JPH03137031A - Method and apparatus for producing glass lens - Google Patents

Method and apparatus for producing glass lens

Info

Publication number
JPH03137031A
JPH03137031A JP27544089A JP27544089A JPH03137031A JP H03137031 A JPH03137031 A JP H03137031A JP 27544089 A JP27544089 A JP 27544089A JP 27544089 A JP27544089 A JP 27544089A JP H03137031 A JPH03137031 A JP H03137031A
Authority
JP
Japan
Prior art keywords
glass
mold
lower mold
nozzle
droplet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27544089A
Other languages
Japanese (ja)
Other versions
JP2827337B2 (en
Inventor
Hiroaki Ueda
裕昭 上田
Yujiro Suzuki
鈴木 雄二郎
Shinji Fukumoto
真次 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP1275440A priority Critical patent/JP2827337B2/en
Publication of JPH03137031A publication Critical patent/JPH03137031A/en
Application granted granted Critical
Publication of JP2827337B2 publication Critical patent/JP2827337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/10Cutting-off or severing the glass flow with the aid of knives or scissors or non-contacting cutting means, e.g. a gas jet; Construction of the blades used
    • C03B7/12Cutting-off or severing a free-hanging glass stream, e.g. by the combination of gravity and surface tension forces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/03Press-mould materials defined by material properties or parameters, e.g. relative CTE of mould parts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PURPOSE:To easily obtain the lens which is free from sink marks by constituting a lower mold of a specific material to impart prescribed surface roughness to the mold in the apparatus equipped with the upper mold having a glass melting crucible, a molten glass dropping nozzle, the lower mold for receiving a glass drop and an upper mold for compression-molding the glass drop cooperatively with the lower mold. CONSTITUTION:The lower mold 12 for receiving the glass drop is constituted of the material having >=50W/mK thermal conductivity (e.g.: Ag, graphite, SiC, AlN, Si, cemented carbide) and is thereby provided with 0.05 to 0.2muRmax surface roughness in the device equipped with the glass melting crucible 1, the nozzle 4 which is provided in the bottom of the crucible 1 and drops the molten glass 2 as the glass drop 6, the lower mold 12 for receiving the glass drops which receives the glass drops 7, 10 dropped from the nozzle, and the upper mold 13 for compression molding of the dropped glass drop 10 cooperatively with the lower mold 12.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は改良された無研摩ガラスレンズの成形方法およ
びその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an improved method and apparatus for forming non-abrasive glass lenses.

従来技術 無研摩ガラスの製造方法としては、ノズル先端から溶融
ガラスを滴下し、落下ガラス滴を下金型で受けて、プレ
ス成形する液滴法が、レンズの表面に傷、砂目、シャー
マークなどの欠陥のないレンズを得る優れた方法として
、本発明者らにより開発され既に出願済みである(特願
昭59−267058号)。
Conventional technology The method for producing unpolished glass is the droplet method, in which molten glass is dropped from the tip of a nozzle, the falling glass droplets are received by a lower mold, and press-formed. An excellent method for obtaining lenses free of such defects has been developed by the present inventors and has already been filed (Japanese Patent Application No. 59-267058).

液滴法は、無研摩ガラスの製造法として優れた方法であ
るが、何点かの改良すべき点が見い出されてきた。かか
る改良を必要とする問題点をより明瞭にするために、第
1図を用いてさらに詳しく液滴法を説明する。
Although the droplet method is an excellent method for producing unpolished glass, several points that need improvement have been discovered. In order to clarify the problems that require such improvement, the droplet method will be explained in more detail with reference to FIG.

液適法は、まずルツボ(1)中で溶融したガラス(2)
をノズル(4)の先端である一定の大きさの液体状の滴
にする。ルツボ(1)からノズル(4)の先端まではヒ
ーター(5a)〜(5d)により、溶融したガラスが冷
えて固体状にならないように、加熱されている。次に所
定の大きさと温度に制御されたガラス滴(6)をノズル
(4)の先端から自然落下させた状態で、そのガラス滴
の落下地点に設置した適当な金型(12)に捕集し、捕
集後ガラス液滴の落下点より移動し、上金型(13)で
プレスして、無研摩ガラスレンズを得る。
The liquid pouring method first involves melting glass (2) in a crucible (1).
into a liquid droplet of a certain size at the tip of the nozzle (4). The area from the crucible (1) to the tip of the nozzle (4) is heated by heaters (5a) to (5d) so that the molten glass does not cool down and become solid. Next, a glass droplet (6) controlled to a predetermined size and temperature is allowed to fall naturally from the tip of the nozzle (4), and is collected in an appropriate mold (12) installed at the point where the glass droplet falls. After collection, it is moved from the point where the glass droplets fall and is pressed with an upper mold (13) to obtain a non-polished glass lens.

しかし、上記方法によっては、ガラス滴を捕集する金型
(12)の材質によっては、いわゆる「ひけ」が生じる
ことがある。ひけとは、第2−d図に示したようにレン
ズ中央部付近に生じるくぼみのことと考えればよい。こ
のひけは、第2−a図〜第2−d図に示しt;機構によ
って生じるものと考えられている。すなわち、第2−a
図は、滴下ガラス滴を金型に捕集した時の状態を示す。
However, depending on the above method, so-called "sink marks" may occur depending on the material of the mold (12) that collects the glass droplets. A sink mark can be thought of as a depression that occurs near the center of the lens, as shown in FIG. 2-d. This sink mark is thought to be caused by the mechanism shown in Figures 2-a to 2-d. That is, 2nd-a
The figure shows the state when the dropped glass droplets are collected on the mold.

図中、ガラス滴が金型に接触している周辺部を示す斜線
部は、他のどの部分よりも早く固化する所であり、その
部分は滴下後、金型の形状にそって固定化される。しか
し、ガラス滴が金型に接している中央部(斜線部の間の
部分)は、ガラス滴中まだ冷えないで残っている高温部
からの熱で固化しきらないで軟化状態になっていると考
えられ、その部分は金型を移動中にガラス滴全体の冷却
にともなう収縮により、上部に引き上げられる。その結
果、第2−b図に示したようにガラス滴中央部に空気だ
まり部が形成され、その状態で第2−c図に示したよう
に上金型で成形を行なうので、得られるガラスレンズに
はひげが形成されることとなる。
In the figure, the shaded area indicating the peripheral area where the glass droplet is in contact with the mold is where it solidifies faster than any other part, and after dropping the glass droplet, it solidifies along the shape of the mold. Ru. However, the central part of the glass droplet that is in contact with the mold (the part between the hatched areas) is not completely solidified due to the heat from the remaining high temperature part of the glass droplet that has not yet cooled and is in a softened state. This is thought to be the case, and that portion is pulled upwards due to contraction as the entire glass droplet cools while moving through the mold. As a result, as shown in Figure 2-b, an air pocket is formed in the center of the glass droplet, and in this state, molding is performed with the upper mold as shown in Figure 2-c, resulting in a glass droplet. Whiskers will be formed on the lens.

また、別の問題として、従来はガラス滴(6)は、その
表面温度がガラスの軟化温度より低い温度になるまで落
下させる必要から、ガラス滴の落下距離(Q)は室温自
然落下の場合、一般に150cm〜200cm以上が必
要であった。このように落下距離が長いと、金型(12
)上に落ちる位置も微妙に異なり、得られるレンズの型
形状等の品質も同一でない(このように型形状が忠実に
転写されないことを「転写性」が悪いと表現する)。転
写性の悪さをなくするため、落下距離を短くすれば、上
記したひげの問題がより顕著になる。
Another problem is that conventionally, the glass droplet (6) needs to fall until its surface temperature becomes lower than the softening temperature of the glass, so the falling distance (Q) of the glass droplet is Generally, 150 cm to 200 cm or more was required. If the falling distance is long like this, the mold (12
) The position at which the lens falls on the lens is slightly different, and the quality of the mold shape of the resulting lens is also not the same (this failure to faithfully transfer the mold shape is expressed as "poor transferability"). If the falling distance is shortened in order to eliminate poor transferability, the above-mentioned whisker problem will become more noticeable.

発明が解決しようとする課題 本発明は、上記した従来の問題点を解消し、金型の種類
によらず、ひげの発生が防止され、またガラス滴の落下
距離が短くても転写性の劣化が防止されたガラスレンズ
の成形方法およびその装置を提供することを目的とする
Problems to be Solved by the Invention The present invention solves the above-mentioned conventional problems, prevents the generation of whiskers regardless of the type of mold, and prevents deterioration of transferability even if the falling distance of glass droplets is short. An object of the present invention is to provide a method for molding a glass lens and an apparatus for the same in which this is prevented.

課題を解決するだめの手段 すなわち、本発明の上記目的はルツボ内でガラス(例え
ばSF l 1)を溶融撹拌して、均一にした後、炉お
よびノズル(4)の温度を適当に制御され形成されるガ
ラス滴(6)を、ある特定の熱伝導率および表面粗さを
有する下金型で受けて、ガラスレンズを作製することに
より達成される。
A means for solving the problem, that is, the above object of the present invention is to melt and stir glass (for example, SF 1 1) in a crucible to make it uniform, and then to form the glass by appropriately controlling the temperature of the furnace and nozzle (4). This is achieved by receiving the glass droplets (6) in a lower mold having a certain thermal conductivity and surface roughness to produce a glass lens.

ここに、本発明はガラス溶融ルツボ、該ルツボ底部に設
けられ、該ルツボで溶融されたガラスをガラス滴として
滴下させるノズル、該ノズルより滴下されたガラス滴を
受けるガラス滴受は下金型、および該ガラス滴受は下金
型と協働して滴下されたガラス滴を圧縮成形するための
上金型を備えたガラスレンズ製造装置において、該ガラ
ス滴受は下金型は、熱伝導率が50W/mK以上の材料
で構成され、0.05μmRmax〜0.2μmRma
xの表面粗さを有することを特徴とするガラスレンズの
製造装置を提供する。
Here, the present invention includes a glass melting crucible, a nozzle provided at the bottom of the crucible for dropping glass melted in the crucible as glass droplets, a glass drip tray for receiving glass droplets dropped from the nozzle, a lower mold, and a glass lens manufacturing apparatus comprising an upper mold for compression molding the dropped glass droplet in cooperation with a lower mold, wherein the glass drip dripper has a lower mold that has a thermal conductivity. is composed of a material with a power of 50 W/mK or more, and a resistance of 0.05 μmRmax to 0.2 μmRmax
Provided is an apparatus for manufacturing a glass lens characterized by having a surface roughness of x.

本発明は、ノズル先端から溶融ガラスを滴下し、該ガラ
ス滴を、熱伝導率が50W/mK以上の材料で構成され
、かつ0.05μmRmaxの表面粗さを有するガラス
滴受は下金型で受けた後、該ガラス滴を圧縮成形するこ
とによりガラスレンズを得ることを特徴とするガラスレ
ンズの成形方法を提供するものである。
In the present invention, molten glass is dripped from the tip of a nozzle, and the glass droplet is made of a material with a thermal conductivity of 50 W/mK or more and has a surface roughness of 0.05 μmRmax in a lower mold. The present invention provides a method for molding a glass lens, which comprises obtaining a glass lens by compression molding the glass droplets after receiving the glass droplets.

本発明によるとひげのないガラスレンズを形成すること
ができ、さらに、ガラス滴の表面温度が軟化点以上の状
態で下金型に受けることが可能となり、そのためガラス
滴落下距離を短かくすることができ、転写性のよいガラ
スレンズを再現性よく製造することができる。
According to the present invention, it is possible to form a glass lens without whiskers, and furthermore, it is possible to receive the glass droplet on the lower mold in a state where the surface temperature is above the softening point, so that the falling distance of the glass droplet can be shortened. This allows glass lenses with good transferability to be manufactured with good reproducibility.

本発明の下金型が有すべき熱伝導率としては50 W 
/ m K以上、好ましくは80W/mK以上が必要で
ある。下金型がこのような熱伝導率を必要とするのは、
後述する下金型表面粗さが、成形中に転写されることを
防止し、成形後研摩工程の不要のレンズ表面性状を有す
るガラスレンズを形成するためである。熱伝導率が50
W/mKより小さいと、金型の表面性状が転写され、得
られるレンズ表面は研摩が必要になる。
The thermal conductivity that the lower mold of the present invention should have is 50 W.
/mK or more, preferably 80W/mK or more is required. The lower mold requires such thermal conductivity because
This is to prevent the surface roughness of the lower mold, which will be described later, from being transferred during molding, and to form a glass lens having lens surface properties that do not require a polishing step after molding. Thermal conductivity is 50
If it is smaller than W/mK, the surface texture of the mold will be transferred and the resulting lens surface will require polishing.

このような熱伝導率を付与することのできる材料として
は、例えば、銀、アルミニウム、シリコン、黒鉛、炭化
ケイ素、窒化アルミニウム、超硬合金等を挙げることが
できる。
Examples of materials that can provide such thermal conductivity include silver, aluminum, silicon, graphite, silicon carbide, aluminum nitride, and cemented carbide.

また、下金型の有すべき表面粗さとしては、0゜05〜
0.2 pmRmax、好ましくは0.1〜0.2μm
 Rmaxである。このように、下金型表面を粗くする
ことにより、ガラス滴が下金型に滴下後、収縮する過程
で生じたたまりエアー(第2−b図)を、圧縮成形時に
、その粗い目を通して除去できることにあり、従ってそ
のために従来のようなひげの発生を防止することができ
ると考えられている。
In addition, the surface roughness that the lower mold should have is 0°05~
0.2 pmRmax, preferably 0.1-0.2 μm
Rmax. In this way, by making the surface of the lower mold rougher, the accumulated air (Figure 2-b) that is generated during the shrinking process after the glass drops drop onto the lower mold can be removed through the rough holes during compression molding. Therefore, it is believed that it is possible to prevent the appearance of conventional beards.

表面粗さが0.05μmRmaxより小さいとエアーの
通過に十分な経路を確保できないため、ひげが生じやす
く、0,2μmRmaxより大きいとその表面粗さが転
写されやすくなる上、金型の形状精度を測定する上で誤
差が生じやすい。
If the surface roughness is smaller than 0.05μmRmax, it will not be possible to secure a sufficient path for air to pass through, so whiskers will easily occur, and if it is larger than 0.2μmRmax, the surface roughness will be easily transferred, and the shape accuracy of the mold will be reduced. Errors are likely to occur during measurement.

なお、本発明にいう表面粗さは、JISBO601−1
982に基づき表わした値で示している。
In addition, the surface roughness referred to in the present invention is JISBO601-1
The values are shown based on 982.

下金型表面に、上記のような粗さを付与するには、ブラ
スト処理、酸エツチング、砂かけ処理等の処理を施すこ
とにより可能である。
The roughness described above can be imparted to the surface of the lower mold by performing treatments such as blasting, acid etching, and sanding.

次番こ、ガラスレンズの製造に関して、ガラス滴の製造
法から説明する。
Next, the production of glass lenses will be explained, starting with the method of producing glass droplets.

ガラス滴は第1図に示すごとく、ルツボ(1)中で溶融
したガラス(2)をノズル(4)の先端から自然落下さ
せることにより製造する。
As shown in FIG. 1, glass droplets are produced by allowing glass (2) melted in a crucible (1) to fall naturally from the tip of a nozzle (4).

ルツボおよびノズルは、通常の光学ガラスの溶融と同様
、ガラスの着色を防ぐために白金製のものを用いるのが
好ましいが、これに限定されるものではない。
The crucible and nozzle are preferably made of platinum in order to prevent coloring of the glass, as in the case of ordinary optical glass melting, but the crucible and nozzle are not limited thereto.

ルツボは撹拌1!(3)および加熱用ヒーター(5a)
を備えている。
The crucible is stirred 1! (3) and heating heater (5a)
It is equipped with

ルツボ(1)およびノズル(4)の温度は加熱ヒーター
(5a、5b、5c、5d)を調節することにより所望
の温度に保持される。ルツボ(1)およびノズル(4)
の温度はガラスの性質、得ようとするガラス滴の大きさ
等に応じて設定すればよく、通常500〜1400°C
の範囲内である。特に、ノズル(4)の下方部と上方部
の温度は下方部を高く、上方部を低く設定すると、ガラ
ス滴(6)の滴下を容易にする。好ましくは下方部を5
0〜200°C程度、上方部より高くする。
The temperatures of the crucible (1) and nozzle (4) are maintained at desired temperatures by adjusting the heaters (5a, 5b, 5c, 5d). Crucible (1) and nozzle (4)
The temperature can be set depending on the properties of the glass and the size of the glass droplet to be obtained, and is usually 500 to 1400°C.
is within the range of In particular, if the temperature of the lower and upper parts of the nozzle (4) is set high in the lower part and low in the upper part, the glass droplets (6) can be easily dropped. Preferably the lower part is 5
The temperature should be about 0 to 200°C higher than the upper part.

ガラス滴の温度は、落下距離、雰囲気温度、ガラス滴の
大きさ、温度、ガラスの熱伝導率、強制的な冷却手段を
設けるか否か等によって異なるし、さらに、下金型上に
捕集後のガラス滴の冷却速度が、下金型の構成材料、下
金をの設定温度等により異なるので、本発明の実施に当
たっては、それらの条件を考慮しながら調整する。
The temperature of the glass droplet varies depending on the falling distance, the ambient temperature, the size of the glass droplet, the temperature, the thermal conductivity of the glass, whether a forced cooling means is provided, etc., and furthermore, the temperature of the glass droplet is collected on the lower mold. Since the subsequent cooling rate of the glass droplet varies depending on the constituent material of the lower mold, the set temperature of the lower mold, etc., when implementing the present invention, the cooling rate is adjusted while taking these conditions into consideration.

上記の温度は、ガラスの表面張力、即ち、ガラス滴の大
きさに影響するため、重量精度の高いガラス滴を得るた
めには、この温度を精密に管理する必要がある。ノズル
温度、必要ならばルツボ中のガラス温度を精密に管理す
るために、これらの温度を自動的に制御する手段を講す
るのが好ましい。その手段としてノズル先端でガラス滴
が形成され、落下するまでの時間によりノズル先端での
ガラス滴の温度を制御するのがよい。具体的には、例え
ば発光器(8)によってノズル先端を通過する光線を放
射し、その光を感知する受光器(9)をノズル先端に関
し、発光器の対面に配置し、ガラス滴の形成から落下ま
での時間を測定し、その測定値に対応する信号を制御部
(マイクロコンピュータ−等、図示せず)に送り、その
時間の変化量に応じてノズルおよび必要ならばルツボに
設けられた加熱ヒーター(5a、5b、5c、5d)の
通電量を制御する方法等を採ればよい。あるいは発光器
(8)、受光器(9)に替えて放射温度計等によりガラ
ス滴の温度を直接計るようにしてもよい。
Since the above temperature affects the surface tension of the glass, that is, the size of the glass droplet, it is necessary to precisely control this temperature in order to obtain glass droplets with high weight accuracy. In order to precisely control the nozzle temperature and, if necessary, the glass temperature in the crucible, it is preferable to provide means for automatically controlling these temperatures. As a means for this, it is preferable to control the temperature of the glass droplet at the nozzle tip by controlling the time it takes for the glass droplet to form at the nozzle tip and fall. Specifically, for example, a light beam passing through the nozzle tip is emitted by a light emitter (8), and a light receiver (9) for sensing the light is placed opposite to the light emitter with respect to the nozzle tip, and the formation of glass droplets is prevented. The time until the drop is measured, and a signal corresponding to the measured value is sent to a control unit (microcomputer, etc., not shown), which controls the heating provided in the nozzle and, if necessary, in the crucible, depending on the amount of change in time. A method of controlling the amount of electricity supplied to the heaters (5a, 5b, 5c, 5d) may be used. Alternatively, the temperature of the glass droplet may be directly measured using a radiation thermometer or the like instead of the light emitter (8) and the light receiver (9).

ノズル先端径はガラス滴の重量を左右する一因子である
。即ち、ガラス滴の重量は概ね、mg“2rrγ (m:重量、r:ノズル先端径、γ:表面張力)で表わ
される。一般にノズル先端径は0.5〜15mm、好ま
しくは0.5〜10mmである。ノズル先端径が大き過
ぎると表面張力よりも流出するガラスが勝って、層流に
なるのでガラス滴を得ることができない。
The nozzle tip diameter is a factor that affects the weight of the glass droplet. That is, the weight of a glass droplet is approximately expressed in mg "2rrγ (m: weight, r: nozzle tip diameter, γ: surface tension). Generally, the nozzle tip diameter is 0.5 to 15 mm, preferably 0.5 to 10 mm. If the diameter of the nozzle tip is too large, the glass flowing out will overcome the surface tension and the flow will become laminar, making it impossible to obtain glass droplets.

ノズル先端から出たガラスは表面張力により甲状になっ
て順次落下する。
The glass that comes out of the nozzle tip forms a shell shape due to surface tension and falls one after another.

落下距離の調節は、第1図中には示してしないが、下金
型(15)の支持台(21)を上下に移動するこ七によ
り行なえばよい。その際前述のノズル温度調節に使用し
たのと同じ制御手段を用い、受光器あるいは放射温度計
からの信号に基づき制御部を作動させて、支持台を上下
し、落下距離を調節するようにしてもよい。
Although not shown in FIG. 1, the falling distance may be adjusted by moving the support base (21) of the lower mold (15) up and down. At this time, using the same control means as used for adjusting the nozzle temperature described above, the control section is activated based on the signal from the light receiver or radiation thermometer to raise and lower the support base and adjust the falling distance. Good too.

ガラス滴を捕集する下金型(11)は、まずノズル(4
)の直下に配置され、ノズル(4)の先端から滴下する
ガラス滴を受け、ガラス滴が滴下後、成形位置へ移動さ
れ、上金型(13)と協働して圧縮成形にてガラスレン
ズを成形する。その際下金を(11)は滴下したガラス
液を、所要のレンズを得るに十分な厚みのある状態で保
持できていればよい。
The lower mold (11) that collects glass droplets first has a nozzle (4).
), which receives the glass droplet dripping from the tip of the nozzle (4). After the glass droplet drips, it is moved to the molding position, and in cooperation with the upper mold (13), the glass lens is formed by compression molding. to form. At this time, the lower plate (11) only needs to be able to hold the dropped glass liquid in a state with sufficient thickness to obtain the desired lens.

上金型(13)は、下金型(l l)と同様な材料で構
成されていても良いし、異なった材料で構成されていて
も良い。
The upper mold (13) may be made of the same material as the lower mold (l l), or may be made of a different material.

また、捕集する下金型(l l)は凸型であっても、凹
型であってもよい。本発明は特に凹型の下金型を使用し
て凸型のレンズを作製するのに有効である。
Further, the lower mold (l l) for collecting may be convex or concave. The present invention is particularly effective for manufacturing convex lenses using a concave lower mold.

下金型(15)は、使用するガラスの軟化温度より10
〜15000.好ましくは30〜100℃低い温度に加
熱した状態にしておくことが好ましい。
The lower mold (15) has a temperature of 10% higher than the softening temperature of the glass used.
~15000. Preferably, it is heated to a temperature lower by 30 to 100°C.

通常5FIIガラスを使用する場合、約400 ’04
こ設定される。そうすることにより面精度の高いレンズ
が成形できるとともに、金型とガラスとの融着を防ぐ効
果がある。
Usually about 400'04 when using 5FII glass
This is set. By doing so, lenses with high surface precision can be molded, and there is an effect of preventing fusion between the mold and the glass.

上金型(18)は、使用するガラスの軟化温度より10
〜150°C1好ましくは30〜100°C低い温度に
加熱した状態にしておくことが好ましい。
The upper mold (18) has a temperature of 10% higher than the softening temperature of the glass used.
It is preferable to keep the temperature heated to a temperature lower than 150°C, preferably 30 to 100°C.

そうすることにより下金型と同様の効果がある。By doing so, it has the same effect as the lower mold.

本発明に従い、さらに上金型、下金型を選択することに
より、両凸、両凹、平凸、平凹、メニスカス等の各種レ
ンズを精度よく、効率よく製造することができる。
According to the present invention, various types of lenses such as biconvex, biconcave, planoconvex, planoconcave, and meniscus lenses can be manufactured accurately and efficiently by selecting the upper mold and the lower mold.

実施例および比較例 第1図に示した構成の液滴法ガラスレンズの製造装置に
おいて、表1に示した材質で構成され、かつ表1に示し
た熱伝導率、表面粗さに調整された下金型を用い、ガラ
ス滴の滴下距離(ノズル先端から下金型表面上まで)を
20.50.1001250cmとしてガラスレンズを
得た。
Examples and Comparative Examples A droplet method glass lens manufacturing apparatus having the configuration shown in Figure 1 was made of the materials shown in Table 1, and was adjusted to the thermal conductivity and surface roughness shown in Table 1. Using the lower mold, a glass lens was obtained by setting the dropping distance of the glass droplet (from the nozzle tip to the surface of the lower mold) to be 20.50.1001250 cm.

なお、下金型はブラスト、酸エツチング、砂かけ等適宜
表面旭理して、粗くした。
The surface of the lower mold was roughened by blasting, acid etching, sanding, etc. as appropriate.

金型及び成形レンズ下面は表面粗さ計で測定し、レンズ
のへそは顕微鏡で測定した。
The mold and the lower surface of the molded lens were measured with a surface roughness meter, and the navel of the lens was measured with a microscope.

粗さはJIS BO601−1982に基づきRmax
で、ひけ量はレンズ10コの平均値をニュートン本数で
示した。Ralaxは0.01μmが測定限界である。
Roughness is Rmax based on JIS BO601-1982
The amount of sinkage is the average value of 10 lenses expressed in Newtons. The measurement limit for Ralax is 0.01 μm.

表1から判るように、滴下距離が長く、金型の熱伝導率
が高く、型表面粗さが粗いほど形状転写性が良く、ひけ
がない。熱伝導率が50W/mK以上の金型でRmax
o、05μm以下の場合にはほとんどひけがなく、表面
粗さも0.012mと実用上無視できる寸法である。さ
らに80W/mK以上でRmaxO,05μm以下の場
合には全くひけは発生せず、転写性も良好である。
As can be seen from Table 1, the longer the dropping distance, the higher the thermal conductivity of the mold, and the rougher the surface roughness of the mold, the better the shape transferability and no sink marks. Rmax for molds with thermal conductivity of 50W/mK or more
When the diameter is 0.05 μm or less, there is almost no sinkage, and the surface roughness is 0.012 m, which can be ignored in practical terms. Further, when the RmaxO is 80 W/mK or more and RmaxO is 05 μm or less, no sink marks occur and the transferability is good.

次にレンズの表面粗さについてはいずれの条件でも金型
の表面粗さより小さい。また滴下距離が長く金型の熱伝
導率が高い程、型とレンズの粗さの差が大きく、即ち良
好なレンズとなっている。
Next, the surface roughness of the lens is smaller than that of the mold under any conditions. Furthermore, the longer the dropping distance and the higher the thermal conductivity of the mold, the greater the difference in roughness between the mold and the lens, that is, the better the lens.

このことから第一に、本方法では、金型と接触してもそ
の微細な表面粗さまでは転写していないことがわかる。
First of all, it can be seen from this that, in this method, even the fine surface roughness of the mold is not transferred even when it comes into contact with the mold.

第2に型と接触後のガラス表面の冷却固化が型の熱伝導
率によって支配されるため、熱伝導率の高い金型を用い
ることによって表面粗さの転写を押えることができるこ
とがわかる。さらにひげの発生と中央部のひげを合わせ
て考慮すればこのように、短い落下距離でガラス液滴を
十分固化しない内に下金型で受け、成形してもひけの発
生が防止できるのは冷却中のひけにより発生した空気だ
まり部の空気が成形時に固化したガラス表面と金型表面
の間にある粗さの差によるすき間を通って除去されてい
くためと考えられる。
Secondly, since the cooling and solidification of the glass surface after contact with the mold is controlled by the thermal conductivity of the mold, it can be seen that by using a mold with high thermal conductivity, it is possible to suppress the transfer of surface roughness. Furthermore, if we take into account the occurrence of whiskers and the whiskers in the center, we can see that it is possible to prevent the occurrence of sink marks even if the glass droplets are received by the lower mold and molded before they solidify sufficiently with a short falling distance. This is thought to be because the air in the air pockets generated by sink marks during cooling is removed through the gap caused by the difference in roughness between the solidified glass surface and the mold surface during molding.

比較例においては通常、表1から明らかなごとくひけ発
生を防ぐには2m以上の滴下距離が必要である。石英に
ついては滴下距離250cmでもひげの発生が見られる
In the comparative examples, as is clear from Table 1, a dropping distance of 2 m or more is usually required to prevent the occurrence of sink marks. For quartz, whiskers can be seen even at a dropping distance of 250 cm.

発明の効果 本発明によれば熱伝導率が高く、表面粗さの比較的粗い
金型によって滴下ガラスを成形することにより、従来よ
り短かい滴下距離でひけのない良好なレンズを製造する
ことができる。
Effects of the Invention According to the present invention, by molding dripping glass using a mold with high thermal conductivity and relatively rough surface, it is possible to manufacture good lenses with no sink marks at a shorter dripping distance than before. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の液適法を実施するだめの装置の概略構
成例を示す図である。 第2図は、ひげの生じる機構を説明するI;めの図であ
る。 第1図 7苅 第2−0図 第2−b図 第2−c図 第2−d図 滴下 °H又朝8 成形 レンズ°。
FIG. 1 is a diagram showing an example of a schematic configuration of an apparatus for carrying out the liquid application method of the present invention. FIG. 2 is a second diagram illustrating the mechanism by which beards are produced. Fig. 1, 7, Fig. 2-0, Fig. 2-b, Fig. 2-c, Fig. 2-d, dropping.

Claims (1)

【特許請求の範囲】 1、ガラス溶融ルツボ、該ルツボ底部に設けられ、該ル
ツボで溶融されたガラスをガラス滴として滴下させるノ
ズル、該ノズルより滴下されたガラス滴を受けるガラス
滴受け下金型、および該ガラス滴受け下金型と協働して
滴下されたガラス滴を圧縮成形するための上金型を備え
たガラスレンズ製造装置において、該ガラス滴受け下金
型は、熱伝導率が50W/mK以上の材料で構成され、
0.05μmRmax〜0.2μmRmaxの表面粗さ
を有することを特徴とするガラスレンズの製造装置。 2、ノズル先端から溶融ガラスを滴下し、該ガラス滴を
、熱伝導率が50W/mK以上の材料で構成され、かつ
0.05μmRmaxの表面粗さを有するガラス滴受け
下金型で受けた後、該ガラス滴を圧縮成形することによ
りガラスレンズを得ることを特徴とするガラスレンズの
成形方法。
[Scope of Claims] 1. A glass melting crucible, a nozzle provided at the bottom of the crucible for dropping the glass melted in the crucible as glass droplets, and a lower glass droplet receiving mold for receiving the glass droplets dropped from the nozzle. , and an upper mold for compression molding the dropped glass droplet in cooperation with the glass droplet receiver lower mold, wherein the glass droplet receiver lower mold has a thermal conductivity of Constructed of material with a power rating of 50W/mK or more,
A glass lens manufacturing device characterized by having a surface roughness of 0.05 μmRmax to 0.2 μmRmax. 2. After dropping molten glass from the nozzle tip and receiving the glass droplet with a glass droplet receiver lower mold that is made of a material with a thermal conductivity of 50 W/mK or more and has a surface roughness of 0.05 μmRmax. A method for molding a glass lens, which comprises obtaining a glass lens by compression molding the glass droplets.
JP1275440A 1989-10-23 1989-10-23 Method for manufacturing glass lens and mold used for the method Expired - Fee Related JP2827337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1275440A JP2827337B2 (en) 1989-10-23 1989-10-23 Method for manufacturing glass lens and mold used for the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1275440A JP2827337B2 (en) 1989-10-23 1989-10-23 Method for manufacturing glass lens and mold used for the method

Publications (2)

Publication Number Publication Date
JPH03137031A true JPH03137031A (en) 1991-06-11
JP2827337B2 JP2827337B2 (en) 1998-11-25

Family

ID=17555555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1275440A Expired - Fee Related JP2827337B2 (en) 1989-10-23 1989-10-23 Method for manufacturing glass lens and mold used for the method

Country Status (1)

Country Link
JP (1) JP2827337B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016993A1 (en) * 2007-08-01 2009-02-05 Konica Minolta Opto, Inc. Process for manufacturing drag, process for producing glass gob and process for producing glass molding
WO2009060718A1 (en) * 2007-11-09 2009-05-14 Konica Minolta Opto, Inc. Process for producing lower die, lower die, process for producing glass gob, and process for producing glass molded product
WO2009122948A1 (en) * 2008-04-03 2009-10-08 コニカミノルタオプト株式会社 Lower die, production method of lower die, method for producing glass gob, and method for producing glass molded body
WO2010032671A1 (en) * 2008-09-19 2010-03-25 コニカミノルタオプト株式会社 Method for manufacturing mold, method for manufacturing glass gob, and method for manufacturing glass molded product
US20100101276A1 (en) * 2008-10-24 2010-04-29 Konica Minolta Opto, Inc. Methods for manufacturing molded glass object and upper mold
US20110247365A1 (en) * 2008-12-18 2011-10-13 Shuhei Hayakawa Mold and glass molded body manufacturing method
US9586849B2 (en) 2010-08-24 2017-03-07 Corning Incorporated Glass-forming tools and methods

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5347962B2 (en) * 2007-08-01 2013-11-20 コニカミノルタ株式会社 Lower mold manufacturing method, glass gob manufacturing method, and glass molded body manufacturing method
WO2009016993A1 (en) * 2007-08-01 2009-02-05 Konica Minolta Opto, Inc. Process for manufacturing drag, process for producing glass gob and process for producing glass molding
US8505338B2 (en) 2007-08-01 2013-08-13 Konica Minolta Opto, Inc. Method for manufacturing lower mold, method for manufacturing glass gob, and method for manufacturing molded glass article
WO2009060718A1 (en) * 2007-11-09 2009-05-14 Konica Minolta Opto, Inc. Process for producing lower die, lower die, process for producing glass gob, and process for producing glass molded product
JP5353706B2 (en) * 2007-11-09 2013-11-27 コニカミノルタ株式会社 Lower mold manufacturing method
WO2009122948A1 (en) * 2008-04-03 2009-10-08 コニカミノルタオプト株式会社 Lower die, production method of lower die, method for producing glass gob, and method for producing glass molded body
JP5472095B2 (en) * 2008-04-03 2014-04-16 コニカミノルタ株式会社 Lower mold, lower mold manufacturing method, glass gob manufacturing method, and glass molded body manufacturing method
CN101980979A (en) * 2008-04-03 2011-02-23 柯尼卡美能达精密光学株式会社 Lower die, production method of lower die, method for producing glass gob, and method for producing glass molded body
WO2010032671A1 (en) * 2008-09-19 2010-03-25 コニカミノルタオプト株式会社 Method for manufacturing mold, method for manufacturing glass gob, and method for manufacturing glass molded product
JP5440505B2 (en) * 2008-09-19 2014-03-12 コニカミノルタ株式会社 Method for producing mold, method for producing glass gob, and method for producing glass molded body
US20100101276A1 (en) * 2008-10-24 2010-04-29 Konica Minolta Opto, Inc. Methods for manufacturing molded glass object and upper mold
US9388063B2 (en) * 2008-10-24 2016-07-12 Naoyuki Fukumoto Methods for manufacturing molded glass object and upper mold
US20110247365A1 (en) * 2008-12-18 2011-10-13 Shuhei Hayakawa Mold and glass molded body manufacturing method
US8857217B2 (en) 2008-12-18 2014-10-14 Konica Minolta, Inc. Mold and glass molded body manufacturing method
US9586849B2 (en) 2010-08-24 2017-03-07 Corning Incorporated Glass-forming tools and methods

Also Published As

Publication number Publication date
JP2827337B2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
JP3853622B2 (en) Manufacturing method of glass molded body, manufacturing method of press-molded product, manufacturing method of glass optical element, and manufacturing apparatus of glass molded body
JPH0751446B2 (en) Glass body forming method and apparatus
JPH03137031A (en) Method and apparatus for producing glass lens
JP4938988B2 (en) Press molding preform manufacturing method, optical element manufacturing method, and molten glass outflow device
US5738701A (en) Glass gob production device and production method
JPS62292635A (en) Molding method for glass lens
JP2002121032A (en) Method of manufacturing glass gob, method of manufacturing glass formed parts and apparatus for manufacturing glass gob
JPH08319124A (en) Formation of glass gob
JPH0432772B2 (en)
JP2827336B2 (en) Method and apparatus for molding glass lens
JP3986064B2 (en) Method for producing glass lump and method for producing optical element
JPH0416414B2 (en)
JPH06206730A (en) Production of glass gob
JPH09235122A (en) Production of glass gob
JPS62270423A (en) Forming of glass lens
JPH11236224A (en) Method for forming optical element
JPH03137025A (en) Method and apparatus for producing glass lens
JPH04331726A (en) Production of noncircular lens
JPS62270427A (en) Forming of glass lens
JP3190133B2 (en) Method of forming glass lump
JPH07165431A (en) Forming of gob and forming apparatus therefor
JPH03137026A (en) Method and apparatus for producing glass lens by liquid drop method
JPS62297226A (en) Forming of glass lens
JPH0632624A (en) Method for forming optical glass and apparatus therefor
JPS63162540A (en) Process for forming optical glass element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070918

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees