JP3695864B2 - Nickel-cadmium storage battery and manufacturing method thereof - Google Patents

Nickel-cadmium storage battery and manufacturing method thereof Download PDF

Info

Publication number
JP3695864B2
JP3695864B2 JP28375496A JP28375496A JP3695864B2 JP 3695864 B2 JP3695864 B2 JP 3695864B2 JP 28375496 A JP28375496 A JP 28375496A JP 28375496 A JP28375496 A JP 28375496A JP 3695864 B2 JP3695864 B2 JP 3695864B2
Authority
JP
Japan
Prior art keywords
cadmium
negative electrode
alloy plating
nickel
plating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28375496A
Other languages
Japanese (ja)
Other versions
JPH10125351A (en
Inventor
義之 藤元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP28375496A priority Critical patent/JP3695864B2/en
Publication of JPH10125351A publication Critical patent/JPH10125351A/en
Application granted granted Critical
Publication of JP3695864B2 publication Critical patent/JP3695864B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ペースト式カドミウム負極を用いた巻回型接触集電方式のニッケル−カドミウム蓄電池に関する。
【0002】
【従来の技術】
ニッケル−カドミウム蓄電池に用いる負極としては、従来では焼結式負極板が使用されていたが、今日では焼結式に比べて製造工程が簡単であり、高エネルギー密度の得られるペースト式負極板が主流となっている。しかし、ペースト式負極板は、焼結式に比較し電極の電子伝導性が劣るため、酸素ガスの吸収性能が悪い。また、ペースト式負極板は、焼結式に比較し活物質を支持する力が弱いため、充放電時に電解液に溶出したカドミウム中間体がセパレータに移動するいわゆるマイグレーション現象を生じ易く、このマイグレーションが内部短絡の原因となるという課題を有している。
【0003】
このため、上記課題を解消する手段として、特開昭64−12461号公報では、負極活物質層の表面に炭素粉末とフッ素樹脂粉末及び糊料とからなる導電層を形成する技術が提案されている。この技術によると、負極表面の導電性と酸素ガスの透過性が向上するので、負極の酸素ガス吸収能力が高まるとされる。他方、特開平6−223823号公報では、負極活物質層の表面にカドミウムとインジウムからなる合金メッキ層を形成する技術が提案されており、この技術によると、カドミウムのマイグレーションを抑制でき、マイグレーションに起因する内部短絡が防止できるとされる。
【0004】
ところで、巻回型のニッケル−カドミウム蓄電池は、カドミウム負極板とニッケル正極板とをセパレータを介して巻回し渦巻電極体と成し、この渦巻電極体と電解液を電池外装缶に挿入する方法により電池が構成されるが、この種の電池の集電方式には、次の2つの方式がある。
(1) 集電タブ方式
正負電極板にそれぞれ正負集電タブを付設し、これらの正負電極板をセパレータを介して、セパレータが最外周に位置し電極板を完全に覆うように巻回し、巻回終端近傍でセパレータを巻取体にテープ止め又は熱溶着して渦巻電極体と成す。この渦巻電極体を、前記正負集電タブをそれぞれの外部電極端子に溶接等した状態で、電池外装缶内に収納する方式。
(2) 外周接触集電方式
カドミウム負極板と、正極集電タブの付設されたニッケル正極板とを、セパレータを介して、カドミウム負極板が最外周に位置するように巻回して渦巻電極体と成し、正極集電タブを正極外部端子に溶接等すると共に、カドミウム負極の最外周外側面を負極外部端子を兼ねる電池外装缶の内周面に接触させた状態で、前記渦巻電極体を負極外部端子を兼ねる電池外装缶に収納する方式。
【0005】
上記外周接触集電方式を採用した場合、渦巻電極体の最外周電極面をセパレータで覆う必要がなく、また負極板に集電タブを取り付ける工程や負極外部端子を兼ねる電池外装缶に集電タブを溶接する工程が不要となる。したがって、外周接触集電方式では、集電タブ方式に比較し、電池製造工程の簡素化が図れるとともに、有効発電面積(電極板の面積)を大きくできるという長所がある一方、電気的接続が不安定であり、接触抵抗等により集電効率の低下を来すという本質的課題を有している。
【0006】
特に、負極表面に撥水成分や糊料を含む導電層を配した前記特開昭64−12461号公報の技術に外周接触集電方式を適用した場合、これらの成分が接触抵抗を増大させるように作用するとともに、充放電サイクルの進行にともなう糊料の膨潤等により、集電効率が顕著に低下するという問題がある。また、負極表面に合金メッキ層を配した前記特開平6−223823号公報の技術に外周接触集電方式を適用した場合においては、集電効率の低下が少ないものの、この技術は未だマイグレーションの抑制および酸素ガス吸収性能の改善程度が十分でない。
よって、更なる改良が望まれている。
【0007】
【発明が解決しようとする課題】
本発明は、上記に鑑みなされたものであり、外周接触集電方式のニッケル−カドミウム蓄電池において、カドミウムのマイグレーションを一層効果的に抑制でき、充放電の繰り返しによっても集電効率等の低下のない、高容量かつ長寿命な電池を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者は、上記課題を解決するために鋭意研究した結果、前記両技術(特開平6−223823号公報および特開昭64−12461号公報の技術)を好適に組み合わせ、かつこれに新たな要素を付加することにより、電池生産性の向上、高容量化、集電効率の向上等を図れることを見いだし、下記構成の本発明を完成させた。
【0009】
請求項1記載の発明は、カドミウム負極とニッケル正極とをセパレータを介しカドミウム負極が最外周に位置するように巻回してなる渦巻電極体が、前記最外周の外側面が負極外部端子を兼ねる電池外装缶の内周面に接触した状態で電池外装缶内に収納されてなる外周接触集電方式のニッケル−カドミウム蓄電池において、前記カドミウム負極として、導電芯体の両面に塗着された両負極活物質層の表面に、カドミウムとインジウムとを含む合金メッキ層が形成され、前記合金メッキ層の表面には、前記電池外装缶の内周面に接触する最外周外側面を除き、導電性粉末と撥水性粉末と糊料とを含む導電層が形成された構造のカドミウム負極を用い、前記導電層が形成されていない前記最外周外側面の合金メッキ層を集電部として前記電池外装缶の内周面に直接接触させたことを特徴とする。
【0010】
この構成であると、活物質層の表面に形成された合金メッキ層が、マイグレーションの原因となる可溶性中間体の電解液中への拡散を抑制する。また、この合金メッキ層の上に形成された導電性層が、負極の酸素ガス吸収性能を向上するように機能する。より具体的には、導電層に含まれる導電性粉末が、負極表面のカドミウム活物質の優先充電に寄与し、撥水性粉末が優先充電されたカドミウム活物質と酸素ガス(正極で発生)との接触を容易にするように作用する。したがって、負極の酸素ガスの吸収性能が向上する。しかも、この導電層は糊料によって合金メッキ層に強力に固着されているので、活物質であるカドミウムの可溶性中間体の電解液への拡散を抑制する効果もある。このように、合金メッキ層と導電層が作用する結果、マイグレーションの抑制効果と酸素ガス吸収能力が一層高まる。
【0011】
ここで、合金メッキ層および導電層の上述の作用からして、導電層は負極の最表面に位置させる必要があるが、導電層を負極の最表面に位置させた場合、導電層の成分である撥水性粉末は接触抵抗を増大するように作用し、また導電層の成分である糊料が親水性糊料のような電解液により膨潤する性質を持つ場合には、一層接触抵抗を増大するように作用する。したがって、充放電の繰り返しにより次第に接触抵抗が大きくなる。
【0012】
このため、本発明では、渦巻電極体の最外周に位置するカドミウム負極の外側面には、導電層を形成しないようにして合金メッキ層を負極表面に露出させる構造にしてある。そして、この合金メッキ層の露出面を集電部とし、この集電部が電池外装缶の内周面には接触するように構成する一方、正極と対向する負極面には全て導電層を形成した構造にしてある。このような構成であると、外周接触集電方式の前記短所を改善できるので、外周接触集電方式の長所を活用し得た低コスト且つ高容量、長寿命のニッケル−カドミウム蓄電池が得られる。
【0013】
請求項2記載の発明は、請求項1記載の発明の構成において、前記カドミウム負極の最外周外側面の巻回方向長を、前記外装缶の内側面の周長と略同等としたことを特徴とする。この構成であると、外装缶の内側面と接触する負極表面には導電層が存在せず、合金メッキ層が電池外装缶に接触することになるので、接触抵抗をより小さくできる。
【0014】
請求項3記載の発明は、導電芯体の両面に負極活物質層を形成した後、両負極活物質層の表面にカドミウムとインジウムとを含む合金メッキ層を形成して極板を構成し、この合金メッキ層の形成された極板の一方面の長手方向端部近傍を電池外装缶の内周面に接触させる集電部とし、当該集電部を除き、前記合金メッキ層の表面に導電性粉末と撥水性粉末と糊料とを含む導電層を形成するカドミウム負極作製工程と、前記集電部が、最外周の外側に位置するように前記カドミウム負極とニッケル正極とをセパレータを介して渦巻き状に巻回して、渦巻電極体と成す電極巻回工程と、前記集電部が、電池外装缶内周面に直接接触する状態で、前記渦巻電極体を電池外装缶内に収納する渦巻電極体収納工程と、を備えることを特徴とする。
【0015】
この製造方法によると、前記請求項1記載のニッケル−カドミウム蓄電池が確実に製造できる。
【0016】
また請求項4記載の発明は、請求項3記載の発明の構成において、前記集電部の巻回方向の長さが、前記電池外装缶の内側面の周長と略同等となるように構成されていることを特徴とする。
この製造方法によると、前記請求項2記載のニッケル−カドミウム蓄電池が確実に製造できる。
【0017】
【発明の実施の形態】
本発明の実施の形態を、図1〜図4に基づいて、以下に説明する。
図1は渦巻き状に巻回する前のカドミウム負極における一方の面(巻回後は外側に位置する面)の正面図、図2は図1のA−A線矢視断面図、図3は渦巻き状に巻回する前のカドミウム負極における他方の面(巻回後は内側に位置する面)の正面図、図4はカドミウム負極をニッケル正極及びセパレータと共に渦巻き状に巻回した渦巻電極体の斜視図である。なお、図2は作図上の都合から、厚み方向を拡大して描いてある。
【0018】
図2に示すように、カドミウム負極10は、導電芯体1の両面にカドミウム活物質層2a・2bが形成され、このカドミウム活物質層の両面には、カドミウムとインジウムからなる合金メッキ層3a、3bがそれぞれ形成されている。更に、合金メッキ層3bの全面には、導電性粉末、撥水性粉末および糊料からなる導電層4bが形成されている(図3参照)。他方、合金メッキ層3aの表面には、図1、図2に示すように、負極の巻取り開始端部5から長さt1 の部分だけに導電層が形成され、残りの部分は合金メッキ層3aが露出する構造とし、この合金メッキ層3aの露出部分を集電部6としてある。
【0019】
このような構造のカドミウム負極10を、導電層4b面にセパレータ12と、ニッケル正極11とを重ね合わせ、前記開始端部5を巻回始端とし、かつニッケル正極11を内側にして巻回し、図4に示すような渦巻電極体13を作製する。
この渦巻電極体13は、合金メッキ層の露出した面(集電部6)が、電極体の最外周の外側(外側面14)に位置する一方、ニッケル正極11と対向するカドミウム負極の表面には、全て導電層4aが形成された構造をしている。よって、この渦巻電極体13を、負極外部端子を兼ねる電池外装缶(図示せず)内に収納した場合、渦巻電極体13は外側に向かって広がろうとするので、前記集電部6が外装缶の内周面に接触し、カドミウム負極と負極外部端子を兼ねる電池外装缶とが電気的に接続される。
【0020】
上記構造のニッケル−カドミウム蓄電池は、以下のようにして作製される。カドミウム活物質と、有機繊維、水和防止剤等を含む糊料溶液とを混練して活物質ペーストを調製し、この活物質ペーストを導電芯体1の両面に塗着、乾燥して、導電芯体の両面にカドミウム活物質層2a・2bを形成した後、活物質層の形成された導電芯体に対し、カドミウムとインジウムを含む合金被膜を施し、合金メッキ層3a、3bを形成する。
【0021】
次いで、糊料を含む水溶液に導電性粉末と撥水性粉末とを加え、混合して導電スラリーと成し、このスラリーを前記合金メッキ層3a・3bの表面にコーティングする。この際、これら合金メッキ層3a・3bのうち合金メッキ層3aの表面には、負極の巻取り開始端部5から長さt1 の部分だけにスラリーをコーティングし、他方、合金メッキ層3bには、その全面にスラリーをコーティングする。この後、コーティングした導電スラリーを乾燥することにより、本発明にかかるカドミウム負極板10が作製できる。
【0022】
上記カドミウム負極板10と公知のニッケル正極11とをセパレータ12を介して、カドミウム負極板10の合金メッキ層露出部分(集電部6)が渦巻電極体の最外周外側面に位置するように巻回し、渦巻電極体13を作製する。この渦巻電極体13を外装缶の開口部(図示せず)から挿入し、電解液を注入した後、外装缶の開口部を封口蓋で封口する。これにより、本発明にかかるニッケル−カドミウム蓄電池(密閉型)が作製できる。
【0023】
ここで、上記における導電性粉末としては、例えば炭素粉末、黒鉛粉末、アセチレンブラック、ケッチェンブラックなどが使用できる。また、撥水性粉末としては、フッ素樹脂、ポリエチレン、ケイ素樹脂などが使用でき、好ましくは撥水性と分散性の点でフッ素樹脂を使用するのがよい。更に、糊料としては、例えばポリビニルピロリドン、ポリビニルアルコール、カルボキシメチルセルロース、メチルセルロース、ヒロドキシプロピルセルロースなどの親水性糊料が好適に使用できるが、ポリ酢酸ビニル、ポリエステル樹脂などの疎水性樹脂を使用してもよい。また、合金被膜を施す方法としては、電気メッキ法、無電解メッキ法などが使用でき、例えば電気メッキ法により容易に好適な合金被膜を形成できる。
【0024】
【実施例】
本発明の内容を本発明例および比較例に基づいて更に具体的に説明する。なお、電池の構造は上記実施の形態に示す構造と同一である。
(本発明例)
酸化カドミウム及び金属カドミウムから成る負極活物質と、ナイロン繊維、リン酸ナトリウム(水和防止剤)を含む糊料溶液とを混練して活物質ペーストとし、これをパンチングメタルよりなる導電芯体(全長t2 =95mm)の両面に塗着し、乾燥した。この活物質層の形成された芯体をカソードとし、Cd2+1.0gdm-3、In2+20gdm-3、H2NSO3H50gdm-3、膠0.2gdm-3を含む電解メッキ浴に浸漬し、300mAdm-2 の電流で陰電解メッキを行なった。この操作により、芯体活物質層表面にカドミウムとインジウムからなる合金メッキ層(厚み約2μm)が形成される。
【0025】
次に、導電性粉末としての炭素粉末10重量部と、親水性糊料としてのポリビニルピロリドン10重量部と、撥水性粉末としてのテフロンディスパージョン30−J(三井デュポンフロロケミカル(株)製)を10重量%の割合で含む水溶液100重量部とを混合して導電スラリーと成し、この導電スラリーを前記合金メッキ層の一方面の全面にコーティングするとともに、他方面には巻取り開始端部5(図1参照)から長さ65mm(t1 )の位置までコーティング(厚み約10μm)した。この後、この極板を乾燥し、本発明にかかるカドミウム負極板と成した。このカドミウム負極板の全表面のうち、導電層を形成しなかった部分(合金メッキ層が露出した部分)を集電部とする。
【0026】
集電部が最外周の外側面に位置するように、上記カドミウム負極板(全長約95mm)と、正極集電タブを付設した公知のニッケル正極板(全長約65mm)との間にセパレータ(全長約160mm)を介挿し、前記正負極板の巻回始端を揃えて巻回して渦巻電極体を作成した。正極集電タブを正極外部端子を兼ねる電池キャップ(図示せず)に電気的に接続するとともに、前記集電部が電池外装缶の内側面に接触するようにして、前記渦巻電極体を電池外装缶内に挿入した。この後電解液を注入し電池外装缶の開口部を封口した。このようにして、公称容量900mAHの本発明例にかかるニッケル−カドミウム蓄電池を作製した。
【0027】
〔比較例1〕
合金メッキ層を全く形成することなく、カドミウム活物質層の両面に直接、前記導電スラリーをコーティングしたこと以外は、上記発明例と同様にして、比較例1にかかるニッケル−カドミウム蓄電池を作製した。この比較例1のカドミウム負極板は、合金メッキ層を全く有せず、また最表層面が導電層で完全に覆われている点で、本発明例と異なる。この比較例1電池では、導電層が集電部となるとともに、導電層がニッケル正極の対向面となる。
【0028】
〔比較例2〕
前記導電スラリーを全くコーティングしなかったこと以外は、上記発明例と同様にして、比較例2にかかるニッケル−カドミウム蓄電池を作製した。この比較例2のカドミウム負極板は、導電層を有せず、最表層面(露出面)が全て合金メッキ層である点で、本発明例と異なる。この比較例2電池では、合金メッキ層が集電部となるとともに、合金メッキ層がニッケル正極の対向面となる。
【0029】
〔比較例3〕
前記導電スラリーを両合金メッキ層の全面にコーティングしたこと以外は、上記発明例と同様にして、比較例3にかかるニッケル−カドミウム蓄電池を作製した。この比較例3のカドミウム負極板は、最表層の全表面が導電層であり、合金メッキ層が露出した部分がない点で、本発明例と異なる。この比較例3電池では、導電層が集電部となるとともに、導電層がニッケル正極の対向面となる。
【0030】
〔実験〕
本発明例電池と比較例1〜3の電池について、充放電サイクルを繰り返した時の電池容量と内部抵抗との推移を調べた。この結果をそれぞれ図5、図6に示す。尚、充放電サイクルは、1Cの電流で満充電状態となるまで充電した後、1時間休止し、1Cの電流で放電終止電圧1.0Vまで放電し、さらに1時間休止するというサイクルを繰り返す条件で行った。
【0031】
図5から明らかなように、合金メッキ層を電池外装缶内周面に接触する面(集電部)とした本発明例および比較例2では、導電層を集電部とした比較例1および比較例3に比べ、サイクルの進行に伴う内部抵抗の上昇が小さかった。そして、合金メッキ層を有さない比較例1の内部抵抗が特に大きかった。このことから、少なくとも集電効率の面からは、外装缶に接触する面を合金メッキ層とするのが良いことが判る。
【0032】
他方、図6において、各々のサイクル特性は良いもの順に、本発明例>比較例3>比較例2>比較例1であった。より具体的には、カドミウム負極表面に導電層と合金メッキ層の双方を形成し、かつ集電部を合金メッキ層とした本発明例は特にサイクル特性に優れていた。また、導電層と合金メッキ層の双方を形成したが、集電部を導電層とした比較例3は、本発明例よりやや劣るサイクル特性であった。更に、導電層のみを形成した比較例1及び合金メッキ層のみを形成した比較例2は、本発明例および比較例3に比べてサイクル特性が劣っていた。
【0033】
図5、6における導電層を有さない比較例2の結果から、合金メッキ層を集電部とすれば接触抵抗の上昇を抑制できるものの、この構成のみでは十分なサイクル特性を得られないことが裏付けられた。また、図5、6の結果により、カドミウム活物質層の表面に合金メッキ層と導電層とを順次形成し、かつ集電部のみを合金メッキ層が露出した面とするカドミウム負極構造(本発明例)が、最もサイクル特性に優れることが実証された。
【0034】
【発明の効果】
本発明にかかるカドミウム負極では、導電芯体の上にカドミウム活物質、合金メッキ層、導電層の3つの層を順次形成したので、合金メッキ層及び導電層が共働してカドミウムのマイグレーションを抑制し、また主に導電層が酸素ガスの吸収性を高めるので、負極の酸素ガス吸収性能が顕著に向上する。
【0035】
更に、本発明にかかるカドミウム負極では、電子導電性に優れる合金メッキ層の一部を露出させ、この露出面を集電部として負極外部端子を兼ねる電池外装缶の内周面に接触させる構造にした。これにより、製造工程の簡略化や高容量化を図り易いという外周接触集電方式の長所が活用でき、かつ外周接触集電方式の短所であるサイクルの進行による集電効率の低下が抑制できる。
【0036】
以上から、本発明によれば、高性能かつ長寿命のニッケル−カドミウム蓄電池が提供できる。
【図面の簡単な説明】
【図1】渦巻き状に巻回する前のカドミウム負極板における一方の面(巻回後は外側に位置する面)の正面図である。
【図2】図1のA−A線矢視断面図である。
【図3】渦巻き状に巻回する前のカドミウム負極における他方の面(巻回後は内側に位置する面)の正面図である。
【図4】負極と正極とをセパレータを介して渦巻き状に巻回した渦巻電極体の斜視図である。
【図5】本発明例と比較例におけるサイクル回数と内部抵抗の関係を示すグラフである。
【図6】本発明例と比較例におけるサイクル特性を示すグラフである。
【符号の説明】
1 :導電芯体
2a:カドミウム活物質層
2b:カドミウム活物質層
3a:合金メッキ層
3b:合金メッキ層
4a:導電層
4b:導電層
5 :巻取り開始端部
6 :集電部
10:カドミウム負極
11:ニッケル正極
12:セパレータ
13:渦巻電極体
14:渦巻電極体の最外周外側面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wound-type contact current collecting type nickel-cadmium storage battery using a paste type cadmium negative electrode.
[0002]
[Prior art]
As a negative electrode used for a nickel-cadmium storage battery, a sintered negative electrode plate has been conventionally used. However, a paste type negative electrode plate that has a simpler manufacturing process than that of a sintered type and has a high energy density is now available. It has become mainstream. However, since the paste-type negative electrode plate is inferior in the electron conductivity of the electrode as compared with the sintered type, the oxygen gas absorption performance is poor. In addition, since the paste type negative electrode plate has a weaker support force for the active material than the sintered type, the cadmium intermediate eluted in the electrolyte during charge / discharge tends to move to the separator, and this migration phenomenon is likely to occur. It has the problem of causing internal short circuits.
[0003]
For this reason, as a means for solving the above problem, Japanese Patent Application Laid-Open No. 64-12461 proposes a technique of forming a conductive layer made of carbon powder, fluororesin powder and paste on the surface of the negative electrode active material layer. Yes. According to this technique, the conductivity of the negative electrode surface and the oxygen gas permeability are improved, so that the oxygen gas absorption capacity of the negative electrode is enhanced. On the other hand, Japanese Patent Application Laid-Open No. 6-223823 proposes a technique of forming an alloy plating layer made of cadmium and indium on the surface of the negative electrode active material layer. According to this technique, migration of cadmium can be suppressed and migration can be prevented. It is said that the internal short circuit caused can be prevented.
[0004]
By the way, a wound type nickel-cadmium storage battery is formed by winding a cadmium negative electrode plate and a nickel positive electrode plate through a separator to form a spiral electrode body, and inserting the spiral electrode body and the electrolyte into a battery outer can. Although a battery is configured, there are the following two methods for collecting current of this type of battery.
(1) Current collecting tab method Positive and negative current collecting tabs are attached to the positive and negative electrode plates, and these positive and negative electrode plates are wound with separators on the outermost periphery so that the separator is positioned on the outermost periphery and completely covers the electrode plates. A separator is taped or thermally welded to the winding body in the vicinity of the turn end to form a spiral electrode body. A method in which the spiral electrode body is housed in a battery outer can with the positive and negative current collecting tabs welded to respective external electrode terminals.
(2) An outer peripheral contact current collecting system cadmium negative electrode plate and a nickel positive electrode plate provided with a positive electrode current collecting tab are wound through a separator so that the cadmium negative electrode plate is positioned at the outermost periphery, The positive electrode current collecting tab is welded to the positive electrode external terminal, and the spiral electrode body is connected to the negative electrode with the outermost outer peripheral surface of the cadmium negative electrode being in contact with the inner peripheral surface of the battery outer can also serving as the negative electrode external terminal. A method of storing in a battery outer can that also serves as an external terminal.
[0005]
When the outer peripheral contact current collecting method is adopted, it is not necessary to cover the outermost peripheral electrode surface of the spiral electrode body with a separator, and the current collecting tab is attached to the battery outer can that also serves as a negative electrode external terminal or a step of attaching the current collecting tab to the negative electrode plate The process of welding is unnecessary. Therefore, the outer peripheral contact current collection method has advantages in that the battery manufacturing process can be simplified and the effective power generation area (area of the electrode plate) can be increased as compared with the current collection tab method, but electrical connection is not good. It has an essential problem of being stable and causing a decrease in current collection efficiency due to contact resistance or the like.
[0006]
In particular, when the outer peripheral contact current collecting system is applied to the technique of the above-mentioned Japanese Patent Application Laid-Open No. 64-12461 in which a conductive layer containing a water repellent component and a paste is disposed on the negative electrode surface, these components increase the contact resistance. In addition, there is a problem that the current collection efficiency is significantly reduced due to swelling of the paste as the charge / discharge cycle progresses. In addition, when the outer peripheral contact current collection method is applied to the technique of Japanese Patent Laid-Open No. Hei 6-223823 in which an alloy plating layer is provided on the negative electrode surface, although the reduction in current collection efficiency is small, this technique still suppresses migration. And the improvement degree of oxygen gas absorption performance is not enough.
Therefore, further improvement is desired.
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above, and in a nickel-cadmium storage battery of an outer peripheral contact current collection system, migration of cadmium can be more effectively suppressed, and current collection efficiency and the like are not reduced by repeated charge and discharge. An object is to provide a battery having a high capacity and a long life.
[0008]
[Means for Solving the Problems]
As a result of earnest research to solve the above problems, the present inventor suitably combined the above-mentioned technologies (the technologies of JP-A-6-223823 and JP-A-64-12461), and a new one was added to this. It has been found that by adding elements, battery productivity can be improved, capacity can be increased, current collection efficiency can be improved, and the present invention having the following configuration has been completed.
[0009]
The invention according to claim 1 is a battery in which a spiral electrode body formed by winding a cadmium negative electrode and a nickel positive electrode with a separator interposed therebetween so that the cadmium negative electrode is positioned on the outermost periphery, the outermost surface of the outermost periphery also serving as a negative electrode external terminal nickel housed periphery contacted collector system comprising a collector Ikegaiso the can in contact with the inner peripheral surface of the outer can - in cadmium storage batteries, as the cadmium negative electrode was coated on both surfaces of the conductive core Ryomakekyoku An alloy plating layer containing cadmium and indium is formed on the surface of the active material layer, and the surface of the alloy plating layer is a conductive powder except for the outermost outer peripheral surface that contacts the inner peripheral surface of the battery outer can. and using a cadmium negative electrode of the structure where the conductive layer is formed containing a water repellent powder and paste, the battery outer alloy plating layer of the outermost outer side the conductive layer is not formed as a collector portion Characterized in that direct contact with the inner peripheral surface of the.
[0010]
With this configuration, the alloy plating layer formed on the surface of the active material layer suppresses diffusion of the soluble intermediate that causes migration into the electrolytic solution. The conductive layer formed on the alloy plating layer functions to improve the oxygen gas absorption performance of the negative electrode. More specifically, the conductive powder contained in the conductive layer contributes to preferential charging of the cadmium active material on the negative electrode surface, and the water-repellent powder is preferentially charged with the cadmium active material and oxygen gas (generated at the positive electrode). Acts to facilitate contact. Therefore, the oxygen gas absorption performance of the negative electrode is improved. In addition, since the conductive layer is strongly fixed to the alloy plating layer by the paste, there is also an effect of suppressing diffusion of the soluble intermediate of cadmium, which is the active material, into the electrolytic solution. Thus, as a result of the action of the alloy plating layer and the conductive layer, the effect of suppressing migration and the ability to absorb oxygen gas are further enhanced.
[0011]
Here, from the above-described actions of the alloy plating layer and the conductive layer, the conductive layer needs to be positioned on the outermost surface of the negative electrode. However, when the conductive layer is positioned on the outermost surface of the negative electrode, A certain water-repellent powder acts to increase the contact resistance, and further increases the contact resistance when the paste as a component of the conductive layer has a property of swelling by an electrolyte solution such as a hydrophilic paste. Acts as follows. Therefore, the contact resistance gradually increases due to repeated charging and discharging.
[0012]
For this reason, in this invention, it is set as the structure which exposes an alloy plating layer on the negative electrode surface so that a conductive layer may not be formed in the outer surface of the cadmium negative electrode located in the outermost periphery of a spiral electrode body. The exposed surface of the alloy plating layer is used as a current collector, and the current collector is configured to be in contact with the inner peripheral surface of the battery outer can. On the other hand, a conductive layer is formed on the negative electrode facing the positive electrode. It has a structure. With such a configuration, the disadvantages of the outer peripheral contact current collecting system can be improved, so that a low-cost, high capacity, long-life nickel-cadmium storage battery that can utilize the advantages of the outer peripheral contact current collecting system can be obtained.
[0013]
According to a second aspect of the present invention, in the configuration of the first aspect of the invention, the winding direction length of the outermost outer peripheral surface of the cadmium negative electrode is substantially equal to the peripheral length of the inner side surface of the outer can. And With this configuration, there is no conductive layer on the negative electrode surface in contact with the inner surface of the outer can, and the alloy plating layer comes into contact with the battery outer can, so that the contact resistance can be further reduced.
[0014]
The invention according to claim 3 is to form an electrode plate by forming a negative electrode active material layer on both surfaces of the conductive core, and then forming an alloy plating layer containing cadmium and indium on the surface of both negative electrode active material layers, the longitudinal end portions near the one surface of the formed plates of the alloy plating layer and current collecting portion for contacting the inner circumferential surface of the battery outer can, except for the current collecting portion, on the front surface of the alloy plating layer A cadmium negative electrode preparation step for forming a conductive layer containing conductive powder, water-repellent powder and paste, and the cadmium negative electrode and nickel positive electrode through a separator so that the current collector is located outside the outermost periphery. The spirally wound electrode body is housed in the battery outer can in a state in which the spirally wound electrode is wound into an spirally wound electrode body and the current collector is in direct contact with the inner peripheral surface of the battery outer can. a spiral electrode body accommodating step, characterized in that it comprises a.
[0015]
According to this manufacturing method, the nickel-cadmium storage battery according to claim 1 can be manufactured reliably.
[0016]
According to a fourth aspect of the present invention, in the configuration of the third aspect of the present invention, the length in the winding direction of the current collector is substantially equal to the circumferential length of the inner surface of the battery outer can. It is characterized by being.
According to this manufacturing method, the nickel-cadmium storage battery according to claim 2 can be reliably manufactured.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to FIGS.
FIG. 1 is a front view of one surface (surface located outside after winding) of the cadmium negative electrode before being wound in a spiral shape, FIG. 2 is a cross-sectional view taken along line AA in FIG. FIG. 4 is a front view of the other surface of the cadmium negative electrode before winding in a spiral shape (the surface located on the inner side after winding), and FIG. 4 shows a spiral electrode body in which the cadmium negative electrode is spirally wound together with the nickel positive electrode and the separator. It is a perspective view. FIG. 2 is drawn with the thickness direction enlarged for convenience of drawing.
[0018]
As shown in FIG. 2, the cadmium negative electrode 10 has cadmium active material layers 2a and 2b formed on both surfaces of the conductive core 1, and an alloy plating layer 3a made of cadmium and indium on both surfaces of the cadmium active material layer. 3b is formed. Further, a conductive layer 4b made of conductive powder, water-repellent powder and paste is formed on the entire surface of the alloy plating layer 3b (see FIG. 3). On the other hand, the surface of the alloy plating layer 3a, as shown in FIGS. 1 and 2, a conductive layer is formed only on the portion of the length t 1 from the winding start end portion 5 of the negative electrode, the remainder of the alloy plating The layer 3 a is exposed, and the exposed portion of the alloy plating layer 3 a is used as a current collector 6.
[0019]
The cadmium negative electrode 10 having such a structure is wound with the separator 12 and the nickel positive electrode 11 superimposed on the surface of the conductive layer 4b, with the start end 5 as a winding start end and the nickel positive electrode 11 inside. A spiral electrode body 13 as shown in FIG.
The spiral electrode body 13 has an exposed surface of the alloy plating layer (current collector 6) located on the outermost outer side (outer surface 14) of the electrode body, and on the surface of the cadmium negative electrode facing the nickel positive electrode 11. All have a structure in which the conductive layer 4a is formed. Therefore, when this spiral electrode body 13 is housed in a battery outer can (not shown) that also serves as a negative electrode external terminal, the spiral electrode body 13 tends to spread outward, so that the current collector 6 is disposed on the outer surface. The cadmium negative electrode and the battery outer can that also serves as the negative electrode external terminal are electrically connected to the inner peripheral surface of the can.
[0020]
The nickel-cadmium storage battery having the above structure is manufactured as follows. An active material paste is prepared by kneading a cadmium active material and a paste solution containing an organic fiber, an antihydration agent, etc., and this active material paste is applied to both sides of the conductive core 1 and dried. After the cadmium active material layers 2a and 2b are formed on both surfaces of the core, an alloy film containing cadmium and indium is applied to the conductive core on which the active material layer is formed to form alloy plating layers 3a and 3b.
[0021]
Next, a conductive powder and a water-repellent powder are added to an aqueous solution containing a paste, mixed to form a conductive slurry, and this slurry is coated on the surface of the alloy plating layers 3a and 3b. At this time, the surface of the alloy plating layer 3a of these alloy plating layers 3a and 3b is coated with slurry only on the portion of the length t 1 from the winding start end portion 5 of the negative electrode, while the alloy plating layer 3b is coated with the slurry. Coats the slurry on its entire surface. Then, the cadmium negative electrode plate 10 concerning this invention can be produced by drying the coated electrically conductive slurry.
[0022]
Winding the cadmium negative electrode plate 10 and the known nickel positive electrode 11 through the separator 12 so that the exposed portion of the alloy plating layer (current collector 6) of the cadmium negative electrode plate 10 is located on the outermost outer peripheral surface of the spiral electrode body. The spiral electrode body 13 is produced by turning. The spiral electrode body 13 is inserted from an opening (not shown) of the outer can, and after the electrolyte is injected, the opening of the outer can is sealed with a sealing lid. Thereby, the nickel-cadmium storage battery (sealed type) concerning this invention is producible.
[0023]
Here, as the conductive powder in the above, for example, carbon powder, graphite powder, acetylene black, ketjen black and the like can be used. Further, as the water repellent powder, fluororesin, polyethylene, silicon resin and the like can be used, and it is preferable to use a fluororesin from the viewpoint of water repellency and dispersibility. Furthermore, as the paste, for example , a hydrophilic paste such as polyvinyl pyrrolidone, polyvinyl alcohol, carboxymethyl cellulose, methyl cellulose, and hydroxypropyl cellulose can be suitably used, but a hydrophobic resin such as polyvinyl acetate and polyester resin is used. May be. Moreover, as a method of applying the alloy film, an electroplating method, an electroless plating method, or the like can be used. For example, a suitable alloy film can be easily formed by an electroplating method.
[0024]
【Example】
The contents of the present invention will be described more specifically based on the present invention examples and comparative examples. Note that the structure of the battery is the same as that shown in the above embodiment.
(Example of the present invention)
A negative electrode active material composed of cadmium oxide and metal cadmium, and a paste material solution containing nylon fiber and sodium phosphate (an antihydration agent) are kneaded to form an active material paste. t 2 = 95 mm) and dried. An electroplating bath containing Cd 2+ 1.0 gdm -3 , In 2+ 20 gdm -3 , H 2 NSO 3 H50 gdm -3 , and glue 0.2 gdm -3 with the core having the active material layer formed thereon as a cathode. It was immersed and subjected to negative electroplating with a current of 300 mAdm −2 . By this operation, an alloy plating layer (thickness: about 2 μm) made of cadmium and indium is formed on the surface of the core active material layer.
[0025]
Next, 10 parts by weight of carbon powder as a conductive powder, 10 parts by weight of polyvinylpyrrolidone as a hydrophilic paste, and Teflon dispersion 30-J as a water-repellent powder (manufactured by Mitsui DuPont Fluorochemical Co., Ltd.) 100 parts by weight of an aqueous solution containing 10% by weight is mixed to form a conductive slurry. The conductive slurry is coated on the entire surface of one side of the alloy plating layer, and the winding start end 5 is formed on the other side. It was coated (thickness of about 10 [mu] m) to the position of the length (see FIG. 1) 65mm (t 1). Thereafter, this electrode plate was dried to form a cadmium negative electrode plate according to the present invention. Of the entire surface of the cadmium negative electrode plate, a portion where the conductive layer is not formed (a portion where the alloy plating layer is exposed) is defined as a current collecting portion.
[0026]
Separator (full length approximately 65 mm) between the cadmium negative electrode plate (total length approximately 95 mm) and a known nickel positive electrode plate (total length approximately 65 mm) with a positive electrode current collecting tab so that the current collector is located on the outermost outermost surface. About 160 mm) was inserted and the winding start ends of the positive and negative electrode plates were aligned and wound to form a spiral electrode body. The positive electrode current collecting tab is electrically connected to a battery cap (not shown) that also serves as a positive electrode external terminal, and the current collector is in contact with the inner surface of the battery outer can so that the spiral electrode body is attached to the battery outer case. Inserted into the can. Thereafter, an electrolytic solution was injected to seal the opening of the battery outer can. In this manner, a nickel-cadmium storage battery according to an example of the present invention having a nominal capacity of 900 mAH was produced.
[0027]
[Comparative Example 1]
A nickel-cadmium storage battery according to Comparative Example 1 was produced in the same manner as in the above-described invention except that the conductive slurry was directly coated on both sides of the cadmium active material layer without forming any alloy plating layer. The cadmium negative electrode plate of Comparative Example 1 differs from the inventive example in that it does not have any alloy plating layer and the outermost surface is completely covered with a conductive layer. In this comparative example 1 battery, the conductive layer serves as a current collector, and the conductive layer serves as an opposing surface of the nickel positive electrode.
[0028]
[Comparative Example 2]
A nickel-cadmium storage battery according to Comparative Example 2 was produced in the same manner as in the above invention example except that the conductive slurry was not coated at all. The cadmium negative electrode plate of Comparative Example 2 is different from the example of the present invention in that it does not have a conductive layer and the outermost layer surface (exposed surface) is an alloy plating layer. In the battery of Comparative Example 2, the alloy plating layer serves as a current collector, and the alloy plating layer serves as a surface facing the nickel positive electrode.
[0029]
[Comparative Example 3]
A nickel-cadmium storage battery according to Comparative Example 3 was fabricated in the same manner as in the above invention example, except that the conductive slurry was coated on the entire surface of both alloy plating layers. The cadmium negative electrode plate of Comparative Example 3 differs from the example of the present invention in that the entire surface of the outermost layer is a conductive layer and there is no portion where the alloy plating layer is exposed. In this comparative example 3 battery, the conductive layer serves as a current collector, and the conductive layer serves as an opposing surface of the nickel positive electrode.
[0030]
[Experiment]
Regarding the batteries of the present invention and the batteries of Comparative Examples 1 to 3, the transition of the battery capacity and the internal resistance when the charge / discharge cycle was repeated was examined. The results are shown in FIGS. 5 and 6, respectively. The charge / discharge cycle is a condition that repeats the cycle of charging to a fully charged state with a current of 1 C, resting for 1 hour, discharging to a final discharge voltage of 1.0 V with a current of 1 C, and then resting for another hour. I went there.
[0031]
As is clear from FIG. 5, in the present invention example and comparative example 2 in which the alloy plating layer is a surface (current collection part) that contacts the inner peripheral surface of the battery outer can, the comparative example 1 in which the conductive layer is the current collection part and Compared with Comparative Example 3, the increase in internal resistance accompanying the progress of the cycle was small. And the internal resistance of the comparative example 1 which does not have an alloy plating layer was especially large. From this, it can be seen that at least in terms of current collection efficiency, the surface in contact with the outer can can be an alloy plating layer.
[0032]
On the other hand, in FIG. 6, the present invention example> comparative example 3> comparative example 2> comparative example 1 in order of good cycle characteristics. More specifically, the present invention example in which both the conductive layer and the alloy plating layer were formed on the surface of the cadmium negative electrode and the current collecting portion was the alloy plating layer was particularly excellent in cycle characteristics. Moreover, although both the conductive layer and the alloy plating layer were formed, the comparative example 3 which used the current collection part as the conductive layer was a cycle characteristic a little inferior to the example of this invention. Further, Comparative Example 1 in which only the conductive layer was formed and Comparative Example 2 in which only the alloy plating layer was formed had inferior cycle characteristics as compared with the present invention example and Comparative Example 3.
[0033]
From the results of Comparative Example 2 having no conductive layer in FIGS. 5 and 6, it is possible to suppress an increase in contact resistance if the alloy plating layer is used as a current collector, but sufficient cycle characteristics cannot be obtained only with this configuration. Was supported. 5 and 6, a cadmium negative electrode structure in which an alloy plating layer and a conductive layer are sequentially formed on the surface of the cadmium active material layer and only the current collector is exposed on the surface of the alloy plating layer (the present invention). Example) proved to have the best cycle characteristics.
[0034]
【The invention's effect】
In the cadmium negative electrode according to the present invention, since the cadmium active material, the alloy plating layer, and the conductive layer are sequentially formed on the conductive core, the alloy plating layer and the conductive layer cooperate to suppress cadmium migration. In addition, since the conductive layer mainly increases the absorption of oxygen gas, the oxygen gas absorption performance of the negative electrode is significantly improved.
[0035]
Furthermore, the cadmium negative electrode according to the present invention has a structure in which a part of the alloy plating layer excellent in electronic conductivity is exposed and this exposed surface is used as a current collecting part to be in contact with the inner peripheral surface of the battery outer can serving as the negative electrode external terminal. did. As a result, the advantage of the outer peripheral contact current collecting system that simplifies the manufacturing process and increases the capacity can be utilized, and the decrease in the current collecting efficiency due to the progress of the cycle, which is the disadvantage of the outer peripheral contact current collecting system, can be suppressed.
[0036]
As described above, according to the present invention, a high-performance and long-life nickel-cadmium storage battery can be provided.
[Brief description of the drawings]
FIG. 1 is a front view of one surface (a surface located outside after winding) of a cadmium negative electrode plate before being wound in a spiral shape.
FIG. 2 is a cross-sectional view taken along line AA in FIG.
FIG. 3 is a front view of the other surface (the surface located on the inner side after winding) of the cadmium negative electrode before being spirally wound.
FIG. 4 is a perspective view of a spiral electrode body in which a negative electrode and a positive electrode are spirally wound via a separator.
FIG. 5 is a graph showing the relationship between the number of cycles and the internal resistance in the present invention example and the comparative example.
FIG. 6 is a graph showing cycle characteristics in an example of the present invention and a comparative example.
[Explanation of symbols]
1: Conductive core 2a: Cadmium active material layer 2b: Cadmium active material layer 3a: Alloy plating layer 3b: Alloy plating layer 4a: Conductive layer 4b: Conductive layer 5: Winding start end 6: Current collector 10: Cadmium Negative electrode 11: Nickel positive electrode 12: Separator 13: Spiral electrode body 14: Outermost outer surface of the spiral electrode body

Claims (4)

カドミウム負極とニッケル正極とをセパレータを介しカドミウム負極が最外周に位置するように巻回してなる渦巻電極体が、前記最外周の外側面が負極外部端子を兼ねる電池外装缶の内周面に接触した状態で電池外装缶内に収納されてなる外周接触集電方式のニッケル−カドミウム蓄電池において、
前記カドミウム負極は、導電芯体の両面に塗着された両負極活物質層の表面に、カドミウムとインジウムとを含む合金メッキ層が形成され、
前記合金メッキ層の表面には、前記電池外装缶の内周面に接触する最外周外側面を除き、導電性粉末と撥水性粉末と糊料とを含む導電層が形成され、
前記導電層が形成されていない前記最外周外側面の合金メッキ層と前記電池外装缶の内周面とが直接接触している
ことを特徴とするニッケル−カドミウム蓄電池。
A spiral electrode body formed by winding a cadmium negative electrode and a nickel positive electrode through a separator so that the cadmium negative electrode is positioned on the outermost periphery is in contact with the inner peripheral surface of the battery outer can whose outermost outer surface also serves as a negative electrode external terminal in cadmium storage batteries, - nickel outer peripheral contact collector system is accommodated in a state in electrostatic Ikegaiso the can comprising
In the cadmium negative electrode, an alloy plating layer containing cadmium and indium is formed on the surfaces of both negative electrode active material layers applied to both surfaces of the conductive core,
On the surface of the alloy plating layer, a conductive layer containing a conductive powder, a water-repellent powder, and a paste is formed except for the outermost outer peripheral surface contacting the inner peripheral surface of the battery outer can.
The alloy plating layer on the outermost outer peripheral surface where the conductive layer is not formed is in direct contact with the inner peripheral surface of the battery outer can ,
A nickel-cadmium storage battery characterized by the above.
前記カドミウム負極の最外周外側面の巻回方向長が、前記電池外装缶の内側面の周長と略同等である、請求項1記載のニッケル−カドミウム蓄電池。 The nickel-cadmium storage battery according to claim 1, wherein a length in a winding direction of an outermost outer peripheral surface of the cadmium negative electrode is substantially equal to a peripheral length of an inner surface of the battery outer can. 導電芯体の両面に負極活物質層を形成した後、両負極活物質層の表面にカドミウムとインジウムとを含む合金メッキ層を形成して極板を構成し、この合金メッキ層の形成された極板の一方面の長手方向端部近傍を電池外装缶の内周面に接触させる集電部とし、当該集電部を除き、前記合金メッキ層の表面に導電性粉末と撥水性粉末と糊料とを含む導電層を形成するカドミウム負極作製工程と、
前記集電部が、最外周の外側に位置するように前記カドミウム負極とニッケル正極とをセパレータを介して渦巻き状に巻回して、渦巻電極体と成す電極巻回工程と、
前記集電部が、電池外装缶内周面に直接接触する状態で、前記渦巻電極体を電池外装缶内に収納する渦巻電極体収納工程と、
を備えるニッケル−カドミウム蓄電池の製造方法。
After forming the negative electrode active material layers on both surfaces of the conductive core, an electrode plate was formed by forming an alloy plating layer containing cadmium and indium on the surfaces of both negative electrode active material layers, and this alloy plating layer was formed. the longitudinal end portions near the one side of the plate and the inner peripheral surface contacted thereby collector portion of the battery outer can, except for the current collector, the conductive powder on the front surface of the alloy plating layer and the water repellent powder A cadmium negative electrode preparation step for forming a conductive layer containing a paste;
An electrode winding step in which the cadmium negative electrode and the nickel positive electrode are spirally wound through a separator so that the current collector is positioned outside the outermost periphery, and a spiral electrode body is formed;
A spiral electrode body housing step of housing the spiral electrode body in the battery outer can in a state where the current collector is in direct contact with the inner peripheral surface of the battery outer can;
A method for producing a nickel-cadmium storage battery.
前記集電部の巻回方向の長さが、前記電池外装缶の内側面の周長と略同等となるように構成する、請求項3記載のニッケル−カドミウム蓄電池の製造方法。 The method for producing a nickel-cadmium storage battery according to claim 3, wherein a length of the current collecting part in a winding direction is configured to be substantially equal to a circumferential length of an inner surface of the battery outer can.
JP28375496A 1996-10-25 1996-10-25 Nickel-cadmium storage battery and manufacturing method thereof Expired - Fee Related JP3695864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28375496A JP3695864B2 (en) 1996-10-25 1996-10-25 Nickel-cadmium storage battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28375496A JP3695864B2 (en) 1996-10-25 1996-10-25 Nickel-cadmium storage battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10125351A JPH10125351A (en) 1998-05-15
JP3695864B2 true JP3695864B2 (en) 2005-09-14

Family

ID=17669687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28375496A Expired - Fee Related JP3695864B2 (en) 1996-10-25 1996-10-25 Nickel-cadmium storage battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3695864B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2369239A (en) * 2000-11-17 2002-05-22 Univ Hong Kong Polytechnic Nickel oxyhydroxide and cadmium electrodes for storage cells
CN100334754C (en) * 2005-01-27 2007-08-29 广州市鹏辉电池有限公司 Steel-tape nickel cathode and assemblied battery
JP5998549B2 (en) * 2012-03-15 2016-09-28 三洋電機株式会社 Alkaline storage battery

Also Published As

Publication number Publication date
JPH10125351A (en) 1998-05-15

Similar Documents

Publication Publication Date Title
KR101227779B1 (en) High performance energy storage devices
JP4243409B2 (en) Lithium secondary battery
US6258487B1 (en) Lithium secondary battery including a divided electrode base layer
JP2000106167A (en) Battery
JP2000277154A (en) Nonaqueous electrolyte secondary battery
JP2001110453A (en) Nonaqueous electrolytic solution secondary battery
JP3324372B2 (en) Cylindrical battery
JP3695864B2 (en) Nickel-cadmium storage battery and manufacturing method thereof
JP3316225B2 (en) Manufacturing method of lithium ion secondary battery
CN1407647A (en) Closed battery
JPH07130389A (en) Nonaqueous electrolyte secondary battery
JPH1126021A (en) Lithium ion secondary battery
JP2000090977A (en) Nonaqueous electrolyte secondary battery
JP2020061224A (en) Method of manufacturing nickel metal hydride storage battery
JP2000260427A (en) Sintered cadmium negative electrode for alkaline storage battery and manufacture thereof
JPH05283071A (en) Activation of metal hydride storage battery
JPH09306537A (en) Alkaline storage battery and manufacture thereof
JP3969283B2 (en) Cylindrical alkaline storage battery and manufacturing method thereof
JP3113534B2 (en) Non-sintered nickel electrode and method for producing the same
JPH05166539A (en) Internal structure of battery
JP3534723B2 (en) Sodium sulfur secondary battery
JP3118930B2 (en) Hydrogen storage electrode
JPH0676857A (en) Nickel-hydrogen battery
JP3504303B2 (en) Cylindrical alkaline secondary battery
JPH0419962A (en) Cadmium negative electrode for use in alkaline storage battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050628

LAPS Cancellation because of no payment of annual fees