JP3697139B2 - Substrate processing equipment - Google Patents

Substrate processing equipment Download PDF

Info

Publication number
JP3697139B2
JP3697139B2 JP2000106517A JP2000106517A JP3697139B2 JP 3697139 B2 JP3697139 B2 JP 3697139B2 JP 2000106517 A JP2000106517 A JP 2000106517A JP 2000106517 A JP2000106517 A JP 2000106517A JP 3697139 B2 JP3697139 B2 JP 3697139B2
Authority
JP
Japan
Prior art keywords
flow rate
pressure
valve
pure water
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000106517A
Other languages
Japanese (ja)
Other versions
JP2001286836A (en
Inventor
直嗣 前川
賢司 杉本
健一郎 新居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd, Dainippon Screen Manufacturing Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2000106517A priority Critical patent/JP3697139B2/en
Publication of JP2001286836A publication Critical patent/JP2001286836A/en
Application granted granted Critical
Publication of JP3697139B2 publication Critical patent/JP3697139B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Weting (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体基板や液晶用ガラス基板等の基板を処理する基板処理装置に関するものである。
【0002】
【従来の技術】
従来から、半導体基板等の基板を処理槽内の処理液に浸漬して処理する基板処理装置が知られており、このような装置として、例えば特許登録第2739419号に開示されるような装置がある。
【0003】
この装置には、処理槽内に純水を供給する給水管が設けられるとともに、異なる薬液タンクにそれぞれ通じる複数の薬液供給管が給水管に対して接合されている。そして、処理中は、給水管内の純水に薬液供給管を通じて択一的に薬液を供給して(合流させ)所定濃度の薬液を調製しつつ処理槽に供給し、あるいは薬液の供給を停止して純水のみを処理槽に供給することにより、薬液や純水(以下、処理液という)を処理槽に貯留しつつオーバーフローさせるように構成されている。
【0004】
この装置では、上記のように純水に薬液を供給して所定濃度の薬液を調製するため、純水の流量が不安定では所望濃度の薬液を調製することができず、安定した処理は望めない。また、純水の流量が変動すると処理槽内での処理液の流速が変動し、基板の面内均一性等に悪影響を与える虞れもある。
【0005】
そのため、通常は、薬液供給管の接合部分よりも上流側において、給水管に流量調整弁を介設し、これにより給水管を通じて供給される純水の流量を一定に保つようにしている。
【0006】
【発明が解決しようとする課題】
ところで、基板の処理条件は基板の種類により異なり、基板の種類が異なれば純水の流量を変更したいケースもある。例えば、基板の種類によっては処理液の流速が処理速度に影響を与える場合があり、このような場合には、純水の流量を基板毎に変化させて処理槽内での処理液の流速を基板に適した速度にすることが望まれる。また、基板の種類に応じて温度の異なる純水を択一的に供給する場合もあり、このような場合には、供給する純水の温度に応じて流量を変化させることが必要となる場合がある。
【0007】
そこで、このような要請に応えるべく、例えば、薬液供給管の接合部分よりも上流において、給水管に複数の互いに並列な分岐路を設けて各分岐路に開閉弁及び流量調整弁を介設するとともに、流量調整弁による設定流量を各分岐路毎に異なる流量に設定し、分岐路に対して択一的に純水を通すことによって流量を変化させるようにすることが考えられる。
【0008】
ところが、この構成では、処理液の供給系統の主管である給水管を分岐構造とする必要がある上、各分岐路にそれぞれ流量調整弁等を介設する必要があるため、スペースやコストの面で不利である。特に、複数の処理槽を備え、給水管を分岐して各処理槽に接続するような装置では、各処理槽に対応して上記のような流量調整のための構成が必要となるため、処理液の供給系統が一層複雑になりその占有スペースが増大するという問題がある。
【0009】
本発明は、上記問題を解決するためになされたものであり、処理液供給管を通じて供給される処理液の流量を設定された一定の流量で供給する一方で、この設定流量を、シンプル、かつ安価な構成で変更可能とする基板処理装置を提供することを目的としている。
【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明は、基板を処理するための基板処理部と、処理液供給源に接続されて基板処理部に処理液を供給する処理液供給管とを備えた基板処理装置において、処理液供給管に、パイロット管を介して与えられるパイロット圧に応じて処理液の流量を調整する流量調整弁を介設するとともに、パイロット管にパイロット圧を調整可能とする調整手段を介設し、さらにこの調整手段として、上記パイロット管に並列な複数の分岐部を設け、各分岐部に、開閉弁とパイロット圧を一定圧力に調整可能な圧力調整弁とを介設するとともに各分岐部の圧力調整弁による調整圧力値を異なる値に設定したものである(請求項1)。
【0011】
この装置によれば、各分岐部の開閉弁が択一的に開操作されることにより、その開閉弁の該当する分岐部の圧力調整弁により調整されるパイロット圧が処理液供給管の流量調整弁に与えられる。そして、流量調整弁に与えるパイロット圧の調整に応じて処理液の流量が変更され、変更後は、その流量が維持されて安定した処理液の供給が行われる。そのため、処理液供給管については、流量調整弁を介設しただけのシンプルな構成で処理液の流量変更が可能となる。
【0016】
なお、例えば、処理槽内に処理液を貯留し、そこに基板を浸漬させた状態で処理液をオーバーフローさせながら処理を行うタイプの装置では、基板の種類によって処理液の温度を変えて処理する場合があり、この場合には、処理槽での処理液の流速を処理液の温度に応じて変化させる方が好ましい場合がある。そのため、このような場合には、上記パイロット圧を処理液の温度に応じた複数の圧力値に調整できるように上記調整手段を構成するようにし(請求項)、これにより、流量を変化させて処理槽内での処理液の流速を処理液の温度に応じて調整できるようにしてもよい。
【0017】
【発明の実施の形態】
本発明の実施の形態について図面を用いて説明する。
【0018】
図1は、本発明に係る基板処理装置の一の実施の形態を概略的に示している。この図に示す基板処理装置10は、単一の処理槽に各種薬液や純水を順次貯留しながら、半導体ウエハ等の基板をこの処理液に浸漬して表面処理を行う、いわゆるワンバス方式の基板処理装置であって、基板処理部である処理槽12と、これに対する処理液の給排系とを備えている。
【0019】
処理槽12は、例えば断面矩形の箱型に形成されているとともに、その開口周囲に液受け部12aが設けられ、その全体は例えばPTFE(ポリテトラフロロエチレン)、PVDF(フッ化ビニリデン)等の耐侵食性に優れた材料から構成されている。
【0020】
処理槽12には、処理液の給排系を構成する給水管14(処理液供給管)及び排液管16がそれぞれ接続されている。
【0021】
給水管14は、図示を省略するが、例えば、その上流端側が切換え弁を介して2つに分岐され、それぞれ機械式ポンプを介して別々の純水貯留タンク(処理液供給源)に接続されている。各貯留タンクには、温度の異なる純水、例えば常温とこれより若干温度の高い純水が貯留されており、上記切換え弁の操作に応じていずれか一方の純水を供給できるように構成されている。
【0022】
一方、給水管14の下流端側は、処理槽12の底部に接続されて処理槽12内に連通しており、上記切換え弁の下流側には、流量調整弁20、流量計22及び三方弁24が上流側から順に介設されている。また、流量計22と三方弁24との間には、薬液供給管28a〜28cが一列に並べられた状態で給水管14に接続されている。薬液供給管28a〜28cは、上流端側がそれぞれ異なる種類の薬液を貯留した薬液タンク26a〜26cに至っており、その途中には、開閉バルブ29a〜29cがそれぞれ介設されている。すなわち、いずれかの開閉バルブ29a〜29cが択一的に、または所要のものが複数同時に開操作されることにより給水管14を通じて給送される純水に薬液が混入されつつ所定濃度の薬液が調製されて処理槽12に給送される一方、全ての開閉バルブ29a〜29cが閉状態とされると、純水のみが処理槽12に給送されるようになっている。
【0023】
上記流量調整弁20は、当実施の形態では、空気圧を用いたパイロット圧式の流量調整弁であって、純水貯溜タンクに接続する側である上流側(以下、一次側という)の圧力変動等による影響を是正して、給水管14を通じて供給される純水の流量をパイロット圧に応じた一定流量に保つように構成されている。
【0024】
流量調整弁20に対するパイロット圧の供給系は、図1の破線に示すように、上流側が図外のコンプレッサに接続されたパイロット管30を有している。このパイロット管30の途中には、同図に示すように並列に分岐部32a,32bが設けられており、これらの分岐部32a,32bに、それぞれ上流側から順にレギュレーター(減圧弁)34a,34b、圧力計36a,36bおよび開閉弁38a,38bが介設されている。
【0025】
各レギュレーター34a,34bによる減圧値はそれぞれ異なる値に設定されており、開閉弁38a,38bが択一的に開操作されることにより流量調整弁20に与えられるパイロット圧が切り換えられるようになっている。なお、各レギュレーター34a,34bによる減圧値は、純水の温度に対応した値に設定されている。すなわち、温度毎に予め設定されている所定の流量で純水を供給するように設定されている。
【0026】
ここで、上記給水管14に介設された流量調整弁20の構成について説明する。
【0027】
図2は上記流量調整弁20を示す断面概略図である。この図に示す流量調整弁20は、一般的なパイロット圧式の流量調整弁であって、内部に上下(同図で上下)に延びる純水の流路42を備えるとともに、この流路42に通じる上下にオフセットされた入口側および出口側の各ポート44,46を左右(同図で左右)両側に有しており、給水管14がこれら各ポート44,46に接続されている。
【0028】
流路42内には、後述するように弁体48が上下方向に変位可能に支持され、この弁体48に形成された円錐状部分48cと流路42の途中に形成された断面円形状の絞り部42cとによりオリフィス56を形成している。
【0029】
また、流路42の下方に、弁体48の下部48aを収容する弁体下部収容室42aが形成されるとともに、流路42の上方に、弁体48の上部48bを収容する弁体上部収容室42bが形成されている。そして、弁体48の下部48aが下側ダイアフラム50aにより弁体下部収容室42a内にフランジ支持状に支えられる一方、同上部48bが弁体上部収容室42b内に上側ダイアフラム50bによりフランジ支持状に支えられている。これにより弁体48が流路42内に上下方向に変位可能に支持されている。
【0030】
前記の下側ダイアフラム50aは弁体下部収容室42aを上下に区分しており、ダイアフラム50aの上側に流路42に臨む入口側流体圧作用空間51aを形成する一方、ダイアフラム50aの下側に下部ポート54aを介して前記パイロット管30に連通する下側のパイロット圧作用空間52aを形成している。また、上側ダイアフラム50bも弁体上部収容室42bを上下に区分しており、ダイアフラム50bの下側に流路42に臨む出口側流体圧作用空間51bを形成する一方、ダイアフラム50bの上側に上部ポート54bを介して前記パイロット管30に連通する上側のパイロット圧作用空間52bを形成している。
【0031】
そして、図2に示すように上記弁体上部収容室42bが弁体下部収容室42aより広く(径が大きく)形成されることにより、上側のパイロット圧作用空間52bにおける上側ダイアフラム50b及び弁体48のエア圧の受圧面積が下側のパイロット圧作用空間52aにおける下側ダイアフラム50a及び弁体48のエア圧の受圧面積よりも大きくなるように構成されるとともに、出口側流体圧作用空間51bにおける上側ダイアフラム50b及び弁体48の純水の受圧面積が入口側流体圧作用空間51aにおける下側ダイアフラム50a及び弁体48の純水の受圧面積よりも大きくなるように構成されている。
【0032】
この構成において、上記入口側ポート44を通じて純水を供給するとともに、両ポート54a,54bを通じてエア圧を与えると、オリフィス56通過前の純水の圧力により弁体48を押し下げる力、オリフィス56通過後の純水の圧力により弁体48を押し上げる力、下側のパイロット圧作用空間52aに供給されるエア圧により弁体48を押し上げる力、上側のパイロット圧作用空間52bに供給されるエア圧により弁体48を押し下げる力、弁体48の自重および弾性変形した両ダイアフラム50a、50bの復帰力が弁体48に作用するが、上述のように下側ダイアフラム50a等のエア圧の受圧面積よりも上側ダイアフラム50b等のエア圧の受圧面積の方が大きく設定されていることにより、純水及びエア圧を与えた状態で、このエア圧を漸次高めると、エア圧の増加に伴って弁体48を押し下げる力が増大し、その結果、弁体48が下方へ変位した所定位置でバランスすることとなる。
【0033】
つまり、エア圧を漸次高めると、次第にオリフィスの面積が増して出口側のポート46からの純水の流量が増すため、所要の流量が得られた時点のエア圧を所定のパイロット圧として設定しておく。
【0034】
このように所定パイロット圧を与えておけば、その後、一次側の純水に圧力変動が生じても、上記流量調節弁20が次にように動作することにより流量が一定に維持される。すなわち、例えば一次側の圧力が高まると、上述したように、入口側流体圧作用空間51aにおける下側ダイアフラム50等の純水の受圧面積よりも出口側流体圧作用空間51bにおける上側ダイアフラム50b等の純水の受圧面積が広く構成されていることにより、出口側流体圧作用空間51bにおいて弁体48を上方へ変位させる力の増加分が入口側流体圧作用空間51aにおいて弁体48を下方へ変位させる力の増加分よりも大きくなり、その結果、弁体48が上方へ変位してオリフィス56の面積が狭まり、出口側のポート46での純水の流量がパイロット圧に応じた一定流量に維持されることとなる。一方、一次側の圧力が低下すると、逆に弁体48が下方へ変位してオリフィス56の面積が拡大し、出口側のポート46での純水の流量がパイロット圧に応じた一定流量に維持されることとなる。
【0035】
なお、パイロット圧の設定は、幾種類かの所望の流量毎に行なうことで、各流量に応じたパイロット圧を設定することができる。
【0036】
一方、上記排水管16は、図1に示すように、その上流端側が処理槽12の液受け部12aに接続される一方、下流端側が図外の廃液タンクに接続されている。また、排水管16には、その途中に分岐管16aが設けられ、この分岐管16aが給水管14の三方弁24に接続されている。すなわち、処理槽12から液受け部12aにオーバーフローした純水、あるいは薬液(以下、特に区別する場合を除き処理液という)を排水管16を介して廃液タンクに導入しつつ、例えば、処理槽12内の処理液を全て排出する必要がある場合には、三方弁24を切替えることにより、給水管14、三方弁24、分岐管16a及び排水管16を介して処理槽12内の処理液を廃液タンクに導入するようになっている。
【0037】
以上のように構成された基板処理装置10では、例えば、まず、開閉バルブ29a〜29cが全て閉じられ、給水管14を通じて処理槽12に純水のみが給送されつつ液受け部12aにオーバーフローさせられる。これにより処理槽12内に純水の上昇流が形成され、この状態で基板Wを処理槽12内に浸漬させることにより、基板Wに対して水洗処理が施される。この際、基板Wの種類に応じて給水管14の切換え弁が操作され、基板Wに適した温度の純水が給水管14を通じて供給される。また、供給される純水の流量がこの純水の温度に対応した流量となるように、パイロット管30の開閉弁38aと開閉弁23bのうち対応するものが開かれる。これにより供給される純水の温度に応じたパイロット圧が流量調整弁20に与えられ、純水の温度に対応した一定の流量で純水が処理槽12に供給される。
【0038】
こうして一定時間だけ水洗処理が施されると、次に、開閉バルブ29a〜29cのいずれかの開閉バルブ29a〜29cが開かれて給水管14に薬液が導入され、所定濃度の薬液が調製されつつ処理槽12に給送される。これにより基板Wに対して薬液による処理が施される。この際、流量調整弁20の作用により純水の流量が一定に保たれることにより薬液濃度が所定の濃度に保たれる。
【0039】
こうして、以後、開閉バルブ29a〜29cが順次択一的に開かれることにより、異なる処理液が処理槽12内に供給され、これにより基板Wに対して複数種類の処理液による処理が順次施される。なお、このときも、処理槽12に連続的に薬液が供給されて液受け部12aにオーバーフローすることによって処理残渣当が処理槽12外へと導出される。
【0040】
そして、すべての処理液による処理が終了すると、再び純水のみが処理槽12に供給されて基板Wに対して水洗処理が施され、一定時間水洗処理が行われると、処理槽12への純水の供給が停止され、基板Wが処理槽12から取り出されて基板処理装置10による基板Wの処理が完了する。
【0041】
以上説明した基板処理装置10によれば、給水管14を通じて供給される純水の流量が流量調整弁20により設定された一定の流量に保たれるようになっているので、処理槽12に供給する純水の流量の変動を防止して安定した純水の供給を行うことができ、その上、流量調整弁20による設定流量を、供給される純水の温度に応じて変更できるようになっているので、温度に対応した最適な流量で純水を供給して処理に供すことができる。
【0042】
しかも、純水の流量の変更は、上述のように流量調整弁20に与えるパイロット圧を切り換えることにより行うため、処理液の供給系統の主管である給水管14自体の構成を複雑化することなく純水の流量を変更することができる。従って、処理液の給排系統の占有スペースの拡大を伴うことがなく、また、安価な構成で純水の流量変更を行うことができる。
【0043】
なお、上記基板処理装置10の構成では、上述のようにシンプルな給水管14の構成で純水の流量変更が可能となるものの、流量調整弁20に対するパイロット圧の供給系統に、圧力の変更を可能とするための構成を組み込むため、該供給系統の構成が複雑化して占有スペースの増大やコストアップを招くとの懸念がある。しかし、パイロット圧の供給系統は、純水の供給系統に比べると管径等が極めて小さく、また、弁等も小サイズのもので対応できるため、パイロット圧の供給系統が多少複雑な構成となっても、例えば、従来技術で説明した構成、すなわち、給水管に複数の並列な分岐通路を設けて各分岐通路に開閉弁及び流量調整弁を介設し、分岐通路に対して択一的に純水を通すことによって流量を変化させるような構成に比べると、占有スペースやコストの面での影響は極めて少ない。
【0044】
ところで、上記基板処理装置10は、本発明に係る基板処理装置の一の実施の形態であって、その具体的な構成は、本発明の要旨を逸脱しない範囲で適宜変更可能である。
【0045】
例えば、上記基板処理装置10では、本発明に係る調整手段として、パイロット管30に並列な分岐部32a,32bを設け、これらの分岐部32a,32bに、それぞれレギュレーター34a,34bおよび開閉弁38a,38bを介設するようにし、供給する純水の温度に応じて開閉弁38a,38bを択一的に開操作することによりパイロット圧を2種類の圧力に切り換えるようにしているが、供給する純水の温度が3種類以上ある場合には、さらにパイロット管30に分岐部を増設して、より多くの異なる圧力への設定を行えるようにしてもよい。
【0047】
さらに、上記基板処理装置10では、純水の供給系統についてのみ本発明の構成を採用しているが、例えば、薬液の供給系統についても本発明を採用するようにしてもよい。すなわち、薬液供給管28a〜28cにさらにパイロット圧式の流量調整弁を介設し、各流量調整弁に対するパイロット圧を変更可能に構成してもよい。このようにすれば、薬液を継続的に供給する場合の薬液の流量を一定に保つことができ、また、基板Wの種類に応じて薬液濃度を変更する必要がある場合には、流量調整弁に与えるパイロット圧を変更することにより薬液の流量を変更することができる。
【0048】
また、流量調整弁20の構成は、純水の流量をパイロット圧に応じた一定流量に設定する流量調整弁であれば、必ずしも図2に示すような構成である必要はなく、他の構成の流量調整弁を採用するようにしてもよい。また、パイロット圧として油圧を用いる弁を採用してもよい。
【0049】
なお、上記の実施の形態では、本願発明を、基板Wを処理液に浸漬して表面処理を行う、いわゆるワンバス方式の基板処理装置に適用しているが、本願発明は、基板Wを搬送しながら該基板Wに処理液をスプレーして表面処理等を行う、いわゆるスプレー方式の基板処理装置についても適用可能である。
【0050】
【発明の効果】
以上説明したように、本発明は、処理液供給管を通じて基板処理部に処理液を供給しつつ基板に処理を施す装置において、処理液供給管に、パイロット管を介して与えられるパイロット圧に応じて処理液の流量を調整する流量調整弁を介設するとともに、上記パイロット管にパイロット圧を調整可能とする調整手段を介設し、さらにこの調整手段として、上記パイロット管に並列な複数の分岐部を設け、各分岐部に、開閉弁とパイロット圧を一定圧力に調整可能な圧力調整弁とを介設するとともに、各分岐部の圧力調整弁による調整圧力値を異なる値に設定するようにしたので、処理液供給管を通じて供給される処理液の流量を設定された一定の流量で供給しながらこの設定流量を変更することができ、しかも、シンプルな処理液供給管の構成でこのような処理液の流量変更を行うことができる。従って、処理液の給排系統の占有スペースの拡大を伴うことがなく、また、安価な構成で処理液の流量変更を行うことができる。
【0052】
なお、基板処理装置においては、供給する処理液の温度に応じて流量を変更したい場合があり、この場合には、上記パイロット圧を処理液の温度に応じた複数の圧力値に調整できるように上記調整手段を構成すれば、処理液の温度に応じた流量設定が可能となる。
【図面の簡単な説明】
【図1】本発明に係る基板処理装置の一の実施の形態を示す全体構成図である。
【図2】流量調整弁の構成を示す断面図である。
【符号の説明】
10 基板処理装置
12 処理槽
14 給水管
16 排液管
20 流量調整弁
22 流量計
24 三方弁
26a,26b,26c 薬液タンク
28a,28b,28c 薬液供給管
29a,29b,29c 開閉バルブ
30 パイロット管
32a,32b 分岐部
34a,34b レギュレーター
36a,36b 圧力計
38a,38b 開閉弁
W 基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a substrate processing apparatus for processing a substrate such as a semiconductor substrate or a glass substrate for liquid crystal.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a substrate processing apparatus for processing a substrate such as a semiconductor substrate by immersing it in a processing solution in a processing tank is known. As such an apparatus, for example, an apparatus disclosed in Japanese Patent No. 2739419 is known. is there.
[0003]
This apparatus is provided with a water supply pipe for supplying pure water into the treatment tank, and a plurality of chemical liquid supply pipes respectively connected to different chemical liquid tanks are joined to the water supply pipe. During the treatment, the chemical solution is alternatively supplied to (combined with) the pure water in the water supply pipe through the chemical solution supply pipe and supplied to the treatment tank while preparing the chemical solution with a predetermined concentration, or the supply of the chemical solution is stopped. By supplying only pure water to the processing tank, the chemical liquid and pure water (hereinafter referred to as processing liquid) are overflowed while being stored in the processing tank.
[0004]
In this apparatus, as described above, the chemical solution is supplied to pure water to prepare a chemical solution with a predetermined concentration. Therefore, if the flow rate of pure water is unstable, a chemical solution with a desired concentration cannot be prepared, and stable treatment can be expected. Absent. In addition, when the flow rate of pure water varies, the flow rate of the treatment liquid in the treatment tank varies, which may adversely affect the in-plane uniformity of the substrate.
[0005]
For this reason, normally, a flow rate adjusting valve is provided in the water supply pipe upstream of the joint portion of the chemical liquid supply pipe, so that the flow rate of pure water supplied through the water supply pipe is kept constant.
[0006]
[Problems to be solved by the invention]
By the way, the substrate processing conditions differ depending on the type of substrate, and there are cases where it is desired to change the flow rate of pure water if the type of substrate is different. For example, depending on the type of substrate, the flow rate of the processing liquid may affect the processing speed. In such a case, the flow rate of the processing liquid in the processing tank is changed by changing the flow rate of pure water for each substrate. It is desirable to have a speed suitable for the substrate. In some cases, pure water with different temperatures may be selectively supplied depending on the type of substrate. In such a case, it is necessary to change the flow rate according to the temperature of the supplied pure water. There is.
