JP3695733B2 - Method and apparatus for manufacturing optical element material - Google Patents

Method and apparatus for manufacturing optical element material Download PDF

Info

Publication number
JP3695733B2
JP3695733B2 JP33047998A JP33047998A JP3695733B2 JP 3695733 B2 JP3695733 B2 JP 3695733B2 JP 33047998 A JP33047998 A JP 33047998A JP 33047998 A JP33047998 A JP 33047998A JP 3695733 B2 JP3695733 B2 JP 3695733B2
Authority
JP
Japan
Prior art keywords
glass
optical element
element material
glass rod
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33047998A
Other languages
Japanese (ja)
Other versions
JP2000159529A (en
Inventor
隆久 近藤
義之 清水
正二 中村
正明 春原
明彦 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP33047998A priority Critical patent/JP3695733B2/en
Publication of JP2000159529A publication Critical patent/JP2000159529A/en
Application granted granted Critical
Publication of JP3695733B2 publication Critical patent/JP3695733B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/1055Forming solid beads by extruding, e.g. dripping molten glass in a gaseous atmosphere

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光ディスク装置のピックアップ光学系やカメラレンズに使用されるガラスレンズの成形に用いる光学素子素材を得るための製造方法およびその製造装置に関する。
【0002】
【従来の技術】
従来、光学素子素材の製造方法として、表面張力を利用した熱加工によってガラス球を製造する方法が提案されている(例えば、日本硝子製品工業会:「ガラス製造の現場技術」第4巻、237項参照)。この製造方法の一種として、特開平5−43258号公報に提案されている技術は、いわゆる流動焼成法(表面張力による加工)と称せられるもので、図5に示すようにガラスロッド53の下部を加熱装置55によって局所加熱し、被加熱部分のガラスのみを溶融させ、ガラスロッド53の先端に球状化されたガラス液滴54を形成させた後、このガラス液滴54を自然落下させ捕集治具56によって捕集し、球状ガラス57が作製されている。球状ガラス57の重量mは、上記した周知の表面張力の加工法を用いたもので概ねmg=2πrγ(m:ガラス液滴の重量、g:重量加速度、2πr:ガラスロッド径、γ:ガラスの表面張力)なる関係を満たす。この従来技術は、ガラスの物性(γ:ガラスの表面張力)を安定させるかであり、すなわちガラスロッド53をいかに安定な加熱手段を講じて、得られる球状ガラス57の重量を安定させることにある。また球状ガラス57の所望重量は、ガラスロッド53の線径を調整することによって表面張力を加減し得るものである。
【0003】
【発明が解決しようとする課題】
前記従来の手段に用いるガラスロッド53の加工法としては、熱加工あるいは芯取り等により作製されたものを使用することが一般的である。しかし、そこには各々の加工バラツキが生じるという問題がある。すなわちガラスロッド53の径のバラツキであり、前記した従来技術の精密な溶融温度で制御を行っても、球状ガラス57の重量バラツキが発生する。また、高精度なガラスレンズ成形において、成形と同時にレンズの外形も形成するような場合に用いる球状ガラス57の必要な重量精度は、設計されたレンズ体積重量(これを100%とした場合)の98%〜99%が望ましい。この様な重量精度を得るには、例えば、球状ガラス57重量100mg以下であればガラスロッド53の真円度を数μm以下にする必要がある。
【0004】
したがって、通常の加工精度で作製されたガラスロッド53では実現が困難である。よって、安定かつ高精度な重量精度の球状ガラス57を作製する場合、ガラスロッド53の加工精度の要求が高くなることで作製された球状ガラス57が高価となり、成形されたガラスレンズにも高価なものとなる。
【0005】
一方、ガラス材料として、例えば硼酸やアルカリ成分が多い材料を使用したガラスロッド53を高温によるガラス溶解を用いた手段で製作する場合、溶解時にガラスロッド53の表層部にガラス材料の揮発成分が付着しており、そのガラスロッド53で得られた球状ガラス57を用いてガラスレンズ成形を行うと、成形レンズ表面が白濁や成形金型にガラス付着が発生する問題がある。
【0006】
また、ガラスロッド43を芯取り加工で作製した場合は、表層部に微細な面荒れがあり、このガラスロッド43で得られた球状ガラス47でガラスレンズ成形を行っても微細な傷が残り、その原因でレンズ性能に影響を与える問題を有していた。
【0007】
本発明は、前記従来の問題を解決するため、光学素子素材の作製において、安価で安定した高い重量精度と光学性能に影響を与えない表面性を可能とする製造方法とその製造装置を提供することを目的となされたものである。
【0008】
【課題を解決するための手段】
本発明に係る光学素子素材の製造方法は、ガラス棒材を加熱炉に通過させながら、前記ガラス棒材を溶解して形成されたガラス液滴を落下固化して光学素子素材を製造する方法において、前記ガラス棒材の直径を計測し、得られた計測値に基づいて、前記ガラス棒材の前記加熱炉中の通過速度を制御して落下固化した前記ガラス液滴の重量を一定に制御することを特徴とする。この方法を用いることにより、ガラス棒材の加工バラツキによって発生する重量バラツキを補正することができる。したがって、ガラス棒材の線径精度があまり高くなくても、高精度な重量制御された光学素子素材を得ることができる。
【0009】
また、本発明の光学素子素材の製造方法において、加熱炉の温度を制御することが好ましい。本発明の手段を用いれば、上記同様な効果が得られる。
さらに、本発明の光学素子素材の製造方法において、上記で用いるガラス棒材は、予めガラス棒材の表面を洗浄して付着した揮発成分を除去することである。本発明を用いれば、特に高温によるガラス溶解で加工されたガラス棒材の表面層にある揮発成分を取り除くことができ、ガラスレンズ成形及びガラスレンズ性能に影響のない光学素子素材が得ることができる。
【0010】
また、本発明に係る光学素子素材の製造装置は、ガラス棒材の表面層を洗浄して、付着した揮発成分を除去する手段、ガラス棒材を上下動させる駆動手段、ガラス棒材の線径を計測する計測手段、その計測値に基づいて駆動手段を制御する制御手段、ガラス棒材を溶融しガラス液滴させる加熱手段、ガラス液滴を捕集する捕集手段、捕集されたガラス液滴を取り出し熱風乾燥する乾燥手段を具備したものである。本発明を用いれば、ガラス棒材の洗浄工程から作製されたガラス液滴の乾燥に至る一連の工程の無人化が図れ、かつ光学素子素材を安価に得ることができる。
【0011】
【発明の実施の形態】
以下、実施の形態を用いて本発明を具体的に説明する。
<第1の実施の形態>
図1は本発明の第1の実施の形態における光学素子素材の製造方法を示す断面図である。図1に示すように、ガラス線材6を溶融して形成されたガラス液滴8を固化して光学素子素材を製造する方法において、駆動部2はボールネジ3でガラス線材6を保持する保持治具4と連結されており、駆動部2でボールネジ3を回転させて保持治具4をガイド5に沿って垂直に上昇または下降させる。ガラス棒材6の中心軸上の下方に加熱炉として管状炉9が設けてあり、その加熱炉9の上部にはガラス棒材6の線径を計測する測長器7がX、Y方向に配置されている。制御器1は、測長器7で計測されたガラス棒材6の線径に対し所望重量となる下降速度に駆動部2を制御することができる。
【0012】
図2には同一線径のガラス棒材6を用いたガラス液滴8の、下降速度と重量変化を示す。ガラス液滴8の重量mは、概ねmg=2πrγ(g:重力加速度、r:ガラス棒材6の線径、γ:表面張力)なる関係を満たす。γの表面張力は使用するガラス材料の物性と加える熱エネルギー、すまわち加熱炉9の溶融温度が一定である場合を示す。このため、図2に示すように、同一線径でもガラス棒材6の下降速度を変えることで、ガラス液滴8の重量が変化するのは、加熱炉9内でガラス棒材6に加える熱エネルギーを下降速度によって変化させる、すなわちγを制御することで、ガラス棒材6の線径バラツキによる重量バラツキを補正することができる。
【0013】
さらに具体的には、あらかじめ図2の下降速度に対する重量変動を下降速度一定条件下とした場合の線径を求め制御器1に入力しておく。ガラス棒材6の長さ250mm、線径(直径:φ)1.095からφ1.105を用い、加熱炉9は、1200℃一定とした。測長器7によるガラス棒材6の測定条件は、5mm間隔でX−Yの計測を行い、その都度制御器1に電送し、4回目(20mm)の計測と同時に平均線径を求め、あらかじめ設定して線径に対する最適下降速度になるよう駆動部2を制御した。その結果、下降速度90〜200mm/minの制御に対し、ガラス液滴8重量59.2mg±0.5%以内、この時のガラス棒材6の線径バラツキ量φ1.1±40μmであった。
【0014】
以上のように、本実施の形態の光学素子素材の製造方法によれば、今回用いた線径φ1.1に対する重量精度±0.5%に必要な線径バラツキは±5μm以下が要求されるが、8倍もある線径バラツキでも使用することが可能である。
【0015】
なお、ガラス棒材6の測定は、加熱炉9で溶融する直前に行っているが、必ずしも限定されるものではなく、あらかじめ測定したものを使用する構成でもよい。また、計測の回数および制御回数は、必ずしも限定するものではなく、多いほど微細な速度制御ができことから、ガラス棒材6のバラツキ使用範囲が拡大できる。
【0016】
さらに、ガラス棒材の長さ250mmを用いているが、長さおよび線径に限定するものではなく、連続たとえばロールなどに巻かれたものを用いてもよい。
図3は上記第1の実施において、加熱炉9の温度変化に対するの重量変化の関係を示す。具体的には、ガラス棒材6の下降速度140mm/min一定にし、ガラス棒材6φ1.1±2μmを用い、加熱炉6の温度を1100℃から1300℃に変化させた結果、下降速度による重量変化より少ないものの、図3から分かるように加熱炉6の溶解温度の変化によってもガラス液滴8重量の制御が可能なことが分かる。
【0017】
なお、第1の実施の形態に用いる下降速度及び溶解温度制御手段は、かならずしも単独で制御するものではなく、同時に制御する手段を用いてもよい。
また、第1の実施の形態に用いるガラス棒材6を、アルカリ洗剤を用いた洗浄手段を用いて、高温によってガラス溶解で作製されたガラス棒材6の表面層にある揮発成分を積極的に取り除くことで、表面に高融点リッチ層を形成したガラス線材を使用した。具体的には、この洗浄手段で処理されたガラス棒材6で作製されたガラス液滴8を光学素子素材として用いたガラスレンズ成形確認では、全く性能及び成形金型への付着物がなく、かつ作業性に影響することがないことを確認した。
【0018】
なお、高融点リッチ層に施す手段は、かならずしも洗剤による洗浄で行うものでなく、同等の効果が得られる手段を用いてもよい。
<第2の実施の形態>
図4は本発明の第2の実施の形態における光学素子素材の製造装置を示す断面図である。図4に示すように、第1の実施の形態に用いた手段を具備した一連の工程を連続的にする製造装置であり、具体的には、ガラス棒材6の表面層を洗浄して高融点リッチ層を形成する手段と、ガラス棒材6を上下動させる駆動手段と、ガラス棒材6の線径を計測する計測手段と、計測手段で得られた計測値に基づいて駆動手段を作動させる制御手段と、ガラス棒材6を溶融しガラス液滴8させる加熱手段と、ガラス液滴を捕集する捕集手段と、捕集されたガラス液滴8を取り出し熱風乾燥する乾燥手段を備えた光学素子素材の製造装置である。さらに具体的には、まずガラス棒材6をバッチ式で洗浄されたものを保持治具4にロボットでセットされる(図示せず)。ガラス棒材6がセットされた同時に制御器1によって予め設定された速度でボールネジ3が回転し保持治具4がガイド5に沿って下降を開始し、ガラス棒材6の先端が加熱炉9の上部にある測長器7の位置に達すると線径を計測する。計測された値が制御器1に電送され平均線径を求める。求められた平均線径に対し、予め設定された所望する重量となる最適な速度に駆動部2が制御される。速度制御されたガラス棒材6は、一定に保たれた溶融温度である加熱炉9導かれて溶融されガラス液滴8となり、やがてガラス液滴8が自然落下し冷却媒体11の入った捕集器10投入される。捕集器10内には転造治具12が配置されており、投入されたガラス液滴8が転造治具12に沿って下方に転がり収集治具13で収集した後、収集治具13で捕集器10からガラス液滴8を取り出し(図示せず)乾燥機14入り口へと運搬される。乾燥機14出口から乾燥されたガラス液滴8をパレット15にロボット(図示せず)で並べられ光学素子素材16となる。
【0019】
以上のように、本実施の形態の光学素子素材の製造装置によれば、ガラス棒材6の洗浄工程からガラス液滴8の乾燥まで一連の工程の無人化が可能となり、安価な光学素子素材16を提供することができる。
【0020】
なお、最終パレット15に光学素子素材16に並べているが、必ずしも限定されものではなく、次の工程であるガラスレンズ成形に用いる金型内にセットし、ガラス棒材6の洗浄からガラスレンズ成形に至る無人化を図る構成でもよい。また、必ずしも一つのガラス溶融手段に限定されるものではなく、複数のガラス溶融手段を具備したものであってもよい。
【0021】
【発明の効果】
以上ように、本発明による光学素子素材の製造方法は、ガラス棒材の線径に適した下降速度を制御することで、線径精度をあまり必要とせずに高い重量精度の光学素子素材が得ることができる。また、加熱炉の溶解温度を制御することでも同様な効果が得られる。また、ガラス棒材の表面層を高融点リッチ層にすることで、ガラスレンズ成形時に表面欠陥がない光学素子素材が作製できる。また、その光学素子素材の製造装置は、一連の工程を無人化が容易にできる。そのためさらに安価な高精度の光学素子素材の作製が実現でき、その結果安価なガラスレンズを市場に提供することが可能となる。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態を説明する要部断面図である。
【図2】 本発明の第1の実施の形態におけるガラス棒材の下降速度とガラス液滴の重量との関係を示す図である。
【図3】 本発明の第1の実施の形態における加熱炉の溶融温度とガラス液滴の重量との関係を示す図である。
【図4】 本発明の第2の実施の形態を説明する要部断面図である。
【図5】 従来の光学素子素材の作製を示す要部断面図である。
【符号の説明】
1 制御器
2 駆動部
3 ボールネジ
4 保持治具
5 ガイド
6 ガラス棒材
7 測長器(X−Y軸)
8 ガラス液滴
9 加熱炉(管状炉)
10 捕集器
11 冷却媒体
12 転造治具
13 収集治具
14 乾燥機
15 パレット
16 光学素子素材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a manufacturing method and a manufacturing apparatus for obtaining an optical element material used for molding a glass lens used for a pickup optical system and a camera lens of an optical disk device.
[0002]
[Prior art]
Conventionally, as a method of manufacturing an optical element material, a method of manufacturing a glass sphere by thermal processing using surface tension has been proposed (for example, “Japan Glass Products Industry Association:“ Glass Manufacturing Field Technology ”Vol. 4, 237). Section). As a kind of this manufacturing method, the technique proposed in Japanese Patent Application Laid-Open No. 5-43258 is called a so-called fluidized firing method (processing by surface tension). As shown in FIG. After locally heating by the heating device 55, only the glass of the heated portion is melted to form a spheroidized glass droplet 54 at the tip of the glass rod 53, and then the glass droplet 54 is spontaneously dropped and collected. The spherical glass 57 is produced by collecting with the tool 56. The weight m of the spherical glass 57 is obtained by using the above-described known surface tension processing method, and is approximately mg = 2πrγ (m: weight of glass droplet, g: weight acceleration, 2πr: glass rod diameter, γ: glass (Surface tension). This prior art is to stabilize the physical properties of glass (γ: surface tension of glass), that is, to provide a stable heating means for the glass rod 53 to stabilize the weight of the resulting spherical glass 57. . The desired weight of the spherical glass 57 can adjust the surface tension by adjusting the wire diameter of the glass rod 53.
[0003]
[Problems to be solved by the invention]
As a processing method of the glass rod 53 used for the conventional means, it is common to use a method manufactured by thermal processing or centering. However, there is a problem in that each processing variation occurs. That is, there is a variation in the diameter of the glass rod 53, and even if the control is performed at the precise melting temperature of the prior art described above, a variation in the weight of the spherical glass 57 occurs. In addition, in high-precision glass lens molding, the required weight accuracy of the spherical glass 57 used when forming the outer shape of the lens at the same time as molding is the designed lens volume weight (when this is 100%). 98% to 99% is desirable. In order to obtain such weight accuracy, for example, when the weight of the spherical glass 57 is 100 mg or less, the roundness of the glass rod 53 needs to be several μm or less.
[0004]
Therefore, it is difficult to realize the glass rod 53 manufactured with normal processing accuracy. Therefore, when producing a stable and highly accurate spherical glass 57 with high weight accuracy, the spherical glass 57 produced by the demand for processing accuracy of the glass rod 53 becomes expensive, and the molded glass lens is also expensive. It will be a thing.
[0005]
On the other hand, when a glass rod 53 using, for example, a material containing a large amount of boric acid or an alkali component as a glass material is manufactured by means using glass melting at a high temperature, the volatile component of the glass material adheres to the surface layer portion of the glass rod 53 during melting. However, when glass lens molding is performed using the spherical glass 57 obtained by the glass rod 53, there is a problem that the surface of the molded lens becomes cloudy or glass adheres to the molding die.
[0006]
Further, when the glass rod 43 is manufactured by centering, there is a fine surface roughness on the surface layer portion, and fine scratches remain even if glass lens molding is performed with the spherical glass 47 obtained with the glass rod 43, For this reason, the lens performance has been affected.
[0007]
In order to solve the above-described conventional problems, the present invention provides a manufacturing method and an apparatus for manufacturing the optical element material that enable inexpensive and stable high weight accuracy and surface properties that do not affect optical performance. It was made for the purpose.
[0008]
[Means for Solving the Problems]
An optical element material manufacturing method according to the present invention is a method of manufacturing an optical element material by dropping and solidifying glass droplets formed by melting the glass rod material while passing the glass rod material through a heating furnace. The diameter of the glass rod is measured, and based on the obtained measurement value, the passing speed of the glass rod in the heating furnace is controlled to control the weight of the glass droplet dropped and solidified to be constant. It is characterized by that. By using this method, it is possible to correct the weight variation generated by the processing variation of the glass rod. Therefore, even if the diameter accuracy of the glass rod is not so high, a highly accurate weight-controlled optical element material can be obtained.
[0009]
In the method for producing an optical element material of the present invention, it is preferable to control the temperature of the heating furnace. If the means of the present invention is used, the same effect as described above can be obtained.
Furthermore, in the method for producing an optical element material of the present invention, the glass rod used above is to remove the volatile components adhering by washing the surface of the glass rod in advance. By using the present invention, it is possible to remove volatile components in the surface layer of a glass rod processed by glass melting at a high temperature, and it is possible to obtain an optical element material that does not affect glass lens molding and glass lens performance. .
[0010]
In addition, the optical element material manufacturing apparatus according to the present invention includes a means for cleaning the surface layer of the glass bar to remove the attached volatile components, a driving means for moving the glass bar up and down, and a wire diameter of the glass bar. Measuring means for measuring the pressure, control means for controlling the driving means based on the measured value, heating means for melting the glass rod material to drop glass droplets, collecting means for collecting the glass droplets, collected glass liquid It comprises a drying means for taking out the droplets and drying with hot air. By using the present invention, it is possible to unmanned a series of steps from a glass rod cleaning step to drying of glass droplets produced, and an optical element material can be obtained at low cost.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described with reference to embodiments.
<First Embodiment>
FIG. 1 is a cross-sectional view showing a method of manufacturing an optical element material in the first embodiment of the present invention. As shown in FIG. 1, in a method for producing an optical element material by solidifying glass droplets 8 formed by melting a glass wire 6, the driving unit 2 holds a glass wire 6 with a ball screw 3. 4, the ball screw 3 is rotated by the driving unit 2, and the holding jig 4 is vertically raised or lowered along the guide 5. A tubular furnace 9 is provided as a heating furnace below the central axis of the glass rod 6, and a length measuring device 7 for measuring the wire diameter of the glass rod 6 is provided in the X and Y directions above the heating furnace 9. Has been placed. The controller 1 can control the drive unit 2 at a descending speed that is a desired weight with respect to the wire diameter of the glass rod 6 measured by the length measuring device 7.
[0012]
FIG. 2 shows the descending speed and weight change of the glass droplet 8 using the glass rod 6 having the same wire diameter. The weight m of the glass droplet 8 generally satisfies the relationship mg = 2πrγ (g: gravitational acceleration, r: wire diameter of the glass rod 6, and γ: surface tension). The surface tension of γ indicates the case where the physical properties of the glass material to be used and the heat energy applied, that is, the melting temperature of the heating furnace 9 is constant. For this reason, as shown in FIG. 2, the weight of the glass droplet 8 is changed by changing the descending speed of the glass rod 6 even when the wire diameter is the same, because the heat applied to the glass rod 6 in the heating furnace 9 is changed. By changing the energy according to the descending speed, that is, by controlling γ, the weight variation due to the wire diameter variation of the glass rod 6 can be corrected.
[0013]
More specifically, the wire diameter when the weight fluctuation with respect to the descending speed in FIG. The glass rod 6 had a length of 250 mm, a wire diameter (diameter: φ) of 1.095 to φ1.105, and the heating furnace 9 was kept constant at 1200 ° C. The measuring condition of the glass rod 6 by the length measuring device 7 is to measure XY at intervals of 5 mm, and send it to the controller 1 each time, and obtain the average wire diameter simultaneously with the fourth measurement (20 mm). The drive unit 2 was controlled so as to be set to an optimum descending speed with respect to the wire diameter. As a result, with respect to the control of the descending speed of 90 to 200 mm / min, the glass droplet 8 weight was within 59.2 mg ± 0.5%, and the wire diameter variation amount φ1.1 ± 40 μm of the glass rod 6 at this time. .
[0014]
As described above, according to the optical element material manufacturing method of the present embodiment, the wire diameter variation required for the weight accuracy ± 0.5% with respect to the wire diameter φ1.1 used this time is required to be ± 5 μm or less. However, it is possible to use even a wire diameter variation as many as 8 times.
[0015]
In addition, although the measurement of the glass rod 6 is performed immediately before melting in the heating furnace 9, it is not necessarily limited, and a configuration using a pre-measured one may be used. In addition, the number of times of measurement and the number of times of control are not necessarily limited, and the more the number of measurements and the number of times of control can be performed, the finer speed control can be performed.
[0016]
Further, although a glass rod length of 250 mm is used, the length is not limited to the length and the wire diameter, and a continuous material such as a roll wound around a roll may be used.
FIG. 3 shows the relationship of the weight change with respect to the temperature change of the heating furnace 9 in the first embodiment. Specifically, the glass rod 6 has a descending speed of 140 mm / min constant, a glass rod 6 φ1.1 ± 2 μm, and the temperature of the heating furnace 6 is changed from 1100 ° C. to 1300 ° C. Although less than the change, it can be seen from FIG. 3 that the weight of the glass droplet 8 can be controlled by changing the melting temperature of the heating furnace 6.
[0017]
Note that the descending speed and dissolution temperature control means used in the first embodiment are not necessarily controlled independently, and means for simultaneous control may be used.
Moreover, the volatile component in the surface layer of the glass rod 6 produced by glass melting | dissolving at high temperature is actively used for the glass rod 6 used for 1st Embodiment using the washing | cleaning means using alkaline detergent. By removing, a glass wire having a high melting point rich layer formed on the surface was used. Specifically, in the glass lens molding confirmation using the glass droplet 8 produced by the glass rod 6 treated by this cleaning means as the optical element material, there is no performance and no deposit on the molding die, It was also confirmed that workability was not affected.
[0018]
The means applied to the high melting point rich layer is not necessarily performed by washing with a detergent, and means capable of obtaining an equivalent effect may be used.
<Second Embodiment>
FIG. 4 is a sectional view showing an optical element material manufacturing apparatus in the second embodiment of the present invention. As shown in FIG. 4, it is a manufacturing apparatus for continuously performing a series of steps provided with the means used in the first embodiment. Specifically, the surface layer of the glass rod 6 is washed to a high level. A means for forming the melting point rich layer, a driving means for moving the glass rod 6 up and down, a measuring means for measuring the wire diameter of the glass rod 6, and the driving means based on the measured value obtained by the measuring means Control means for heating, heating means for melting the glass rod 6 to make glass droplets 8, collecting means for collecting the glass droplets, and drying means for taking out the collected glass droplets 8 and drying them with hot air. The optical element material manufacturing apparatus. More specifically, the glass rod 6 that has been cleaned in a batch manner is first set on the holding jig 4 by a robot (not shown). At the same time when the glass rod 6 is set, the ball screw 3 rotates at a speed set in advance by the controller 1, and the holding jig 4 starts to descend along the guide 5. When the position of the length measuring device 7 at the upper part is reached, the wire diameter is measured. The measured value is transmitted to the controller 1 to obtain the average wire diameter. The drive unit 2 is controlled to an optimum speed at which a desired weight is set in advance with respect to the obtained average wire diameter. The speed-controlled glass rod 6 is guided to the heating furnace 9 having a constant melting temperature to be melted into glass droplets 8, and eventually the glass droplets 8 spontaneously fall and collect the cooling medium 11. Container 10 is inserted. A rolling jig 12 is disposed in the collector 10, and the collected glass droplet 8 rolls downward along the rolling jig 12 and is collected by the collecting jig 13, and then the collecting jig 13. Then, the glass droplet 8 is taken out from the collector 10 (not shown) and conveyed to the entrance of the dryer 14. The glass droplets 8 dried from the outlet of the dryer 14 are arranged on a pallet 15 by a robot (not shown) to form an optical element material 16.
[0019]
As described above, according to the optical element material manufacturing apparatus of the present embodiment, it is possible to unmanned a series of processes from the cleaning process of the glass rod 6 to the drying of the glass droplets 8, and an inexpensive optical element material. 16 can be provided.
[0020]
Although the optical element material 16 is arranged on the final pallet 15, it is not necessarily limited, and it is set in a mold used for glass lens molding, which is the next step. It may be configured to achieve unmanned operation. Moreover, it is not necessarily limited to one glass melting means, and a plurality of glass melting means may be provided.
[0021]
【The invention's effect】
As described above, the method for producing an optical element material according to the present invention provides a high-weight-accuracy optical element material without requiring much wire diameter accuracy by controlling the descending speed suitable for the wire diameter of the glass rod. be able to. The same effect can be obtained by controlling the melting temperature of the heating furnace. In addition, by making the surface layer of the glass rod material a high melting point rich layer, an optical element material having no surface defects at the time of molding a glass lens can be produced. The optical element material manufacturing apparatus can easily unmanned a series of processes. For this reason, it is possible to produce a more inexpensive and highly accurate optical element material, and as a result, it is possible to provide an inexpensive glass lens to the market.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an essential part for explaining a first embodiment of the present invention.
FIG. 2 is a diagram showing the relationship between the descent speed of the glass rod and the weight of the glass droplet in the first embodiment of the present invention.
FIG. 3 is a diagram showing the relationship between the melting temperature of the heating furnace and the weight of glass droplets in the first embodiment of the present invention.
FIG. 4 is a cross-sectional view of a main part for explaining a second embodiment of the present invention.
FIG. 5 is a cross-sectional view of an essential part showing the production of a conventional optical element material.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Controller 2 Drive part 3 Ball screw 4 Holding jig 5 Guide 6 Glass bar 7 Length measuring device (XY axis)
8 Glass droplet 9 Heating furnace (tubular furnace)
DESCRIPTION OF SYMBOLS 10 Collector 11 Cooling medium 12 Rolling jig 13 Collection jig 14 Dryer 15 Pallet 16 Optical element material

Claims (6)

ガラス棒材を加熱炉に通過させながら、前記ガラス棒材を溶解して形成されたガラス液滴を落下固化して光学素子素材を製造する方法において、
前記ガラス棒材の直径を計測し、得られた計測値に基づいて、前記ガラス棒材の前記加熱炉中の通過速度を制御して落下固化した前記ガラス液滴の重量を一定に制御することを特徴とする光学素子素材の製造方法。
In a method of manufacturing an optical element material by dropping and solidifying glass droplets formed by melting the glass rod while passing the glass rod through a heating furnace,
The diameter of the glass rod is measured, and based on the obtained measurement value, the passing speed of the glass rod in the heating furnace is controlled to control the weight of the glass droplet dropped and solidified to be constant. A method for producing an optical element material characterized by the above.
前記加熱炉の温度制御と前記通過速度のどちらか一方を制御する請求項1に記載の光学素子素材の製造方法。  The method of manufacturing an optical element material according to claim 1, wherein either one of temperature control of the heating furnace and the passing speed is controlled. 前記ガラス棒材の表面に付着した揮発成分を洗浄除去する請求項1または2に記載の光学素子素材の製造方法。The method for producing an optical element material according to claim 1 or 2, wherein volatile components adhering to the surface of the glass bar are washed away . ガラス棒材の表面に付着した揮発成分を洗浄除去する手段と、
前記ガラス棒材を上下動させる駆動手段と、
前記ガラス棒材の直径を計測する計測手段と、
前記計測手段で得られた計測値に基づいて前記駆動手段を作動させる制御手段と、
前記ガラス棒材を溶融しガラス液滴させる加熱手段と、
前記ガラス液滴を捕集する捕集手段と、
捕集された前記ガラス液滴を取り出し熱風乾燥する乾燥手段を具備したことを特徴とする光学素子素材の製造装置。
Means for cleaning and removing volatile components adhering to the surface of the glass bar;
Driving means for moving the glass rod up and down;
Measuring means for measuring the diameter of the glass rod;
Control means for operating the drive means based on the measurement value obtained by the measurement means;
Heating means for melting the glass rod and dropping glass droplets;
A collecting means for collecting the glass droplet;
An apparatus for producing an optical element material, comprising drying means for taking out the collected glass droplets and drying with hot air.
複数の駆動手段と、複数の計測手段と、複数の加熱手段および複数の制御手段をそれぞれ具備する請求項4に記載の光学素子素材の製造装置。  The optical element material manufacturing apparatus according to claim 4, further comprising a plurality of driving units, a plurality of measuring units, a plurality of heating units, and a plurality of control units. 予め計測されたガラス棒材を用いる請求項4に記載の光学素子素材の製造装置。  The optical element material manufacturing apparatus according to claim 4, wherein a pre-measured glass rod is used.
JP33047998A 1998-11-20 1998-11-20 Method and apparatus for manufacturing optical element material Expired - Lifetime JP3695733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33047998A JP3695733B2 (en) 1998-11-20 1998-11-20 Method and apparatus for manufacturing optical element material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33047998A JP3695733B2 (en) 1998-11-20 1998-11-20 Method and apparatus for manufacturing optical element material

Publications (2)

Publication Number Publication Date
JP2000159529A JP2000159529A (en) 2000-06-13
JP3695733B2 true JP3695733B2 (en) 2005-09-14

Family

ID=18233094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33047998A Expired - Lifetime JP3695733B2 (en) 1998-11-20 1998-11-20 Method and apparatus for manufacturing optical element material

Country Status (1)

Country Link
JP (1) JP3695733B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101830631B (en) * 2010-04-20 2012-05-02 中山市大光灯饰玻璃有限公司 Feeding device of ovule die-casting machine
CN102070292B (en) * 2010-11-09 2012-08-22 顾飞跃 Automatic processing machine tool for glass horny beads for lamps
WO2019075106A1 (en) * 2017-10-10 2019-04-18 Hurley William J High strength glass spheroids

Also Published As

Publication number Publication date
JP2000159529A (en) 2000-06-13

Similar Documents

Publication Publication Date Title
JP3853622B2 (en) Manufacturing method of glass molded body, manufacturing method of press-molded product, manufacturing method of glass optical element, and manufacturing apparatus of glass molded body
JP3695733B2 (en) Method and apparatus for manufacturing optical element material
JP2000007360A (en) Production of glass element
JP4306163B2 (en) Manufacturing method of glass microdrop, manufacturing method of glass microoptical element, and manufacturing apparatus thereof
JP4938988B2 (en) Press molding preform manufacturing method, optical element manufacturing method, and molten glass outflow device
US8091387B2 (en) Method of manufacturing glass articles, method of manufacturing glass gobs, and method of manufacturing optical elements
JP3077066B2 (en) Each production method of glass gob and its intermediate
JP2006143563A (en) Glass molding, optical element, their production method, fused glass outflow device and device for producing glass molding
CN101157512B (en) Glass prefabricated element group and manufacturing method thereof, method for manufacturing optical element
JP3877949B2 (en) Glass lump manufacturing method, glass molded product manufacturing method, and glass lump manufacturing apparatus
JP5263163B2 (en) Method for producing glass molded body
JP4448078B2 (en) Method for producing glass preform, method for producing glass molded body, and method for producing optical element
CN102603160B (en) The manufacture method of glass shaping body and the manufacture method of optical element
US6742364B2 (en) Method of manufacturing micro glass optical element
JP3986064B2 (en) Method for producing glass lump and method for producing optical element
JPH03137031A (en) Method and apparatus for producing glass lens
JP4232272B2 (en) Manufacturing method of glass gob for molding optical element
JP2000233934A (en) Method for press-forming glass product and device therefor
JP2000344533A (en) Production of optical element blank and apparatus for production thereof
JP5200809B2 (en) Method for producing molten glass droplet, method for producing glass gob, and method for producing glass molded body
WO2002028789A1 (en) Method and apparatus for reshaping the draw end of an optical fiber preform
JPH06206730A (en) Production of glass gob
JP4957623B2 (en) Method for miniaturizing molten glass droplet, method for producing glass gob, and method for producing glass molded body
JPH09235122A (en) Production of glass gob
JP2006298727A (en) Base material for forming optical device, method of manufacturing base material for forming optical device, method of manufacturing optical device and optical device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5