうしの重ねられた部分が平面視的に位置ずれされて配置される場合、磁性体基板の他面側において分割導体が平面視的に均等に収まり良く配置される。更に、第1の線路導体と第2の線路導体と第3の線路導体の分割導体どうしの重なり部分の全てが平面視的に位置ずれされていると、分割導体どうしが3本重ねられる部分が発生しないので、磁性体基板の他面側において分割導体の2本重なり部分と3本重なり部分の発生に起因する凹凸の発生が少なくなり、磁性体基板他面側における凹凸が少なくなる。
【0060】
本発明において、線路導体の端部側が前記磁性体基板側から前記コンデンサ基板側にかけて巻き込み接続されてなることで、線路導体を磁性体基板に対して押し付けることができるので、磁性体基板に対して複数の線路導体を密着させることができ、非可逆回路素子としての特性の安定化に寄与し、特性が良好で安定化された高品質の非可逆回路素子が得られる。
【0061】
線路導体を2本重ね部分のみとして、3本重ね部分を生じないようにすることにより、線路導体を重ねた部分に生じる山状の重なり部分の高さを低く均一化することができる。これにより、線路導体の重なり部分の全ての厚さを均一化できるので、磁石部材が線路導体を押さえる場合に全ての線路導体を均一に押さえ付けることができるようになり、磁性体基板に対する全ての線路導体の密着性を均一化することができ、非可逆回路素子としての特性安定化に寄与する。
【0062】
本発明においてコンデンサ基板のうち、少なくとも1つを複数の線路導体に接続する共通のコンデンサ基板とすることで大きな容量を小さいなコンデンサ占有体積で稼ぐことができ、非可逆回路素子としての小型化に寄与する。
【図面の簡単な説明】
【図1】 図1Aは本発明の第1の実施の形態に係るアイソレータの一部分を取り除いた状態を示す平面図、図1Bは同アイソレータの断面図である。
【図2】 図2は本発明に係るアイソレータに用いられる磁性体基板の一例を示す平面図。
【図3】 図3は本発明に係るアイソレータに用いられる電極部の展開図である。
【図4】 図4Aは本発明に係るアイソレータの下ヨークを示す平面図、図4Bは同下ヨークの側面図である。
【図5】 図5は同アイソレータの上ヨークを示す側面図である。
【図6】 図6は同アイソレータに備えられるスペーサ部材の一例を示す斜視図である
【図7】 図7Aは同アイソレータに備えられる共通電極とコンデンサ基板と磁性体基板との接続状態を示す略図、図7Bは図7Aに示す構造の変形例を示す略図である。
【図8】 図8Aはこの種のアイソレータが備えられる電気回路の一例を示す図、図8Bはアイソレータの動作原理を示す図である。
【図9】 図9は本発明に係るアイソレータの電極部の第2の例を示す図である。
【図10】 図10は本発明に係るアイソレータの電極部の第3の例を示す図である。
【図11】 図11は本発明に係るアイソレータの他の実施の形態を示す分解斜視図である。
【図12】 図12は本発明に係るアイソレータに適用される磁性体基板の他の例を示す平面図である。
【図13】 図13は本発明に係るアイソレータに適用される磁性体基板の別の例を示す平面図である。
【図14】 図14は従来の磁性組立体の一例を示す斜視図である。
【図15】 図15は従来の磁性組立体に適用されている電極部の展開図である。
【図16】 図16は従来のアイソレータの一例を示す分解斜視図である。
【符号の説明】
1…アイソレータ、2…上ヨーク、3…下ヨーク、4…磁石部材、5…磁性体基板、6…第1の線路導体、6b…第1の中心導体、6b1、6b2…第1の分割導体、7…第2の線路導体、7b…第2の中心導体、7b1、7b2…第2の分割導体、8…第3の線路導体、8b…第3の中心導体、8b1、8b2…第3の分割導体、11、12…コンデンサ基板、13…終端抵抗(抵抗素子)、16…電極部、18、19…スリット部、21、22…支持片、30…スペーサ部材、31a…脚部(凸部)、31b…収納凹部、31c…透孔、40…電極部、50…アイソレータ、60、70…磁性体基板、L1、L2…対角線。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an irreversible circuit element such as an isolator or a circulator used in a high frequency band such as a microwave band.
[0002]
[Prior art]
A nonreciprocal circuit device used in this type of isolator includes a magnetic assembly 50 having a structure shown in FIG. 14, for example. The magnetic assembly 50 includes a magnetic substrate 55 made of ferrite having a rectangular plate shape, a common electrode 54 made of a metal plate provided along the lower surface thereof, and radially extending from the common electrode 54 in three directions. The first central conductor 51, the second central conductor 52, and the third central conductor 53 are formed and wound around the surface of the magnetic substrate 55.
The first central conductor 51, the second central conductor 52, and the third central conductor 53 are bent with respect to each other along the corner of the magnetic substrate 55, and intersect each other at an angle of approximately 120 ° on the surface side of the magnetic substrate 55. So they are stacked. Although not shown in the drawings, the central conductors 51, 52, and 53 are individually insulated on the surface side of the magnetic substrate 55 by an insulating sheet.
[0003]
The tip portions of the three central conductors 51, 52, 53 are arranged so as to protrude to the side of the magnetic substrate 55, and are defined as port portions P1, P2, P3. Then, a matching capacitor (not shown) is connected to each of the port portions P1 to P3, and a termination resistor is connected to one of the port portions via a previous capacitor, and these are combined with a permanent magnet to form a magnetic circuit. The isolator is configured by applying a DC magnetic field with a permanent magnet housed in the yoke and separately arranged on the magnetic assembly 50.
Each of the above-described center conductors 51 to 53 is connected and integrated in a common electrode 54 serving as a ground portion as shown in the developed view of FIG. 15, and is projected from the common electrode 54 in three directions. 51 to 53 are configured to be bent at the position of the bent portion X in FIG. 15 so that the magnetic substrate 55 can be accurately assembled to the magnetic substrate 55 at a predetermined angle.
[0004]
FIG. 16 shows an example of the structure of a general isolator provided with the above-described type of magnetic assembly. The isolator 60 shown in FIG. 16 has a magnet member 63, a spacer member 64, a magnetic assembly 65, capacitor boards 66, 67 and 68, a terminal resistor 69, and a board 70 interposed between a lower case 61 and an upper case 62. Configured. Similar to the magnetic assembly 50 of the previous example, the magnetic assembly 65 of this example includes a magnetic substrate 72 and center conductors 73, 74, and 75 arranged so as to surround the magnetic substrate 72. 75 are individually divided into two by slits. In this example, the magnetic substrate 72 is a disk type, but the magnetic substrate may be a disk type as in this example or a rectangular plate as in the previous example.
On the substrate 70, thin plate-like capacitor substrates 66, 67, 68 are arranged in a U-shape, and a magnetic assembly 65 is arranged inside the capacitor substrates 66, 67, 68. Capacitor substrate in which 65 end portions 73a, 74a, 75a of the central conductors 73, 74, 75 are extended to the side of the magnetic substrate 72, and the end portions 73a, 74a, 75a are positioned below them. 66, 67 and 68 are soldered and joined. In addition, a plate-like spacer member 64 having convex portions 64 a and 64 a is disposed on the upper side, and a magnet member 63 is disposed on the spacer member 64.
[0005]
[Problems to be solved by the invention]
In the conventional isolator 60, the magnetic assembly 65 is assembled and then disposed at the center of the substrate 70, and the end portions 73a, 74a, and 75a protruding laterally from the magnetic assembly 65 are used as spacer members. 64 is pressed onto the capacitor substrate by the convex portions 64a, and the entire ends are immersed in molten solder by a reflow method for soldering in a state of being pressed by the spacer member 64, and the ends 73a, 74a, 75a and the capacitor The spacer member 64 is made of a heat resistant resin such as a liquid crystal polymer that can withstand a temperature of about 260 ° C. for several seconds because of the soldering of the substrates 67, 66, and 68.
[0006]
By the way, in the isolator 60 shown in FIG. 16, since the three central conductors 73, 74, and 75 are overlapped at the central portion on the upper surface side of the magnetic substrate 72 in the magnetic assembly 65, The central conductors 73, 74, and 75 are overlapped with the central portion on the upper surface side, and a portion that rises in a mountain shape is generated. These central conductors 73, 74, and 75 are made of a metal thin plate punching material and have a certain thickness. However, the portion where the three central conductors 73, 74, and 75 are stacked is a magnetic material that is raised in a mountain shape. The central conductors 73, 74, and 75 are formed on the substrate 72 and are simply wound lightly without being in close contact with the upper surface of the magnetic substrate 72.
[0007]
However, the close contact state of the central conductors 73, 74, and 75 with respect to the magnetic substrate 72 is related to an increase in loss as an isolator. For example, in the portion where the three central conductors 73, 74, and 75 are stacked in a mountain shape. There is a problem that the line length of the center conductor farthest from the magnetic substrate 72 is relatively long with respect to the center conductor closest to the magnetic substrate 72. If the actual line lengths are different, there is a problem that loss increases and it is difficult to achieve the performance as designed as an isolator. In addition, there is a problem that it is difficult to ensure the flatness of the bottom surface side of the central conductor in the portion where the central conductors 73, 74, and 75 are overlapped.
Further, the fact that the mountain-shaped overlapping portions due to the central conductors 73 to 75 are present on the magnetic substrate 72 means that it is difficult to increase the parallelism of the spacer member 64 and the magnet member 63 that are superimposed on them. This also means that when a magnetic field is applied to the magnetic substrate 72 by the magnet member 63, a uniform magnetic field may not be applied.
In addition, this type of isolator has come to be formed in a size of about 4 to 5 mm square as a whole with the recent miniaturization of high-frequency circuits. Producing 73-75 mountain-shaped overlapping portions may adversely affect the promotion of thinning of the isolator as a whole.
[0008]
The present invention has been made on the basis of the above background, and a magnetic assembly can be obtained by tightly winding a line conductor or a central conductor around a magnetic substrate, and thus a nonreciprocal circuit element and an isolator having good characteristics. Is one of the purposes.
The present invention secures the balance between the magnetic member and the magnetic substrate disposed via the spacer member by minimizing the mountain-shaped overlapping portion of the line conductors arranged around the magnetic substrate, and thus has the characteristics. An object is to provide a good non-reciprocal circuit device and an isolator.
[0009]
[Means for Solving the Problems]
  In order to solve the above problems, the present invention provides a rectangular magnetic substrate inside a rectangular case-shaped yoke, and the magnetic substrate.A first line conductor disposed along a diagonal on the surface side, a second line conductor disposed along another diagonal on the surface of the magnetic substrate, and a central portion on the surface side of the magnetic substrate. AlongBe placedThirdA line conductor, a plurality of rectangular capacitor substrates disposed on the sides of the magnetic substrate, and a magnet member for applying a magnetic field to the magnetic substrate;The tip conductor of the first line conductor provided at the tip of the first line conductor changes direction from the direction of the first line conductor at one side end of one long side of the magnetic substrate. And provided along the extension of the short side of the magnetic substrate and the inner surface of the yoke, and the tip conductor of the second line conductor provided at the tip of the second line conductor is connected to one of the magnetic substrates. The direction of the second line conductor is changed from the direction of the second line conductor at the other side end of the long side, and provided along the extension of the other short side of the magnetic substrate and the yoke inner surface,Each end of the plurality of line conductors is connected to the capacitor substrate, and the magnetic substrateAlong the long side of the magnetic substrateThe capacitor substrate is housed on both sides of the magnetic substrate.In the short side direction, the magnetic substrateThe width is smaller than the inner width of the yokeThus, the aspect ratio of the magnetic substrate is in the range of 25% (1: 4) to 80% (4: 5).Formed,In the long side direction of the magnetic substrate, the length of the magnetic substrate and the inner width of the yoke are substantially the same.It is characterized by that.
[0010]
  A rectangular magnetic substrate having a width smaller than that of the yoke is provided inside the rectangular case-shaped yoke, and a rectangular capacitor substrate is accommodated on both sides in the width direction. A capacitor substrate can be accommodated in the surrounding space.
[0011]
  In order to solve the above-described problem, the present invention provides a common capacitor substrate in which one of the two capacitor substrates arranged on both sides of the magnetic substrate in the width direction is connected to the plurality of line conductors. AndThe tip conductor of the first line conductor is connected to one end of the both ends of the capacitor substrate, and the tip conductor of the second line conductor is connected to the other end.It is characterized by that.
[0012]
  By using a common capacitor substrate, the required capacity can be obtained with a small capacitor occupation area.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in further detail below.
1 to 6 show a first embodiment of an isolator which is an example of a nonreciprocal circuit device according to the present invention. The isolator 1 of this embodiment is formed in a case shape from an upper yoke 2 and a lower yoke 3. A magnet member 4 made of a permanent magnet, a magnetic substrate 5 made of a ferromagnetic material, line conductors 6, 7, 8, and these line conductors 6, 7, 8 are connected in a configured yoke (closed magnetic circuit). Capacitor substrates 11 and 12 and a terminating resistor (resistive element) 13 disposed around the common electrode 10 and the magnetic substrate 5 are configured.
[0021]
The upper yoke 2 and the lower yoke 3 are made of a ferromagnetic material such as soft iron, and are formed in a rectangular case shape as shown in FIGS. In addition, it is preferable that conductive layers such as Ag plating are formed on the front and back surfaces of the yokes. The upper yoke 2 having a substantially U shape in side view is sized so as to be fitted into the lower yoke 3 in a substantially U shape in side view. By fitting the opening portions of the upper yoke 2 and the lower yoke 3 together. Both are integrated so that a case-like yoke (magnetic closed circuit) can be formed.
That is, as shown in FIG. 4, the lower yoke 3 is formed in a U-shaped side surface composed of a bottom plate 3a having a rectangular shape in plan view and side wall portions 3b erected on two opposite sides of the bottom plate 3a. As shown in FIG. 5, the upper yoke 2 has a U-shaped side surface composed of a planar rectangular top plate 2a and side wall portions 2b erected on two opposite sides of the top plate 2a. The case-like magnetic closed circuit is configured by forming the side walls 2b, 2b of the upper yoke 2 and the side walls 3b, 3b of the lower yoke 3 alternately and fitting the yokes 2, 3 together. Is formed. The shapes of the yokes 2 and 3 are not limited to the U-shape as in this embodiment, and any shape may be used as long as a case-like closed magnetic circuit is constituted by a plurality of yokes.
[0022]
In the space surrounded by the lower yoke 2 and the upper yoke 3 fitted as described above, in other words, in the closed magnetic circuit composed of the lower yoke 2 and the upper yoke 3, the previous magnetic substrate 5 and the three line conductors 6 are provided. , 7 and 8 and a magnetic assembly 15 composed of the common electrode 10 connecting these line moving bodies 6, 7 and 8 is housed.
The magnetic substrate 5 is made of a ferromagnetic material such as ferrite and has a substantially rectangular plate shape that is horizontally long in a plan view as shown in FIG. More specifically, the magnetic substrate 5 includes two horizontally long long sides 5a and 5a facing each other, short sides 5b and 5b perpendicular to the long sides 5a and 5a, and both ends of the long sides 5a and 5a. It is located at the part side and is inclined at an angle of 150 ° with respect to each long side 5a (inclined at an inclination angle of 30 ° with respect to the extended line of the long side 5a) and individually connected to the previous short side 5b It is made into the substantially rectangular shape of the horizontal view planar view comprised from the four inclined sides 5c which do. Accordingly, inclined surfaces (receiving surfaces) 5d each having a 150 ° inclination with respect to the long side 5a (an inclination of 130 ° with respect to the short side 5b) are formed at the four corner portions in plan view of the magnetic substrate 5.
[0023]
In the magnetic substrate 5, the ratio of the width in the lateral direction, that is, the longitudinal direction, to the width in the longitudinal direction, that is, the direction orthogonal to the longitudinal direction, that is, the aspect ratio is 25% (1: 4) or more. , 80% (4: 5) or less, that is, horizontally long in plan view.
Here, FIG. 1 shows a magnetic substrate 5 that is horizontally long in a plan view, but when viewed from the horizontal direction obtained by rotating FIG. 1 by 90 °, the magnetic substrate 5 has a vertically long shape. Therefore, in the present invention, the magnetic substrate 5 is considered to be completely equivalent to either a horizontally long shape or a vertically long shape.
[0024]
The three line conductors 6, 7, 8 and the common electrode 10 are integrated as shown in the developed view of FIG. 3, and the three line conductors 6, 7, 8 and the common electrode 10 are mainly used. An electrode portion 16 is configured. The common electrode 10 is composed of a main body portion 10A made of a metal plate having a shape substantially similar to the magnetic substrate 5 in plan view. That is, the main body portion 10A has two long side portions 10a and 10a opposite to each other, short side portions 10b and 10b perpendicular to the long side portions 10a and 10a, and both end sides of the long side portions 10a and 10a. A plan view composed of four inclined portions 10c, which are located at an angle of 150 ° with respect to each long side portion 10a and connected with an inclination angle of 130 ° with respect to the short side portion 10b. It is substantially rectangular (rectangular shape).
[0025]
The first line conductor 6 and the second line conductor 7 are formed so as to extend from the two inclined portions 10c on one long side portion of the inclined portions 10c of the four corner portions of the common electrode 10. ing. First, while the first line conductor 6 including the first base conductor 6a, the first center conductor 6b, and the first tip conductor 6c is extended from one of the two inclined portions 10c, A second line conductor 7 composed of a second base conductor 7a, a second center conductor 7b, and a second tip conductor 7c is extended and formed from the other side of the inclined portion 10c. The base conductors 6a and 7a are formed to have the same width as the inclined portion 10c so as to extend the inclined portion 10c, and the base conductors 6a and 7a have their central axes aligned with the long side portion 10a of the common electrode 10. Are inclined at an inclination angle of 150 °. Next, the central conductors 6b and 7b are both parallel to the short side portion 10b of the common electrode 10, in other words, at an inclination angle of 150 ° with respect to the central axis (length direction) of the base conductors 6a and 7a. Further, the tip end conductors 6 c and 7 c are inclined at 150 ° with respect to the long side portion 10 a of the common electrode 10.
Therefore, the angle θ1 formed between the central axes of the connecting conductors 6a and 7a is 60 ° as shown in FIG. 3, and the angle θ2 formed between the central axes of the tip end conductors 6c and 6c is shown in FIG. As shown, the angle is 120 °.
[0026]
Next, at the center in the width direction of the first line conductor 6, there is a slit 18 that passes from the outer periphery of the common electrode 10 through the base conductor 6a and the center conductor 6b and reaches the base end of the tip end conductor 6c. By forming the slit portion 18, the central conductor 6b is divided into two divided conductors 6b1 and 6b2, and the base conductor 6a is also divided into two divided conductors 6a1 and 6a2, and the second line A similar slit portion 19 is also formed in the widthwise central portion of the conductor 7, and by forming this slit portion 19, the central conductor 7b is divided into two divided conductors 7b1 and 7b2, and two base conductors 7a are also provided. Divided conductors 7a1 and 7a2.
The end of the slit portion 18 on the common electrode 10 side passes through the connection conductor 6a and reaches a slightly deeper position from the outer periphery of the common electrode 10 to form a recess 18a, and the line length of the first line conductor 6 The end of the slit portion 19 on the common electrode 10 side also passes through the connecting conductor 7a to reach the outer peripheral portion of the common electrode 10 to form a recess 19a, whereby the second line conductor 7 is slightly longer.
[0027]
On the other hand, a third line conductor 8 is extended in the central portion of the common electrode 10 on the other long side portion 10a side. The third line conductor 8 is composed of a third base conductor 8a, a third center conductor 8b, and a third tip conductor 8c that are formed so as to protrude from the common electrode 10. The third base conductor 8a is composed of two strip-shaped divided conductors 8a1 and 8a2 extending substantially perpendicularly from the central part on the long side of the common electrode 10, and the two divided conductors 8a1 and 8a2 are formed. A slit 20 is formed between them. The third center conductor 8b includes a planar conductor L-shaped divided conductor 8b1 connected to the previous divided conductor 8a1 and a planar-view L-shaped divided conductor 8b2 connected to the previous divided conductor 8a2. 8b1 and the divided conductor 8b2 are extended from the divided conductors 8a1 and 8a2 so as to be spaced apart from each other in order to increase the substantial conductor length of the divided conductors 8a1 and 8a2, and the divided conductors 8b1 and 8b2 are separated from each other. A rhombus center conductor 8b is formed from the above.
[0028]
Further, the tip ends of these divided conductors 8b1 and 8b2 are integrated with an L-shaped third tip conductor 8c. The third tip conductor 8c is connected to the connecting portion 8c1 formed by extending the divided conductors 8b1 and 8b2 in the same direction as the previous divided conductors 8a1 and 8a2 and the connecting portion 8c1. The connecting portion 8c2 is formed to extend in a substantially perpendicular direction.
[0029]
Next, on the side of one long side portion 10a of the common electrode 10, the long side portion 10a of the common electrode 10 is partially cut away at both side portions of the split conductors 8a1 and 8a2 of the third line conductor 8. Three recesses 10e are formed, and the line length of the third line conductor 8 is slightly increased by forming these recesses 10e. Further, in the one long side portion 10a of the common electrode 10, the divided conductors 8a1, the above-mentioned divided conductors 8a1, are provided outside the two concave portions 10e on both sides of the three concave portions 10e, in other words, between the concave portion 10e and the inclined portion 10c. A trapezoidal support piece 21 is formed to extend in a direction parallel to 8a2, and a rectangular support piece 22 is formed to extend in the center of the common electrode 10 on the other long side 10a side. Yes. These support pieces 21 and 22 are ground electrodes of the capacitor substrates 11 and 12, and are electrically connected to one surface of the capacitor substrates 11 and 12, and further on the other surface side, as will be described later, the tip end conductors 6c and 7c. , 8c.