[0007]
Therefore, in order to meet such a demand, for example, a plurality of parallel branch passages are provided in the water supply pipe upstream of the joint portion of the chemical solution supply pipe, and an opening / closing valve and a flow rate adjusting valve are provided in each branch passage. At the same time, it is conceivable to set the flow rate set by the flow rate adjusting valve to a different flow rate for each branch path and to change the flow rate by passing pure water selectively through the branch path.
[0008]
However, in this configuration, the water supply pipe, which is the main pipe of the treatment liquid supply system, needs to have a branch structure, and each branch path must be provided with a flow control valve, etc. It is disadvantageous. In particular, in an apparatus that includes a plurality of treatment tanks and branches a water supply pipe to connect to each treatment tank, the configuration for adjusting the flow rate as described above is required for each treatment tank. There is a problem that the liquid supply system becomes more complicated and the occupied space increases.
[0009]
The present invention has been made to solve the above problems, and while supplying the flow rate of the processing liquid supplied through the processing liquid supply pipe at a set constant flow rate, the set flow rate is simple, and An object of the present invention is to provide a substrate processing apparatus that can be changed with an inexpensive configuration.
[0010]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a substrate processing unit that includes a substrate processing unit for processing a substrate and a processing liquid supply pipe that is connected to a processing liquid supply source and supplies the processing liquid to the substrate processing unit. In the apparatus, the processing liquid supply pipe is provided with a flow rate adjusting valve for adjusting the flow rate of the processing liquid in accordance with the pilot pressure given through the pilot pipe, and adjusting means for adjusting the pilot pressure in the pilot pipe. Further, as this adjusting means, a plurality of branch portions parallel to the pilot pipe are provided, and on each branch portion, an on-off valve and a pressure adjusting valve capable of adjusting the pilot pressure to a constant pressure are provided. The adjustment pressure value by the pressure adjustment valve at the branching portion is set to a different value (claim 1).
[0011]
According to this apparatus, when the opening / closing valve of each branching portion is selectively opened, the pilot pressure adjusted by the pressure adjusting valve of the corresponding branching portion of the opening / closing valve is adjusted to the flow rate adjustment of the processing liquid supply pipe. Given to the valve. Then, the flow rate of the processing liquid is changed according to the adjustment of the pilot pressure applied to the flow rate adjusting valve. After the change, the flow rate is maintained and the stable supply of the processing liquid is performed. For this reason, the processing liquid supply pipe can be changed in flow rate with a simple configuration in which a flow rate adjusting valve is interposed.
[0016]
In addition, for example, in an apparatus of a type that stores a processing liquid in a processing tank and performs processing while overflowing the processing liquid in a state where the substrate is immersed therein, the temperature of the processing liquid is changed depending on the type of the substrate. In this case, it may be preferable to change the flow rate of the processing liquid in the processing tank according to the temperature of the processing liquid. Therefore, in such a case, the adjusting means is configured so that the pilot pressure can be adjusted to a plurality of pressure values corresponding to the temperature of the processing liquid (claim 2 ), thereby changing the flow rate. The flow rate of the processing liquid in the processing tank may be adjusted according to the temperature of the processing liquid.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
[0018]
FIG. 1 schematically shows an embodiment of a substrate processing apparatus according to the present invention. The substrate processing apparatus 10 shown in this figure is a so-called one-bath type substrate that performs surface treatment by immersing a substrate such as a semiconductor wafer in this processing solution while sequentially storing various chemical solutions and pure water in a single processing tank. The processing apparatus includes a processing tank 12 as a substrate processing unit and a processing liquid supply / discharge system for the processing tank 12.
[0019]
The processing tank 12 is formed in a box shape having a rectangular cross section, for example, and a liquid receiving portion 12a is provided around the opening, and the whole is made of, for example, PTFE (polytetrafluoroethylene), PVDF (vinylidene fluoride), or the like. Consists of materials with excellent erosion resistance.
[0020]
A water supply pipe 14 (treatment liquid supply pipe) and a drainage pipe 16 constituting a treatment liquid supply / discharge system are connected to the treatment tank 12, respectively.
[0021]
Although the illustration of the water supply pipe 14 is omitted, for example, the upstream end side of the water supply pipe 14 is branched into two via a switching valve, and each is connected to a separate pure water storage tank (treatment liquid supply source) via a mechanical pump. ing. Each storage tank stores pure water at different temperatures, for example, room temperature and slightly higher temperature pure water, and is configured to supply either one of the pure water according to the operation of the switching valve. ing.
[0022]
On the other hand, the downstream end side of the water supply pipe 14 is connected to the bottom of the processing tank 12 and communicates with the processing tank 12, and on the downstream side of the switching valve, a flow rate adjusting valve 20, a flow meter 22 and a three-way valve. 24 is provided in order from the upstream side. Moreover, between the flowmeter 22 and the three-way valve 24, the chemical solution supply pipes 28a to 28c are connected to the water supply pipe 14 in a state where they are arranged in a line. The chemical liquid supply pipes 28a to 28c reach the chemical liquid tanks 26a to 26c storing different types of chemical liquids on the upstream end sides, respectively, and open / close valves 29a to 29c are interposed in the middle thereof. That is, when one of the opening / closing valves 29a to 29c is alternatively opened or a plurality of required ones are simultaneously opened, the chemical solution is mixed into the pure water fed through the water supply pipe 14, and the chemical solution with a predetermined concentration is supplied. While being prepared and fed to the treatment tank 12, when all the open / close valves 29 a to 29 c are closed, only pure water is fed to the treatment tank 12.
[0023]
In the present embodiment, the flow rate adjusting valve 20 is a pilot pressure type flow rate adjusting valve using air pressure, and the upstream side (hereinafter referred to as the primary side) pressure fluctuation or the like connected to the pure water storage tank. The flow rate of pure water supplied through the water supply pipe 14 is maintained at a constant flow rate corresponding to the pilot pressure.
[0024]
The pilot pressure supply system for the flow rate adjusting valve 20 has a pilot pipe 30 whose upstream side is connected to a compressor (not shown) as shown by a broken line in FIG. In the middle of the pilot pipe 30, branch portions 32a and 32b are provided in parallel as shown in the figure, and regulators (pressure reducing valves) 34a and 34b are provided in the branch portions 32a and 32b in order from the upstream side. Pressure gauges 36a and 36b and on-off valves 38a and 38b are interposed.
[0025]
The pressure reduction values by the regulators 34a and 34b are set to different values, and the pilot pressure applied to the flow rate adjusting valve 20 is switched by selectively opening and closing the on-off valves 38a and 38b. Yes. In addition, the pressure reduction value by each regulator 34a, 34b is set to the value corresponding to the temperature of pure water. That is, it is set so that pure water is supplied at a predetermined flow rate preset for each temperature.
[0026]
Here, the configuration of the flow rate adjustment valve 20 interposed in the water supply pipe 14 will be described.
[0027]
FIG. 2 is a schematic cross-sectional view showing the flow rate adjusting valve 20. The flow rate adjusting valve 20 shown in this figure is a general pilot pressure type flow rate adjusting valve, and has a pure water flow path 42 extending in the vertical direction (up and down in the figure), and communicates with the flow path 42. The ports 44 and 46 on the inlet side and the outlet side that are offset vertically are provided on both the left and right sides (left and right in the figure), and the water supply pipe 14 is connected to these ports 44 and 46.
[0028]
As will be described later, a valve body 48 is supported in the flow path 42 so as to be displaceable in the vertical direction, and has a circular cross section formed in the middle of the conical portion 48 c formed in the valve body 48 and the flow path 42. An orifice 56 is formed by the throttle portion 42c.
[0029]
Further, a valve body lower housing chamber 42a that houses the lower part 48a of the valve body 48 is formed below the flow path 42, and a valve body upper part housing the upper part 48b of the valve body 48 is placed above the flow path 42. A chamber 42b is formed. The lower portion 48a of the valve body 48 is supported by the lower diaphragm 50a in a flange-supporting manner in the valve-body lower housing chamber 42a, while the upper portion 48b is supported in the valve-body upper housing chamber 42b by the upper diaphragm 50b in a flange-supporting manner. It is supported. Thereby, the valve body 48 is supported in the flow path 42 so as to be displaceable in the vertical direction.
[0030]
The lower diaphragm 50a divides the valve body lower housing chamber 42a up and down to form an inlet-side fluid pressure acting space 51a that faces the flow path 42 above the diaphragm 50a, while the lower diaphragm 50a has a lower portion below the diaphragm 50a. A lower pilot pressure acting space 52a communicating with the pilot pipe 30 through the port 54a is formed. Further, the upper diaphragm 50b also divides the valve body upper accommodating chamber 42b vertically, and forms an outlet side fluid pressure acting space 51b facing the flow path 42 below the diaphragm 50b, while the upper port is located above the diaphragm 50b. An upper pilot pressure acting space 52b communicating with the pilot pipe 30 via 54b is formed.
[0031]
Then, as shown in FIG. 2, the upper valve body accommodating chamber 42b is formed wider (larger in diameter) than the lower valve body accommodating chamber 42a, whereby the upper diaphragm 50b and the valve body 48 in the upper pilot pressure acting space 52b. The air pressure receiving area is configured to be larger than the air pressure receiving area of the lower diaphragm 50a and the valve body 48 in the lower pilot pressure acting space 52a, and the upper side in the outlet side fluid pressure acting space 51b. The pressure-receiving area of the pure water of the diaphragm 50b and the valve body 48 is configured to be larger than the pressure-receiving area of the pure water of the lower diaphragm 50a and the valve body 48 in the inlet-side fluid pressure acting space 51a.
[0032]
In this configuration, when pure water is supplied through the inlet side port 44 and air pressure is applied through both ports 54a and 54b, the force that pushes down the valve body 48 by the pressure of pure water before passing through the orifice 56, after passing through the orifice 56 net force pushing up the valve body 48 by the pressure of the water, the force to push up the valve body 48 by the air pressure supplied to the lower side of the pilot pressure acting space 52a, the valve by the air pressure supplied to the upper side of the pilot pressure acting space 52b of force pushing down the body 48, both diaphragms 50a and its own weight and the elastic deformation of the valve body 48, but the restoring force of 50b acts on the valve body 48, the upper side of the pressure receiving area of the air pressure, such as lower diaphragm 50a as described above Since the pressure receiving area of the air pressure of the diaphragm 50b or the like is set larger, this can be achieved with pure water and air pressure applied. Increasing the air pressure gradually, the force pushing down the valve body 48 increases with increasing air pressure, and as a result, the valve element 48 is balanced at a predetermined position displaced downward.
[0033]
In other words, when the air pressure is gradually increased, the area of the orifice gradually increases and the flow rate of pure water from the port 46 on the outlet side increases, so the air pressure at the time when the required flow rate is obtained is set as a predetermined pilot pressure. Keep it.
[0034]
If the predetermined pilot pressure is applied in this way, even if the pressure fluctuation occurs in the pure water on the primary side thereafter, the flow rate control valve 20 operates as follows to maintain the flow rate constant. That is, for example, when the pressure on the primary side increases, as described above, the upper diaphragm 50b or the like in the outlet side fluid pressure acting space 51b has a larger pressure receiving area than the pure water in the lower diaphragm 50 or the like in the inlet side fluid pressure acting space 51a. Due to the large pressure receiving area of pure water, an increase in force that displaces the valve body 48 upward in the outlet-side fluid pressure acting space 51b displaces the valve body 48 downward in the inlet-side fluid pressure acting space 51a. As a result, the valve body 48 is displaced upward, the area of the orifice 56 is reduced, and the pure water flow rate at the outlet port 46 is maintained at a constant flow rate corresponding to the pilot pressure. Will be. On the other hand, when the pressure on the primary side decreases, the valve body 48 is displaced downward to enlarge the area of the orifice 56, and the pure water flow rate at the outlet side port 46 is maintained at a constant flow rate corresponding to the pilot pressure. Will be.
[0035]
The pilot pressure is set for each desired flow rate, so that the pilot pressure corresponding to each flow rate can be set.
[0036]
On the other hand, as shown in FIG. 1, the upstream end side of the drain pipe 16 is connected to the liquid receiving part 12a of the processing tank 12, while the downstream end side thereof is connected to a waste liquid tank not shown. Further, the drain pipe 16 is provided with a branch pipe 16 a in the middle thereof, and this branch pipe 16 a is connected to the three-way valve 24 of the water supply pipe 14. That is, while introducing pure water overflowing from the processing tank 12 to the liquid receiving portion 12a or chemical liquid (hereinafter referred to as processing liquid unless otherwise specified) into the waste liquid tank through the drain pipe 16, for example, the processing tank 12 When it is necessary to discharge all of the processing liquid in the wastewater, the processing liquid in the processing tank 12 is drained through the water supply pipe 14, the three-way valve 24, the branch pipe 16a and the drain pipe 16 by switching the three-way valve 24. It is designed to be introduced into the tank.
[0037]
In the substrate processing apparatus 10 configured as described above, for example, all the open / close valves 29a to 29c are first closed, and only the pure water is fed to the treatment tank 12 through the water supply pipe 14 and overflowed to the liquid receiving portion 12a. It is done. As a result, an upward flow of pure water is formed in the processing bath 12, and the substrate W is immersed in the processing bath 12 in this state, whereby the substrate W is subjected to a water washing process. At this time, the switching valve of the water supply pipe 14 is operated according to the type of the substrate W, and pure water having a temperature suitable for the substrate W is supplied through the water supply pipe 14. Further, the corresponding one of the on-off valve 38a and the on-off valve 23b of the pilot pipe 30 is opened so that the supplied pure water has a flow rate corresponding to the temperature of the pure water. As a result, a pilot pressure corresponding to the temperature of the pure water supplied is applied to the flow rate adjusting valve 20, and the pure water is supplied to the treatment tank 12 at a constant flow rate corresponding to the temperature of the pure water.
[0038]
After the water washing process is performed for a certain time in this way, next, one of the opening / closing valves 29a to 29c of the opening / closing valves 29a to 29c is opened, and the chemical solution is introduced into the water supply pipe 14 to prepare a chemical solution with a predetermined concentration. It is fed to the treatment tank 12. As a result, the substrate W is treated with the chemical solution. At this time, the concentration of the chemical solution is maintained at a predetermined concentration by keeping the flow rate of pure water constant by the action of the flow rate adjusting valve 20.
[0039]
Thus, thereafter, the opening / closing valves 29a to 29c are alternately opened sequentially, whereby different processing liquids are supplied into the processing tank 12, whereby the substrate W is sequentially processed with a plurality of types of processing liquids. The At this time, the chemical solution is continuously supplied to the processing tank 12 and overflows to the liquid receiving portion 12a, so that the processing residue is led out of the processing tank 12.
[0040]
When the processing with all the processing liquids is completed, only pure water is again supplied to the processing tank 12 and the substrate W is subjected to the water cleaning process. When the water cleaning process is performed for a certain time, the pure water to the processing tank 12 is purified. The supply of water is stopped, the substrate W is taken out of the processing tank 12, and the processing of the substrate W by the substrate processing apparatus 10 is completed.
[0041]
According to the substrate processing apparatus 10 described above, the flow rate of pure water supplied through the water supply pipe 14 is maintained at a constant flow rate set by the flow rate adjusting valve 20, so that it is supplied to the processing tank 12. In addition, it is possible to stably supply pure water by preventing fluctuations in the flow rate of pure water, and to change the set flow rate by the flow rate adjusting valve 20 in accordance with the temperature of the supplied pure water. Therefore, pure water can be supplied at an optimum flow rate corresponding to the temperature for processing.
[0042]
Moreover, since the flow rate of the pure water is changed by switching the pilot pressure applied to the flow rate adjusting valve 20 as described above, the configuration of the water supply pipe 14 itself that is the main pipe of the treatment liquid supply system is not complicated. The flow rate of pure water can be changed. Therefore, the occupied space of the processing liquid supply / discharge system is not increased, and the flow rate of pure water can be changed with an inexpensive configuration.
[0043]
In the configuration of the substrate processing apparatus 10, the flow rate of pure water can be changed with the simple configuration of the water supply pipe 14 as described above, but the pressure change is applied to the pilot pressure supply system for the flow rate adjustment valve 20. In order to incorporate the configuration for enabling, there is a concern that the configuration of the supply system becomes complicated, resulting in an increase in occupied space and an increase in cost. However, the pilot pressure supply system has a very small pipe diameter compared to the pure water supply system, and the valves and the like can be accommodated with a small size, so the pilot pressure supply system has a slightly more complicated configuration. However, for example, the configuration described in the prior art, that is, a plurality of parallel branch passages are provided in the water supply pipe, and an open / close valve and a flow rate adjustment valve are provided in each branch passage, so that the branch passage is alternatively selected. Compared to a configuration in which the flow rate is changed by passing pure water, the influence in terms of occupied space and cost is extremely small.
[0044]
By the way, the substrate processing apparatus 10 is an embodiment of the substrate processing apparatus according to the present invention, and its specific configuration can be appropriately changed without departing from the gist of the present invention.
[0045]
For example, in the substrate processing apparatus 10, as adjustment means according to the present invention, branch portions 32 a and 32 b parallel to the pilot pipe 30 are provided, and regulators 34 a and 34 b and on-off valves 38 a and 38 b are provided in these branch portions 32 a and 32 b, respectively. 38b is provided, and the pilot pressure is switched between two types of pressure by selectively opening and closing the on-off valves 38a and 38b according to the temperature of the pure water to be supplied. When there are three or more types of water temperature, a branch portion may be further added to the pilot pipe 30 so that more different pressures can be set.
[0047]
Furthermore, in the said substrate processing apparatus 10, although the structure of this invention is employ | adopted only about the supply system of a pure water, you may make it employ | adopt this invention also about the supply system of a chemical | medical solution, for example. That is, a pilot pressure type flow rate adjusting valve may be further provided in the chemical solution supply pipes 28a to 28c so that the pilot pressure for each flow rate adjusting valve can be changed. In this way, the flow rate of the chemical solution when the chemical solution is continuously supplied can be kept constant, and when the chemical solution concentration needs to be changed according to the type of the substrate W, the flow rate adjustment valve The flow rate of the chemical solution can be changed by changing the pilot pressure applied to the.
[0048]
Further, the flow rate adjusting valve 20 is not necessarily configured as shown in FIG. 2 as long as the flow rate of the pure water is set to a constant flow rate corresponding to the pilot pressure. You may make it employ | adopt a flow regulating valve. Moreover, you may employ | adopt the valve | bulb which uses hydraulic pressure as pilot pressure.
[0049]
In the above embodiment, the present invention is applied to a so-called one-bus type substrate processing apparatus that performs surface treatment by immersing the substrate W in a processing solution, but the present invention transports the substrate W. However, the present invention can also be applied to a so-called spray-type substrate processing apparatus that performs a surface treatment by spraying a processing liquid on the substrate W.
[0050]
【The invention's effect】
As described above, according to the present invention, in an apparatus for processing a substrate while supplying a processing liquid to a substrate processing unit through the processing liquid supply pipe, the processing liquid supply pipe is responsive to a pilot pressure applied via the pilot pipe. In addition, a flow rate adjusting valve for adjusting the flow rate of the processing liquid is provided, an adjusting means for adjusting the pilot pressure in the pilot pipe is provided, and a plurality of branches parallel to the pilot pipe are provided as the adjusting means. In each branch section, an on-off valve and a pressure adjustment valve capable of adjusting the pilot pressure to a constant pressure are provided, and the adjustment pressure value by the pressure adjustment valve in each branch section is set to a different value. Therefore, the set flow rate can be changed while supplying the flow rate of the process liquid supplied through the process liquid supply pipe at a set constant flow rate, and the structure of the simple process liquid supply pipe can be changed. In can be the flow rate change such processing liquid. Therefore, the occupied space of the processing liquid supply / discharge system is not increased, and the flow rate of the processing liquid can be changed with an inexpensive configuration.
[0052]
In the substrate processing apparatus, there is a case where it is desired to change the flow rate according to the temperature of the supplied processing liquid. In this case, the pilot pressure can be adjusted to a plurality of pressure values according to the temperature of the processing liquid. If the adjustment means is configured, the flow rate can be set according to the temperature of the processing liquid.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram showing an embodiment of a substrate processing apparatus according to the present invention.
FIG. 2 is a cross-sectional view showing a configuration of a flow rate adjustment valve.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Substrate processing apparatus 12 Processing tank 14 Water supply pipe 16 Drainage pipe 20 Flow control valve 22 Flowmeter 24 Three-way valve 26a, 26b, 26c Chemical liquid tank 28a, 28b, 28c Chemical liquid supply pipe 29a, 29b, 29c Open / close valve 30 Pilot pipe 32a , 32b Branch portions 34a, 34b Regulators 36a, 36b Pressure gauges 38a, 38b On-off valve W Substrate

Claims (2)

基板を処理するための基板処理部と、処理液供給源に接続されて上記基板処理部に処理液を供給する処理液供給管とを備えた基板処理装置において、上記処理液供給管に、パイロット管を介して与えられるパイロット圧に応じて処理液の流量を調整する流量調整弁を介設するとともに上記パイロット管に上記パイロット圧を調整可能とする調整手段を介設し、さらにこの調整手段として、上記パイロット管に並列な複数の分岐部を設け、各分岐部に、開閉弁とパイロット圧を一定圧力に調整可能な圧力調整弁とを介設するとともに各分岐部の圧力調整弁による調整圧力値を異なる値に設定したことを特徴とする基板処理装置。In a substrate processing apparatus comprising a substrate processing section for processing a substrate and a processing liquid supply pipe connected to a processing liquid supply source for supplying the processing liquid to the substrate processing section, a pilot is connected to the processing liquid supply pipe. interposed the adjustment means allowing adjustment of the pilot pressure in the pilot pipe as well as interposed a flow regulating valve for regulating the flow rate of the treatment liquid in accordance with the pilot pressure supplied through the pipe, further as the adjusting means A plurality of branch portions parallel to the pilot pipe are provided, and an on-off valve and a pressure adjustment valve capable of adjusting the pilot pressure to a constant pressure are provided in each branch portion, and the adjustment pressure by the pressure adjustment valve of each branch portion A substrate processing apparatus characterized in that values are set to different values . パイロット圧を処理液の温度に応じた複数の圧力値に調整できるように上記調整手段を構成したことを特徴とする請求項1に記載の基板処理装置。 2. The substrate processing apparatus according to claim 1, wherein the adjusting means is configured so that the pilot pressure can be adjusted to a plurality of pressure values according to the temperature of the processing liquid .
JP2000106517A 2000-04-07 2000-04-07 Substrate processing equipment Expired - Fee Related JP3697139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000106517A JP3697139B2 (en) 2000-04-07 2000-04-07 Substrate processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000106517A JP3697139B2 (en) 2000-04-07 2000-04-07 Substrate processing equipment

Publications (2)

Publication Number Publication Date
JP2001286836A JP2001286836A (en) 2001-10-16
JP3697139B2 true JP3697139B2 (en) 2005-09-21

Family

ID=18619672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000106517A Expired - Fee Related JP3697139B2 (en) 2000-04-07 2000-04-07 Substrate processing equipment

Country Status (1)

Country Link
JP (1) JP3697139B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5490659B2 (en) * 2009-12-09 2014-05-14 東京エレクトロン株式会社 SUBSTRATE PROCESSING APPARATUS, SUBSTRATE PROCESSING METHOD, AND RECORDING MEDIUM RECORDING PROGRAM FOR EXECUTING THE SUBSTRATE PROCESSING METHOD

Also Published As

Publication number Publication date
JP2001286836A (en) 2001-10-16

Similar Documents

Publication Publication Date Title
US5975112A (en) Fluid control device
JP5459895B2 (en) Gas shunt supply unit
TWI430065B (en) Gas delivery method and system including a flow ratio controller using antisymmetric optimal control
EP0913233B1 (en) Polishing solution supply system
JP2000031075A (en) System for depositing semiconductor thin film by continuous gas injection
EP1793298B1 (en) Liquid regulator
KR102084511B1 (en) Device for adjusting specific resistance value
JP3697139B2 (en) Substrate processing equipment
KR100929713B1 (en) Fluid control unit and heat treatment unit
JPH11135472A (en) Substrate processing equipment
EP0379594A1 (en) Gas supply pipeline system for process equipment
JPH09260332A (en) Chemical liquid supplier of substrate processor
JP2001291697A (en) Substrate-processing apparatus
JP3801325B2 (en) Polishing apparatus and semiconductor wafer polishing method
KR100509446B1 (en) A chemical solution supply apparatus in use the process of fabricating semiconductor device
JP3540627B2 (en) Distributing valve control device
US20230228473A1 (en) Water purifier
JP5063531B2 (en) Substrate processing apparatus, substrate processing method, program, and storage medium
JPH10154683A (en) Substrate processing device
JP2020105577A (en) Fluid supply device
CN117917760A (en) Treatment liquid supply system and operation method thereof
JPH1167711A (en) Substrate processing apparatus
JPH07315492A (en) Liquid supplying and replenishing device
JPS6326712A (en) Method and device for supply of liquid
JPH10154684A (en) Substrate processing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees