JP3694824B2 - Threaded steel pipe pile and its construction method - Google Patents

Threaded steel pipe pile and its construction method Download PDF

Info

Publication number
JP3694824B2
JP3694824B2 JP30693399A JP30693399A JP3694824B2 JP 3694824 B2 JP3694824 B2 JP 3694824B2 JP 30693399 A JP30693399 A JP 30693399A JP 30693399 A JP30693399 A JP 30693399A JP 3694824 B2 JP3694824 B2 JP 3694824B2
Authority
JP
Japan
Prior art keywords
steel pipe
pile
pipe pile
auger
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30693399A
Other languages
Japanese (ja)
Other versions
JP2001123442A (en
Inventor
正宏 林
和臣 市川
敏雄 篠原
玄 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Chiyoda Geotech Co Ltd
Original Assignee
JFE Steel Corp
Chiyoda Geotech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Chiyoda Geotech Co Ltd filed Critical JFE Steel Corp
Priority to JP30693399A priority Critical patent/JP3694824B2/en
Publication of JP2001123442A publication Critical patent/JP2001123442A/en
Application granted granted Critical
Publication of JP3694824B2 publication Critical patent/JP3694824B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ねじ込み式鋼管杭及びその施工方法に係り、さらに詳しくは、少なくとも鋼管の先端部又はその近傍に翼を取付けた鋼管杭に回転力を与えることにより、鋼管杭を地中に埋設するようにしたねじ込み式鋼管杭及びその施工方法に関するものである。
【0002】
【従来の技術】
鋼管の先端部や側面に翼状板を取付けた鋼管杭に、地上に設置した機械により回転力を与え、翼状板の木ネジ作用により鋼管杭を地中に埋設する方法は、従来から多数提案されており、その一部は小径の杭を対象としたものではあるが実用化されている。ここでは、代表的と思われる発明について、以下に説明する。
【0003】
特公平2−62648号公報に記載された鋼管杭の埋設方法は、鋼管杭本体の下端部に底板を固設し、この底板に掘削刃を設けると共に、杭本体の下端部外周面に杭本体の外径のほぼ2倍強の外径を有する翼幅の大きな杭ねじ込み用の螺旋翼を、ほぼ一巻きにわたり突設した鋼管杭を、軟弱地盤にねじ込むように回転させながら地中に押圧し、下端部の掘削刃によって杭本体先端の土砂を掘削軟化させて、杭側面の未掘削土砂中に螺旋翼を食い込ませて、土の耐力を反力として杭体を回転推進しつつ、掘削軟化した土砂を杭側面に押出して圧縮し、無排土で地中に杭体をねじ込んでゆくようにしたものである(従来技術1)。
【0004】
また、特開平9−324419号公報に記載されたねじ込み式鋼管杭は、先端部を円周方向に複数に分割し、この分割された個々の部分に同方向に向ってそれぞれレ字状の取付部が形成された鋼管と、外径が上記鋼管の外径より大きい円形鋼板又は楕円形鋼板を複数に分割した平板状でほぼ半円状又は扇形状の鋼製板(翼)とを有し、この鋼製板を鋼管の先端開口部を覆うようにして鋼管の先端部に設けたレ字状の取付部にそれぞれ取付けたもので、他の従来技術と大きく異なる点は、翼を平板状に形成したこと、及び翼を鋼管の外周面ではなく先端部に取付けたことにある(従来技術2)。
【0005】
ねじ込み式鋼管杭は、前述のように、鋼管杭に回動力を与えることにより、先端部又はその近傍に取付けた翼のねじ作用で鋼管杭を地盤に埋設するようにしたものであり、低振動、低騒音、無排土で施工できると共に、広い翼の面積を利用して大きな先端支持力を得ることができるという特徴を持つ。
しかし、上記の従来技術では、鋼管径を大きくすると翼による抵抗と外周面摩擦とによる抵抗が大きくなり、貫入に際して非常に大きなトルクが必要になるため、施工が困難になる。そのため、600mm程度の管径までしか利用できないのが現状である。なお、鋼管杭の先端部に大きな穴をあけてトルクを低減することも考えられるが、先端部に大きな穴をあけると先端支持力が低下してしまうので好ましくない。
【0006】
前述のように、ねじ込み式鋼管杭は翼による投影面積の増大により先端支持力が増加する。このため、上部構造物の基礎杭として供用する場合、翼のない通常の鋼管杭に比べてその設置数を減らすか、又は鋼管の外径を縮小することができる。
しかしながら、水平力に対する抗力は、鋼管杭の数を減らした分不足することになり、水平力を保証しようとすると設置数を減少することができないので、上記の効果が期待できないことになる。
【0007】
一方、鋼管の外径を縮小すると、水平力についてはその分耐力が減少するので、これに対応するため鋼管杭の肉厚を増加しても、鋼材の重量が増加したわりには曲げ耐力増加の効果は小さい。このため、上部工から大きい水平力や曲げモーメントを受けるような場合は、鋼管杭の肉厚を大幅に増加せざるを得ず、鋼管の外径を縮小した効果が減じられる。
【0008】
このようなことから、大きな水平力や曲げモーメントに対して経済的に対応するために、杭頭部近傍を拡径するという考えが従来から提案されており、すでに場所打ちコンクリート杭では広く実用化されているが、既製杭の分野では、実用化されていない。
【0009】
次に、杭頭部近傍の杭径を拡径した杭(以下、頭部拡大杭という)に関する従来技術について説明する。
特開昭52−7109号公報に記載された頭部拡大基礎杭打ち工法は、下杭とその下杭より径の大きい頭部拡大杭を接合して構成される鋼管杭において、下杭と頭部拡大杭との継手部に設けた叩打面を打撃して杭を貫入するようにしたものであり、従来の打撃工法のように杭の上端を打撃しないで管内の継手部を打撃することにより、頭部拡大杭に作用する応力を低減し、その肉厚を低減することを目的している(従来技術3)。
【0010】
また、特公昭58−27366号公報に記載された頭部補強杭造成装置は、頭部拡大方式の場所打ちコンクリート杭や既製杭の造成方法において、上部の径が下部より大きいケーシングの中に、上部の径が下部よりも大きい攪拌掘削用オーガーを挿入して互いに反対方向に回転させることにより、頭部拡大杭埋込み用のソイルセメント柱状体の中に挿入することにより構築される。また、上部と下部のケーシングの接合部には、頭部拡大による貫入抵抗を低減するために、掘削刃を設けてケーシング内に土砂を取り込むようにしている(従来技術4)。
【0011】
【発明が解決しようとする課題】
従来技術3の頭部拡大基礎杭打込み工法は、下杭と頭部拡大杭との継手部を管内で打撃するようにしたものであるが、頭部拡大杭に発生する打撃応力度を通常の打込み工法より低減しても、土砂が継手部の下面に当るため継手部に発生する貫入抵抗は減少しない。
【0012】
また、従来技術4は、管内に挿入するオーガーの径は下部鋼管の径より小さいため、接続部に発生する貫入抵抗は前者の技術と同じである。一方、中掘工法の圧入力は打ち込みによる衝撃力に比べて数分の1と小さい。このため、頭部拡大杭に中掘工法を適用することはほとんど不可能に近い。
【0013】
以上述べたように、一般に行われている杭打ち工法を頭部拡大杭に適用することは、施工上及びコスト上問題がある。
【0014】
本発明は、上記の課題を解決するためになされたもので、ねじ込み式鋼管杭と頭部拡大杭の特長を兼ね備えた次のようなねじ込み式鋼管杭及びその施工方法を得ることを目的としたものである。
(1)低振動、低騒音、無排土施工が可能で、かつ大きな先端支持力が得られるねじ込み式鋼管杭の適用範囲を大径鋼管杭まで拡大すること。
(2)先端部又は先端部近傍に設けられた翼と、拡径された上部鋼管と下部鋼管の接続部に設けられた翼状の接合部材とにより、大きな支持力が得られること。
(3)拡径部の貫入性がよく、かつ、拡径部の製造コストを低く抑えられること。
【0015】
【課題を解決するための手段】
(1)本発明に係るねじ込み式鋼管杭は、鋼管杭用の鋼管からなり少なくとも先端部又はその近傍に前記鋼管の外径より大径の翼を有する下部鋼管と、該下部鋼管より大径でかつ下部鋼管より短い上部鋼管と、前記下部鋼管と上部鋼管とを接合するための接合部材とからなり、該接合部材を前記上部鋼管より大径でかつ翼状に形成したものである。
【0016】
(2)また、上部鋼管の外径を、下部鋼管に設けた翼の外径より大きく構成した。
【0017】
(3)本発明に係るねじ込み式鋼管杭の施工方法は、上記(1)又は(2)のねじ込み式鋼管杭の杭頭部又は胴体部に回転力を与えて該ねじ込み式鋼管杭を地盤中に貫入して埋設するようにしたものである。
【0018】
(4)また、上記(1)又は(2)のねじ込み式鋼管杭内にオーガーを挿入してそのオーガーヘッドを該ねじ込み式鋼管杭の先端部から突出させ、該ねじ込み式鋼管杭とオーガーに回転力を与えて該ねじ込み式鋼管杭を地盤中に貫入させ、該ねじ込み式鋼管杭が所定の深さに達したときは該ねじ込み式鋼管杭を地盤中に残置して前記オーガーを引抜くようにしたものである。
【0019】
(5)さらに、上記(1)又は(2)のねじ込み式鋼管杭内にオーガーを挿入してそのオーガーヘッドを該ねじ込み式鋼管杭の先端部から突出させ、該ねじ込み式鋼管杭とオーガーに回転力を与えて該ねじ込み式鋼管杭を地中に貫入し、該ねじ込み式鋼管杭の貫入中に支持層又は所定の区間にオーガーヘッドから硬化性流動物を噴出して翼とオーガーヘッドの回転により土砂と前記硬化性流動物とを撹拌混合し、所定の深さまで撹拌混合したときは前記ねじ込み式鋼管杭を地盤中に残置して前記オーガーを引抜くようにしたものである。
【0020】
(6)また、上記(4),(5)のねじ込み式鋼管杭の施工方法において、オーガーヘッドの外径がねじ込み式鋼管杭の先端部外径より大きく拡大できるオーガーを使用した。
【0021】
【発明の実施の形態】
[実施の形態1]
図1は本発明の実施の形態1に係るねじ込み式鋼管杭の説明図である。図において、1は頭部を拡大したねじ込み式鋼管杭(以下、単に鋼管杭という)で、下部鋼管2と、下部鋼管2より大径の上部鋼管3と、下部鋼管2の先端部に設けた下部鋼管2より大径の翼10と、外径が上部鋼管3より大径で翼状の接合部材15とからなっている。
【0022】
下部鋼管2は通常の鋼管杭用の鋼管(例えば、外径600mm以下)からなり、両端部には、図2に示すように、円周方向を高さhの段差部4a,4bにより2分割し、一方の段差部4aの下端部から他方の段差部4bの上端部に連続する傾斜面とし、また、段差部4aの上端部から段差部4bの下端部に連続する傾斜面として、これら傾斜面により互いに同方向に向うレ字状の翼10の取付部5a,5bが設けられている。
【0023】
翼10は、図3に示すように、下部鋼管2の外径D1 より大きい外径D3 の円形鋼板又は楕円形鋼板を中央から2分割した平板状の鋼製翼11a,11bによって構成したものである。なお、鋼製翼11a,11bからなる翼10の大きさ(外径D3 )は、一般に、下部鋼管2の外径D1 の1.3〜2.5倍程度が望ましい。
【0024】
上記のような鋼製翼11a,11bは、図4に示すように、下部鋼管2の先端開口部を覆うようにして取付部5a,5b上に載置され、溶接等により互いに反対方向に傾斜して取付けられ、翼10を構成する。なお、両鋼製翼11a,11bの食い違いによって生じる開口部は、例えば、閉塞板によって閉塞してもよい。なお、下部鋼管2を複数本の鋼管を接続した接続杭で構成した場合は、最先端の杭(下杭)に翼10を設ければよい。
【0025】
上部鋼管3の外径D2 は、上部に設けられる建造物からの水平力や曲げモーメントにより異なるが、一般に、下部鋼管2の外径D1 の1.15〜3.0倍程度が望ましく、下部鋼管2に設けた翼10の外径D3 より大径であってもよい。また、上部鋼管3の長さL1 は1/β〜2/β程度の範囲が望ましい。ここに、βは上部鋼管3と地盤の硬さから決まる特性値である。一般に、上部鋼管3の長さL1 は、4〜10m程度である。
【0026】
上部鋼管3の下端部には、下部鋼管2の下端部に設けた取付部5a,5bと同じ構造のレ字状の取付部が設けられており、この取付部には下部鋼管2に設けた鋼製翼11a,11bと同じ構成で、これより大径の鋼製翼16a,16bが溶接により接合されて、翼状の接合部材15が形成されている。この接合部材15の外径D4 は、一般に、上部鋼管3の外径D2 の1.1〜2.5倍程度が望ましい。
【0027】
なお、下部鋼管2の両端部及び上部鋼管3の下端部に1つの段差部を設けて、この段差部の下端部から1周して上端部に達するレ字状(螺旋状)の取付部を設け、この取付部に同方向に傾斜させて鋼製翼11a,11b、16a,16bを接合して、連続した螺旋状の翼10及び接合部材15を構成してもよい。
【0028】
上記のように構成した下部鋼管2は、その上端部に設けた取付部5a,5bを、上部鋼管3に設けた接合部材15の下面に当接し、溶接によって接合することにより両者は一体に結合され、頭部が拡大された鋼管杭1が構成される。なお、下部鋼管2の上端部に接合部材15を設け、この接合部材15の上面に上部鋼管3を接合してもよく、また、鋼製翼16a,16bの食い違いによって生じる開口部は、例えば閉塞板によって閉塞してもよい。
【0029】
このようにして構成した鋼管杭1は、例えば、図5に示すように、その杭頭部がベースマシン21に搭載されたモータ23に連結され、モータ23により回転されて翼10の木ネジ作用により下部鋼管2が地中にねじ込まれて貫入され、さらに、翼状の接合部材15の木ネジ作用により上部鋼管3が地中にねじ込まれて、埋設される。このとき、翼10を構成する鋼製翼11a,11bの食い違い部に開口部が存在するときは、下部鋼管2内に僅かな土砂が侵入し、開口部が閉塞されているときは、下部鋼管2内に土砂は侵入しない。
【0030】
ねじ込み式鋼管杭は、前述のように翼の木ネジ作用により無排土で地中に貫入されるものであり、翼の下方にあった土砂は翼により掘削軟化され、翼の間隙を通過して鋼管杭の外周に移動し、圧縮される。鋼管杭の外周に移動した土砂は、施工中は撹乱されて間もないため摩擦抵抗が少なく、鋼管杭をスムーズに貫入することができる。
しかし、時間の経過と共に、間隙水圧の消散などの要因により地盤強度が回復し、基礎杭としての使用時には大きな周面摩擦力が発揮される。
【0031】
下部鋼管2と上部鋼管3との接合部に翼状の接合部材15を設けない場合は、施工時のトルクを低減するために、下部鋼管の先端部に取付けた翼の外径より小さい径の上部鋼管を取付ける必要がある。
しかしながら、本発明においては、下部鋼管2と上部鋼管3との接合部を、上部鋼管3の外径D2 より大きい外径D4 の翼状の接合部材15によって構成し、この接合部材15により外周の土砂を掘削軟化して推進するようにしたので、下部鋼管2に設けた翼10の外径D3 より大きい外径D2 の上部鋼管3を用いても、通常のトルクで容易に施工することができる。また、翼10の外径D3 より小さい外径D2 の上部鋼管3を用いた場合でも推進性が良くなり、施工能率が向上する。
これにより、鋼管杭1の外周面分の周面摩擦力が増加し、さらに大きな外径による剛性と、周面地盤を圧縮したことによる水平抵抗力の増加とを実現することができ、また、翼10と接合部材15とにより大きな支持力を得ることができる。
【0032】
また、図6に示すように、施工にあたって中間層のような硬い地盤がある場合には、その地盤に翼状の接合部材15が位置するようにすれば、翼10と接合部材15とによりさらに大きな支持力を得ることができる。
さらに、図7に示すように、施工後に上部鋼管3の内部にコンクリート等を打設することにより、鋼管とコンクリートの剛性効果によって、より大きい水平力に抵抗することができる。また、下部鋼管2にも、翼10からの曲げモーメントに対応できるように、コンクリートを打設してもよい。この場合、上部鋼管3や下部鋼管2の内壁にリブを設け、あるいは鉄筋や山形鋼などを溶接等により取付けて凸部を設けてもよく、これによりコンクリートの付着力を高めることができる(なお、図6,図7及び上記の例は、以下に説明する実施の形態においても実施することができる)。
【0033】
図8は本発明に係る鋼管杭1の他の例を示す説明図である。本例は、先端部に翼10を有する下部鋼管2を、これより大径の中鋼管3aに、中鋼管3aより大径の翼状の接合部材15aを介して接合し、さらに中鋼管3aを、これより大径の上部鋼管3に、上部鋼管3より大径の翼状の接合部材15を介して接合したものである。
このように、上部になるにしたがって鋼管及び接合部材を徐々に大径にすることにより、鋼管杭1の推進力を大きくすることができ、また、杭頭部における周面摩擦力が増大し、さらにこれら接合部材15,15aは支持力にも寄与することができる。
【0034】
【実施例】
先端部に外径1016mm、板厚40mmの鋼製翼11a,11bを交差して取付けた外径508mm、長さ30mの下部鋼管2の上端部を、外径1200mm、長さ10mの上部鋼管3の下端部に、外径1800mm、板厚50mmの鋼製翼16a,16bを交差して取付けた接合部材15に溶接により接合して構成した図1に示すような長さ40mの鋼管杭1と、先端部に外径1016mm、板厚40mmの鋼製翼を交差して取付けた外径508mm、長さ40mの鋼管杭とを、同じ地盤に施工したところ、施工能率はほとんど変らないことを確認した。
【0035】
上記の説明では、下部鋼管2の先端部に設けた翼10及び上部鋼管3の下端部に設けた接合部材15を、平板状の鋼製翼11a,11b、16a,16bを交差し又は連続して螺旋状に取付けて構成した場合を示したが、下部鋼管2の先端部及び上部鋼管3の下端部に1つのレ字状の取付部を設け、この取付部に、ドーナツ状の鋼板の1か所を切断して螺旋状に曲げ加工した螺旋翼を取付けてもよい。
【0036】
また、下部鋼管2の先端部には、上記以外に、先端部又はその近傍の外周面に、ドーナツ状の鋼板を複数分割した平板状の鋼製翼を交差し又は螺旋状に取付け、あるいは上記の螺旋状翼を取付けるなど、翼10及び接合部材15の構造は適宜選択することができる。さらに、翼10及び接合部材15とは別に、下部鋼管2及び/又は上部鋼管3の外周面に、上記のような鋼製翼又は螺旋状翼を取付けて、複数段の翼構造としてもよい。なお、下部鋼管2の先端部に設けた翼10の中心部に穴がある場合、又は下部鋼管2の外周面に翼10を設けた場合は、穴又は下部鋼管2の先端開口部を底板等で閉塞することが望ましく、これにより確実に支持力を得ることができる(上述の翼10及び接合部材15の例は、以下に説明する実施の形態においても実施することができる)。
【0037】
以上の説明から明らかなように、本発明は、頭部拡大杭とねじ込み式鋼管杭とを一定の条件に基づいて組合わせたことにより、理想的な基礎杭を得ることができる。すなわち、頭部拡大杭の設計上の利点を生かしながらねじ込み杭方式を採用することにより、頭部拡大鋼管杭の施工上の課題を解消すると共に、低振動、低騒音、無排土施工で大きな先端支持力が得られるというねじ込み式鋼管杭の利点を生かし、従来困難とされていた頭部を拡大した既製杭の施工上の問題を克服することができたのである。
【0038】
[実施の形態2]
図9は本発明の実施の形態2に係るねじ込み式鋼管杭の施工方法の説明図である。
図において、1は実施の形態1で説明した鋼管杭であるが、翼10及び翼状の接合部材15の中心部には、後述のオーガーを回転自在に挿入するための貫通穴が設けられている。また、モータ25は、図10に示すように、それぞれ独立して正逆方向に回転する外軸26と内軸27とによって構成されている。31は鋼管杭1内に挿入されたオーガーで、オーガーヘッド32の上方にはスパイラル羽根33が設けられており、このスパイラル羽根33は、土砂を上方へ押し上げ又は下方に押し下げる機能を備えている。
【0039】
次に、図11、図12により本実施の形態の施工方法について説明する。なお、図11、図12にはベースマシン21は省略してある。
(1)図11(a)に示すように、鋼管杭1内に鋼管杭1より若干長いオーガー31を挿入する。なお、施工する地盤が比較的軟弱な場合は、鋼管杭1を地中に貫入し、杭先端部が支持層の近傍に達したときに鋼管杭1内にオーガー31を挿入してもよい。
【0040】
(2)図10に示すように、鋼管杭1の杭頭部をモーター25の外軸26に連結し、オーガー31の上端部を内軸27に連結する。このとき、オーガー20の先端部(オーガーヘッド32)は、図11(a)に示すように、鋼管杭1の先端部から突出するが、その突出長は、翼10の外径D3 とほぼ等しいかそれ以下であることが望ましい。
【0041】
(3)モーター25により、例えば、鋼管杭1を正方向に、オーガー31の逆方向に回転させる。
これにより、図11(b)に示すように、オーガーヘッド31は鋼管杭1に先行した先端部近傍の地盤を掘削軟化し、鋼管杭1は翼10の木ネジとしての作用により地盤中に貫入される。このとき、鋼管杭1の先端部近傍の土砂は、翼10を構成する鋼製翼11a,11bの間を通過して翼10の上方の鋼管杭1の外周部に移動し、一部の土砂はオーガー31のスパイラル羽根33により鋼管杭1内に取り込まれる。
【0042】
オーガー31により鋼管杭1内に取り込まれる土砂の量は、鋼管杭1の先端開口部の大きさやオーガーヘッド32の寸法、形状等によって異なるため、これらを調整することにより土砂が鋼管杭1から溢れないようにする。この場合、鋼管杭1内に取り込む土砂の量が多いほどトルクは小さくなる。また、鋼管杭1内に取り込む土砂の量が少ないほど鋼管杭1の周囲の土砂の密度が高くなり、大きな周面摩擦力を発揮する。
【0043】
鋼管杭1の貫入にあたっては、オーガーヘッド32により翼10に先行して地盤を掘削軟化させるために、鋼管杭1の回転に必要なトルクはオーガー31を使用しない場合に比べて大幅に減少する。また、鋼管杭1とオーガー31の回転方向が逆であるため、ベースマシン21に作用するモーター25からの反力も、両者のトルクの差による反力になるため、大幅に減少する。
【0044】
下部鋼管2が地盤中に貫入されると、図12(a)に示すように、翼状の接合部材15により周囲地盤が掘削軟化され、引続き上部鋼管3が地盤中に貫入される。このとき、上部鋼管3が下部鋼管2より大径であるにもかかわらず、オーガーヘッド32による先端部近傍の地盤の掘削軟化、翼10の木ネジ作用による推進、接合部材15による周囲地盤の掘削軟化及び推進力により、鋼管杭1はスムーズに地盤中に貫入される。
【0045】
(4)杭先端部が支持層に達したときは、図12(a)に示すように、鋼管杭1及びオーガー31の回転を停止する。
ついで、図12(b)に示すように、鋼管杭1をモーター25から外し、鋼管杭1を地中に残置した状態でオーガー31を反対方向に回転させながらモーター25を上昇させれば、オーガー31は鋼管杭1から引上げられ、鋼管杭1は地盤中に埋設されて施工は終了する。なお、鋼管杭1内の土砂は、オーガー31を反対方向に回転させることにより、下方に押し下げられる。
【0046】
本実施の形態に係るねじ込み式杭の施工方法は、鋼管杭1内に挿入したオーガー31のオーガーヘッド32により杭先端部近傍の地盤を先行掘削すると共に、下部鋼管2と上部鋼管3との接合部を構成する翼状の接合部材15により周囲地盤を掘削軟化するようにしたので、頭部を拡大した鋼管杭1においても、鋼管杭1を回転するためのトルクを軽減することができ、これにより、鋼管杭1の貫入能率が向上すると共に、オーガー31やベースマシン21を小型化することができる。また、鋼管杭1に作用するねじりモーメントが小さいため、肉厚の薄い鋼管杭やねじりに弱いコンクリート杭にもねじ込み杭を適用することができる。
【0047】
また、上記のように鋼管杭1とオーガー31とは互いに反対方向に回転することができるために、それぞれのトルクが打ち消し合ってモーター25からベースマシン21に作用する反力を低減することができ、そのため、ベースマシン21を小型化しても安定性を確保することができる。
【0048】
[実施の形態3]
図13は本発明の実施の形態3に係るねじ込み式鋼管杭の施工方法の説明図である。本実施の形態においては、オーガー31の軸方向に、後述のセメントミルクや地盤固化用薬液などの硬化性流動物を先端部に圧送するための貫通穴34が設けられており、オーガーヘッド32にはこの硬化性流動物を噴出する噴出口35が設けられている。
41は例えばセメントミルクや地盤固化用薬液などの硬化性流動物のプラント(以下、硬化材プラントという)で、オーガー31に設けた貫通穴34とはホース42によりオーガー31が回転自在に連結されている。
【0049】
次に、上記のように構成した本実施の形態の施工方法を図14、図15により説明する。なお、図14、図15にはベースマシン21及び硬化材プラント41は省略してある。
図14(a)に示すように、鋼管杭1内にオーガー31を挿入し、図10に示すように、鋼管杭1の杭頭部をモーター25の外軸26に、オーガー31の頭部を内軸27にそれぞれ連結する。また、硬化材プラント41のホース42をオーガー31の貫通穴34に回転自在の継手(図示せず)を介して連結する。
以下、実施の形態2の場合と同様に、鋼管杭1とオーガー31に回転力を与えて、鋼管杭1を地盤中に貫入する。
【0050】
鋼管杭1を適当な深さまで貫入したら、図14(b)に示すように、硬化材プラント41を駆動し、ホース42を介してオーガー31の貫通穴34に硬化性流動物43を圧送してオーガーヘッド32の先端部に設けた噴出口35から噴出させ、オーガーヘッド32及び翼10の回転により軟化した土砂と撹拌して混合させる。このとき、鋼管杭1とオーガー31の回転方向が反対のため、硬化性流動物43と土砂はよく撹拌されて均一性の高い混合物44となる。
硬化性流動物43の噴出区間は、設計上必要な鋼管杭1の周面摩擦に応じて決定されるもので、杭頭部から杭先端部までの全区間でもよいし、杭先端部の近傍だけでもよい。
【0051】
下部鋼管2が地中に貫入されると、図15(a)に示すように、翼状の接合部材15により周囲地盤が掘削軟化され、引続き上部鋼管3が地中に貫入される。
杭先端部が支持層に達したときは、図15(a)に示すように、翼10とオーガーヘッド32とにより支持層を十分撹拌して土砂と硬化性流動物43とをよく混合したのち、鋼管杭1及びオーガー31の回転を停止する。
【0052】
そして、鋼管杭1及びホース42をモーター25から外し、図15(b)に示すように、鋼管杭1を地盤中に残置した状態でオーガー31を反対方向に回転させながらモーター25を上昇させれば、オーガー31は鋼管杭1から引抜かれ、鋼管杭1は地盤中に埋設されて施工は終了する。そして、軟化した土砂は時間の経過に伴って固化し、大きな先端支持力を発揮する。
【0053】
本実施の形態においても実施の形態2と同様の効果が得られるが、さらに、オーガー31の先端部から噴出される硬化性流動物43と土砂が撹拌混合されて、乱された地盤が固化されるために大きな先端支持力及び周面摩擦力を得ることができる。また、翼10及び接合部材15とオーガー31とは互いに反対方向に回転することができるため、硬化性流動物43と土砂が均一に撹拌混合される。
【0054】
なお、下部鋼管2の内壁面又は外壁面にリブあるいは鉄筋や山形鋼などを溶接により取付けて凸部を設ければ、土砂と硬化性流動物43の混合物44の下部鋼管2への付着力を高め、先端支持力をさらに高めることができる。この凸部を設ける範囲は、下部鋼管2の先端部から、下部鋼管2の外径D1 の1/2から2倍程度の範囲が望ましい。また、下部鋼管2及び上部鋼管3の外壁面にリブ等を設ければ、周面摩擦力をさらに高めることができる。
【0055】
[実施の形態4]
図16は本発明の実施の形態4の要部の模式図である。本実施の形態は、実施の形態2,3において、鋼管杭1内に挿入されたオーガー31のオーガーヘッド32を、地上からの操作などによって拡大できる構造にしたものである。この場合、オーガーヘッド32の拡大は、鋼管杭1の外径D1 以上で、かつ翼10の外径D3 とほぼ同じか又はそれ以下の範囲であることが望ましい。
【0056】
本実施の形態の施工方法も実施の形態2,3の場合とほぼ同様であるが、オーガーヘッド32は、オーガー31を鋼管杭1内に挿入して杭先端部から突出させたのち最初から拡大してもよく、あるいは、オーガー31の先端部が支持層の近傍に達したときに拡大してもよい。なお、実施の形態3においては、オーガーヘッド32の杭先端部からの突出量をできるだけ少なくすることにより、硬化性流動物と土砂との撹拌混合効率を高めることができる。そして、鋼管杭1の埋設が終了したときは、オーガーヘッド32を縮小して元の状態に戻し、鋼管杭1を地中に残置してオーガー31を引き上げる。
【0057】
本実施の形態においても実施の形態2,3の場合と同様の効果が得られるが、さらに、拡大されたオーガーヘッド32により土砂を掘削軟化させる範囲が広くなるため、鋼管杭1を回転するためのトルクをより小さくすることができる。
また、実施の形態3においては、翼10で乱された翼10の下方の土砂も翼10の上方の土砂も硬化性流動物によって固化されるため、支持層の支持能力を十分に発揮させることが出来、先端支持力をさらに向上させることができる。
【0058】
[実施の形態5]
実施の形態1では、鋼管杭1の杭頭部をベースマシン21に搭載したモータ23に連結し、また、実施の形態2〜4ではベースマシン21に搭載したモータ25の外軸26に鋼管杭1の杭頭部を、内軸27にオーガー31の上端部をそれぞれ連結して回転させる場合を示したが、本実施の形態においては、鋼管杭1を回転させるモーターを、ベースマシーン21のリーダ22に上下に移動可能に設け、このモーターを鋼管杭1の下部鋼管2又は上部鋼管3の胴体部に着脱可能に装着して、鋼管杭1を回転させるようにしたものである。
【0059】
また、鋼管杭1内にオーガー31を挿入した場合は、ベースマシン21から吊り下げられたモーター(図5参照)を鋼管杭1の杭頭部又はその近傍に配設してオーガー31の上端部を連結すればよい。
本実施の形態の作用は、実施の形態1〜4の場合にほぼ同様であるが、高い位置に配置される物(モータ)の重量が小さくなるので、ベースマシン21の安定性を増すことができる。
【0060】
上記の各実施の形態においては、円形鋼板又は楕円形鋼板を2分割した平板状の鋼製翼を交叉して取付け、又は連続して螺旋状に取付け、あるいはドーナツ状の鋼板を螺旋状に曲げ加工して取付けて翼及び接合部材を構成した場合を示したが、本発明はこれに限定するものではなく、例えば三角形以上の多角形の鋼板又は中心部に穴を有する多角形の鋼板を分割し、あるいは中心部に穴を有する多角形の鋼板を螺旋状に曲げ加工して翼及び/又は接合部材を構成するなど、適宜形状のものを選択することができる。
また、これら各形状の鋼板は2分割に限定するものではなく、2分割以上の複数分割にしてもよい。
【0061】
【発明の効果】
(1)本発明に係るねじ込み式鋼管杭は、鋼管杭用の鋼管からなり少なくとも先端部又はその近傍に前記鋼管の外径より大径の翼を有する下部鋼管と、下部鋼管より大径でかつ下部鋼管より短い上部鋼管と、下部鋼管と上部鋼管とを接合するための接合部材とからなり、この接合部材を上部鋼管より大径でかつ翼状に形成することにより、下部鋼管に設けた翼より大きい径の上部鋼管を接合して施工することができるので、杭頭部に発生する水平力や曲げモーメントに対応することができ、地震時の水平変位量を抑制することができる。
【0062】
(2)また、本発明に係るねじ込み杭の施工方法は、上記(1)のねじ込み式鋼管杭の杭頭部又は胴体部に回転力を与えてこのねじ込み式鋼管杭を地盤中に貫入して埋設するようにしたので、上記(1)の効果が得られると共に、低騒音、低振動、無排土でスムーズに施工することができる。
【0063】
(3)さらに、上記(1)のねじ込み式鋼管杭内にオーガーを挿入してそのオーガーヘッドをこのねじ込み式鋼管杭の先端部から突出させ、ねじ込み式鋼管杭とオーガーに回転力を与えてねじ込み式鋼管杭を地盤中に貫入させ、ねじ込み式鋼管杭が所定の深さに達したときはねじ込み式鋼管杭を地盤中に残置してオーガーを引抜くようにしたので、上記(1),(2)の効果が得られると共に、施工時のトルクを低減し、上部鋼管の施工性を向上させることができる。
【0064】
(4)また、上記(1)のねじ込み式鋼管杭内にオーガーを挿入してそのオーガーヘッドをこのねじ込み式鋼管杭の先端部から突出させ、ねじ込み式鋼管杭とオーガーに回転力を与えてねじ込み式鋼管杭を地中に貫入し、ねじ込み式鋼管杭の貫入中に支持層又は所定の区間にオーガーヘッドから硬化性流動物を噴出して翼とオーガーヘッドの回転により土砂と硬化性流動物とを撹拌混合し、所定の深さまで撹拌混合したときはねじ込み式鋼管杭を地盤中に残置して前記オーガーを引抜くようにしたので、上記(1)〜(3)の効果が得られると共に、撹拌混合された土砂と硬化性流動物が時間の経過と共に固化して、さらに大きな周面摩擦力及び先端支持力を確保することができる。
【0065】
(5)上記(3),(4)のねじ込み式鋼管杭の施工方法において、オーガーヘッドの外径がねじ込み式鋼管杭の先端部外径より大きく拡大できるオーガーを使用したので、鋼管杭の回転トルクをさらに小さくすると共に、先端支持力をより大きくすることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係るねじ込み式鋼管杭の説明図である。
【図2】図1の下部鋼管の斜視図である。
【図3】図1の翼及び接合部材の製造を示す説明図である。
【図4】図1の下部鋼管と翼の斜視図である。
【図5】図1のねじ込み式鋼管杭の施工方法の説明図である。
【図6】図1のねじ込み式鋼管杭の施工方法の一例の説明図である。
【図7】図1のねじ込み式鋼管杭の施工方法の他の例の説明図である。
【図8】実施の形態1のねじ込み式鋼管杭の他の例の説明図である。
【図9】本発明の実施の形態2に係るねじ込み式鋼管杭の施工方法の説明図である。
【図10】図9のモーターと鋼管杭及びオーガーとの連結の一例を示す説明図である。
【図11】図9の施工手順の説明図である。
【図12】図9の施工手順の説明図である。
【図13】本発明の実施の形態3に係るねじ込み式鋼管杭の施工方法の説明図である。
【図14】図13の施工手順の説明図である。
【図15】図13の施工手順の説明図である。
【図16】本発明の実施の形態4の説明図である。
【符号の説明】
1 ねじ込み式鋼管杭(鋼管杭)
2 下部鋼管
3 上部鋼管
10 翼
15 翼状の接合部材
11a,11b,16a,16b 鋼製翼
21 ベースマシン
23,25 モータ
31 オーガー
32 オーガーヘッド
34 貫通穴
35 噴出口
43 硬化性流動物
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a screw-in type steel pipe pile and a construction method thereof, and more specifically, embeds a steel pipe pile in the ground by applying a rotational force to a steel pipe pile having blades attached to at least the tip of the steel pipe or in the vicinity thereof. It is related with the screwed-type steel pipe pile and its construction method.
[0002]
[Prior art]
Many methods have been proposed for embedding steel pipe piles in the ground by applying a rotational force to a steel pipe pile with wing plates attached to the tip and side surfaces of the steel pipe and using a screw installed on the ground. Some of them are intended for small-diameter piles but have been put to practical use. Here, the invention considered to be representative will be described below.
[0003]
The method of burying steel pipe piles described in Japanese Patent Publication No. 2-62648 is that a bottom plate is fixed to the lower end portion of the steel pipe pile main body, a drilling blade is provided on the bottom plate, and the pile main body is provided on the outer peripheral surface of the lower end portion of the pile main body. Pushing the steel pipe pile projecting a spiral wing with a large blade width and an outer diameter almost twice as large as the outer diameter of the pipe into the ground while rotating it so that it is screwed into the soft ground. The excavation blade at the bottom of the pile is used to excavate and soften the soil at the tip of the pile body. Extruded soil and sand are extruded and compressed to the side of the pile, and the pile body is screwed into the ground without any soil removal (Prior Art 1).
[0004]
Further, the screw-in type steel pipe pile described in Japanese Patent Laid-Open No. 9-324419 has a tip portion divided into a plurality of portions in the circumferential direction, and each of the divided portions is attached in a letter shape in the same direction. And a steel plate (wing) having a flat, semi-circular or fan-like shape in which a circular steel plate or an elliptical steel plate having an outer diameter larger than the outer diameter of the steel pipe is divided into a plurality of parts. The steel plate is attached to each of the L-shaped attachments provided at the tip of the steel pipe so as to cover the tip opening of the steel pipe. And that the blade is attached to the tip of the steel pipe, not the outer peripheral surface (Prior Art 2).
[0005]
As described above, the screw-in type steel pipe pile is designed to embed the steel pipe pile in the ground by the screw action of the wing attached at or near the tip by giving rotational force to the steel pipe pile. It can be constructed with low noise and no soil, and has a feature that a large tip support force can be obtained by utilizing a wide wing area.
However, in the above prior art, when the steel pipe diameter is increased, the resistance due to the blades and the resistance due to the outer peripheral surface friction increase, and a very large torque is required for penetration, so that the construction becomes difficult. Therefore, the current situation is that only a pipe diameter of about 600 mm can be used. Although it is conceivable to reduce the torque by making a large hole in the tip portion of the steel pipe pile, it is not preferable to make a large hole in the tip portion because the tip supporting force is reduced.
[0006]
As described above, the tip support force of the screwed steel pipe pile increases due to the increase of the projected area by the wing. For this reason, when using as a foundation pile of an upper structure, compared with the normal steel pipe pile without a wing | blade, the installation number can be reduced or the outer diameter of a steel pipe can be reduced.
However, the drag force against the horizontal force is insufficient due to the reduced number of steel pipe piles, and if the horizontal force is to be guaranteed, the number of installations cannot be reduced, and thus the above effect cannot be expected.
[0007]
On the other hand, when the outer diameter of the steel pipe is reduced, the yield strength of the horizontal force is reduced accordingly, so even if the thickness of the steel pipe pile is increased to cope with this, the increase in the bending strength is increased in spite of the increase in the weight of the steel material. The effect is small. For this reason, when receiving a large horizontal force or bending moment from the superstructure, the thickness of the steel pipe pile must be increased significantly, and the effect of reducing the outer diameter of the steel pipe is reduced.
[0008]
For this reason, in order to economically respond to large horizontal forces and bending moments, the idea of expanding the diameter near the pile head has been proposed in the past. However, it has not been put into practical use in the field of ready-made piles.
[0009]
Next, the prior art regarding the pile which expanded the pile diameter near a pile head (henceforth a head enlarged pile) is demonstrated.
The head expansion foundation pile driving method described in Japanese Patent Laid-Open No. 52-7109 is a steel pipe pile formed by joining a lower pile and a head expansion pile having a diameter larger than that of the lower pile. By hitting the striking surface provided in the joint part with the enlarged part pile and penetrating the pile, by hitting the joint part in the pipe without hitting the upper end of the pile like the conventional hammering method It aims at reducing the stress which acts on a head expansion pile, and reducing the wall thickness (prior art 3).
[0010]
In addition, the head reinforcing pile forming device described in Japanese Patent Publication No. 58-27366 is a method of forming a head-placed concrete cast-in-place concrete pile or a ready-made pile in a casing having a larger upper diameter than the lower portion. It is constructed by inserting an auger for agitation excavation having an upper diameter larger than that of the lower part and rotating it in opposite directions, and inserting it into a soil cement column for embedding a head enlarged pile. Further, in order to reduce penetration resistance due to enlargement of the head at the joint portion between the upper and lower casings, an excavation blade is provided so that earth and sand are taken into the casing (prior art 4).
[0011]
[Problems to be solved by the invention]
The head expansion foundation pile driving method of prior art 3 is such that the joint portion between the lower pile and the head expansion pile is struck in the pipe. Even if it is reduced from the driving method, the penetration resistance generated in the joint does not decrease because the earth and sand hits the lower surface of the joint.
[0012]
In the prior art 4, since the diameter of the auger inserted into the pipe is smaller than the diameter of the lower steel pipe, the penetration resistance generated in the connecting portion is the same as the former technique. On the other hand, the pressure input of the medium excavation method is as small as a fraction of the impact force by driving. For this reason, it is almost impossible to apply the medium excavation method to the enlarged head pile.
[0013]
As described above, it is problematic in terms of construction and cost to apply the common pile driving method to the enlarged head pile.
[0014]
This invention was made in order to solve said subject, and it aimed at obtaining the following screwed-type steel pipe piles which combined the characteristics of the screwed-type steel pipe pile and the head expansion pile, and its construction method. Is.
(1) To expand the application range of screw-type steel pipe piles that can be constructed with low vibration, low noise, no soil removal, and have a large tip support force to large-diameter steel pipe piles.
(2) A large supporting force can be obtained by the blade provided at or near the tip and the blade-shaped joining member provided at the connection portion between the expanded upper steel pipe and the lower steel pipe.
(3) The penetration of the enlarged diameter portion is good and the manufacturing cost of the enlarged diameter portion can be kept low.
[0015]
[Means for Solving the Problems]
(1) The screwed steel pipe pile according to the present invention is Made of steel pipe for steel pipe pile At least at or near the tip Larger than the outer diameter of the steel pipe Lower steel pipe with wings, and larger diameter than the lower steel pipe And shorter than the lower steel pipe An upper steel pipe and a joining member for joining the lower steel pipe and the upper steel pipe are formed, and the joining member is formed in a wing shape having a larger diameter than the upper steel pipe.
[0016]
(2) Moreover, the outer diameter of the upper steel pipe was made larger than the outer diameter of the wing | blade provided in the lower steel pipe.
[0017]
(3) The construction method of the screwed-type steel pipe pile according to the present invention provides a rotational force to the pile head or body part of the screwed-type steel pipe pile according to the above (1) or (2) to place the screwed-type steel pipe pile in the ground. It is intended to be embedded in the ground.
[0018]
(4) Also, an auger is inserted into the screw-type steel pipe pile of (1) or (2) above, and the auger head is protruded from the tip of the screw-type steel pipe pile, and the screw-type steel pipe pile and the auger are rotated. Applying a force to penetrate the screw-type steel pipe pile into the ground, and when the screw-type steel pipe pile reaches a predetermined depth, leave the screw-type steel pipe pile in the ground and pull out the auger. It is a thing.
[0019]
(5) Further, an auger is inserted into the threaded steel pipe pile of the above (1) or (2), the auger head is projected from the tip of the screwed steel pipe pile, and the screwed steel pipe pile and the auger are rotated. The screwed steel pipe pile is penetrated into the ground by applying a force, and a curable fluid is ejected from the auger head to the support layer or a predetermined section while the screwed steel pipe pile is penetrated, and the blade and the auger head are rotated. When the earth and sand and the curable fluid are stirred and mixed to a predetermined depth, the screwed steel pipe pile is left in the ground and the auger is pulled out.
[0020]
(6) Moreover, in the construction method of the screw-type steel pipe pile of said (4), (5), the auger which can expand the outer diameter of an auger head larger than the front-end | tip part outer diameter of a screw-type steel pipe pile was used.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
[Embodiment 1]
FIG. 1 is an explanatory diagram of a screw-in type steel pipe pile according to Embodiment 1 of the present invention. In the figure, reference numeral 1 denotes a screwed steel pipe pile (hereinafter simply referred to as a steel pipe pile) having an enlarged head, which is provided at a lower steel pipe 2, an upper steel pipe 3 having a larger diameter than the lower steel pipe 2, and a tip of the lower steel pipe 2. The wing 10 has a diameter larger than that of the lower steel pipe 2 and a wing-shaped joining member 15 having an outer diameter larger than that of the upper steel pipe 3.
[0022]
The lower steel pipe 2 is made of a steel pipe for a normal steel pipe pile (for example, an outer diameter of 600 mm or less). As shown in FIG. 2, the circumferential direction is divided into two by step portions 4a and 4b having a height h at both ends. These slopes are inclined from the lower end of one step 4a to the upper end of the other step 4b, and are inclined from the upper end of the step 4a to the lower end of the step 4b. Mounting portions 5a and 5b of the L-shaped wings 10 are provided in the same direction depending on the surface.
[0023]
As shown in FIG. 3, the wing 10 has an outer diameter D of the lower steel pipe 2. 1 Larger outer diameter D Three Are formed by flat steel blades 11a and 11b obtained by dividing a circular steel plate or an elliptical steel plate into two parts from the center. In addition, the size (outer diameter D) of the blade 10 composed of the steel blades 11a and 11b. Three ) Is generally the outer diameter D of the lower steel pipe 2 1 Is preferably about 1.3 to 2.5 times.
[0024]
As shown in FIG. 4, the steel blades 11a and 11b as described above are placed on the mounting portions 5a and 5b so as to cover the tip opening of the lower steel pipe 2, and are inclined in opposite directions by welding or the like. Are attached to form the wing 10. In addition, you may obstruct | occlude the opening part produced by the discrepancy of both steel wing | blades 11a and 11b with a obstruction board, for example. In addition, what is necessary is just to provide the wing | blade 10 in the most advanced pile (lower pile), when the lower steel pipe 2 is comprised with the connection pile which connected the several steel pipe.
[0025]
Outer diameter D of upper steel pipe 3 2 Generally, the outer diameter D of the lower steel pipe 2 is different depending on the horizontal force and bending moment from the building provided in the upper part. 1 1.15 to 3.0 times as large as the outer diameter D of the blade 10 provided in the lower steel pipe 2 Three A larger diameter may be used. Also, the length L of the upper steel pipe 3 1 Is preferably in the range of about 1 / β to 2 / β. Here, β is a characteristic value determined from the hardness of the upper steel pipe 3 and the ground. Generally, the length L of the upper steel pipe 3 1 Is about 4 to 10 m.
[0026]
At the lower end of the upper steel pipe 3, a letter-shaped attachment part having the same structure as the attachment parts 5 a and 5 b provided at the lower end part of the lower steel pipe 2 is provided. The steel blades 16a and 16b having the same configuration as the steel blades 11a and 11b and having a larger diameter are joined by welding to form a blade-shaped joining member 15. The outer diameter D of the joining member 15 Four Is generally the outer diameter D of the upper steel pipe 3 2 Is preferably about 1.1 to 2.5 times as large as.
[0027]
In addition, one step part is provided in the both ends of the lower steel pipe 2, and the lower end part of the upper steel pipe 3, and the L-shaped (spiral) attachment part which goes around from the lower end part of this step part and reaches the upper end part is provided. The continuous spiral blade 10 and the joining member 15 may be configured by providing and attaching the steel blades 11a, 11b, 16a, and 16b to the mounting portion in the same direction.
[0028]
In the lower steel pipe 2 configured as described above, the attachment parts 5a and 5b provided at the upper end of the lower steel pipe 2 are brought into contact with the lower surface of the joining member 15 provided in the upper steel pipe 3, and are joined together by welding. Thus, the steel pipe pile 1 having an enlarged head is configured. In addition, the joining member 15 may be provided in the upper end part of the lower steel pipe 2, and the upper steel pipe 3 may be joined to the upper surface of this joining member 15. Moreover, the opening part produced by the discrepancy of the steel blades 16a and 16b is obstruct | occluded, for example You may obstruct | occlude with a board.
[0029]
For example, as shown in FIG. 5, the steel pipe pile 1 configured as described above has a pile head connected to a motor 23 mounted on a base machine 21, and rotated by the motor 23 to act as a wood screw of the wing 10. Thus, the lower steel pipe 2 is screwed into the ground and penetrated, and further, the upper steel pipe 3 is screwed into the ground by the wood screw action of the wing-like joining member 15 and buried. At this time, when there is an opening in the staggered portion of the steel blades 11a and 11b constituting the blade 10, a small amount of earth and sand enters the lower steel pipe 2 and when the opening is closed, the lower steel pipe Sediment does not enter 2.
[0030]
The screw-type steel pipe pile penetrates into the ground without draining soil by the wood screw action of the wing as described above, and the earth and sand below the wing is excavated and softened by the wing and passes through the gap between the wings. Moved to the outer periphery of the steel pipe pile and compressed. Since the earth and sand moved to the outer periphery of the steel pipe pile are disturbed during the construction, there is little frictional resistance and the steel pipe pile can penetrate smoothly.
However, with the passage of time, the ground strength recovers due to factors such as dissipation of pore water pressure, and a large peripheral frictional force is exhibited when used as a foundation pile.
[0031]
When the wing-like joining member 15 is not provided at the joint between the lower steel pipe 2 and the upper steel pipe 3, the upper part having a diameter smaller than the outer diameter of the wing attached to the tip of the lower steel pipe is used in order to reduce the torque during construction. It is necessary to install a steel pipe.
However, in the present invention, the joint between the lower steel pipe 2 and the upper steel pipe 3 is the outer diameter D of the upper steel pipe 3. 2 Larger outer diameter D Four Since the outer earth and sand are excavated and softened and propelled by the joining member 15, the outer diameter D of the blade 10 provided in the lower steel pipe 2 is constructed. Three Larger outer diameter D 2 Even if the upper steel pipe 3 is used, it can be easily constructed with a normal torque. Further, the outer diameter D of the blade 10 Three Smaller outer diameter D 2 Even when the upper steel pipe 3 is used, the propulsion is improved and the construction efficiency is improved.
Thereby, the peripheral friction force for the outer peripheral surface of the steel pipe pile 1 is increased, and it is possible to realize the rigidity due to the larger outer diameter and the increase in the horizontal resistance force due to the compression of the peripheral ground, A large supporting force can be obtained by the blade 10 and the joining member 15.
[0032]
In addition, as shown in FIG. 6, when there is a hard ground such as an intermediate layer in construction, if the wing-like joining member 15 is positioned on the ground, the wing 10 and the joining member 15 are larger. Support force can be obtained.
Furthermore, as shown in FIG. 7, by placing concrete or the like inside the upper steel pipe 3 after construction, it is possible to resist a larger horizontal force due to the rigidity effect of the steel pipe and concrete. In addition, concrete may be placed on the lower steel pipe 2 so as to cope with the bending moment from the blade 10. In this case, ribs may be provided on the inner walls of the upper steel pipe 3 and the lower steel pipe 2, or a protrusion may be provided by attaching a reinforcing bar, angle steel, or the like by welding or the like. 6, FIG. 7, and the above example can also be implemented in the embodiment described below.
[0033]
FIG. 8 is an explanatory view showing another example of the steel pipe pile 1 according to the present invention. In this example, the lower steel pipe 2 having the blade 10 at the tip is joined to the middle steel pipe 3a having a larger diameter than the middle steel pipe 3a via a wing-like joining member 15a having a larger diameter than the middle steel pipe 3a. This is joined to the upper steel pipe 3 having a larger diameter via a wing-like joining member 15 having a larger diameter than that of the upper steel pipe 3.
Thus, by gradually increasing the diameter of the steel pipe and the joining member as it becomes the upper part, the propulsive force of the steel pipe pile 1 can be increased, and the peripheral frictional force at the pile head increases. Furthermore, these joining members 15 and 15a can also contribute to a supporting force.
[0034]
【Example】
The upper steel pipe 3 having an outer diameter of 1200 mm and a length of 10 m is connected to the upper end of the lower steel pipe 2 having an outer diameter of 508 mm and a length of 30 m, which is attached to the tip portion by crossing steel blades 11a and 11b having an outer diameter of 1016 mm and a plate thickness of 40 mm. A steel pipe pile 1 having a length of 40 m as shown in FIG. 1, which is formed by welding to a joining member 15 that is attached to a lower end portion of the steel blades 16 a and 16 b having an outer diameter of 1800 mm and a plate thickness of 50 mm. When a steel pipe pile with an outer diameter of 508 mm and a length of 40 m with a steel wing with an outer diameter of 1016 mm and a thickness of 40 mm installed at the tip is installed on the same ground, it is confirmed that the construction efficiency is almost unchanged. did.
[0035]
In the above description, the blade 10 provided at the tip of the lower steel pipe 2 and the joining member 15 provided at the lower end of the upper steel pipe 3 are crossed or continuous with the flat steel blades 11a, 11b, 16a, 16b. Although the case where it is configured to be installed in a spiral shape is shown, one L-shaped attachment portion is provided at the tip end portion of the lower steel pipe 2 and the lower end portion of the upper steel pipe 3, and the donut-shaped steel plate 1 is provided in this attachment portion. You may attach the spiral wing | blade which cut | disconnected the place and was bent into the spiral shape.
[0036]
In addition to the above, a flat steel blade obtained by dividing a plurality of donut-shaped steel plates intersects or spirally is attached to the distal end portion of the lower steel pipe 2 in addition to the above, or to the outer peripheral surface in the vicinity thereof, or the above The structure of the wing | blade 10 and the joining member 15 can be selected suitably, such as attaching the helical wing | blade of this. Further, separately from the blade 10 and the joining member 15, a steel blade or a spiral blade as described above may be attached to the outer peripheral surface of the lower steel pipe 2 and / or the upper steel pipe 3 to form a multistage blade structure. In addition, when there is a hole in the center of the blade 10 provided at the tip of the lower steel pipe 2 or when the blade 10 is provided on the outer peripheral surface of the lower steel pipe 2, the hole or the tip opening of the lower steel pipe 2 is a bottom plate or the like. Therefore, it is desirable that the support force be obtained with certainty (the above-described examples of the blade 10 and the joining member 15 can also be implemented in the embodiments described below).
[0037]
As is apparent from the above description, the present invention can obtain an ideal foundation pile by combining the head-expanded pile and the screw-in type steel pipe pile based on certain conditions. In other words, by adopting the screwed pile method while taking advantage of the design advantage of the head-expanded pile, the construction problems of the head-expanded steel pipe pile can be solved, and low vibration, low noise, no soil removal construction By taking advantage of the screw-type steel pipe pile that the tip support force can be obtained, it was possible to overcome the problem in the construction of the ready-made pile with the enlarged head, which has been considered difficult in the past.
[0038]
[Embodiment 2]
FIG. 9 is an explanatory view of a method for constructing a screw-in type steel pipe pile according to Embodiment 2 of the present invention.
In the figure, reference numeral 1 denotes the steel pipe pile described in the first embodiment, but a through hole for rotatably inserting an auger described later is provided at the center of the wing 10 and the wing-like joining member 15. . Further, as shown in FIG. 10, the motor 25 includes an outer shaft 26 and an inner shaft 27 that rotate independently in forward and reverse directions. 31 is an auger inserted in the steel pipe pile 1, and the spiral blade | wing 33 is provided above the auger head 32, and this spiral blade | wing 33 is equipped with the function to push up earth or sand upward or to push down below.
[0039]
Next, the construction method of the present embodiment will be described with reference to FIGS. In FIG. 11 and FIG. 12, the base machine 21 is omitted.
(1) As shown in FIG. 11 (a), an auger 31 slightly longer than the steel pipe pile 1 is inserted into the steel pipe pile 1. When the ground to be constructed is relatively soft, the steel pipe pile 1 may be inserted into the ground, and the auger 31 may be inserted into the steel pipe pile 1 when the pile tip reaches the vicinity of the support layer.
[0040]
(2) As shown in FIG. 10, the pile head of the steel pipe pile 1 is connected to the outer shaft 26 of the motor 25, and the upper end portion of the auger 31 is connected to the inner shaft 27. At this time, as shown in FIG. 11 (a), the distal end portion of the auger 20 (auger head 32) projects from the distal end portion of the steel pipe pile 1, but the projected length is the outer diameter D of the wing 10. Three Is preferably less than or equal to.
[0041]
(3) For example, the steel pipe pile 1 is rotated in the forward direction by the motor 25 in the reverse direction of the auger 31.
As a result, as shown in FIG. 11 (b), the auger head 31 excavates and softens the ground in the vicinity of the tip preceding the steel pipe pile 1, and the steel pipe pile 1 penetrates into the ground by the action of the wood screw of the wing 10. Is done. At this time, the earth and sand near the tip of the steel pipe pile 1 passes between the steel blades 11a and 11b constituting the wing 10 and moves to the outer peripheral portion of the steel pipe pile 1 above the wing 10, and part of the earth and sand. Is taken into the steel pipe pile 1 by the spiral blade 33 of the auger 31.
[0042]
The amount of earth and sand taken into the steel pipe pile 1 by the auger 31 varies depending on the size of the tip opening of the steel pipe pile 1 and the size and shape of the auger head 32. By adjusting these, the earth and sand overflows from the steel pipe pile 1 Do not. In this case, the torque decreases as the amount of earth and sand taken into the steel pipe pile 1 increases. Moreover, the density of the earth and sand around the steel pipe pile 1 becomes high, so that the quantity of the earth and sand taken in in the steel pipe pile 1 is small, and a large circumferential friction force is exhibited.
[0043]
When the steel pipe pile 1 is penetrated, the auger head 32 causes the ground to be excavated and softened prior to the blade 10, so that the torque required for the rotation of the steel pipe pile 1 is significantly reduced as compared with the case where the auger 31 is not used. Moreover, since the rotation direction of the steel pipe pile 1 and the auger 31 is reverse, the reaction force from the motor 25 acting on the base machine 21 is also a reaction force due to the difference between the torques of the two, so that it is greatly reduced.
[0044]
When the lower steel pipe 2 is penetrated into the ground, as shown in FIG. 12A, the surrounding ground is excavated and softened by the wing-like joining member 15, and the upper steel pipe 3 is continuously penetrated into the ground. At this time, although the upper steel pipe 3 is larger in diameter than the lower steel pipe 2, excavation softening of the ground near the tip by the auger head 32, propulsion by the wood screw action of the wing 10, and excavation of the surrounding ground by the joining member 15 The steel pipe pile 1 is smoothly penetrated into the ground by softening and propulsion.
[0045]
(4) When the leading end of the pile reaches the support layer, the rotation of the steel pipe pile 1 and the auger 31 is stopped as shown in FIG.
Then, as shown in FIG. 12 (b), if the steel pipe pile 1 is removed from the motor 25 and the motor 25 is raised while rotating the auger 31 in the opposite direction with the steel pipe pile 1 left in the ground, the auger 31 is pulled up from the steel pipe pile 1, and the steel pipe pile 1 is buried in the ground, and the construction is completed. In addition, the earth and sand in the steel pipe pile 1 is pushed down by rotating the auger 31 in the opposite direction.
[0046]
In the construction method of the screwed pile according to the present embodiment, the ground near the tip of the pile is advanced by the auger head 32 of the auger 31 inserted into the steel pipe pile 1 and the lower steel pipe 2 and the upper steel pipe 3 are joined. Since the surrounding ground is excavated and softened by the wing-shaped joining member 15 constituting the portion, the torque for rotating the steel pipe pile 1 can be reduced even in the steel pipe pile 1 with the enlarged head. The penetration efficiency of the steel pipe pile 1 is improved, and the auger 31 and the base machine 21 can be downsized. Moreover, since the torsional moment which acts on the steel pipe pile 1 is small, a screwed pile can be applied also to a thin steel pipe pile or a concrete pile weak against torsion.
[0047]
In addition, since the steel pipe pile 1 and the auger 31 can rotate in the opposite directions as described above, the reaction force acting on the base machine 21 from the motor 25 can be reduced because the respective torques cancel each other. Therefore, stability can be ensured even if the base machine 21 is downsized.
[0048]
[Embodiment 3]
FIG. 13 is an explanatory view of a method for constructing a screw-in type steel pipe pile according to Embodiment 3 of the present invention. In the present embodiment, a through hole 34 is provided in the axial direction of the auger 31 for pressure-feeding a curable fluid such as cement milk, which will be described later, or a chemical solution for solidifying the ground, to the tip portion. Is provided with a jet 35 for jetting the curable fluid.
Reference numeral 41 denotes a curable fluid plant such as cement milk or ground solidifying chemical (hereinafter referred to as a “hardening material plant”). The auger 31 is rotatably connected to a through hole 34 provided in the auger 31 by a hose 42. Yes.
[0049]
Next, the construction method of the present embodiment configured as described above will be described with reference to FIGS. 14 and 15, the base machine 21 and the hardener plant 41 are omitted.
14A, the auger 31 is inserted into the steel pipe pile 1, and as shown in FIG. 10, the pile head of the steel pipe pile 1 is placed on the outer shaft 26 of the motor 25 and the head of the auger 31 is placed. Each is connected to the inner shaft 27. Further, the hose 42 of the hardened material plant 41 is connected to the through hole 34 of the auger 31 via a rotatable joint (not shown).
Hereinafter, as in the case of the second embodiment, a rotational force is applied to the steel pipe pile 1 and the auger 31 to penetrate the steel pipe pile 1 into the ground.
[0050]
When the steel pipe pile 1 has penetrated to an appropriate depth, as shown in FIG. 14 (b), the hardener plant 41 is driven, and the curable fluid 43 is pumped to the through hole 34 of the auger 31 via the hose 42. The auger head 32 is spouted from a spout 35 provided at the tip, and is agitated and mixed with earth and sand softened by the rotation of the auger head 32 and the blade 10. At this time, since the rotation directions of the steel pipe pile 1 and the auger 31 are opposite, the curable fluid 43 and the earth and sand are well agitated to form a highly uniform mixture 44.
The ejection section of the curable fluid 43 is determined according to the peripheral surface friction of the steel pipe pile 1 necessary for design, and may be the entire section from the pile head to the pile tip or in the vicinity of the pile tip. Just be fine.
[0051]
When the lower steel pipe 2 penetrates into the ground, as shown in FIG. 15A, the surrounding ground is excavated and softened by the wing-like joining member 15, and the upper steel pipe 3 is continuously penetrated into the ground.
When the pile tip reaches the support layer, as shown in FIG. 15A, the support layer is sufficiently agitated by the blade 10 and the auger head 32, and the earth and sand and the curable fluid 43 are mixed well. Then, the rotation of the steel pipe pile 1 and the auger 31 is stopped.
[0052]
Then, the steel pipe pile 1 and the hose 42 are removed from the motor 25, and the motor 25 can be raised while rotating the auger 31 in the opposite direction with the steel pipe pile 1 left in the ground as shown in FIG. 15 (b). For example, the auger 31 is pulled out from the steel pipe pile 1, and the steel pipe pile 1 is buried in the ground and the construction is completed. And the softened earth and sand solidify with progress of time, and show big tip support force.
[0053]
In the present embodiment, the same effect as in the second embodiment can be obtained. Furthermore, the curable fluid 43 ejected from the tip of the auger 31 and the earth and sand are agitated and mixed, and the disturbed ground is solidified. Therefore, a large tip support force and peripheral friction force can be obtained. Moreover, since the wing | blade 10, the joining member 15, and the auger 31 can rotate in the mutually opposite direction, the sclerosing | hardenable fluid 43 and earth and sand are stirred and mixed uniformly.
[0054]
In addition, if a rib or a reinforcing bar, angle steel, etc. are attached to the inner wall surface or the outer wall surface of the lower steel pipe 2 by welding and a convex part is provided, the adhesion force of the mixture 44 of earth and sand and the hardenable fluid 43 to the lower steel pipe 2 is increased. The tip support force can be further increased. The range where this convex part is provided is from the tip of the lower steel pipe 2 to the outer diameter D of the lower steel pipe 2. 1 A range of about ½ to 2 times is desirable. Moreover, if a rib etc. are provided in the outer wall surface of the lower steel pipe 2 and the upper steel pipe 3, a surrounding surface friction force can be raised further.
[0055]
[Embodiment 4]
FIG. 16 is a schematic diagram of a main part of the fourth embodiment of the present invention. In this embodiment, in the second and third embodiments, the auger head 32 of the auger 31 inserted into the steel pipe pile 1 can be enlarged by an operation from the ground. In this case, the auger head 32 is enlarged by the outer diameter D of the steel pipe pile 1. 1 With the above, the outer diameter D of the blade 10 Three It is desirable that the range be approximately the same or less.
[0056]
The construction method of the present embodiment is almost the same as in the second and third embodiments, but the auger head 32 is expanded from the beginning after the auger 31 is inserted into the steel pipe pile 1 and protruded from the tip of the pile. Alternatively, it may be enlarged when the tip of the auger 31 reaches the vicinity of the support layer. In the third embodiment, by reducing the amount of protrusion of the auger head 32 from the tip of the pile as much as possible, the stirring and mixing efficiency of the curable fluid and the earth and sand can be increased. And when embedding of the steel pipe pile 1 is complete | finished, the auger head 32 is shrunk | reduced and it returns to the original state, the steel pipe pile 1 is left in the ground, and the auger 31 is pulled up.
[0057]
In the present embodiment, the same effects as those of the second and third embodiments can be obtained. However, since the expanded auger head 32 has a wider range for excavating and softening the soil, the steel pipe pile 1 is rotated. Torque can be further reduced.
Moreover, in Embodiment 3, since the earth and sand below the wing | blade 10 disturbed by the wing | blade 10 and the earth and sand above the wing | blade 10 are solidified by a sclerosing | hardenable fluid, fully exhibit the support capability of a support layer. And the tip support force can be further improved.
[0058]
[Embodiment 5]
In the first embodiment, the pile head of the steel pipe pile 1 is connected to the motor 23 mounted on the base machine 21, and in the second to fourth embodiments, the steel pipe pile is connected to the outer shaft 26 of the motor 25 mounted on the base machine 21. In the present embodiment, a motor for rotating the steel pipe pile 1 is used as a leader of the base machine 21. In the present embodiment, the pile head 1 is rotated by connecting the upper end of the auger 31 to the inner shaft 27. This motor is detachably mounted on the lower steel pipe 2 or the upper steel pipe 3 of the steel pipe pile 1 so that the steel pipe pile 1 is rotated.
[0059]
When the auger 31 is inserted into the steel pipe pile 1, a motor suspended from the base machine 21 (see FIG. 5) is disposed at or near the pile head of the steel pipe pile 1 and the upper end of the auger 31. Can be connected.
The operation of the present embodiment is substantially the same as in the first to fourth embodiments, but the weight of the object (motor) arranged at a high position is reduced, so that the stability of the base machine 21 can be increased. it can.
[0060]
In each of the above embodiments, a flat steel blade obtained by dividing a circular steel plate or an elliptical steel plate into two parts is crossed or attached continuously or spirally or a donut-shaped steel plate is bent spirally. Although the case where the wing and the joining member are configured by processing and mounting is shown, the present invention is not limited to this, for example, dividing a polygonal steel plate having a triangle or more or a polygonal steel plate having a hole in the central portion. Alternatively, one having an appropriate shape can be selected, such as forming a blade and / or a joining member by bending a polygonal steel plate having a hole in the center into a spiral shape.
Further, the steel plates of these shapes are not limited to two divisions, and may be divided into two or more divisions.
[0061]
【The invention's effect】
(1) The screwed steel pipe pile according to the present invention is Made of steel pipe for steel pipe pile At least at or near the tip Larger than the outer diameter of the steel pipe Lower steel pipe with wings and larger diameter than lower steel pipe And shorter than the lower steel pipe It consists of an upper steel pipe and a joining member for joining the lower steel pipe and the upper steel pipe. By forming this joining member in a wing shape with a larger diameter than the upper steel pipe, the upper part having a diameter larger than that of the wing provided on the lower steel pipe Since it can be constructed by joining steel pipes, it can cope with the horizontal force and bending moment generated in the pile head, and the amount of horizontal displacement during an earthquake can be suppressed.
[0062]
(2) Moreover, the construction method of the screwed pile which concerns on this invention gives rotational force to the pile head part or trunk | drum part of the screwed steel pipe pile of said (1), and penetrates this screwed steel pipe pile in the ground. Since it embed | buries, while being able to acquire the effect of said (1), it can construct smoothly with a low noise, a low vibration, and no soil removal.
[0063]
(3) Further, an auger is inserted into the threaded steel pipe pile of (1) above, and the auger head is protruded from the tip of the threaded steel pipe pile, and the screwed steel pipe pile and the auger are given a rotational force and screwed. Since the steel pipe pile is inserted into the ground and the screwed steel pipe pile reaches a predetermined depth, the auger is pulled out by leaving the screwed steel pipe pile in the ground. The effect of 2) can be obtained, the torque during construction can be reduced, and the workability of the upper steel pipe can be improved.
[0064]
(4) Also, the auger is inserted into the threaded steel pipe pile of (1) above, the auger head is protruded from the tip of the threaded steel pipe pile, and the screwed steel pipe pile and the auger are given a rotational force and screwed. The steel pipe pile is penetrated into the ground, and the hardened fluid is ejected from the auger head to the support layer or a predetermined section during the penetration of the screwed steel pipe pile. When stirring and mixing to a predetermined depth, the screw-type steel pipe pile is left in the ground and the auger is pulled out, so that the effects (1) to (3) are obtained, The agitated and mixed earth and sand and the curable fluid are solidified over time, and a larger peripheral surface friction force and tip support force can be secured.
[0065]
(5) In the construction method for screwed steel pipe piles in (3) and (4) above, since the auger whose outer diameter of the auger head is larger than the outer diameter of the tip of the screwed steel pipe pile is used, rotation of the steel pipe pile The torque can be further reduced and the tip support force can be further increased.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a screw-in type steel pipe pile according to a first embodiment of the present invention.
FIG. 2 is a perspective view of the lower steel pipe of FIG.
3 is an explanatory view showing the manufacture of the wing and the joining member of FIG. 1. FIG.
4 is a perspective view of a lower steel pipe and a wing of FIG. 1. FIG.
FIG. 5 is an explanatory diagram of a construction method for the screw-type steel pipe pile of FIG. 1;
6 is an explanatory view of an example of a construction method of the screw-type steel pipe pile of FIG. 1. FIG.
7 is an explanatory view of another example of a method for constructing the screw-in type steel pipe pile of FIG. 1. FIG.
FIG. 8 is an explanatory diagram of another example of the screwed-type steel pipe pile according to the first embodiment.
FIG. 9 is an explanatory diagram of a method for constructing a screw-in type steel pipe pile according to Embodiment 2 of the present invention.
10 is an explanatory view showing an example of the connection of the motor of FIG. 9 with a steel pipe pile and an auger.
FIG. 11 is an explanatory diagram of the construction procedure of FIG. 9;
12 is an explanatory diagram of the construction procedure of FIG. 9;
FIG. 13 is an explanatory diagram of a method for constructing a screw-in type steel pipe pile according to Embodiment 3 of the present invention.
14 is an explanatory diagram of the construction procedure of FIG. 13;
15 is an explanatory diagram of the construction procedure of FIG.
FIG. 16 is an explanatory diagram of Embodiment 4 of the present invention.
[Explanation of symbols]
1 Screwed steel pipe pile (steel pipe pile)
2 Lower steel pipe
3 Upper steel pipe
10 wings
15 Wing-like joining member
11a, 11b, 16a, 16b Steel blades
21 Base machine
23, 25 Motor
31 Auger
32 Auger Head
34 Through hole
35 spout
43 Curable fluid

Claims (6)

鋼管杭用の鋼管からなり少なくとも先端部又はその近傍に前記鋼管の外径より大径の翼を有する下部鋼管と、該下部鋼管より大径でかつ該下部鋼管より短い上部鋼管と、前記下部鋼管と上部鋼管とを接合するための接合部材とからなり、
該接合部材を前記上部鋼管より大径でかつ翼状に形成したことを特徴とするねじ込み式鋼管杭。
A lower steel pipe made of a steel pipe for steel pipe piles and having a blade having a diameter larger than the outer diameter of the steel pipe at least at or near the tip, an upper steel pipe having a diameter larger than the lower steel pipe and shorter than the lower steel pipe, and the lower steel pipe And a joining member for joining the upper steel pipe,
A screwed steel pipe pile characterized in that the joining member has a larger diameter than the upper steel pipe and is formed in a wing shape.
上部鋼管の外径を、下部鋼管に設けた翼の外径より大きく構成したことを特徴とする請求項1記載のねじ込み式鋼管杭。The screwed steel pipe pile according to claim 1, wherein an outer diameter of the upper steel pipe is configured to be larger than an outer diameter of a blade provided in the lower steel pipe. 請求項1又は2のねじ込み式鋼管杭の杭頭部又は胴体部に回転力を与えて該ねじ込み式鋼管杭を地盤中に貫入して埋設することを特徴とするねじ込み式鋼管杭の施工方法。A construction method for a screw-type steel pipe pile, characterized in that a rotational force is applied to a pile head or body part of the screw-type steel pipe pile according to claim 1 or 2, and the screw-type steel pipe pile is embedded in the ground. 請求項1又は2のねじ込み式鋼管杭内にオーガーを挿入してそのオーガーヘッドを該ねじ込み式鋼管杭の先端部から突出させ、該ねじ込み式鋼管杭とオーガーに回転力を与えて該ねじ込み式鋼管杭を地盤中に貫入させ、該ねじ込み式鋼管杭が所定の深さに達したときは該ねじ込み式鋼管杭を地盤中に残置して前記オーガーを引抜くことを特徴とするねじ込み式鋼管杭の施工方法。An auger is inserted into the threaded steel pipe pile according to claim 1 or 2, the auger head is protruded from the tip of the threaded steel pipe pile, and a rotational force is applied to the threaded steel pipe pile and the auger to provide the threaded steel pipe. A pile of steel pipe piles, wherein the pile is inserted into the ground, and when the screwed steel pipe pile reaches a predetermined depth, the auger is pulled out while leaving the screwed steel pipe pile in the ground. Construction method. 請求項1又は2のねじ込み式鋼管杭内にオーガーを挿入してそのオーガーヘッドを該ねじ込み式鋼管杭の先端部から突出させ、該ねじ込み式鋼管杭とオーガーに回転力を与えて該ねじ込み式鋼管杭を地中に貫入し、該ねじ込み式鋼管杭の貫入中に支持層又は所定の区間にオーガーヘッドから硬化性流動物を噴出して翼とオーガーヘッドの回転により土砂と前記硬化性流動物とを撹拌混合し、所定の深さまで撹拌混合したときは前記ねじ込み式鋼管杭を地盤中に残置して前記オーガーを引抜くことを特徴とするねじ込み式鋼管杭の施工方法。An auger is inserted into the threaded steel pipe pile according to claim 1 or 2, the auger head is protruded from the tip of the threaded steel pipe pile, and a rotational force is applied to the threaded steel pipe pile and the auger to provide the threaded steel pipe. The pile is penetrated into the ground, and the curable fluid is ejected from the auger head to the support layer or a predetermined section during the penetration of the screw-type steel pipe pile. When the mixture is stirred and mixed to a predetermined depth, the screwed steel pipe pile is left in the ground and the auger is pulled out. オーガーヘッドの外径がねじ込み式鋼管杭の先端部外径より大きく拡大できるオーガーを使用したことを特徴とする請求項4又は5記載のねじ込み式鋼管杭の施工方法。The construction method of the screwed-type steel pipe pile according to claim 4 or 5, wherein an auger capable of expanding the outer diameter of the auger head to be larger than the outer diameter of the tip part of the screwed-type steel pipe pile.
JP30693399A 1999-10-28 1999-10-28 Threaded steel pipe pile and its construction method Expired - Lifetime JP3694824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30693399A JP3694824B2 (en) 1999-10-28 1999-10-28 Threaded steel pipe pile and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30693399A JP3694824B2 (en) 1999-10-28 1999-10-28 Threaded steel pipe pile and its construction method

Publications (2)

Publication Number Publication Date
JP2001123442A JP2001123442A (en) 2001-05-08
JP3694824B2 true JP3694824B2 (en) 2005-09-14

Family

ID=17963037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30693399A Expired - Lifetime JP3694824B2 (en) 1999-10-28 1999-10-28 Threaded steel pipe pile and its construction method

Country Status (1)

Country Link
JP (1) JP3694824B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3586861B2 (en) * 2001-07-17 2004-11-10 有限会社住環境設計室 Rotary penetration steel pipe pile
JP2008291523A (en) * 2007-05-25 2008-12-04 Oak:Kk Steel pipe pile
JP2019173456A (en) * 2018-03-29 2019-10-10 パナソニックホームズ株式会社 Pile, and pile rotary press-in method

Also Published As

Publication number Publication date
JP2001123442A (en) 2001-05-08

Similar Documents

Publication Publication Date Title
JP5520347B2 (en) Pile digging method
JP4498348B2 (en) Screwed steel pipe pile
JP2007032044A (en) Supporting structure of foundation pile and steel pipe pile
JP3170756B1 (en) Screw-in type steel pipe pile and its construction method
JP4705506B2 (en) Rotary press-fit steel pipe pile and press-fit method using steel pipe pile
JP4117574B2 (en) Construction method of screwed pile
JP4224905B2 (en) Threaded steel pipe pile and its construction method
JP3694824B2 (en) Threaded steel pipe pile and its construction method
JP3937382B2 (en) Construction method of screwed steel pipe pile
JP3849744B2 (en) Construction method of screwed pile
JP3533981B2 (en) Construction method of screwed pile
JP4617604B2 (en) Threaded pile and method of construction
JP4524955B2 (en) Pile tip reinforcement structure and pile construction method
JP4210297B2 (en) Expanded pipe with tip blade and steel pipe pile with tip blade provided with the same
JP3991311B2 (en) Method of burying excavation rod and ready-made pile
JP2000291002A (en) Construction method for composite pile, steel pipe pile used for the method, and composite pile
JP5163711B2 (en) Threaded pile and method of construction
JP4360745B2 (en) Construction method of ready-made piles
JP3514183B2 (en) Embedded pile and its construction method
JP4197074B2 (en) Embedded pile construction equipment
JPH06287943A (en) Foot protection method for tip of foundation pile and cylindrical foundation pile
JP3677645B2 (en) Construction method of screwed pile
JP5034075B2 (en) Drilling device and method for forming hole in cast-in-place pile
JP2001303563A (en) Method for constructing concrete pile combined with soil cement
JP2005240395A (en) Rotary embedding method for pile

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3694824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

EXPY Cancellation because of completion of term