[0030]
The common electrode 10 configured as described above has the main body portion 10A attached to the back surface side (one surface side) of the magnetic substrate 5, and the first line conductor 6, the second line conductor 7, and the third line conductor. 8 is bent to the front surface side (the other surface side) of the magnetic substrate 5 and attached to the magnetic substrate 5, and constitutes a magnetic assembly 15 together with the magnetic substrate 5. That is, the divided conductors 6 a 1 and 6 a 2 of the first line conductor 6 are bent along the edge of one inclined surface 5 d of the magnetic substrate 5, and the divided conductors 7 a 1 and 7 a 2 of the second line conductor 7 are bent on the magnetic substrate 5. Bend along the edge of the other inclined surface 5d, fold the divided conductors 8a1 and 8a2 of the third line conductor 8 along the edge of the long side 5a of the magnetic substrate 5, and center the first line conductor 6 The conductor 6a is attached to the surface side (other surface side) of the magnetic substrate 5 along a diagonal line on the magnetic substrate surface side, and the central conductor 7b of the second line conductor 7 is connected to the surface side (other surface) of the magnetic substrate 5 ) Along the diagonal of the surface of the magnetic substrate, and the central conductor 8b of the third line conductor 8 along the central portion of the surface portion of the magnetic substrate 5, thereby making the common electrode 10 magnetic. The magnetic assembly 15 is mounted on the substrate 5.
[0031]
In addition, the diagonal line described here is a substantially rectangular shape when the extension line of each long side 5a and each short side 5b intersects when the magnetic substrate 5 is viewed in plan as shown in FIG. Assuming that the vertex of the magnetic substrate 5 is present, a line segment connecting the opposing vertices among these four vertices is defined as diagonal lines L1 and L2.
Further, the conductor portions 8b1 and 8b2 are arranged on the surface side of the magnetic substrate 5, and the length of the divided conductor 8b1 or the divided conductor 8b2 attached to the surface side of the magnetic substrate 5 is as shown in FIG. It is preferable to be 105% or more of the vertical width of the substrate 5 (the width along the width direction of the horizontally long rectangular magnetic substrate 5). By doing so, it is possible to increase the substantial conductor length of the divided conductors 8b1 and 8b2 to achieve both low frequency and small size as the nonreciprocal circuit element.
[0032]
By attaching the first to third line conductors 6, 7, 8 to the surface side of the magnetic substrate 5 as described above, the first line conductor 6 and the second line conductor 7 as shown in FIG. 1A. Are arranged so as to overlap each other along the diagonal lines L1 and L2 of the magnetic substrate 5, and the first center conductor 6b and the second center conductor 7b are inclined on the surface of the magnetic substrate 5 at an inclination angle of 120 ° in plan view. Crossed and overlapped. Further, in the overlapping state of the first to third center conductors 6b, 7b, 8b, the divided conductors 6b1, 6b2 of the first center conductor 6b and the divided conductors 7b1, 7b2 of the second center conductor 7b are overlapped. The portions where the divided conductors 6b1 and 6b2 and the divided conductors 7b1 and 7b2 are overlapped are arranged on the surface of the magnetic substrate 5 on the surface side of the magnetic substrate 5. Arranged so as not to overlap.
[0033]
Further, the divided conductors 8b1 and 8b2 of the third central conductor 8b are arranged so as to avoid the portions where the divided conductors 6b1 and 6b2 and the divided conductors 7b1 and 7b2 are overlapped. Therefore, on the surface of the magnetic substrate 5, the divided conductors 6b1 and 6b2, the divided conductors 7b1 and 7b2, and the divided conductors 8b1 and 8b2 are arranged in a combination of two of these combinations. Are arranged so as not to be overlapped.
Although omitted in FIG. 1A, the magnetic substrate 5, the first line conductor 6, the second line conductor 7, and the third line conductor 8 are respectively shown in FIG. 1B. As shown in a simplified manner, the line conductors 6, 7, 8 are individually electrically insulated with an insulating sheet Z interposed therebetween.
[0034]
Next, the magnetic assembly 15 is arranged on the center side of the bottom of the lower yoke 3, and both side portions of the magnetic assembly 15 on the bottom side of the lower yoke 3 are elongated in plan view and are about half of the previous magnetic substrate 5. Thick plate-like capacitor substrates 11 and 12 are accommodated, and a terminating resistor 13 is accommodated on one side of the capacitor substrate 12. More specifically, the length of the magnetic substrate 5 of the previous magnetic assembly 15 is formed to be substantially the same as the inner width of the lower yoke 3, and the width of the magnetic substrate 5 (the width in the direction perpendicular to the longitudinal direction) is set. Since the magnetic substrate 5 is formed smaller than the inner width of the lower yoke 3, the width of the magnetic substrate 5 in the state where the magnetic substrate 5 is housed in the lower yoke 3 so as to be horizontally long as shown in FIG. As shown in FIG. 1, spaces are formed on both sides in the direction so that the capacitor substrates 11 and 12 can be accommodated, and thin plate type capacitor substrates 11 and 12 and a chip-like termination resistor (resistive element) 13 are formed in these spaces. It is stored.
Furthermore, support pieces 21 and 21 of the common electrode 10 are disposed on the lower side of the capacitor substrate 11 and are electrically connected, and a support piece 22 of the common electrode 10 is disposed on the lower side of the capacitor substrate 12. Electrically connected.
[0035]
Then, the tip end conductor 6c of the previous first line conductor 6 is electrically connected to the electrode portion 11a formed at one end of the previous capacitor substrate 11, and the second line conductor 7 of the previous second line conductor 7 is electrically connected. The tip end conductor 7c is electrically connected to the electrode portion 11b formed at the other end of the previous capacitor substrate 11, and the tip end conductor 8c of the third center conductor 8 is connected to the capacitor substrate 12 and the terminating resistor. The capacitors 11 and 12 and the terminating resistor 13 are connected to the magnetic assembly 15 in an electrically connected manner. If this terminal resistor 13 is not connected, it acts as a circulator.
[0036]
A first port P1 as an isolator 1 is formed on the end side of the capacitor substrate 11 to which the tip conductor 7c portion is connected, and the isolator is on the end side of the capacitor substrate 11 to which the tip conductor 6c portion is connected. 2 is formed, and the end side of the terminating resistor 13 to which the tip conductor 8c is connected is a third port P3 as an isolator (non-reciprocal circuit element) 1.
[0037]
In the isolator 1 of this embodiment, in order to achieve both the characteristics of the isolator and miniaturization, the length of the capacitor substrate 11 in the direction parallel to the direction along the first port P1 and the second port P2 is the same length in the same direction of the isolator 1 as a whole. (In other words, the length is preferably 65% or more and 100% or less of the length of the lower yoke 3 in the same direction). Among the lengths in this range, it is more preferably 75% or more and 100% or less.
Next, in a direction orthogonal to the direction along the first port and the second port, the width of the capacitor substrate 11 is the length of the isolator 1 in the same direction (in other words, the length of the lower yoke 3 in the same direction). % Or more and 45% or less is preferable. Within this range, it is more preferably 30% or more and 45% or less.
[0038]
Further, since the magnetic assembly 15 is formed in the space between the lower yoke 3 and the upper yoke 2 so as to occupy about half of the thickness of the space, the upper yoke is higher than the magnetic assembly 15. A spacer member 30 also shown in FIG. 6 is accommodated in the space portion on the second side, and the magnet member 4 is installed on the spacer member 30.
The previous spacer member 30 includes a rectangular plate-like substrate portion 31 having a size that can be accommodated in the upper yoke 2 and leg portions formed at the corners at the four corners on the bottom side of the substrate portion 31. A circular storage recess 31b is formed on the surface (upper surface) of the substrate portion 31 where the leg portions (projections) 31a... Are not formed, and the substrate portion is formed on the bottom surface side of the storage recess 31b. A rectangular through hole 31 c that penetrates 31 is formed.
[0039]
And the magnet member 4 which consists of a disk-shaped permanent magnet is engage | inserted by the previous accommodation recessed part 31b, and the spacer member 30 of the state provided with this magnet member 4 is the capacitor | condenser of the tip by those four leg parts (convex part) 30a. The substrates 11, 12 and the first tip conductors 6c, 7c connected to them, and the terminal resistor 13 and the tip of the tip conductor 8c connected thereto are pressed against the bottom side of the lower yoke 3. The magnetic assembly 15 is housed between the yokes 2 and 3 while being pressed against the bottom surface of the lower yoke 3 by the spacer member 30.
In addition, the first line conductor 6, the second line conductor 7, and the third line conductor 8 are pressed by pressing the tip end conductors 6c, 7c, and 8c as described above by the four legs 31a of the spacer member 30. These are pressed against the surface side of the magnetic substrate 5 in a state where tension is applied to the magnetic material substrate 5 and at the same time, the first line conductor 6 and the first line conductor 6 are connected to each other by the bottom surface of the magnet member 4 through the through holes 31c of the spacer member 30. By pressing the overlapping portions of the second line conductor 7 and the third line conductor 8, they are pressed against the surface of the magnetic substrate 5, and the previous line conductors 6, 7, 8 are thereby pressed to the magnetic substrate 5 is closely pressed against the surface side.
Note that the size of the previous through hole 31c is a rectangular shape slightly smaller than the previous magnetic substrate 5, in other words, a size that can surround the region where the line conductors 6, 7, and 8 are overlapped. Yes. By setting the through hole 31c to such a size, the magnet member 4 can press all the overlapping portions of the line conductors 6, 7, 8 on the bottom surface thereof against the magnetic substrate 5 side, and also the substrate portion of the spacer member 30. The magnetic substrate 5 can be pressed against the bottom surface side of the lower yoke 3 by the bottom surface 31.
[0040]
In the isolator 1 of the present embodiment shown in FIGS. 1 to 6, the first line conductor 6 and the second line conductor 7 are both bent through the planar receiving surfaces 5 d and 5 d of the magnetic substrate 5. Since the third line conductor 8 is bent along the long side 5 a of the magnetic substrate 5, the bent portions of the center conductors 6 b, 7 b, 8 b in the line conductors 6, 7, 8 are formed on the magnetic substrate 5. It is folded at an accurate angle on the front side, for example, an angle of 120 ° in the first line conductor 6 and the second line conductor 7. That is, since the folding work is performed through the straight line portion of the edge of the planar receiving surface 5d, the central conductors 6b and 7b are bent at an angle of exactly 120 ° on the surface side of the magnetic substrate 5. Can be easily done. Therefore, a signal input to the magnetic substrate 5 from the line conductor on the input side can be effectively propagated to the output side, and low-loss and wide band pass characteristics can be exhibited. Therefore, a suitable magnetic characteristic of the magnetic assembly 15 can be obtained with certainty.
[0041]
Further, the central conductors 6b, 7b, 8b folded on the front surface side of the magnetic substrate 5 are overlapped as shown in FIG. 1, and in this overlapped state, the center conductors 6b, 7b, 8b are divided into two. Each of the divided conductors 6b1, 6b2, 7b1, 7b2, 8b1, and 8b2 is overlaid individually. However, in the overlapped portion of these divided conductors 6b1, 6b2, 7b1, 7b2, 8b1, and 8b2, only two divided conductors are overlapped, and the three divided conductors are not overlapped. This is because the two central conductors 6 and 7 are divided into two parts, and the center conductor 8b is expanded so that a two-part structure is formed so as to avoid overlapping with the central conductors 6b and 7b. It is.
[0042]
By making the stacked structure in this way, it is possible to avoid the overlapping of the three divided conductors, so that when the central conductors 6b, 7b, 8b are pressed against the magnetic substrate 5 at the bottom of the magnet member 4, the central conductors are prevented. The overlapping part of 6b, 7b, 8b can be pressed down uniformly. Here, for example, when a portion where three divided conductors overlap is generated, a portion where three overlapping conductors overlap is thicker than a portion where two split conductors overlap. Therefore, the magnet member 4 is stronger in the three overlapping portions. While the pressing force is applied, the pressing force of the magnet member 4 is not sufficiently applied to the other two overlapping portions. Therefore, the pressing force is applied evenly to the central conductors 6b, 7b, 8b, and all of these are applied. There is a high possibility that it will not be possible to support evenly.
Further, since there is only a portion where the two divided conductors are overlapped, the magnet member 4 holding the two divided conductors can be arranged in parallel to the magnetic substrate 5. When a magnetic field is applied to the assembly 15, a uniform magnetic field can be applied, which contributes to improved performance as a non-reciprocal circuit element.
[0043]
Further, if three divided conductors are overlapped, the side of the side farthest from the magnetic substrate 5 is compared in the comparison of the side of the split conductor closest to the magnetic substrate 5 and the segmented conductor farthest from the magnetic substrate 5. Therefore, the difference between the effective line lengths of the divided conductors existing on the surface of the magnetic substrate 5 is increased. On the other hand, if only two overlapping portions are formed, the difference in effective line length between the outermost layer and the innermost layered conductor is minimized when the overlapping structure is adopted. By adopting a configuration in which only two divided conductors are overlapped in this way, the bottom surface of the divided conductor on the magnetic substrate side can be surely adhered to the magnetic substrate 5 with approximately 50% or more. By bringing the divided conductor into close contact with the magnetic substrate 5 in this way, signal propagation through the divided conductor can be performed stably, and variations in characteristics can be suppressed.
[0044]
Further, as described above, the divided conductors 8b1 and 8b2 of the central conductor 8b are divided so as to be non-parallel or parallel and bent or curved, so that signals input from the line conductor on the input side can be effectively made of high-frequency ferrite. It is possible to propagate and output on the magnetic substrate 5 and to exhibit a broadband pass characteristic.
Further, in order to lower the frequency, it is necessary to lengthen the line conductors 6, 7, and 8 to increase the inductance. However, in the present invention, the third line conductor 8 is formed in the third central conductor 8b. It is bent (bent) or curved in the direction away from each other at the central portion in the length direction, or is parallel to each other and bent or curved, so that the length of the third line conductor 8 is reduced. Substantially longer, the inductance increases, and both low frequency and small size can be achieved.
[0045]
Next, in the present embodiment, the main body portion 10A of the electrode portion 16 has substantially the same planar shape as the magnetic substrate 5, but by doing so, the main body portion 10A is wide on the lower yoke 3 positioned below the main body portion 10A. Since the contact can be made in the area, the resistance is lowered and the loss can be reduced.
[0046]
Next, as described above, recesses 18a, 19a, and 10e are formed at the bases of the first line conductor 6, the second line conductor 7, and the third line conductor 8, respectively. Since the line length of the line conductor is slightly increased, the inductance of each of the central conductors 6, 7, and 8 is increased, and the area of the resonance capacitance can be reduced. In other words, the area of the capacitor substrates 11 and 12 can be reduced. This contributes to the overall miniaturization of the isolator 1.
[0047]
Next, at the bottom of the magnet member 4, the intersection of the line conductors 6, 7, 8 is pressed against the upper surface side of the magnetic substrate 5 and pressed firmly against the upper surface side of the magnetic substrate 5. As a result, the bottom surfaces of the line conductors 6, 7, and 8, in other words, the bottom surfaces (surfaces on the magnetic substrate side) of the divided conductors 6b1 and 6b2, and the bottom surfaces (surfaces on the magnetic substrate side) of the divided conductors 7b1 and 7b2 are divided. The bottom surfaces (surfaces on the magnetic substrate side) of the conductors 8b1 and 8b2 can all be pressed tightly against the magnetic substrate 5 side. As a result, the flatness on the bottom surface side of each line conductor 6, 7, 8 can be improved, which contributes to uniform characteristics.
[0048]
Next, in the structure of the present embodiment, the lower surface of the capacitor substrate 11 is connected to the support piece 21 of the common electrode 10, and the lower surface of the capacitor substrate 12 is connected to the support piece 22 of the common electrode 10. When the structure of the embodiment is briefly seen, as shown in FIG. 8A, the main body portion 10A of the common electrode 10 is installed on the lower yoke 3, and the first or second port P1, P2 of the common electrode 10 and the support piece 21 are provided. It can be considered that the capacitor substrate 11 is interposed between the two. Assuming that the lower yoke 3 is grounded, the capacitor substrate 11 is interposed between the main body portion 10A of the common electrode 10 grounded to the lower yoke 3 and the first and second ports P1 and P2. It will be.
On the other hand, if the support piece 21 is not formed as in the structure shown in FIG. 7B, the capacitor substrate 11 is provided between the lower yoke 3 and the first and second ports P1, P2. Become.
Comparing the structures shown in FIGS. 7A and 7B, in the structure of FIG. 7B, the ground side of the capacitor substrate 11 is grounded to the lower yoke 3, so that a part of the signal path has a high electric resistance, whereas FIG. As shown in FIG. 4, since the support piece 21 of the common electrode 10 is connected to the ground side of the capacitor substrate 1, the entire signal path has low electrical characteristics, so that loss as a non-reciprocal circuit element can be reduced.
[0049]
FIG. 8A shows an example of a circuit configuration of a mobile phone device in which the isolator 1 of the previous embodiment is incorporated. In the circuit configuration of this example, an antenna resonator 41 is connected to an antenna 40, and an ante resonator. A receiving circuit 44 is connected to the output side of 41 via a low noise amplifier (amplifier) 42, a filter 48 and a selection circuit 43, and the isolator 1 and power amplifier (amplifier) of the previous embodiment are connected to the input side of the antenna resonator 41. The transmission circuit 47 is connected via the selection circuit 46 and the selection circuit 46, and the distribution transformer 49 is connected to the selection circuits 43 and 46.
The isolator 1 having the above configuration is used by being incorporated in a circuit of a mobile phone device as shown in FIG. 8A. A signal from the isolator 1 to the antenna resonator 41 side is passed with low loss, but a signal in the opposite direction is It works to increase the loss and cut off. Thus, there is an effect that unnecessary signals such as noise on the amplifier 45 side are not reversely input to the amplifier 45 side.
[0050]
FIG. 8B shows the operation principle of the isolator 1 having the configuration shown in FIGS. The isolator 1 incorporated in the circuit shown in FIG. 8B transmits a signal in the direction of the second port P2 indicated by reference numeral (2) from the first port P1 side indicated by reference numeral (1), but the second of the reference numeral (2). The signal from the second port P2 side to the third port P3 side with the symbol (3) is attenuated and absorbed by the termination resistor 13, and the signal from the third port P3 side indicated by the symbol (3) on the termination resistor 13 side is the symbol (1). The signal to the 1st port P1 side shown by is cut off.
Therefore, the effects described above can be achieved when the circuit shown in FIG.
[0051]
FIG. 9 shows an electrode part 35 applied to the nonreciprocal circuit device according to the second embodiment of the present invention. The electrode part 35 of this embodiment has the same configuration as the electrode part 16 of the previous embodiment. Elements are denoted by the same reference numerals, and descriptions thereof are omitted.
The difference between the electrode portion 35 of this embodiment and the electrode portion 16 of the previous embodiment is that the first line conductor 6 and the second line conductor 7 are different from the base portion of the common electrode 10 with respect to the main body portion 10A. The recesses 10f having the same length (depth) as the first base conductor 6a are formed, and the line lengths of the line conductors 6 and 7 are further increased. Further, by forming a recess 10g having the same length (depth) as the previous recess 10f at the base of the third line conductor 8, the line length of the third line conductor 8 is further increased. .
[0052]
As shown in the embodiment of the figure, the main conductor 10A of the common electrode 10 is formed with deeper recesses 10f and 10g than in the previous embodiment to increase the effective line length of the line conductors 6, 7, and 8. May be adopted. In this case, it is necessary to arrange an insulating layer up to the side where the recesses 10f and 10g are formed and to insulate each line conductor 6, 7, and 8 individually on the back side of the magnetic substrate 5. The line conductor 8 may be formed by dividing or bending the divided conductors 8b1 and 8b2 in parallel as in the embodiment described later.
By adopting the above structure, the inductance of the center conductors 6, 7 and 8 is further increased, so that the area of the resonance capacitance can be reduced, in other words, the area of the capacitor substrates 11 and 12 can be reduced. As a whole, it contributes to miniaturization.
[0053]
The figure shows an electrode part 36 applied to the nonreciprocal circuit device of the third embodiment according to the present invention. In the electrode part 36 of this form, the electrode part 16 of the first embodiment and The same components are denoted by the same reference numerals, and description thereof is omitted.
The difference between the electrode portion 36 of this embodiment and the electrode portion 16 of the previous embodiment is that the center conductor 80b of the third line conductor 80 is divided into divided conductors 80b1 and 8b2, and the divided conductor 80b1 It is bent not to be parallel to the divided conductor 8b2 but to be parallel to the divided conductor 8b2. Accordingly, the third central conductor 80b is formed in an L shape. The third center conductor 80b is described in a bent (bent) shape, but it is needless to say that the third center conductor 80b may have a bent shape or a bent portion. Furthermore, these divided conductors are not limited to the L-shape, and may be of a zigzag shape, a shape bent in a waveform, or the like.
Even in the structure including the third line conductor 80 including the divided conductors 80b1 and 8b2 having such a shape, the substantial conductor length of the line conductor 80b is increased to reduce the low frequency as the nonreciprocal circuit element. Downsizing and downsizing can be achieved.
[0054]
FIG. 11 shows a fourth embodiment of a non-reciprocal circuit element (isolator) according to the present invention, and an isolator 50 of this form is provided inside a closed magnetic circuit composed of an upper yoke 51 and a lower yoke 52. In other words, between the upper yoke 51 and the lower yoke 52, a magnet member 55 made of a rectangular plate-like permanent magnet, a spacer member 56, a magnetic assembly 57, capacitor plates 58, 59, 60, a terminal resistor 61, and these are connected. The resin case 62 is accommodated.
The magnetic assembly 57 is configured by winding an electrode portion 16 equivalent to the electrode portion 16 of the first embodiment around a magnetic substrate 65 having a substantially rectangular shape in plan view. The magnetic substrate 65 has substantially the same shape as the horizontally long magnetic substrate 5 of the above-described form, but has a rectangular plate shape slightly close to a square shape.
Also in the isolator 50 having the structure shown in FIG. 11, the same effect as that of the isolator 1 of the previous embodiment can be obtained.
[0055]
FIG. 12 shows another form of the magnetic substrate, and the magnetic substrate 60 of this form has a substantially rectangular shape in plan view, and has a shape having L-shaped cutout receiving portions 61 at four corners. One of the two planes constituting one receiving portion 61 is a receiving surface 61a for folding the line conductor 6 and one of the two planes constituting the other receiving portion 61 Is a receiving surface 61b for turning back the line conductor 7, and the receiving surfaces 61a and 61b are configured so that the first center conductor 6b and the second center conductor 7b of the electrode portion 16 are accurately turned back. Yes.
The magnetic substrate 60 in this form also has a substantially rectangular shape that is horizontally long in a plan view. Specifically, the long sides 60a and 60a facing each other and the short sides 60b and 60b extending in a direction perpendicular thereto are described first. The magnetic substrate 60 having a substantially rectangular shape in plan view is constituted by the two sides constituting the receiving portion 61.
By using this magnetic substrate 60, the same effect as in the case of the first embodiment can be obtained.
[0056]
FIG. 13 shows still another example of the magnetic substrate. The magnetic substrate 70 of this embodiment has a substantially rectangular shape in plan view and has planar receiving portions 71 at four corners, and the short side is a curve. It is made into the shape of a substantially race track. This shape is also included in the concept of a substantially rectangular shape in the present invention. More specifically, the magnetic substrate 70 includes long sides 70a and 70a facing each other and elliptical arc-shaped short sides 70b and 70b connecting the ends of the long sides 70a and 70a, and the long sides 70a and 70a. The first center conductor 6b, the second center conductor 7b, and the third center conductor 8 of the electrode portion 16 described above are accurately connected by the planar receiving portions 71 and 71 and the long side 70a formed at the end of It can be folded back.
By using this magnetic substrate 70, the same effect as in the case of the first embodiment can be obtained.
[0057]
【The invention's effect】
  As described above, the present invention provides a rectangular magnetic substrate inside a rectangular case-shaped yoke, and the magnetic substrate.A first line conductor disposed along a diagonal on the surface side, a second line conductor disposed along another diagonal on the surface of the magnetic substrate, and a central portion on the surface side of the magnetic substrate. AlongBe placedThirdA line conductor, a plurality of rectangular capacitor substrates disposed on the sides of the magnetic substrate, and a magnet member for applying a magnetic field to the magnetic substrate;The tip conductor of the first line conductor provided at the tip of the first line conductor changes direction from the direction of the first line conductor at one side end of one long side of the magnetic substrate. And provided along the extension of the short side of the magnetic substrate and the inner surface of the yoke, and the tip conductor of the second line conductor provided at the tip of the second line conductor is connected to one of the magnetic substrates. The direction of the second line conductor is changed from the direction of the second line conductor at the other side end of the long side, and provided along the extension of the other short side of the magnetic substrate and the yoke inner surface,Each end of the plurality of line conductors is connected to the capacitor substrate, and the magnetic substrateAlong the long side of the magnetic substrateThe capacitor substrate is housed on both sides of the magnetic substrate.In the short side direction, the magnetic substrateThe width is smaller than the inner width of the yokeThus, the aspect ratio of the magnetic substrate is in the range of 25% (1: 4) to 80% (4: 5).Formed,In the long side direction of the magnetic substrate, the length of the magnetic substrate and the inner width of the yoke are substantially the same,The capacitor substrate can be accommodated in a space around the magnetic substrate inside the yoke.
  Furthermore, the present invention requires that one of the two capacitor substrates disposed on both sides in the width direction of the magnetic substrate is a common capacitor substrate connected to the plurality of line conductors. Can be made with a small capacitor footprint.
[0058]
Furthermore, in the present invention, the line conductor can be pressed against the magnetic substrate by wrapping and connecting the end portion of the line conductor from the magnetic substrate side to the capacitor substrate side. On the other hand, a plurality of line conductors can be brought into close contact with each other, contributing to stabilization of characteristics as a nonreciprocal circuit element, and a high quality nonreciprocal circuit element having good characteristics and stability can be obtained.
[0059]
Furthermore, in the present invention, when the portions where the divided conductors are overlapped are arranged so as to be displaced in plan view, the divided conductors are arranged so as to fit evenly in plan view on the other surface side of the magnetic substrate. Furthermore, when all of the overlapping portions of the divided conductors of the first line conductor, the second line conductor, and the third line conductor are displaced in plan view, the portion where the three divided conductors are overlapped Since it does not occur, the occurrence of unevenness due to the occurrence of the two overlapping portions and the three overlapping portions of the divided conductors on the other surface side of the magnetic substrate is reduced, and the unevenness on the other surface side of the magnetic substrate is reduced.
[0060]
In the present invention, since the end portion side of the line conductor is wound and connected from the magnetic substrate side to the capacitor substrate side, the line conductor can be pressed against the magnetic substrate. A plurality of line conductors can be brought into close contact with each other, contributing to stabilization of characteristics as a nonreciprocal circuit element, and a high quality nonreciprocal circuit element having good characteristics and stability can be obtained.
[0061]
By making only two overlapping portions of line conductors and not generating three overlapping portions, it is possible to make the height of the mountain-shaped overlapping portions generated in the overlapping portions of the line conductors low and uniform. Thereby, since all the thickness of the overlapping part of a line conductor can be equalized, when a magnet member presses down a line conductor, it becomes possible to hold down all the line conductors uniformly, and to all the magnetic substrates. The adhesion of the line conductor can be made uniform, contributing to stabilization of characteristics as a non-reciprocal circuit element.
[0062]
In the present invention, by using at least one of the capacitor substrates as a common capacitor substrate that is connected to a plurality of line conductors, a large capacity can be obtained with a small capacitor occupied volume, and the size of the nonreciprocal circuit element can be reduced. Contribute.
[Brief description of the drawings]
FIG. 1A is a plan view showing a state in which a part of an isolator according to a first embodiment of the present invention is removed, and FIG. 1B is a cross-sectional view of the isolator.
FIG. 2 is a plan view showing an example of a magnetic substrate used in an isolator according to the present invention.
FIG. 3 is a development view of an electrode portion used in an isolator according to the present invention.
4A is a plan view showing a lower yoke of an isolator according to the present invention, and FIG. 4B is a side view of the lower yoke.
FIG. 5 is a side view showing an upper yoke of the isolator.
FIG. 6 is a perspective view showing an example of a spacer member provided in the isolator.
7A is a schematic diagram showing a connection state of a common electrode, a capacitor substrate, and a magnetic substrate provided in the isolator, and FIG. 7B is a schematic diagram showing a modification of the structure shown in FIG. 7A.
FIG. 8A is a diagram showing an example of an electric circuit provided with this type of isolator, and FIG. 8B is a diagram showing an operation principle of the isolator.
FIG. 9 is a view showing a second example of the electrode portion of the isolator according to the present invention.
FIG. 10 is a diagram showing a third example of the electrode portion of the isolator according to the present invention.
FIG. 11 is an exploded perspective view showing another embodiment of the isolator according to the present invention.
FIG. 12 is a plan view showing another example of a magnetic substrate applied to the isolator according to the present invention.
FIG. 13 is a plan view showing another example of a magnetic substrate applied to the isolator according to the present invention.
FIG. 14 is a perspective view showing an example of a conventional magnetic assembly.
FIG. 15 is a development view of an electrode portion applied to a conventional magnetic assembly.
FIG. 16 is an exploded perspective view showing an example of a conventional isolator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Isolator, 2 ... Upper yoke, 3 ... Lower yoke, 4 ... Magnet member, 5 ... Magnetic substrate, 6 ... 1st line conductor, 6b ... 1st center conductor, 6b1, 6b2 ... 1st division | segmentation conductor , 7 ... second line conductor, 7b ... second center conductor, 7b1, 7b2 ... second divided conductor, 8 ... third line conductor, 8b ... third center conductor, 8b1, 8b2 ... third Divided conductors, 11, 12 ... Capacitor substrate, 13 ... Terminating resistor (resistive element), 16 ... Electrode part, 18, 19 ... Slit part, 21, 22 ... Supporting piece, 30 ... Spacer member, 31a ... Leg part (convex part) ), 31b ... accommodating recess, 31c ... through hole, 40 ... electrode part, 50 ... isolator, 60, 70 ... magnetic substrate, L1, L2 ... diagonal lines.

Claims (2)

長方形のケース状のヨークの内部に、長方形状の磁性体基板と、該磁性体基板表面側の対角線に沿って配置される第1の線路導体と、該磁性体基板表面側の別の対角線に沿って配置される第2の線路導体と、該磁性体基板表面側の中央部に沿って配置される第3の線路導体と、前記磁性体基板の側方に配置される長方形状の複数のコンデンサ基板と、前記磁性体基板に対して磁界を印加するための磁石部材とが具備されてなり、
前記第1の線路導体の先端に設けられた第1の線路導体の先端導体が、前記磁性体基板の一方の長辺側の一側端部において前記第1の線路導体の向きから方向を変えられて前記磁性体基板の短辺の延長線とヨーク内面に沿って設けられ、前記第2の線路導体の先端に設けられた第2の線路導体の先端導体が、前記磁性体基板の一方の長辺側の他側端部において前記第2の線路導体の向きから方向を変えられて前記磁性体基板の別の短辺の延長線とヨーク内面に沿って設けられ、前記複数の線路導体の各端部が前記コンデンサ基板に接続されてなり、
前記磁性体基板の長辺に沿って前記磁性体基板の両側に前記コンデンサ基板が収納され、前記磁性体基板の短辺方向において、前記磁性体基板の幅が、前記ヨークの内幅よりも小さくなるように、磁性体基板の縦横比が25%(1:4)以上、80%(4:5)以下の範囲で形成され、
前記磁性体基板の長辺方向において、磁性体基板の長さと前記ヨークの内幅がほぼ同じであることを特徴とする非可逆回路素子。
In a rectangular case-shaped yoke, a rectangular magnetic substrate, a first line conductor disposed along a diagonal on the surface of the magnetic substrate, and another diagonal on the surface of the magnetic substrate A second line conductor disposed along the center of the magnetic substrate surface side, a third line conductor disposed along the central portion of the magnetic substrate surface side, and a plurality of rectangular shapes disposed on the sides of the magnetic substrate. A capacitor substrate and a magnet member for applying a magnetic field to the magnetic substrate;
The tip conductor of the first line conductor provided at the tip of the first line conductor changes direction from the direction of the first line conductor at one side end of one long side of the magnetic substrate. And provided along the extension of the short side of the magnetic substrate and the inner surface of the yoke, and the tip conductor of the second line conductor provided at the tip of the second line conductor is connected to one of the magnetic substrates. The direction of the second line conductor is changed from the direction of the second line conductor at the other side end of the long side, and is provided along an extension of another short side of the magnetic substrate and the inner surface of the yoke . Each end is connected to the capacitor substrate,
The capacitor substrate is accommodated on both sides of the magnetic substrate along the long side of the magnetic substrate, and the width of the magnetic substrate is smaller than the inner width of the yoke in the short side direction of the magnetic substrate. The aspect ratio of the magnetic substrate is formed in the range of 25% (1: 4) or more and 80% (4: 5) or less ,
A nonreciprocal circuit device , wherein the length of the magnetic substrate and the inner width of the yoke are substantially the same in the long side direction of the magnetic substrate .
前記磁性体基板の幅方向両側に配置された2つの前記コンデンサ基板のうち、一方の前記コンデンサ基板が前記複数の線路導体に接続された共通のコンデンサ基板とされ、該コンデンサ基板の両端部のうちの一方の端部に前記第1の線路導体の先端導体が、他方の端部に前記第2の線路導体の先端導体が接続されたことを特徴とする請求項1に記載の非可逆回路素子。Of the two capacitor substrates disposed on both sides in the width direction of the magnetic substrate, one of the capacitor substrates is a common capacitor substrate connected to the plurality of line conductors , and of both ends of the capacitor substrate 2. The nonreciprocal circuit device according to claim 1 , wherein a tip conductor of the first line conductor is connected to one end of the first conductor, and a tip conductor of the second line conductor is connected to the other end. .
JP2001356617A 2001-11-21 2001-11-21 Non-reciprocal circuit element Expired - Fee Related JP3697410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001356617A JP3697410B2 (en) 2001-11-21 2001-11-21 Non-reciprocal circuit element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001356617A JP3697410B2 (en) 2001-11-21 2001-11-21 Non-reciprocal circuit element

Publications (2)

Publication Number Publication Date
JP2003158403A JP2003158403A (en) 2003-05-30
JP3697410B2 true JP3697410B2 (en) 2005-09-21

Family

ID=19168109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001356617A Expired - Fee Related JP3697410B2 (en) 2001-11-21 2001-11-21 Non-reciprocal circuit element

Country Status (1)

Country Link
JP (1) JP3697410B2 (en)

Also Published As

Publication number Publication date
JP2003158403A (en) 2003-05-30

Similar Documents

Publication Publication Date Title
JP3676996B2 (en) Non-reciprocal circuit device and isolator
JP3697410B2 (en) Non-reciprocal circuit element
JP3307293B2 (en) Non-reciprocal circuit device
JP3665776B2 (en) Non-reciprocal circuit device and communication device using the same
JP3734455B2 (en) Non-reciprocal circuit element
US6614324B2 (en) Center electrode assembly, nonreciprocal circuit device, and communication apparatus
JP3694270B2 (en) Non-reciprocal circuit device and isolator
JPH088610A (en) Irreversible circuit element
JP2005236366A (en) Nonreciprocal circuit element
JP3663195B2 (en) Non-reciprocal circuit device and communication device using the same
JP3683220B2 (en) Non-reciprocal circuit element
JP2004048485A (en) Nonreversible circuit element
US20040066248A1 (en) Miniature non-reciprocal circuit element with little variation in input impedance and communication apparatus
US20040108915A1 (en) Non-reciprocal circuit element having small insertion loss and wide isolation bandwidth, and communication device
JPH0537206A (en) Irreversible circuit element
JP2001267811A (en) Non-reciprocal circuit element and communication device
JP2001189606A (en) Nonreversible circuit element and communication equipment device
JP4636355B2 (en) Center conductor assembly and nonreciprocal circuit device using the same
JP3092228U (en) Non-reciprocal circuit device
JP2005244585A (en) Isolator
JP2004336645A (en) Isolator
JP2002319805A (en) Center electrode assembly, irreversible circuit element, communication unit and manufacturing method for the center electrode assembly
JP2000174510A (en) Irreversible circuit element and mobile communication unit
JPH1079606A (en) Non-reciprocal circuit element
JP2001189607A (en) Nonreversible circuit element and producing method therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050704

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees