JP3695610B2 - Model-based battery remaining capacity meter - Google Patents

Model-based battery remaining capacity meter Download PDF

Info

Publication number
JP3695610B2
JP3695610B2 JP19006796A JP19006796A JP3695610B2 JP 3695610 B2 JP3695610 B2 JP 3695610B2 JP 19006796 A JP19006796 A JP 19006796A JP 19006796 A JP19006796 A JP 19006796A JP 3695610 B2 JP3695610 B2 JP 3695610B2
Authority
JP
Japan
Prior art keywords
value
remaining capacity
terminal voltage
battery
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19006796A
Other languages
Japanese (ja)
Other versions
JPH1020003A (en
Inventor
孝幸 鳥飼
Original Assignee
株式会社キューキ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キューキ filed Critical 株式会社キューキ
Priority to JP19006796A priority Critical patent/JP3695610B2/en
Publication of JPH1020003A publication Critical patent/JPH1020003A/en
Application granted granted Critical
Publication of JP3695610B2 publication Critical patent/JP3695610B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電池モデルを用いて使用中の電池の残存容量を計測するモデルベース電池残存容量計に関する。
【0002】
【従来の技術】
環境問題の深刻化に伴なって電気自動車の開発が進んで実用化され始め、その外にも電池を利用した搬送車、カートなど、電池電源を利用するシステムや装置が年々増加している。これらの電池システムを有効かつ適切に運用するには、これらに使用される電池の運用状態、特に現時点における電池の残存容量が常に的確に把握されていることが必要である。したがってこのような技術分野で信頼性が高くて低廉な電池の残存容量計は不可欠のものである。
【0003】
電圧、電流検出方式の電池残存容量計(以下、単に「残存容量計」と言う)のなかでも、最も高精度の残存容量計として、例えば、特願平4−321482号に示すようなモデルベース残存容量計が提案されている。このモデルベース残存容量計は、一般に電池の端子電圧が、そのときの放電電流と電池の残存容量との関数であること、および電池の物理的諸性質を考慮し、ある時刻における電池モデルを2次式(図示せず)で代表させ、図5に示すように、横軸を放電電流A、縦軸を端子電圧Vとし、残存容量θをパラメータとした電圧電流特性群をもった電池のモデルを予め作成しておき、図6に示すようなアルゴリズムで電池残存容量を演算する。
【0004】
図6において、測定対象の電池1には負荷2(例えば、電気自動車の駆動用モ−タなど)が接続され、負荷電流すなわち電池1の放電電流iが電流計3で検出される。負荷2の大きさが負荷制御部4(例えば、電気自動車のアクセルペダル)によって制御されると、放電電流iが変化し、これに応じて電池1の端子電圧vも変化する。電圧vは電圧計10で測定される。電池モデル5としては、電池1の推定端子電圧Vesと、そのときの放電電流iおよび電池1の残存容量θ(モデルのパラメ−タとなる)の間の関係式(図示説明は省略)が予め決定されて用いられる。具体的には、検出された放電電流iの値が前記モデルの式(図5のグラフ)に代入されて推定端子電圧Vesが演算される。
【0005】
得られた推定端子電圧Vesは比較器6に供給されて実測端子電圧vと比較される。比較器6の出力すなわち、推定端子電圧Vesと実測端子電圧vとの差が電池モデル5の電池1に対する近似度すなわち収束度合いを表わすことは明らかである。したがって、前記差を収束判定部7に転送してこれが閾値以下に十分収束しているか否かを判定し、収束していないときは、残存容量修正部8で前記差が小さくなるように電池モデル5のパラメ−タすなわち残存容量θを修正する。電池モデル5では、修正された残存容量θと実測電流値iを用いて推定端子電圧Vesを演算し直す。一方、推定端子電圧Vesと実測端子電圧vとの差が十分小さくなったときは、電池モデル5が電池1の実態を代表していると考えられるので、収束判定部7は出力制御部9を制御してそのときの電池モデル5のパラメ−タを残存容量θとして出力する。
【0006】
このように運用中の電池で実測した電流から求まる電池モデルの電圧Ves(i,θ)とその時に実測した電池の電圧Vとの差{Ves(i,θ)−V}を最小化するように電池モデルの残存容量θを調整する。こうして求められたθがその時の実測電圧、電流を発生している状態の電池の残存容量θの推定値となる。前記{Ves(i,θ)−V}を最小化する具体的方法としては、図7に示した(1)式を評価函数として導入して、これを最小化するようにしている。上述のようにして、残存容量θの導入過程を残存容量計の中で行う場合には、電池モデルを図7の(2)式で表現し、実測電圧、電流V(τ),i(τ)を用いて前記(1)式による積分値を最小化することによって残存容量θが求められる。その具体的演算手法については前記特許出願明細書に詳述されている。
【0007】
【発明が解決しようとする課題】
上記のような電池残存容量計を、例えば車両ごとに搭載できるように広く普及させ、実用化するためには、その低価格化が必要である。しかし従来の電池残存容量計では、残存容量算出の演算アルゴリズムが高度で複雑であるために、高精度が得られるという利点がある一方、演算量が膨大であるためにマイコンなど計算機の負担が大きく、そのハード構成も複雑化してコスト高となることが避けられず、実用化と普及の妨げになるという問題がある。このために、低コストで実用上必要十分な精度や信頼性を維持したままで、コストを低減した電池残存容量計の開発が望まれている。
【0008】
本発明の目的は、基本的にはモデルベース電池残存容量計の原理を適用して実用上必要な精度を維持しながら、一方では、処理アルゴリズムを簡略化して、ハード構成の簡略化と低コスト化を共に実現できるモデルベース電池残存容量計を提供することにある。
【0009】
【課題を解決するための手段】
前記目的を達成するために、本発明のモデルベース電池残存容量計では、予定値きざみの離散値残存容量をパラメ−タとした当該電池の端子電圧電流特性曲線群を記憶する電池モデルを準備しておき、被測定電池の端子電圧および放電電流をサンプリングし、あるサンプリング時点での端子電圧値(または電流値)を、直前サンプリング時点での残存容量に対応する電池モデルの端子電圧電流特性曲線および少なくともその一方側に隣接する、少なくとも1つの端子電圧電流特性曲線に当て嵌めて端子電圧値(または電流値)の期待値を読取り、この端子電圧値(または電流値)の期待値とその実測値との差の評価値を各端子電圧電流特性曲線ごとに演算し、前記評価値が最小となる期待値に対応する残存容量を求め、これを前記サンプリング時点における電池の残存容量として出力するようにした。
【0010】
前記評価値が最小となる期待値に対応する残存容量としては、各サンプリング時点ごとの評価値を累算、平均化したときに最小値を与える特性曲線や、最少となる回数が最大となった特性曲線を取ったりする事ができる。またサンプリング時間間隔、利用する隣接端子電圧電流特性曲線の個数、端子電圧電流特性曲線群の予定きざみ値の大きさなどを所望検出精度、電池の残存容量、残存容量変化速度などに応じて変化させても良い。
【0011】
【発明の実施の形態】
以下に図面を参照して本発明の1実施例を詳細に説明する。まず電池モデルとして、図2のように、電池の残存容量値の0%〜100%の間をα%きざみで離散化して、残存容量毎の電圧電流特性をテーブルとして記憶しておく。すなわち、残存容量θ=θ(0) 、θ(1) 、θ(2) ……θ(j-1)、θ(j) ……θ(M) 毎に、予め複数の電圧電流特性曲線を準備しておく。ここで、θ(0) は残存容量0%に相当し、θ(M) は残存容量100%に相当する。また各残存容量θの値の間にはθ(i) =θ(i-1 )+α、θ(i+1 )=θ(i) +αの関係を持たせておく。
【0012】
つぎに図1および図3を参照して、この実施例の構成および残存容量の表示方法を説明する。図3に明示したように、本実施例では、T時間ごとに電池残存容量を演算して表示する。すなわち、時刻t(i+1) における残存容量θ(ti+1)は、その直前のT時間すなわち時刻t(i) からt(i+1) までのT時間の間に、Ts(=T/N)時間間隔のサンプリングで得られたデータに予定の演算処理(これについては後述する)を施すことによって得られ、この値θ(ti+1)が前記時刻での電池残存容量として出力、表示される。
【0013】
図1の電圧および電流センサ21a、bはそれぞれ被測定電池の端子電圧および放電電流を測定する。これらの測定値はそれぞれLPF(ローパスフィルタ)22a、bやサンプルホールド回路23a、bを介してA/D変換器24a、bに転送され、実測電圧値Vr および電流値Ir として演算処理部30に供給される。前記演算処理の方法を、時刻t(i+1) における残存容量θ(ti+1)を求める場合を例にとって説明する。
【0014】
時刻t(i) からt(i+1) まで[但しt(i+1) =t(i) +T]の間のT時間をN区間に等分割してTs =T/N時間毎に、実測電圧、電流値をサンプリングする。電池の運転中の各サンプリング時点{t(i) +kTs }(但し、k=1〜N)で得られた電流、電圧の実測データIr 、Vr を、
i{t(i) +Ts }、i{t(i) +2Ts }………i{t(i+1) }
V{t(i) +Ts }、V{t(i) +2Ts }………V{t(i+1) }とする。
【0015】
また、t(i) 時刻での残存容量θ( ti)、すなわち図1の演算処理部30の出力がθ(j) であったと仮定する。この場合、図1の特性曲線選択手段31は電池モデル(特性曲線テーブル)32から、図2の特性曲線群中の残存容量曲線θ(j) およびその直近両側に隣接する2曲線θ(j+1),θ(j-1) [但しθ(j+1) =θ(j)+α、θ(j-1) =θ(j)−α]を選択し、これらに各実測電流値Ir を当て嵌めて3種の期待電圧Ves{i(ti+kTs ),θ(j+1) }, Ves{i(ti+kTs ),θ(j) }、Ves{i(ti+kTs ),θ(j-1) }を読出す。
【0016】
加算器33a〜cはこれらの3種の期待電圧Vesと実測電圧Vr (ti+kTs )との差をそれぞれ求める。この差を実測値と電池モデルとの「距離」と定義し、この関係を図4に示す。図4は、図2の一部を拡大して示したものである。この図から容易に理解できるように、前記「距離」は、直前の残存容量演算時点t(i) での残存容量θ(j) 、それよりも1ステップ減少(−α%)した残存容量θ(j-1) および1ステップ増加(+α%)した残存容量θ(j+1) にそれぞれに対応する3本の電圧電流特性曲線から得られる各期待電圧Vesと現時点{t(i) +kTs }での実測電圧Vr との差に相当するものである。
【0017】
つづいて、現時点での実測電圧値Vr が、残存容量θ(j+1),θ(j),θ(j-1) の中のどの電圧電流特性曲線に、最も近い距離にあるかを求める。このために、前記各距離の自乗を指標とする評価式として、つぎの各式
J'{ti+kTs,θ(j+1)}= [Vr (ti+kTs )−Ves{i(ti+kTs )、θ(j+1) }] 2
J'{ti+kTs,θ(j)}= [Vr (ti+kTs )−Ves{i(ti+kTs )、θ(j) }] 2
J'{ti+kTs,θ(j-1)}= [Vr (ti+kTs )−Ves{i(ti+kTs )、θ(j-1) }] 2
を2乗回路35a〜cでそれぞれ算出する。
【0018】
そしてこの3つの評価式の中最も小さい評価値を与える特性曲線すなわち残存容量を求める。具体的にいえば、J(ti+kTs,θk)= min[J'{ti+kTs,θ(j+1)}、J'{ti+kTs,θ(j)}、J'{ti+kTs,θ(j-1)}]の関係にしたがって、{t(i) +kTs }時点で最も近い距離にある残存容量θk を求め、これを時刻t(i+1) における当該電池の残存容量として出力する。
【0019】
このために、前記2乗回路35a〜cの各出力を累算回路37a〜cで累算する。以上のようにしてサンプリング時間Ts 毎に求められたN個の各評価式の値J' をパラメータとしての前記残存容量θ(j+1),θ(j),θ(j-1) ごとに累算し、最小値選択回路38で累算値または平均値が最少となる残存容量θを求め、これを時刻t(i+1) における当該電池の残存容量として出力する。なお上記評価式として、前記距離の自乗の代わりに絶対値を指標として用いても、実用上有効な残存容量を求めることができる。このようにすれば、演算量をより一層低減することができる。
【0020】
また前述のように、時刻t(i) からt(i+1) までのT時間内に、サンプリング時間Ts 毎に得られたN個の評価値J' をそれぞれの残存容量θ(j+1),θ(j),θ(j-1) 毎に累算(さらに平均)する代わりに、残存容量θ(j+1),θ(j),θ(j-1) のそれぞれに対応させて3つのカウンタC1 、C2、C3(図示せず)を準備しておき、サンプリング時間Ts 毎に求められた3個の評価式の値が最少となる残存容量J(ti+kTs,θm )(ただし、θm =j+1,j,j-1)に相当する残存容量θm のカウンタに1を加算する。そして、k=1〜NのT時間内で得られた積算値が最大となったカウンタに相当する残存容量θm をt(i+1) 時刻での残存容量と決定することもできる。つまり、Ck =max(C1 、C2 、C3 )によって残存容量θm を求めるものである。
【0021】
例えば、残存容量θi に対応するカウンタC2 の積算値が最大であれば、Ck =C2 となり、(t1+1 )時刻での残存容量θ(t1+1)をθj と決定する。T時間が満了したら、各カウンタC1 、C2 、C3 を0にリセットする。また電池の満充電後に放電を開始する時点(t=0)においては、残存容量θk =θM =100%としておく。
【0022】
このように、残存容量の表示値がα%きざみに離散化され、処理および残量表示の単位時間をT時間毎としたため、その表示も時間的に離散化される。それ故に、残量演算、表示の要求精度に応じて離散化幅α、すなわち分解能を決めることができ、用途ごとに最適な精度を最小限の演算で得ることができる。このためには、分解能αを異ならせた図2や図4のような特性曲線群を予め準備しておくか、前記(2)式の係数a0(θ) 、a1(θ) などを適宜修正変更できるようにしておくことが必要である。
【0023】
これによって、従来技術において必須とされた複雑な積分演算や繰り返し収束計算が不要となり、簡単な計算で処理プロセスが格段に簡略化される。この結果、演算用マイコンのハード構成やソフトが、著しく簡単となり、製品のコストを大幅に低減することができる。
【0024】
前述の処理方法においては、処理時間間幅Tを予め固定的に与えて残存容量の推定を行なったが、この時間間隔Tは必ずしも固定である必要はない。電池の運用状態、例えば、残存容量の変化速度(減少または増加速度)に応じて、変化速度が大きいときには、時間Tを短くして残存容量計の応答速度を上げ、反対に、変化速度が遅いときには、時間Tを長くするなど、適切に前記時間間隔Tを可変にするアルゴリズムを組み入れることもできる。
【0025】
又、残存容量がどのように変化しているかをみるのに、現時点の残存容量θ(j) を中心に、1ステップ上および下の直近残存容量θ(j+1) 、θ(j-1) を用いて推定したが、この場合も同様に、残存容量の変化速度に応じて減少速度の速い時には、現状の残存容量θ(j) に対して1ステップ下の残存容量θ(j-1) の他に、2ステップ下のθ(j-2) を取り込み、さらには3ステップ下のθ(j-3) までも取り込むなど、取込み数を適切に可変調整するアルゴリズムを組み入れることもできる。
【0026】
さらに通常運用中は、残存容量は減少する一方である事実に着目し、現時点の残存容量θ(j) および少なくとも1きざみ下側の残存容量θ(j-1) を用いて推定するようにすることもでき、これによっても実用上十分な結果が得られる。仮に電力回生操作などによって、運用中に電池が充電されることがあっても実用に耐え得る残存容量計が提供できる。なお必要に応じて、運用中の電池充電を検知し、充電が検知されたならば現時点よりも上側の直近残存容量θ(j+1) をも加えて推定演算を行なうようにすることもできる。
【0027】
以上では実測電流値を電圧電流特性曲線に当て嵌めて端子電圧の期待値を求めたが、反対に、実測電圧値から期待電流値を求めて同様に演算することのできる。さらに、残留容量演算時間Tとサンプリング時間間隔Ts とを等しくしてサンプリング時点ごとの演算結果を出力表示しても良い。
【0028】
【発明の効果】
本発明では、このように電池の充放電の状態に応じて、推定演算を実行する時間間隔や計算に使用するパラメータの数を変更するアルゴリズムを組み入れることによって必要最小限の計算負荷によって電池の充放電状態や残存容量の変化状態に適切に応答する極めて合理的、経済的な電池残存容量計を実現することができる。
【図面の簡単な説明】
【図1】本発明の1実施例のブロック図である。
【図2】本発明に用いる電池モデルの1例を示す図である。
【図3】本発明による残量表示手法を説明するためのタイムチャートである。
【図4】図2の1部を拡大して示す図である。
【図5】従来の電池モデルを示す図である。
【図6】従来の電池残存容量計の1例のブロック図である。
【図7】本明細書において参照される数式を示す図である。
【符号の説明】
21a…電圧センサ 21b…電流センサ 22a、b…LPF 23a、b…サンプルホールド回路 24a、b…A/D変換器 30…演算処理部 31…特性曲線選択手段 32…電池モデル 35a〜c…2乗回路 37a〜c…累算回路 38…最小値選択回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a model-based battery remaining capacity meter that measures the remaining capacity of a battery in use using a battery model.
[0002]
[Prior art]
As environmental problems become more serious, electric vehicles have been developed and put into practical use. Besides, vehicles and carts that use batteries are also increasing year by year. In order to operate these battery systems effectively and appropriately, it is necessary that the operating state of the batteries used in them, particularly the remaining capacity of the battery at the present time, be always accurately grasped. Therefore, a reliable and inexpensive battery residual capacity meter is indispensable in such a technical field.
[0003]
Among the remaining battery capacity meters of the voltage / current detection system (hereinafter simply referred to as “remaining capacity meters”), as the most accurate remaining capacity meter, for example, a model base as shown in Japanese Patent Application No. 4-321482 A remaining capacity meter has been proposed. This model-based remaining capacity meter generally determines the battery model at a certain time in consideration of the fact that the terminal voltage of the battery is a function of the discharge current and the remaining capacity of the battery, and the physical properties of the battery. A model of a battery having a voltage-current characteristic group in which the horizontal axis is the discharge current A, the vertical axis is the terminal voltage V, and the remaining capacity θ is a parameter, as represented by the following equation (not shown), as shown in FIG. Is created in advance, and the remaining battery capacity is calculated by an algorithm as shown in FIG.
[0004]
In FIG. 6, a load 2 (for example, a motor for driving an electric vehicle) is connected to the battery 1 to be measured, and a load current, that is, a discharge current i of the battery 1 is detected by an ammeter 3. When the size of the load 2 is controlled by a load control unit 4 (for example, an accelerator pedal of an electric vehicle), the discharge current i changes, and the terminal voltage v of the battery 1 changes accordingly. The voltage v is measured with a voltmeter 10. As the battery model 5, a relational expression (illustration is omitted) between the estimated terminal voltage Ves of the battery 1 and the discharge current i at that time and the remaining capacity θ of the battery 1 (which is a parameter of the model) is preliminarily shown. Determined and used. Specifically, the estimated terminal voltage Ves is calculated by substituting the detected value of the discharge current i into the equation (graph of FIG. 5) of the model.
[0005]
The obtained estimated terminal voltage Ves is supplied to the comparator 6 and compared with the actually measured terminal voltage v. It is obvious that the output of the comparator 6, that is, the difference between the estimated terminal voltage Ves and the measured terminal voltage v represents the degree of approximation, that is, the degree of convergence of the battery model 5 with respect to the battery 1. Therefore, the difference is transferred to the convergence determination unit 7 to determine whether or not the difference has sufficiently converged below the threshold value. When the difference has not converged, the battery model is set so that the remaining capacity correction unit 8 reduces the difference. 5 parameter, that is, the remaining capacity θ is corrected. In the battery model 5, the estimated terminal voltage Ves is recalculated using the corrected remaining capacity θ and the measured current value i. On the other hand, when the difference between the estimated terminal voltage Ves and the measured terminal voltage v becomes sufficiently small, the battery model 5 is considered to represent the actual state of the battery 1, so the convergence determination unit 7 sets the output control unit 9. The parameter of the battery model 5 at that time is controlled and output as the remaining capacity θ.
[0006]
Thus, the difference {Ves (i, θ) −V} between the voltage Ves (i, θ) of the battery model obtained from the current measured in the battery in operation and the voltage V of the battery actually measured at that time is minimized. The remaining capacity θ of the battery model is adjusted. Θ thus obtained is an estimated value of the remaining capacity θ of the battery in a state where the actually measured voltage and current at that time are generated. As a specific method for minimizing {Ves (i, θ) −V}, the equation (1) shown in FIG. 7 is introduced as an evaluation function to minimize it. As described above, when the introduction process of the remaining capacity θ is performed in the remaining capacity meter, the battery model is expressed by the equation (2) in FIG. 7 and the measured voltage, current V (τ), i (τ ) Is used to minimize the integral value according to the equation (1) to obtain the remaining capacity θ. The specific calculation method is described in detail in the patent application specification.
[0007]
[Problems to be solved by the invention]
In order to spread the battery remaining capacity meter as described above so that it can be mounted for each vehicle, for example, and to put it into practical use, it is necessary to reduce its price. However, the conventional battery capacity meter has the advantage that the calculation algorithm for calculating the remaining capacity is sophisticated and complex, so it has the advantage of high accuracy. On the other hand, the calculation amount is enormous, so the burden on computers such as microcomputers is large. However, it is inevitable that the hardware configuration is complicated and the cost is increased, which hinders practical use and spread. For this reason, it is desired to develop a battery remaining capacity meter with reduced cost while maintaining the necessary and sufficient accuracy and reliability at low cost.
[0008]
The object of the present invention is basically to apply the principle of the model-based battery remaining capacity meter to maintain the accuracy necessary for practical use, while simplifying the processing algorithm, simplifying the hardware configuration and reducing the cost. It is to provide a model-based battery remaining capacity meter that can realize both of the above.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the model-based battery remaining capacity meter of the present invention prepares a battery model that stores a terminal voltage-current characteristic curve group of the battery with a discrete value remaining capacity in increments of a predetermined value as a parameter. The terminal voltage and discharge current of the battery to be measured are sampled, and the terminal voltage value (or current value) at a certain sampling time point is determined as the terminal voltage current characteristic curve of the battery model corresponding to the remaining capacity at the previous sampling time point and The expected value of the terminal voltage value (or current value) is read by fitting to at least one terminal voltage-current characteristic curve adjacent to at least one side thereof, and the expected value of this terminal voltage value (or current value) and its actual measurement value Is calculated for each terminal voltage-current characteristic curve, and a remaining capacity corresponding to an expected value that minimizes the evaluation value is obtained. And output as the remaining capacity of the battery at the time.
[0010]
As the remaining capacity corresponding to the expected value at which the evaluation value becomes the minimum, the characteristic curve that gives the minimum value when the evaluation value for each sampling time is accumulated and averaged, and the number of times of the minimum is the maximum You can take a characteristic curve. In addition, the sampling time interval, the number of adjacent terminal voltage-current characteristic curves to be used, the size of the expected step value of the terminal voltage-current characteristic curve group, etc. are changed according to the desired detection accuracy, the remaining capacity of the battery, the remaining capacity change rate, etc. May be.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. First, as a battery model, between 0% and 100% of the remaining capacity value of the battery is discretized in steps of α%, and the voltage-current characteristics for each remaining capacity are stored as a table as shown in FIG. That is, for each remaining capacity θ = θ (0), θ (1), θ (2)... Θ (j-1), θ (j). Prepare. Here, θ (0) corresponds to a remaining capacity of 0%, and θ (M) corresponds to a remaining capacity of 100%. Further, the relationship of θ (i) = θ (i−1) + α and θ (i + 1) = θ (i) + α are set between the values of the remaining capacity θ.
[0012]
Next, with reference to FIG. 1 and FIG. 3, the configuration of this embodiment and the display method of the remaining capacity will be described. As clearly shown in FIG. 3, in this embodiment, the remaining battery capacity is calculated and displayed every T time. That is, the remaining capacity θ (ti + 1) at time t (i + 1) is equal to Ts (= T during the T time immediately before that, that is, during the T time from time t (i) to t (i + 1). / N) It is obtained by performing a predetermined calculation process (which will be described later) on the data obtained by sampling at time intervals, and this value θ (ti + 1) is output as the remaining battery capacity at the time, Is displayed.
[0013]
The voltage and current sensors 21a and 21b in FIG. 1 measure the terminal voltage and discharge current of the battery under measurement, respectively. These measured values are transferred to the A / D converters 24a and 24b through LPFs (low pass filters) 22a and b and sample and hold circuits 23a and 23b, respectively, and are sent to the arithmetic processing unit 30 as measured voltage values Vr and current values Ir. Supplied. The calculation processing method will be described by taking as an example the case where the remaining capacity θ (ti + 1) at time t (i + 1) is obtained.
[0014]
T time between time t (i) and t (i + 1) [where t (i + 1) = t (i) + T] is equally divided into N sections, and every Ts = T / N time, Sample the measured voltage and current values. Current and voltage measured data Ir and Vr obtained at each sampling time {t (i) + kTs} (where k = 1 to N) during operation of the battery,
i {t (i) + Ts}, i {t (i) + 2Ts}... i {t (i + 1)}
V {t (i) + Ts}, V {t (i) + 2Ts}... V {t (i + 1)}.
[0015]
Further, it is assumed that the remaining capacity θ (ti) at the time t (i), that is, the output of the arithmetic processing unit 30 in FIG. 1 is θ (j). In this case, the characteristic curve selection means 31 in FIG. 1 determines from the battery model (characteristic curve table) 32 the remaining capacity curve θ (j) in the characteristic curve group in FIG. 1), θ (j-1) [However, θ (j + 1) = θ (j) + α, θ (j-1) = θ (j) -α]], and each measured current value Ir is selected. Three types of expected voltages Ves {i (ti + kTs), θ (j + 1)}, Ves {i (ti + kTs), θ (j)}, Ves {i (ti + kTs), θ (j-1)} is read.
[0016]
The adders 33a to 33c obtain differences between these three types of expected voltage Ves and the actually measured voltage Vr (ti + kTs), respectively. This difference is defined as the “distance” between the measured value and the battery model, and this relationship is shown in FIG. FIG. 4 is an enlarged view of a part of FIG. As can be easily understood from this figure, the “distance” is the remaining capacity θ (j) at the last remaining capacity calculation time t (i), and the remaining capacity θ reduced by one step (−α%). (j-1) and each expected voltage Ves obtained from three voltage-current characteristic curves corresponding to the remaining capacity θ (j + 1) increased by one step (+ α%) and the current time {t (i) + kTs} This corresponds to the difference from the actually measured voltage Vr.
[0017]
Subsequently, it is determined which voltage-current characteristic curve in the remaining capacity θ (j + 1), θ (j), θ (j-1) is closest to the current measured voltage value Vr. . For this purpose, the following formulas J ′ {ti + kTs, θ (j + 1)} = [Vr (ti + kTs) −Ves {i (ti +) are used as evaluation formulas using the square of each distance as an index. kTs), θ (j + 1)}] 2
J ′ {ti + kTs, θ (j)} = [Vr (ti + kTs) −Ves {i (ti + kTs), θ (j)}] 2
J ′ {ti + kTs, θ (j−1)} = [Vr (ti + kTs) −Ves {i (ti + kTs), θ (j−1)}] 2
Are respectively calculated by the square circuits 35a to 35c.
[0018]
A characteristic curve that gives the smallest evaluation value among the three evaluation formulas, that is, a remaining capacity is obtained. Specifically, J (ti + kTs, θk) = min [J ′ {ti + kTs, θ (j + 1)}, J ′ {ti + kTs, θ (j)}, J ′ {ti + kTs, θ (j-1)}], the remaining capacity θk at the closest distance at the time {t (i) + kTs} is obtained, and this is obtained as the remaining capacity of the battery at time t (i + 1). Output as.
[0019]
For this purpose, the outputs of the square circuits 35a to 35c are accumulated in the accumulation circuits 37a to 37c. For each of the remaining capacities θ (j + 1), θ (j), and θ (j−1) using the values J ′ of the N evaluation formulas obtained at each sampling time Ts as described above as parameters. Accumulation is performed, and the minimum value selection circuit 38 obtains the remaining capacity θ that minimizes the accumulated value or the average value, and outputs this as the remaining capacity of the battery at time t (i + 1). Note that the practically effective remaining capacity can be obtained by using an absolute value as an index instead of the square of the distance as the evaluation formula. In this way, the amount of calculation can be further reduced.
[0020]
Further, as described above, the N evaluation values J ′ obtained for each sampling time Ts within the T time from the time t (i) to t (i + 1) are used as the remaining capacity θ (j + 1). ), θ (j), and θ (j-1), instead of accumulating (and averaging) every remaining capacity θ (j + 1), θ (j), θ (j-1) Three counters C1, C2, and C3 (not shown) are prepared, and the remaining capacity J (ti + kTs, θm) (the value of the three evaluation formulas obtained every sampling time Ts is minimized. However, 1 is added to the counter of the remaining capacity θm corresponding to θm = j + 1, j, j−1). Then, the remaining capacity θm corresponding to the counter having the maximum integrated value obtained within T time of k = 1 to N can be determined as the remaining capacity at the time t (i + 1). That is, the remaining capacity θm is obtained by Ck = max (C1, C2, C3).
[0021]
For example, if the integrated value of the counter C2 corresponding to the remaining capacity θi is maximum, Ck = C2, and the remaining capacity θ (t1 + 1) at time (t1 + 1) is determined as θj. When the time T expires, the counters C1, C2, and C3 are reset to zero. Further, at the point of time when discharge is started after the battery is fully charged (t = 0), the remaining capacity θk = θM = 100%.
[0022]
In this way, the display value of the remaining capacity is discretized in units of α%, and the unit time for processing and remaining amount display is set to every T hours, so that the display is also discretized in time. Therefore, the discretization width α, that is, the resolution can be determined in accordance with the required accuracy of the remaining amount calculation and display, and the optimum accuracy for each application can be obtained with the minimum calculation. For this purpose, a group of characteristic curves as shown in FIGS. 2 and 4 with different resolution α is prepared in advance, or the coefficients a0 (θ), a1 (θ), etc. in the equation (2) are corrected as appropriate. It is necessary to be able to change it.
[0023]
This eliminates the need for complicated integration calculations and repeated convergence calculations that are essential in the prior art, and greatly simplifies the processing process with simple calculations. As a result, the hardware configuration and software of the arithmetic microcomputer are remarkably simplified, and the cost of the product can be greatly reduced.
[0024]
In the above-described processing method, the remaining capacity is estimated by giving the processing time width T fixed in advance, but the time interval T is not necessarily fixed. Depending on the operating state of the battery, for example, the change rate (decrease or increase rate) of the remaining capacity, when the change rate is large, the time T is shortened to increase the response speed of the remaining capacity meter. In some cases, an algorithm for appropriately varying the time interval T, such as increasing the time T, can be incorporated.
[0025]
In order to see how the remaining capacity has changed, the most recent remaining capacity θ (j + 1), θ (j−1) one step up and below is centered on the current remaining capacity θ (j). In this case, similarly, when the rate of decrease is fast according to the rate of change of the remaining capacity, the remaining capacity θ (j−1) one step lower than the current remaining capacity θ (j). In addition to 2), it is also possible to incorporate an algorithm that appropriately variably adjusts the number of captures, such as capturing θ (j-2) two steps below and even capturing θ (j-3) three steps below.
[0026]
In addition, during normal operation, pay attention to the fact that the remaining capacity is decreasing, and estimate it using the current remaining capacity θ (j) and the remaining capacity θ (j-1) at least by one step. This also gives practically sufficient results. A remaining capacity meter that can withstand practical use even if the battery is charged during operation, for example, by power regeneration operation, can be provided. If necessary, the battery charging during operation can be detected, and if charging is detected, the nearest remaining capacity θ (j + 1) above the current time can be added to perform the estimation calculation. .
[0027]
In the above, the expected value of the terminal voltage is obtained by fitting the actually measured current value to the voltage-current characteristic curve, but on the contrary, the expected current value can be obtained from the actually measured voltage value and similarly calculated. Furthermore, the residual capacity calculation time T and the sampling time interval Ts may be made equal to output and display the calculation result for each sampling point.
[0028]
【The invention's effect】
In the present invention, the charging / discharging of the battery is performed with the minimum calculation load by incorporating an algorithm for changing the time interval for executing the estimation calculation and the number of parameters used for the calculation according to the state of charge / discharge of the battery. It is possible to realize a very rational and economical battery remaining capacity meter that appropriately responds to the discharge state and the change state of the remaining capacity.
[Brief description of the drawings]
FIG. 1 is a block diagram of one embodiment of the present invention.
FIG. 2 is a diagram showing an example of a battery model used in the present invention.
FIG. 3 is a time chart for explaining a remaining amount display method according to the present invention.
4 is an enlarged view showing a part of FIG. 2. FIG.
FIG. 5 is a diagram showing a conventional battery model.
FIG. 6 is a block diagram of an example of a conventional battery remaining capacity meter.
FIG. 7 is a diagram illustrating mathematical expressions referred to in the present specification.
[Explanation of symbols]
21a ... Voltage sensor 21b ... Current sensor 22a, b ... LPF 23a, b ... Sample hold circuit 24a, b ... A / D converter 30 ... Arithmetic processor 31 ... Characteristic curve selection means 32 ... Battery model 35a-c ... Squared Circuits 37a to 37c: Accumulation circuit 38 ... Minimum value selection circuit

Claims (8)

被測定電池の端子電圧を測定する端子電圧センサと、
前記電池の電流を測定する電流センサと、
予定値きざみの離散値残存容量をパラメ−タとした当該電池の端子電圧電流特性曲線群を記憶する電池モデルと、
あるサンプリング時点で測定された端子電圧値および電流値の一方を、直前サンプリング時点での残存容量に対応する電池モデルの端子電圧電流特性曲線および少なくともその一方側に隣接する、少なくとも1つの端子電圧電流特性曲線に当て嵌めて端子電圧値および電流値の他方の期待値を導出する手段と、
前記のように導出された端子電圧値および電流値の他方の期待値とその実測値との差の評価値を各端子電圧電流特性曲線ごとに演算する手段と、
前記評価値が最小となる期待値に対応する残存容量を前記あるサンプリング時点における電池の残存容量として出力する手段とを具備したモデルベース電池残存容量計。
A terminal voltage sensor for measuring the terminal voltage of the measured battery;
A current sensor for measuring the current of the battery;
A battery model for storing a terminal voltage-current characteristic curve group of the battery with a discrete value remaining capacity in increments of a predetermined value as a parameter;
One of the terminal voltage value and the current value measured at a certain sampling time is converted into a terminal voltage current characteristic curve of the battery model corresponding to the remaining capacity at the previous sampling time and at least one terminal voltage current adjacent to at least one side thereof. Means for deriving the other expected value of the terminal voltage value and the current value by fitting to the characteristic curve;
Means for calculating an evaluation value of the difference between the other expected value of the terminal voltage value and the current value derived as described above and the actual measurement value for each terminal voltage current characteristic curve;
A model-based battery remaining capacity meter comprising: means for outputting a remaining capacity corresponding to an expected value at which the evaluation value is minimum as a remaining capacity of the battery at the sampling time.
被測定電池の端子電圧を測定する端子電圧センサと、
前記電池の電流を測定する電流センサと、
予定値きざみの離散値残存容量をパラメ−タとした当該電池の端子電圧電流特性曲線群を記憶する電池モデルと、
1残留容量演算時間に含まれる連続した複数のサンプリング時点で測定された各端子電圧値および電流値の一方を、各サンプリング時点ごとに、直前の残留容量演算時点での残存容量に対応する電池モデルの端子電圧電流特性曲線および少なくともその一方側に隣接する、少なくとも1つの端子電圧電流特性曲線に当て嵌めて端子電圧値および電流値の他方の期待値をそれぞれ導出する手段と、
各サンプリング時点ごとに、前記のように導出された端子電圧値および電流値の他方の期待値とその実測値との差の評価値を各端子電圧電流特性曲線ごとに演算する手段と、
各サンプリング時点ごとに、前記評価値が最小となる期待値に対応する端子電圧電流特性曲線を決定する手段と、
1残留容量演算時間内において、前記評価値が最小となった回数が最大である期待値に対応する端子電圧電流特性曲線が表わす離散値電池残存容量を、今回残留容量演算時点における電池の残存容量として出力する手段とを具備したモデルベース電池残存容量計。
A terminal voltage sensor for measuring the terminal voltage of the measured battery;
A current sensor for measuring the current of the battery;
A battery model for storing a terminal voltage-current characteristic curve group of the battery with a discrete value remaining capacity in increments of a predetermined value as a parameter;
A battery model corresponding to one of the terminal voltage values and current values measured at a plurality of consecutive sampling points included in one remaining capacity calculation time, corresponding to the remaining capacity at the last remaining capacity calculation point for each sampling point Means for deriving the other expected value of the terminal voltage value and the current value by fitting to at least one terminal voltage current characteristic curve adjacent to at least one terminal voltage current characteristic curve
For each sampling time point, means for calculating an evaluation value of the difference between the other expected value of the terminal voltage value and the current value derived as described above and the actual measurement value for each terminal voltage current characteristic curve;
Means for determining a terminal voltage current characteristic curve corresponding to an expected value at which the evaluation value is minimum for each sampling time point;
The discrete battery residual capacity represented by the terminal voltage-current characteristic curve corresponding to the expected value with the maximum number of times that the evaluation value is minimized within one remaining capacity calculation time is determined as the remaining battery capacity at the time of the residual capacity calculation at this time. A model base battery remaining capacity meter comprising:
被測定電池の端子電圧を測定する端子電圧センサと、
前記電池の電流を測定する電流センサと、
予定値きざみの離散値残存容量をパラメ−タとした当該電池の端子電圧電流特性曲線群を記憶する電池モデルと、
1残留容量演算時間に含まれる連続した複数のサンプリング時点で測定された各端子電圧値および電流値の一方を、各サンプリング時点ごとに、直前の残留容量演算時点での残存容量に対応する電池モデルの端子電圧電流特性曲線および少なくともその一方側に隣接する、少なくとも1つの端子電圧電流特性曲線に当て嵌めて端子電圧値および電流値の他方の期待値をそれぞれ導出する手段と、
各サンプリング時点ごとに、前記のように導出された端子電圧値および電流値の他方の期待値とその実測値との差の評価値を各端子電圧電流特性曲線ごとに演算する手段と、
各サンプリング時点ごとに演算された前記評価値を、各端子電圧電流特性曲線ごとに、1残留容量演算時間に亘って累算または平均化する手段と、
前記累算または平均値が最小となった期待値に対応する端子電圧電流特性曲線が表わす離散値電池残存容量を、今回残留容量演算時点における電池の残存容量として出力する手段とを具備したモデルベース電池残存容量計。
A terminal voltage sensor for measuring the terminal voltage of the measured battery;
A current sensor for measuring the current of the battery;
A battery model for storing a terminal voltage-current characteristic curve group of the battery with a discrete value remaining capacity in increments of a predetermined value as a parameter;
A battery model corresponding to one of the terminal voltage values and current values measured at a plurality of consecutive sampling points included in one remaining capacity calculation time, corresponding to the remaining capacity at the last remaining capacity calculation point for each sampling point Means for deriving the other expected value of the terminal voltage value and the current value by fitting to at least one terminal voltage current characteristic curve adjacent to at least one terminal voltage current characteristic curve
For each sampling time point, means for calculating an evaluation value of the difference between the other expected value of the terminal voltage value and the current value derived as described above and the actual measurement value for each terminal voltage current characteristic curve;
Means for accumulating or averaging the evaluation value calculated at each sampling time point for each terminal voltage current characteristic curve over one residual capacity calculation time;
A model base comprising: a means for outputting a discrete value battery remaining capacity represented by a terminal voltage-current characteristic curve corresponding to the expected value at which the accumulated value or the average value is minimized, as the remaining battery capacity at the time of the present remaining capacity calculation Battery remaining capacity meter.
前記評価値は、前記期待値とその実測値との距離およびその自乗のいずれかである請求項1ないし3のいずれかに記載のモデルベース電池残存容量計。4. The model-based battery remaining capacity meter according to claim 1, wherein the evaluation value is any one of a distance between the expected value and an actually measured value and a square thereof. 5. 端子電圧電流特性曲線群の残存容量の離散値きざみ幅を、電池残存容量の要求精度に応じて異ならせる手段をさらに具備した請求項1ないし4のいずれかに記載のモデルベース電池残存容量計。The model-based battery remaining capacity meter according to any one of claims 1 to 4, further comprising means for varying a discrete step size of the remaining capacity of the terminal voltage-current characteristic curve group according to a required accuracy of the battery remaining capacity. 電池モデルが、残存容量の離散値きざみ幅を異ならせた複数組の端子電圧電流特性曲線群を予め記憶し、
電池残存容量の要求精度に応じて、1組の端子電圧電流特性曲線群を選択する手段とをさらに具備した請求項1ないし5のいずれかに記載のモデルベース電池残存容量計。
The battery model stores in advance a plurality of sets of terminal voltage-current characteristic curves having different discrete value increments of the remaining capacity,
6. The model-based battery remaining capacity meter according to claim 1, further comprising means for selecting a set of terminal voltage current characteristic curve groups according to the required accuracy of the battery remaining capacity.
残留容量演算時間は、電池の残存容量変化速度が速いほど短くされる請求項1ないし6のいずれかに記載のモデルベース電池残存容量計。The model-based battery remaining capacity meter according to any one of claims 1 to 6, wherein the remaining capacity calculation time is shortened as the battery remaining capacity change rate increases. 期待値の算出に用いられる端子電圧電流特性曲線の本数は、電池の残存容量変化速度が速いほど増加される請求項1ないし7のいずれかに記載のモデルベース電池残存容量計。8. The model-based battery remaining capacity meter according to claim 1, wherein the number of terminal voltage-current characteristic curves used for calculating the expected value is increased as the battery remaining capacity change rate increases.
JP19006796A 1996-07-01 1996-07-01 Model-based battery remaining capacity meter Expired - Fee Related JP3695610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19006796A JP3695610B2 (en) 1996-07-01 1996-07-01 Model-based battery remaining capacity meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19006796A JP3695610B2 (en) 1996-07-01 1996-07-01 Model-based battery remaining capacity meter

Publications (2)

Publication Number Publication Date
JPH1020003A JPH1020003A (en) 1998-01-23
JP3695610B2 true JP3695610B2 (en) 2005-09-14

Family

ID=16251809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19006796A Expired - Fee Related JP3695610B2 (en) 1996-07-01 1996-07-01 Model-based battery remaining capacity meter

Country Status (1)

Country Link
JP (1) JP3695610B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2197638T3 (en) * 1998-05-28 2004-01-01 Toyota Jidosha Kabushiki Kaisha MEANS TO ESTIMATE THE BATTERY CHARGE STATUS AND PROCEDURE TO ESTIMATE A BATTERY DEGRADATION STATUS.
DE19959019A1 (en) * 1999-12-08 2001-06-13 Bosch Gmbh Robert Method for status detection of an energy store
JP5163542B2 (en) * 2009-03-03 2013-03-13 日産自動車株式会社 Secondary battery input / output possible power estimation device
US9210662B1 (en) * 2014-05-29 2015-12-08 Apple Inc. Adaptive battery life extension
KR102489129B1 (en) * 2018-04-04 2023-01-13 주식회사 엘지에너지솔루션 Method and apparatus for setting representative power pattern for battery test
CN113359044B (en) * 2020-03-03 2023-11-24 鹤壁天海电子信息系统有限公司 Method, device and equipment for measuring residual capacity of battery
CN116680506B (en) * 2023-07-27 2023-10-20 中国人民解放军国防科技大学 Self-adaptive interval optimization incremental capacity curve number point statistical method and device

Also Published As

Publication number Publication date
JPH1020003A (en) 1998-01-23

Similar Documents

Publication Publication Date Title
JP3873623B2 (en) Battery charge state estimation means and battery deterioration state estimation method
JP5595361B2 (en) Secondary battery charge state estimation device
JP3209457B2 (en) Battery remaining capacity detection method
JP5842421B2 (en) Battery state estimation device
JPH08146105A (en) Computing method for discharge characteristics of battery and measuring device for remaining capacity of battery
US6388450B2 (en) Method for determining the state of charge of storage batteries
CN107167743B (en) Electric vehicle-based state of charge estimation method and device
JP4872226B2 (en) Secondary battery remaining capacity estimation method, apparatus and battery pack
JP5163542B2 (en) Secondary battery input / output possible power estimation device
CN102822690A (en) Charge state estimation apparatus
KR20150019190A (en) Method of Estimating Battery Stste-Of-Charge and Apparatus therefor the same
JP2012057998A (en) Charge rate calculation apparatus for secondary battery and charge rate calculation method
JP3200339B2 (en) Battery remaining capacity measurement device
CN107677967B (en) Method and device for determining electric quantity of battery
JP3695610B2 (en) Model-based battery remaining capacity meter
JP5803767B2 (en) Secondary battery charge equivalent amount calculation device
JP4509670B2 (en) Remaining capacity calculation device for power storage device
CN112858924A (en) Method and device for estimating residual energy of power battery, vehicle and storage medium
JP2000306613A (en) Battery state monitoring device
JP3551767B2 (en) Battery discharge meter
JP3495139B2 (en) Battery remaining capacity measurement device
CN111965428B (en) Insulation resistance detection method, device, equipment and storage medium
JP3583159B2 (en) Battery state determination device
WO2019012930A1 (en) Secondary battery control device
JP5412891B2 (en) Secondary battery control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees