JP3694820B2 - Non-pressure-proof, front-stop type electrolyzed water generator - Google Patents

Non-pressure-proof, front-stop type electrolyzed water generator Download PDF

Info

Publication number
JP3694820B2
JP3694820B2 JP02426897A JP2426897A JP3694820B2 JP 3694820 B2 JP3694820 B2 JP 3694820B2 JP 02426897 A JP02426897 A JP 02426897A JP 2426897 A JP2426897 A JP 2426897A JP 3694820 B2 JP3694820 B2 JP 3694820B2
Authority
JP
Japan
Prior art keywords
water
water supply
pipe
valve
microfilter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02426897A
Other languages
Japanese (ja)
Other versions
JPH10156364A (en
Inventor
良弥 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veeta Inc
Original Assignee
Veeta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veeta Inc filed Critical Veeta Inc
Priority to JP02426897A priority Critical patent/JP3694820B2/en
Publication of JPH10156364A publication Critical patent/JPH10156364A/en
Application granted granted Critical
Publication of JP3694820B2 publication Critical patent/JP3694820B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は水道水などの原水を電解してアルカリイオン水を生成する先止め式の連続式電解水生成装置に関する。
【0002】
【従来の技術】
給水管から供給される原水を電解槽で電解し、生成されたアルカリ水と酸性水を利用側吐水管路と非利用側排水管路から別々に排出する連続式の電解水生成装置には利用側吐水管路に設けた蛇口の開閉でアルカリイオン水を取水する先止め式の電解水生成装置がある。
【0003】
【発明が解決しようとする課題】
このような先止め式の装置は、利用する水の管路の先端で取水制御ができ、また、複数の取水口を設けて選択的に開閉できるという利点があるが、取水していないときは電解槽に常に水道水の水圧がかかり、また、その状態で蛇口を閉めると装置内の水回路にウォータハンマ等の衝撃圧がかかる。このため、電解槽や配管に耐圧性が要求され、製作及びメンテナンスのコスト高がさけられなかった。
【0004】
従って、本発明の第1の目的は、先止め式の機能を有しながら、しかも非取水時は電解槽や配管に給水圧がかからない構造の非耐圧型の先止め式連続電解水生成装置を提供することにある。
【0005】
ところで、この種の電解水生成装置は使用しているうちに配管や電解槽などの水回路が汚れてくるので適宜洗浄する必要がある。しかしながら従来は効果的に洗浄するには装置の配管路を大幅に換えなければならず、作業が非常に煩雑であった。
また、従来は電解槽の上流側管路を電解酸性水で洗浄することはできず、特に、給水管路に介装したミクロフィルタの洗浄が課題となっていた。
【0006】
従って、本発明の第2の目的は、給水の管路切換えだけで電解槽上流のミクロフィルタから電解槽の下流の吐水管までが電解酸性水で自動的に洗浄される構造の前記電解水生成装置を提供することにある。
【0007】
このようなミクロフイルタの洗浄機構を備えた電解水生成装置は、洗浄時に給水の全量を電解槽の陽極室を逆流させて通水し、ミクロフイルタを通した後、電解槽の陰極室を通して排水させるため、ミクロフイルタの抵抗で電解槽の陽極室の水圧が上昇し、電解槽の陰極室と陽極室を区画している電解隔膜を破損させるおそれがある。
従って、本発明の第3の目的は、洗浄操作時に、電解槽の電解隔膜が陽極室の水圧上昇による破損から守られ、しかも洗浄給水の全量でミクロフイルタの排出口及びその下流側が洗浄される構造の前記非耐圧型の先止め式連続電解水生成装置を提供することにある。
【0008】
【課題を解決するための手段】
上記第1の目的を達成するために、本発明の請求項1の電解水生成装置は、給水管路から供給する水を電解槽で電解し、生成されたアルカリ水と酸性水を利用側吐水管路と非利用側排水管路から各別に排出するとともに、利用側吐水管路に設けられる開閉手段で利用側電解水の吐水を制御する連続式電解水生成装置と;電解槽の前記利用側吐水管路に設けられ、利用側吐水管路の開閉手段を開閉したときの水圧変動によって作動する圧力スイッチと;利用側吐水管路の前記圧力スイッチの上流側に設けられた逆止弁と;給水管路に設けられ、前記圧力スイッチのON−OFF信号によって閉開する電動開閉弁と;非利用側排水管路に設けられ、前記圧力スイッチのON−OFF信号によって閉開する電動開閉弁と;を具備することを特徴とする。
【0009】
上記第2の目的を達成するために、本発明の請求項2の電解水生成装置は、給水管路から供給する水を電解槽で電解し、生成されたアルカリ水と酸性水を利用側吐水管路と非利用側排水管路から各別に排出するとともに、利用側吐水管路に設けられる開閉手段で利用側電解水の吐水を制御する連続式電解水生成装置と;電解槽の前記利用側吐水管路に設けられ、利用側吐水管路の開閉手段の開閉に連動してON−OFF作動する圧力スイッチと;利用側吐水管路の前記圧力スイッチ上流側に設けられた逆止弁と;給水管路に設けられ、前記圧力スイッチのON−OFF信号によって閉開する電動開閉弁と;非利用側排水管路に設けられ、前記圧力スイッチのON−OFF信号によって閉開する電動開閉弁と;電解槽の給水部に形成され、陽極室と陰極室に各別に連通する一対の独立給水口と;給水管路の前記電動開閉弁下流側に介装されたミクロフィルタと;該ミクロフィルタの下流側から二股に分岐され、前記電解槽の独立給水口に各別に接続された一対の給水支管と;一方の給水支管に介装した逆止弁の下流側から逆止弁を介してミクロフィルタの給水側に配管した洗浄用管路と;給水管路の電動開閉弁上流側から利用側吐水管路の逆止弁上流側に接続された洗浄バイパス管路と;該洗浄バイパス管路に設けられた電動開閉弁と;洗浄バイパス管路の電動開閉弁と非利用側排水管路の電動開閉弁を開き、且つ、電解槽に極性を逆転して電解電圧を印加させる電気制御装置と;を具備することを特徴とする。
前記電気制御装置は、電解槽の極性を逆転させる方式に代えて、給水側の流路切換弁と排水側の流路切換弁の各流路を切り換える方式でもよい。
【0010】
上記第3の目的を達成するために、本発明の請求項4の電解水生成装置は、前記請求項2又は3のものにおいて、さらに、ミクロフイルタの洗浄時給水管となる洗浄用管路とミクロフイルタの排出口の間に、ミクロフイルタの抵抗により洗浄給水圧が所定値を超えると洗浄給水の一部を内部フイルタ本体を通さずにミクロフイルタ排出口に流す迂回路を設けたことを特徴とする。
【0011】
好ましくは、いずれの場合も給水管路の開閉電動弁が閉じたのち、所定時間遅延して非利用側排水管路の開閉電動弁が閉じるようにする。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を添付の図面に基づいて説明する。
図1は本発明の請求項1の電解水生成装置の実施例を示すもので、この電解水生成装置1は、電解槽2の一側に水道水などの原水の給水管路3を有するとともに、電解槽2の他側に利用側吐水管路4と非利用側排水管路5を有する連続式の電解水生成装置に構成されており、給水管路3から供給された水を電解槽2でアルカリイオン水と酸性水に電解し、生成されたアルカリイオン水を利用側吐水管路4から取水するとともに、酸性水を非利用側排水管路5からドレン等へ排水するようになっている。
このため電解槽2は、図を省略したが、対向配設した陽電極と陰電極間を電解隔膜で陽極室と陰極室に仕切った有隔膜電解槽を構成されている。
【0013】
また、この電解水生成装置1は、電解槽2の下流側の利用側吐水管路4に蛇口水栓などの開閉手段6が取付けられ、この開閉手段6によって取水を制御する、
いわゆる先止め式の連続式電解水生成装置に構成されている。
【0014】
本発明は上記の先止め式の連続式電解水生成装置において、利用側吐水管路4の開閉手段6の上流側に逆止弁7を介装するとともに、この逆止弁7とその先の前記開閉手段6の間の吐水管路に圧力スイッチ8を設けてある。
この圧力スイッチ8は開閉手段6の開閉によって生ずる水圧変動でON−OFF信号を発信するもので、図の実施例では開閉手段6で吐水管路4を閉じると逆止弁7と開閉手段6間の水圧上昇によりON信号を発信し、開閉手段6を開くとOFF信号を発信するようになっている。
【0015】
他方、給水管路3に前記圧力スイッチ8のON信号で閉じ、OFF信号で開く電磁弁などの電動開閉弁9が設けられているとともに、非利用側排水管路5にも前記圧力スイッチ8のON信号で閉じ、OFF信号で開く電磁弁などの電動開閉弁10が設けられている。
【0016】
給水管路3の電動開閉弁9と非利用側排水管路5の電動開閉弁10は圧力スイッチ8のON信号で同時に閉じるようにしてもよいが、好ましくは図のように非利用側排水管路5の電動開閉弁10への信号は遅延タイマ11を介して送り、電動開閉弁10が給水管路3の電動開閉弁9よりも若干遅れて閉じるようにする。
【0017】
尚、図の実施例は、給水管3に浄水器12とミクロフィルタ13を管路を介して直列に介装してある。
また、図の実施例の電解槽2は陽極室と陰極室に各別に連通する一対の独立給水口14、15を有する電解槽を使用しており、このためミクロフィルタ13の下流側給水管路を二股の給水支管3a、3bに分岐し、各々の給水支管3a、3bを電解槽2の一対の独立給水口14、15に接続している。
【0018】
また、図の実施例の電解槽2は電極の極性を所定時間毎に交互に逆転させて電解を行う逆電式電解槽を使用している。このため、給水支管3a、3bの相互間に給水側の流路切換弁16を介装するとともに、利用側吐水管路4と非利用側排水管路5の相互間に排水側の流路切換弁17を介装し、電解水生成の電解電圧の逆転と連動して流路切換弁16、17の流路を切り換えることにより、電解槽2の電極室の極性が逆転しても、各電極室に対する給水側及び吐水側の水回路自体に影響がないようにしてある。
【0019】
かくして、図1の実施例では、利用側吐水管4の開閉手段を開くと給水管路3と非利用側排水管路5の各々の電動開閉弁9、10が開き、減圧弁18を通して給水管3から供給された原水は、浄水器12、ミクロフィルタ13で浄化され給水支管3a、3bを通して電解槽2の各々の給水口14、15から電解槽2の各電極室に各別に導入され、電解槽2の電極への電圧印加によってアルカリ水と酸性水に電解される。そして、電解生成されたアルカリ水は利用側吐水管路4から取水され、酸性水は非利用側排水管路5からドレン等へ排水される。このときの電解槽2の電解電圧のON、OFFは利用側吐水管路4の圧力スイッチのOFF、ON信号で制御するようにしてもよい。
【0020】
図1の状態で所定時間電解した後、電解槽2の電極極性が逆転すると、流路切換弁16、17がモータ19によって図2のように切換えられる。
【0021】
利用側吐水管路4の開閉手段6を閉じると、開閉手段6と逆止弁7間の水圧上昇により圧力スイッチ8がON作動し、このON信号で給水管路3が閉じるため装置の水回路に給水圧がかからなくなる。
図の実施例では圧力スイッチ8のON信号で非利用側排水管路5の電動開閉弁10も閉じるので装置内の水回路は一定水量を保持した状態で次の電解開始に備えられる。
【0022】
遅延タイマ11によって、非利用側排水管路5の電動開閉弁10を給水管路3の電動開閉弁9よりも遅れて閉じるようにした場合は、開閉手段6を閉じたときのウォータハンマが吸収され、圧力の影響が一層効果的に取り除かれることになる。
【0023】
図3乃至図6は本発明の請求項2、3の装置の実施例を示すもので、この電解水生成装置は前記図1、図2の実施例の構造を備えた上で、さらに、電解水生成を停止しているときに、ミクロフィルタ13を含む装置内の水回路を電解酸性水で洗浄することができるようにしたものである。従って、図1と同一の参照番号は同一の部材を示し、同じ機能を有している。
【0024】
すなわち、本発明の図3の装置は、前記と同様に利用側吐水管路4に逆止弁7と圧力スイッチ8を有し、給水管路3と非利用側排水管路5に圧力スイッチ8の信号で作動する電動開閉弁9、10を備えている点は図1と同様である。
また、電解槽2の給水部に、陽極室、陰極室に各別に連通する一対の独立給水口14、15を設けた電解槽を使用し、ミクロフィルタ13の下流側の給水管路3から二股に分岐した給水支管3a、3bを電解槽2の一対の独立給水口14、15に接続した構成も図1の装置と同じである。但し、これらの構成は、請求項1の発明に対応する図1の装置においては必ずしも必須のものではないが、請求項2及び請求項3の発明に対応する図3乃至図8の装置においては必須の構成になっている。
【0025】
図3の装置は上記の構成に加えて、一方の給水支管3bの流路切換弁16上流側に逆止弁20を介装するとともに、この逆止弁20と流路切換弁16の間の給水支管3bからミクロフィルタ13上流側の給水管路に逆止弁21を介装した洗浄用管路22を接続してある。
【0026】
さらに、給水管路3の電動開閉弁9の上流側から利用側吐水管路4の前記逆止弁7と流路切換弁17の間の管路に洗浄バイパス管路23が接続されており、この洗浄バイパス管路23に電磁弁などの電動弁24が設けられている。この電動弁24は給水管路3の給水を利用側吐水管路4側へ選択的に開くために使用されるものであるから、電動開閉弁に限らず、給水管路3からの分岐部に設けた三方弁(図示せず)で代用することもできる。
【0027】
洗浄バイパス管路23の電動弁24はタイマなどの別の洗浄スイッチ25を含む電気制御装置からの信号で開くようになっており、また、この信号は、同様に非利用側排水管路5の電動開閉弁10を開くとともに、図5、図6に示すように、電解槽2の極性を逆転して電解電圧を印加する洗浄電解信号として電解槽2の電気制御部26に送られるようになっている。但し、洗浄スイッチ25を含む電気制御装置の信号は、前記のように電解槽2の極性を逆転して電解電圧を印加するのに代えて、図7、図8のように、電解槽2の給水支管3a、3bの流路切換弁16及び、利用側吐水管路4と非利用側排水管路5の流路切換弁17の各流路を切り換えるための信号として、これら流路切換弁16、17の駆動モータ19に送り、モータ19を制御するようにしても良い。
この洗浄スイッチ25は手動でももちろんよいが、24時間タイマ等を使用し、深夜などの電解水を使用しないときに、洗浄スイッチ25が自動的にONするようにするのが望ましい。
【0028】
次に、図3の装置の作用について図3乃至図6に沿って説明する。
図3は電解によりアルカリ水を生成し、使用している状態の水の流れを示しており、給水管路3から供給される原水は浄水器12、ミクロフィルタ13で浄化された後、電解槽2でアルカリ水と酸性水に電解され、アルカリ水は利用側吐水管路4から取水され、酸性水は非利用側排水管路5からドレンへ排水される。
電解槽2の電極極性が逆転されると、図4のように電解槽2の上流側(給水支管3a、3b)の流路切換弁16と電解槽2の下流側流路切換弁17の各々の流路が切換わり、引き続き利用側吐水管路4からアルカリ水が取水され、非利用側排水管路5から酸性水が排水される。
【0029】
図3、図4の状態で、利用側吐水管路4の開閉手段6を閉じると、圧力スイッチ8が作動し給水管路3の電動開閉弁9が閉じるとともに、これと連動して、(好ましくは若干の遅れをもって)非利用側排水管路5の電動開閉弁10が閉じる。これらの動作は図1、図2の装置と実質的に同じである。
【0030】
次に、図3、図4の状態で利用側吐水管路4の開閉手段6が閉じられているときに、洗浄スイッチ25がONすると、洗浄スイッチ25からの信号で洗浄バイパス管路23の電動弁24と非利用側排水管路5の電動開閉弁10が開くとともに、電解槽2の電極極性を逆転して電解電圧が印加され、水の流れと電解槽2の極性はそれぞれ図5、図6の状態に変る。
その結果、図5、図6のように洗浄バイパス管路23から利用側吐水管路4に供給された水は、極性が逆転された電解槽2の陽極室を逆流しながら電解されることにより酸性水に生成され、給水支管3bから洗浄用管路22を通してミクロフィルタ13の給水側に供給され、ミクロフィルタ13を通過した後、給水支管3aを通して電解槽2の陰極室を流れ、非利用側排水管路5から排水される。
また、電解槽2の極性を逆転させる代わりに、流路切換弁16、17の流路を切り換えると、図7、図8のように、洗浄バイパス管路23から利用側吐水管路4に供給された水は、電解槽2の陽極室を逆流しながら電解されることにより酸性水に生成され、給水支管3bから洗浄用管路22を通してミクロフィルタ13の給水側に供給され、ミクロフィルタ13を通過した後、給水支管3aを通して電解槽2の陰極室を流れ、非利用側排水管路5から排水される。
すなわち、洗浄スイッチ25の投入により上記の一連の洗浄水回路が開閉されるとともに、洗浄電解によって生成された殺菌性のある酸性水が洗浄水回路を流れることにより、効率のよい洗浄がなされる。
尚、洗浄に際し、洗浄用酸性水が上記洗浄水回路をゆっくり流れるようにするため、洗浄バイパス管路23と非利用側排水管路5にオリフイスなどの絞り弁27a、27bを設けてもよい。
【0031】
ところで、図5乃至図8のように、洗浄時に洗浄バイパス23を介して洗浄用給水を電解槽2の陽極室及び給水支管3bを逆流させ、洗浄用管路22からミクロフイルタ13のフイルタ本体を通過させ、さらに、給水支管3a及び電解槽2の陰極室を通して排水するようにすると、洗浄時に給水の全量が電解槽2の陽極室を逆流してミクロフイルタ13内のフイルタ本体の抵抗を受けるため、電解槽2の陽極室側の水圧がアンバランスに上昇し、このため電解槽2内の電解隔膜が破損するおそれがある。
【0032】
そこで、図9の実施例はこの課題を解決するために、ミクロフイルタ13の洗浄時給水管となる洗浄用管路22とミクロフイルタ13の排出口33の間に、ミクロフイルタ13の抵抗により洗浄給水圧が所定値を超えると洗浄給水の一部を内部フイルタ本体34を通さずにミクロフイルタ排出口33に通水させる迂回路35を設けてある。
【0033】
そして、図9の実施例は前記迂回路35を形成するために、洗浄用管路22からミクロフイルタ13の補助給水口36へ通水路37を設けるとともに、ミクロフイルタ13内の補助給水口36と排水口33の間にフイルタ本体34を経由しない通路又はスペース38を設け、さらに、前記通水路37に所定のばね圧のばる39によって付勢させた逆止弁40を介装してある。
【0034】
かくして、図9の実施例は、洗浄時に、ミクロフイルタ13のフイルタ本体34の抵抗によって電解槽2の陽極室の水圧が所定の圧力を超えると、洗浄用管路22の洗浄水の一部がフイルタ本体34を通らずに迂回路35を介してミクロフイルタ排出口33へ流れ、これにより、陽極室の水圧を吸収するようになっている。
【0035】
圧力スイッチ8はいかなる構造のものでもよいが、好ましくは、圧力検出位置を調整し、スイッチがONになるときの圧力を調整することができる構造のものが望ましい。
図7は圧力スイッチ8の一例を示すもので、水が通るケーシング28内を、スプリング29によって支持されたダイアフラム30で上下に仕切り、ダイアフラム30と一体のマグネット31をリードスイッチ32等で検出するものであるが、リードスイッチ32の位置を図の上下に調整することでスイッチONになる圧力を調整することができる。
【0036】
尚、図1乃至図9の装置において、圧力スイッチ8のON信号で電動開閉弁9、10を閉状態に維持するには開閉手段6と逆止弁7に所定の水圧が保持されている必要がある。図1乃至図9の装置においては、給水管路3の電動開閉弁9又は洗浄バイパス管路24を所定時間開くことによってこの水圧保持が達成される。
【0037】
【効果】
本発明の連続式電解水生成装置は、利用側吐水管路の先止め開閉手段を閉じた時に装置の水回路に給水管路からの給水圧がかからないので、先止め式の利点を享有しながら、電解槽や水の回路を耐圧式にする必要がなくなる。すなわち、先止め式で非耐圧構造にできるので製造及びメンテナンスを大幅にコストダウンした先止め式の電解水生成装置を得ることができる。
【0038】
ウォータハンマ等の衝撃圧を効果的に吸収することができるので損傷を少なくし、寿命の長期化がはかれる。
【0039】
簡単な流路切換えでミクロフィルタを含む洗浄水回路が開成されるとともに、電解酸性水で洗浄水回路を洗うのできわめて効率のよい洗浄効果が得られる。
【0040】
洗浄時に給水の全量を洗浄水として供給した場合でも、ミクロフイルタの抵抗による圧力上昇分は洗浄水の迂回路によって吸収されるので電解槽の隔膜が過度の水圧で破損することがなくなる。しかも、ミクロフイルタの排出口及びその下流側の管路は酸性洗浄水の全量で洗われるから、洗浄効果に影響はない。
【図面の簡単な説明】
【図1】 本発明の一実施例による連続式電解水生成装置の概略構成図
【図2】 電極々性及び流路を切換えたときの図1相当図
【図3】 本発明の他の実施例による連続式電解水生成装置の概略構成図
【図4】 電極々性及び流路を切換えたときの図3相当図
【図5】 図3の状態での洗浄作動図
【図6】 図4の状態での洗浄作動図
【図7】 図3の状態での他の洗浄作動図
【図8】 図4の状態での他の洗浄作動図
【図9】 本発明の他の実施例による連続式電解水生成装置の洗浄作動図
【図10】 圧力スイッチの一実施例を示す縦断面図
【符号の説明】
1…連続式電解水生成装置
2…電解槽
3…給水管路
3a、3b…給水支管
4…利用側吐水管路
5…非利用側排水管路
6…開閉手段
7…逆止弁
8…圧力スイッチ
9、10、24…電動開閉弁
11…遅延タイマ
12…浄水器
13…ミクロフィルタ
14、15…給水口
16、17…流路切換弁
19…モータ
20、21…逆止弁
22…洗浄用管路
23…洗浄バイパス管路
25…洗浄スイッチ
26…電気制御部
27a、27b…絞り弁
28…圧力スイッチケーシング
29…スプリング
30…ダイアフラム
31…マグネット
32…リードスイッチ
33…ミクロフイルタ排出口
34…フイルタ本体
35…迂回路
36…補助給水口
37…通水路
38…通路
39…ばね
40…逆止弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a first-stop type continuous electrolyzed water generating device that electrolyzes raw water such as tap water to generate alkali ion water.
[0002]
[Prior art]
Used for continuous electrolyzed water generation equipment that electrolyzes raw water supplied from water supply pipes in an electrolytic cell and discharges the generated alkaline water and acidic water separately from the use-side water discharge pipe and the non-use-side drainage pipe There is a first-stop type electrolyzed water generator that takes in alkali ion water by opening and closing a faucet provided in a side water discharge pipe.
[0003]
[Problems to be solved by the invention]
Such a front-end type device has the advantage that water intake control can be performed at the tip of the water pipe to be used, and it can be selectively opened and closed by providing a plurality of water intakes. Water pressure is always applied to the electrolytic cell, and when the faucet is closed in this state, impact pressure such as water hammer is applied to the water circuit in the apparatus. For this reason, pressure resistance is requested | required of the electrolytic cell and piping, and the high cost of manufacture and maintenance was not avoided.
[0004]
Accordingly, a first object of the present invention is to provide a non-pressure-resistant, front-stop type continuous electrolyzed water generating device having a structure that does not apply a feed water pressure to the electrolytic cell or piping when not taking water while having a front-stop function. It is to provide.
[0005]
By the way, since this type of electrolyzed water generating apparatus is used, water circuits such as pipes and electrolyzers become dirty, and thus it is necessary to clean them appropriately. However, conventionally, in order to clean effectively, the piping of the apparatus has to be changed greatly, and the operation is very complicated.
Further, conventionally, the upstream pipe line of the electrolytic cell cannot be washed with electrolytic acid water, and in particular, the washing of the microfilter interposed in the water supply pipe line has been a problem.
[0006]
Therefore, the second object of the present invention is to generate the electrolyzed water having a structure in which the microfilter upstream of the electrolyzer to the water discharge pipe downstream of the electrolyzer is automatically washed with the electrolytic acid water only by switching the water supply line. To provide an apparatus.
[0007]
The electrolyzed water generating apparatus equipped with such a microfilter cleaning mechanism allows water to flow through the anode chamber of the electrolytic cell in the reverse direction during the cleaning, drain the water through the cathode chamber of the electrolytic cell after passing through the microfilter. Therefore, the resistance of the microfilter increases the water pressure in the anode chamber of the electrolytic cell, which may damage the electrolytic diaphragm that partitions the cathode chamber and the anode chamber of the electrolytic cell.
Therefore, the third object of the present invention is to protect the electrolytic diaphragm of the electrolytic cell from damage due to the increase in the water pressure of the anode chamber during the cleaning operation, and to clean the discharge port of the microfilter and its downstream side with the total amount of cleaning water supply. An object of the present invention is to provide a non-pressure-proof, first-stop type continuous electrolyzed water generating device having a structure.
[0008]
[Means for Solving the Problems]
In order to achieve the first object, an electrolyzed water generating apparatus according to claim 1 of the present invention electrolyzes water supplied from a water supply pipe line in an electrolyzer and uses the generated alkaline water and acidic water on the side. A continuous electrolyzed water generating device that discharges water from the water pipe and the non-use side drain pipe separately, and controls discharge of the use side electrolyzed water by an opening / closing means provided in the use side water discharge pipe; A pressure switch that is provided in the water discharge pipe and that is activated by fluctuations in water pressure when the open / close means of the use side water discharge pipe is opened and closed; a check valve provided on the upstream side of the pressure switch in the use side water discharge pipe; An electrically operated on / off valve provided in the water supply line and opened / closed by an ON / OFF signal of the pressure switch; an electrically operated on / off valve provided in a non-use side drain line and opened / closed by an ON / OFF signal of the pressure switch; Characterized by comprising: .
[0009]
In order to achieve the second object, an electrolyzed water generating apparatus according to claim 2 of the present invention electrolyzes water supplied from a water supply pipe line in an electrolyzer and uses the generated alkaline water and acidic water on the side. A continuous electrolyzed water generating device that discharges water from the water pipe and the non-use side drain pipe separately, and controls discharge of the use side electrolyzed water by an opening / closing means provided in the use side water discharge pipe; A pressure switch that is provided in the water discharge pipe and that is turned on and off in conjunction with opening and closing of the opening / closing means of the use side water discharge pipe; a check valve provided on the upstream side of the pressure switch in the use side water discharge pipe; An electrically operated on / off valve provided in the water supply line and opened / closed by an ON / OFF signal of the pressure switch; an electrically operated on / off valve provided in a non-use side drain line and opened / closed by an ON / OFF signal of the pressure switch; The anode formed in the water supply part of the electrolytic cell A pair of independent water supply ports respectively communicating with the cathode chamber; a microfilter interposed downstream of the electric on-off valve in the water supply line; bifurcated from the downstream side of the microfilter; A pair of water supply branches separately connected to the independent water supply ports; a cleaning line piped from the downstream side of the check valve interposed in one water supply branch to the water supply side of the microfilter via the check valve; A washing bypass line connected from the upstream side of the electric on-off valve of the water supply line to the upstream side of the check valve of the use-side water discharge line; an electric on-off valve provided in the washing bypass line; An electric control device that opens the electric on-off valve and the electric on-off valve of the non-use side drain pipe, and reverses the polarity to the electrolytic cell to apply the electrolysis voltage.
The electric control device may be a method of switching each flow path of the water supply side flow path switching valve and the drain side flow path switching valve instead of the system of reversing the polarity of the electrolytic cell.
[0010]
In order to achieve the third object, the electrolyzed water generating apparatus according to claim 4 of the present invention is the apparatus according to claim 2 or 3, further comprising a cleaning pipe line and a micro tube serving as a water supply pipe for cleaning the microfilter. A detour is provided between the filter outlets to allow a part of the cleaning water to flow to the microfilter outlet without passing through the internal filter body when the cleaning water supply pressure exceeds a predetermined value due to the resistance of the microfilter. To do.
[0011]
Preferably, in any case, after the open / close electric valve of the water supply pipe is closed, the open / close electric valve of the non-use side drain pipe is closed after a predetermined time delay.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 shows an embodiment of the electrolyzed water generating device according to claim 1 of the present invention. The electrolyzed water generating device 1 has a feed water supply line 3 of raw water such as tap water on one side of an electrolyzer 2. The continuous electrolyzed water generating device having the use side water discharge line 4 and the non-use side drain line 5 on the other side of the electrolyzer 2, and the water supplied from the water supply line 3 is converted into the electrolyzer 2. In addition, the alkaline ionized water and the acidic water are electrolyzed, and the generated alkaline ionized water is taken from the use-side discharge pipe 4 and the acid water is drained from the nonuse-use drainage pipe 5 to the drain or the like. .
For this reason, although not shown, the electrolytic cell 2 is configured as a diaphragm electrolytic cell in which a positive electrode and a negative electrode arranged opposite to each other are divided into an anode chamber and a cathode chamber by an electrolytic diaphragm.
[0013]
In addition, the electrolyzed water generating apparatus 1 is provided with an opening / closing means 6 such as a faucet faucet attached to the use side water discharge pipe 4 on the downstream side of the electrolytic cell 2, and the intake means controls the water intake.
It is comprised in what is called a first stop type continuous electrolyzed water generating apparatus.
[0014]
In the above-mentioned front-stop type continuous electrolyzed water generator, the present invention includes a check valve 7 on the upstream side of the opening / closing means 6 of the use-side water discharge pipe 4, and the check valve 7 and its tip. A pressure switch 8 is provided in the water discharge line between the opening and closing means 6.
This pressure switch 8 transmits an ON-OFF signal due to a fluctuation in water pressure caused by opening / closing of the opening / closing means 6. In the embodiment shown in the figure, when the water discharge line 4 is closed by the opening / closing means 6, the check valve 7 and the opening / closing means 6 are connected. When the water pressure rises, an ON signal is transmitted, and when the opening / closing means 6 is opened, an OFF signal is transmitted.
[0015]
On the other hand, an electric on-off valve 9 such as an electromagnetic valve that is closed by an ON signal of the pressure switch 8 and opened by an OFF signal is provided in the water supply line 3, and the pressure switch 8 is also provided in the non-use side drain line 5. An electric on-off valve 10 such as an electromagnetic valve that closes with an ON signal and opens with an OFF signal is provided.
[0016]
The electric on-off valve 9 of the water supply line 3 and the electric on-off valve 10 of the non-use side drain pipe 5 may be closed simultaneously by the ON signal of the pressure switch 8, but preferably the non-use side drain pipe as shown in the figure. A signal to the electric on-off valve 10 in the passage 5 is sent via a delay timer 11 so that the electric on-off valve 10 is closed with a slight delay from the electric on-off valve 9 in the water supply pipe 3.
[0017]
In the embodiment shown in the figure, a water purifier 12 and a microfilter 13 are connected to a water supply pipe 3 in series via a pipe line.
Moreover, the electrolytic cell 2 of the embodiment shown in the figure uses an electrolytic cell having a pair of independent water supply ports 14 and 15 respectively communicating with the anode chamber and the cathode chamber. For this reason, the downstream water supply line of the microfilter 13 is used. Is branched into bifurcated water supply branches 3 a and 3 b, and each of the water supply branches 3 a and 3 b is connected to a pair of independent water supply ports 14 and 15 of the electrolytic cell 2.
[0018]
Moreover, the electrolytic cell 2 of the Example of the figure uses the reverse electric type electrolytic cell which reverses the polarity of an electrode alternately for every predetermined time, and electrolyzes. For this reason, the water supply side flow switching valve 16 is interposed between the water supply branch pipes 3 a and 3 b, and the drain side flow path switching is performed between the use side water discharge pipe 4 and the nonuse side drain pipe 5. Even if the polarity of the electrode chamber of the electrolytic cell 2 is reversed by interposing the valve 17 and switching the flow path of the flow path switching valves 16 and 17 in conjunction with the reversal of the electrolysis voltage for electrolyzed water generation, each electrode The water circuit itself on the water supply side and water discharge side for the chamber is not affected.
[0019]
Thus, in the embodiment of FIG. 1, when the opening / closing means of the use side water discharge pipe 4 is opened, the electric open / close valves 9 and 10 of the water supply pipe line 3 and the non-use side drain pipe line 5 are opened. The raw water supplied from 3 is purified by the water purifier 12 and the microfilter 13 and introduced into the electrode chambers of the electrolytic cell 2 from the water supply ports 14 and 15 of the electrolytic cell 2 through the water supply branches 3a and 3b. Electrolysis is carried out into alkaline water and acidic water by applying a voltage to the electrode of the tank 2. The alkaline water generated by electrolysis is taken from the use-side water discharge pipe 4 and the acidic water is discharged from the non-use-side drain pipe 5 to the drain or the like. ON / OFF of the electrolysis voltage of the electrolytic cell 2 at this time may be controlled by an OFF / ON signal of the pressure switch of the use side water discharge pipe 4.
[0020]
After the electrolysis for a predetermined time in the state of FIG. 1, when the electrode polarity of the electrolytic cell 2 is reversed, the flow path switching valves 16 and 17 are switched by the motor 19 as shown in FIG.
[0021]
When the opening / closing means 6 of the use side water discharge pipe 4 is closed, the pressure switch 8 is turned on by the increase in water pressure between the opening / closing means 6 and the check valve 7, and the water supply pipe line 3 is closed by this ON signal. The water supply pressure is no longer applied.
In the embodiment shown in the figure, the electric open / close valve 10 of the non-use side drainage pipe 5 is also closed by the ON signal of the pressure switch 8, so that the water circuit in the apparatus is prepared for the start of the next electrolysis while maintaining a constant amount of water.
[0022]
When the delay timer 11 closes the electric opening / closing valve 10 of the non-use side drain pipe 5 later than the electric opening / closing valve 9 of the water supply pipe 3, the water hammer when the opening / closing means 6 is closed is absorbed. Thus, the effect of pressure is more effectively removed.
[0023]
FIGS. 3 to 6 show an embodiment of the apparatus according to claims 2 and 3 of the present invention, and this electrolyzed water generating apparatus has the structure of the embodiment of FIGS. When water generation is stopped, the water circuit in the apparatus including the microfilter 13 can be washed with electrolytic acid water. Therefore, the same reference numerals as those in FIG. 1 indicate the same members and have the same functions.
[0024]
That is, the apparatus of FIG. 3 of the present invention has the check valve 7 and the pressure switch 8 in the use side water discharge line 4 as described above, and the pressure switch 8 in the water supply line 3 and the non-use side drain line 5. 1 is the same as that shown in FIG.
In addition, an electrolytic cell provided with a pair of independent water supply ports 14 and 15 respectively communicating with the anode chamber and the cathode chamber in the water supply part of the electrolytic cell 2 is used, and is bifurcated from the water supply line 3 on the downstream side of the microfilter 13. The configuration in which the water supply branch pipes 3a and 3b branched into the two are connected to the pair of independent water supply ports 14 and 15 of the electrolytic cell 2 is the same as the apparatus of FIG. However, these configurations are not necessarily essential in the apparatus of FIG. 1 corresponding to the invention of claim 1, but in the apparatuses of FIGS. 3 to 8 corresponding to the inventions of claims 2 and 3. It is a required configuration.
[0025]
In addition to the above configuration, the apparatus of FIG. 3 includes a check valve 20 on the upstream side of the flow path switching valve 16 of one of the water supply branch pipes 3b, and between the check valve 20 and the flow path switching valve 16. A cleaning pipe 22 having a check valve 21 interposed is connected from the water supply branch 3b to the water supply pipe upstream of the microfilter 13.
[0026]
Furthermore, a washing bypass line 23 is connected from the upstream side of the electric on-off valve 9 in the water supply line 3 to the line between the check valve 7 and the flow path switching valve 17 in the use side water discharge line 4. An electric valve 24 such as an electromagnetic valve is provided in the washing bypass line 23. The motor-operated valve 24 is used to selectively open the water supply in the water supply line 3 to the use-side water discharge line 4 side. A provided three-way valve (not shown) can be substituted.
[0027]
The motor-operated valve 24 of the cleaning bypass line 23 is opened by a signal from an electric control device including another cleaning switch 25 such as a timer. While opening the electric on-off valve 10, as shown in FIG. 5 and FIG. 6, it is sent to the electric control unit 26 of the electrolytic cell 2 as a cleaning electrolytic signal for reversing the polarity of the electrolytic cell 2 and applying an electrolytic voltage. ing. However, the signal of the electric control device including the cleaning switch 25 is not used to apply the electrolytic voltage by reversing the polarity of the electrolytic cell 2 as described above, but as shown in FIGS. As the signal for switching each flow path of the flow path switching valve 16 of the water supply branch pipes 3 a and 3 b and the flow path switching valve 17 of the use side water discharge pipe 4 and the non-use side drain pipe 5, these flow path switching valves 16. , 17 may be sent to the drive motor 19 to control the motor 19.
The washing switch 25 may be manually operated, but it is desirable to use a 24-hour timer or the like so that the washing switch 25 is automatically turned on when electrolyzed water is not used at midnight or the like.
[0028]
Next, the operation of the apparatus shown in FIG. 3 will be described with reference to FIGS.
FIG. 3 shows the flow of water in a state where alkaline water is generated by electrolysis and used. The raw water supplied from the water supply pipe 3 is purified by the water purifier 12 and the microfilter 13 and then the electrolytic cell. 2 is electrolyzed into alkaline water and acidic water, the alkaline water is taken from the use-side water discharge pipe 4, and the acidic water is drained from the non-use-side drain pipe 5 to the drain.
When the electrode polarity of the electrolytic cell 2 is reversed, each of the flow path switching valve 16 on the upstream side (water supply branch pipes 3a and 3b) of the electrolytic cell 2 and the downstream flow path switching valve 17 of the electrolytic cell 2 as shown in FIG. Then, the alkaline water is taken from the use-side water discharge pipe 4 and the acidic water is drained from the non-use-side drain pipe 5.
[0029]
3 and 4, when the opening / closing means 6 of the use side water discharge pipe 4 is closed, the pressure switch 8 is activated and the electric open / close valve 9 of the water supply pipe 3 is closed, and in conjunction therewith (preferably (With a slight delay), the electric on-off valve 10 of the non-use side drain pipe 5 is closed. These operations are substantially the same as those of the apparatus shown in FIGS.
[0030]
Next, when the opening / closing means 6 of the use side water discharge pipe 4 is closed in the state of FIGS. 3 and 4, when the cleaning switch 25 is turned ON, the electric power of the cleaning bypass pipe 23 is generated by a signal from the cleaning switch 25. The open / close valve 10 of the valve 24 and the non-use side drain pipe 5 is opened, and the electrolysis voltage is applied by reversing the electrode polarity of the electrolytic cell 2, and the flow of water and the polarity of the electrolytic cell 2 are respectively shown in FIGS. It changes to the state of 6.
As a result, as shown in FIGS. 5 and 6, the water supplied from the washing bypass line 23 to the use side water discharge line 4 is electrolyzed while flowing back through the anode chamber of the electrolytic cell 2 whose polarity is reversed. It is generated in acidic water, supplied from the water supply branch 3b to the water supply side of the microfilter 13 through the cleaning conduit 22, passes through the microfilter 13, and then flows through the cathode chamber of the electrolytic cell 2 through the water supply branch 3a. Drained from the drain pipe 5.
Further, when the flow paths of the flow path switching valves 16 and 17 are switched instead of reversing the polarity of the electrolytic cell 2, as shown in FIG. 7 and FIG. The water thus produced is generated into acidic water by being electrolyzed while flowing back through the anode chamber of the electrolytic cell 2, and is supplied from the water supply branch 3 b to the water supply side of the microfilter 13 through the cleaning conduit 22. After passing through, it flows through the cathode chamber of the electrolytic cell 2 through the water supply branch 3 a and is drained from the non-use side drain pipe 5.
That is, when the washing switch 25 is turned on, the above series of washing water circuits are opened and closed, and the sterilizing acidic water generated by washing electrolysis flows through the washing water circuit, so that efficient washing is performed.
In order to allow the washing acidic water to flow slowly through the washing water circuit at the time of washing, the washing bypass pipe 23 and the non-use side drain pipe 5 may be provided with throttle valves 27a and 27b such as orifices.
[0031]
By the way, as shown in FIGS. 5 to 8, the cleaning water is fed back through the anode chamber of the electrolytic cell 2 and the water supply branch 3 b through the cleaning bypass 23 at the time of cleaning, and the filter main body of the microfilter 13 is removed from the cleaning pipe 22. If the water is allowed to pass through and further drained through the water supply branch 3a and the cathode chamber of the electrolytic cell 2, the entire amount of the water supply flows back through the anode chamber of the electrolytic cell 2 during cleaning and receives the resistance of the filter body in the microfilter 13. The water pressure on the anode chamber side of the electrolytic cell 2 rises unbalanced, and there is a risk that the electrolytic diaphragm in the electrolytic cell 2 may be damaged.
[0032]
Therefore, in order to solve this problem, the embodiment of FIG. 9 performs cleaning and feeding by the resistance of the microfilter 13 between the cleaning conduit 22 serving as a water supply pipe for cleaning the microfilter 13 and the discharge port 33 of the microfilter 13. When the water pressure exceeds a predetermined value, a detour path 35 is provided that allows a part of the cleaning water to pass through the microfilter discharge port 33 without passing through the internal filter body 34.
[0033]
In the embodiment of FIG. 9, in order to form the bypass circuit 35, a water passage 37 is provided from the cleaning pipe 22 to the auxiliary water supply port 36 of the microfilter 13, and the auxiliary water supply port 36 in the microfilter 13 is provided. A passage or space 38 that does not pass through the filter main body 34 is provided between the drain ports 33, and a check valve 40 that is biased by a predetermined spring pressure 39 is interposed in the water passage 37.
[0034]
Thus, in the embodiment of FIG. 9, when the water pressure in the anode chamber of the electrolytic cell 2 exceeds a predetermined pressure due to the resistance of the filter main body 34 of the microfilter 13 during cleaning, a part of the cleaning water in the cleaning conduit 22 is removed. Instead of passing through the filter main body 34, it flows to the microfilter discharge port 33 via the bypass 35, thereby absorbing the water pressure in the anode chamber.
[0035]
The pressure switch 8 may have any structure, but preferably has a structure capable of adjusting the pressure detection position and adjusting the pressure when the switch is turned on.
FIG. 7 shows an example of the pressure switch 8. The casing 28 through which water passes is divided up and down by a diaphragm 30 supported by a spring 29, and a magnet 31 integrated with the diaphragm 30 is detected by a reed switch 32 or the like. However, the pressure at which the switch is turned on can be adjusted by adjusting the position of the reed switch 32 up and down in the drawing.
[0036]
In the apparatus shown in FIGS. 1 to 9, in order to maintain the electric on-off valves 9 and 10 in the closed state by the ON signal of the pressure switch 8, a predetermined water pressure needs to be held in the on-off means 6 and the check valve 7. There is. In the apparatus of FIGS. 1 to 9, this water pressure retention is achieved by opening the electric on-off valve 9 or the cleaning bypass pipe 24 of the water supply pipe 3 for a predetermined time.
[0037]
【effect】
The continuous electrolyzed water generating apparatus of the present invention does not apply the feed water pressure from the water supply line to the water circuit of the apparatus when the front-end opening / closing means of the use side water discharge pipe is closed, This eliminates the need for the electrolytic cell and water circuit to be pressure resistant. That is, since a non-breakdown pressure structure can be achieved with a front-end type, a front-end type electrolyzed water generating apparatus can be obtained in which manufacturing and maintenance costs are greatly reduced.
[0038]
Since the impact pressure of a water hammer or the like can be absorbed effectively, damage is reduced and the life is extended.
[0039]
A washing water circuit including a microfilter is established by simple flow path switching, and the washing water circuit is washed with electrolytic acid water, so that an extremely efficient washing effect can be obtained.
[0040]
Even when the entire amount of water supply is supplied as cleaning water during cleaning, the pressure increase due to the resistance of the microfilter is absorbed by the bypass of the cleaning water, so that the diaphragm of the electrolytic cell is not damaged by excessive water pressure. In addition, since the discharge port of the microfilter and the downstream pipe line are washed with the entire amount of the acidic washing water, the washing effect is not affected.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a continuous electrolyzed water generator according to an embodiment of the present invention. FIG. 2 is a diagram corresponding to FIG. 1 when the electrode characteristics and flow paths are switched. Fig. 4 is a schematic configuration diagram of a continuous electrolyzed water generating apparatus according to an example. Fig. 4 is a diagram corresponding to Fig. 3 when the electrode characteristics and flow paths are switched. Fig. 5 is a cleaning operation diagram in the state of Fig. 3. FIG. 7 is another cleaning operation diagram in the state of FIG. 3. FIG. 8 is another cleaning operation diagram in the state of FIG. 4. FIG. 9 is a continuous diagram according to another embodiment of the present invention. Fig. 10 is a longitudinal sectional view showing an embodiment of a pressure switch.
DESCRIPTION OF SYMBOLS 1 ... Continuous electrolyzed water generating apparatus 2 ... Electrolytic tank 3 ... Water supply pipe line 3a, 3b ... Water supply branch pipe 4 ... Use side water discharge pipe 5 ... Non-use side drain pipe 6 ... Opening / closing means 7 ... Check valve 8 ... Pressure Switches 9, 10, 24 ... Electric on-off valve 11 ... Delay timer 12 ... Water purifier 13 ... Micro filter 14, 15 ... Water supply port 16, 17 ... Flow path switching valve 19 ... Motor 20, 21 ... Check valve 22 ... For cleaning Pipe 23 ... Washing bypass pipe 25 ... Washing switch 26 ... Electric control unit 27a, 27b ... Throttle valve 28 ... Pressure switch casing 29 ... Spring 30 ... Diaphragm 31 ... Magnet 32 ... Reed switch 33 ... Microfilter outlet 34 ... Filter Body 35 ... Detour 36 ... Auxiliary water supply 37 ... Water passage 38 ... Passage 39 ... Spring 40 ... Check valve

Claims (5)

給水管路から供給する水を電解槽で電解し、生成されたアルカリ水と酸性水を利用側吐水管路と非利用側排水管路から各別に排出するとともに、利用側吐水管路に設けられる開閉手段で利用側電解水の吐水を制御する連続式電解水生成装置と;電解槽の前記利用側吐水管路に設けられ、利用側吐水管路の開閉手段を開閉したときの水圧変動によって作動する圧力スイッチと;利用側吐水管路の前記圧力スイッチの上流側に設けられた逆止弁と;給水管路に設けられ、前記圧力スイッチのON−OFF信号によって閉開する電動開閉弁と;非利用側排水管路に設けられ、前記圧力スイッチのON−OFF信号によって閉開する電動開閉弁と;を具備することを特徴とする非耐圧型の先止め式電解水生成装置Water supplied from the water supply line is electrolyzed in an electrolytic tank, and the generated alkaline water and acidic water are separately discharged from the use-side water discharge pipe and the non-use side drainage pipe, and provided in the use-side water discharge pipe. A continuous electrolyzed water generating device for controlling the discharge of the use-side electrolyzed water by the opening and closing means; provided in the use-side discharge pipe of the electrolysis tank, and operated by fluctuations in water pressure when the opening and closing means of the use-side discharge pipe is opened and closed A check valve provided on the upstream side of the pressure switch in the use-side water discharge line; an electric on-off valve provided in the water supply line and opened and closed by an ON-OFF signal of the pressure switch; A non-pressure-resistant first-stop type electrolyzed water generating device, comprising: an electric on-off valve provided in a non-use side drainage pipe and opened and closed by an ON-OFF signal of the pressure switch; 給水管路から供給する水を電解槽で電解し、生成されたアルカリ水と酸性水を利用側吐水管路と非利用側排水管路から各別に排出するとともに、利用側吐水管路に設けられる開閉手段で利用側電解水の吐水を制御する連続式電解水生成装置と;電解槽の前記利用側吐水管路に設けられ、利用側吐水管路の開閉手段の開閉に連動してON−OFF作動する圧力スイッチと;利用側吐水管路の前記圧力スイッチ上流側に設けられた逆止弁と;給水管路に設けられ、前記圧力スイッチのON−OFF信号によって閉開する電動開閉弁と;非利用側排水管路に設けられ、前記圧力スイッチのON−OFF信号によって閉開する電動開閉弁と;電解槽の給水部に形成され、陽極室と陰極室に各別に連通する一対の独立給水口と;給水管路の前記電動開閉弁下流側に介装されたミクロフィルタと;該ミクロフィルタの下流側から二股に分岐され、前記電解槽の独立給水口に各別に接続された一対の給水支管と;一方の給水支管に介装した逆止弁の下流側から逆止弁を介してミクロフィルタの給水側に配管した洗浄用管路と;給水管路の電動開閉弁上流側から利用側吐水管路の逆止弁上流側に接続された洗浄バイパス管路と;該洗浄バイパス管路に設けられた電動開閉弁と;洗浄バイパス管路の電動開閉弁と非利用側排水管路の電動開閉弁を開き、且つ、電解槽に極性を逆転して電解電圧を印加させる電気制御装置と;を具備することを特徴とする非耐圧型の先止め式電解水生成装置Water supplied from the water supply line is electrolyzed in an electrolytic tank, and the generated alkaline water and acidic water are separately discharged from the use-side water discharge pipe and the non-use side drainage pipe, and provided in the use-side water discharge pipe. A continuous electrolyzed water generating device for controlling the discharge of the use-side electrolyzed water by the opening and closing means; provided on the use-side discharge pipe of the electrolytic cell, and ON-OFF in conjunction with the opening and closing of the opening and closing means of the use-side discharge pipe A pressure switch that operates; a check valve provided on the upstream side of the pressure switch of the use-side water discharge pipe; an electric on-off valve that is provided in the water supply pipe and is opened and closed by an ON-OFF signal of the pressure switch; An electric on-off valve provided in the non-use side drainage pipe and opened and closed by an ON-OFF signal of the pressure switch; a pair of independent water supply formed in the water supply part of the electrolytic cell and communicated separately to the anode chamber and the cathode chamber The opening and closing of the water supply pipeline A microfilter interposed on the downstream side; a pair of water supply branches that are bifurcated from the downstream side of the microfilter and are connected to the independent water supply ports of the electrolytic cell; and are interposed in one water supply branch pipe A cleaning line piped from the downstream side of the check valve to the water supply side of the microfilter via the check valve; connected from the upstream side of the electric open / close valve of the water supply line to the upstream side of the check valve of the use side water discharge pipe An open / close valve provided in the wash bypass line; an open / close valve in the wash bypass line and an open / close valve in the non-use drainage line; and a polarity in the electrolytic cell An electric control device for applying an electrolysis voltage by reversing the pressure; 給水管路から供給する水を電解槽で電解し、生成されたアルカリ水と酸性水を利用側吐水管路と非利用側排水管路から各別に排出するとともに、利用側吐水管路に設けられる開閉手段で利用側電解水の吐水を制御する連続式電解水生成装置と;電解槽の前記利用側吐水管路に設けられ、利用側吐水管路の開閉手段の開閉に連動してON−OFF作動する圧力スイッチと;利用側吐水管路の前記圧力スイッチ上流側に設けられた逆止弁と;給水管路に設けられ、前記圧力スイッチのON−OFF信号によって閉開する電動開閉弁と;非利用側排水管路に設けられ、前記圧力スイッチのON−OFF信号によって閉開する電動開閉弁と;電解槽の給水部に形成され、陽極室と陰極室に各別に連通する一対の独立給水口と;給水管路の前記電動開閉弁下流側に介装されたミクロフィルタと;該ミクロフィルタの下流側から二股に分岐され、前記電解槽の独立給水口に各別に接続された一対の給水支管と;一方の給水支管に介装した逆止弁の下流側から逆止弁を介してミクロフィルタの給水側に配管した洗浄用管路と;給水管路の電動開閉弁上流側から利用側吐水管路の逆止弁上流側に接続された洗浄バイパス管路と;該洗浄バイパス管路に設けられた電動開閉弁と;一対の給水支管に設けられた給水側の流路切換弁と;利用側吐水管路と非利用側排水管路に設けられた排水側の流路切換弁と;洗浄バイパス管路の電動開閉弁と非利用側排水管路の電動開閉弁を開き、且つ、前記給水側の流路切換弁と排水側の流路切換弁の各流路を切り換える電気制御装置と;を具備することを特徴とする非耐圧型の先止め式電解水生成装置Water supplied from the water supply line is electrolyzed in an electrolytic tank, and the generated alkaline water and acidic water are separately discharged from the use-side water discharge pipe and the non-use side drainage pipe, and provided in the use-side water discharge pipe. A continuous electrolyzed water generating device for controlling the discharge of the use-side electrolyzed water by the opening and closing means; provided on the use-side discharge pipe of the electrolytic cell, and ON-OFF in conjunction with the opening and closing of the opening and closing means of the use-side discharge pipe A pressure switch that operates; a check valve provided on the upstream side of the pressure switch of the use-side water discharge pipe; an electric on-off valve that is provided in the water supply pipe and is opened and closed by an ON-OFF signal of the pressure switch; An electric on-off valve provided in the non-use side drainage pipe and opened and closed by an ON-OFF signal of the pressure switch; a pair of independent water supply formed in the water supply part of the electrolytic cell and communicated separately to the anode chamber and the cathode chamber The opening and closing of the water supply pipeline A microfilter interposed on the downstream side; a pair of water supply branches that are bifurcated from the downstream side of the microfilter and are connected to the independent water supply ports of the electrolytic cell; and are interposed in one water supply branch pipe A cleaning line piped from the downstream side of the check valve to the water supply side of the microfilter via the check valve; connected from the upstream side of the electric open / close valve of the water supply line to the upstream side of the check valve of the use side water discharge pipe A washing bypass pipe line; an electric on-off valve provided in the washing bypass pipe line; a water supply side switching valve provided in a pair of water supply branch pipes; a use side water discharge pipe and a non-use side drain pipe A drain-side flow path switching valve provided in the passage; an opening / closing valve of the washing bypass pipe line and an electric open / close valve of the non-use side drain pipe line; and And an electric control device for switching each flow path of the flow path switching valve. Withstand-voltage of the previous stop type electrolytic water generation apparatus ミクロフイルタ13の洗浄時給水管となる洗浄用管路22とミクロフイルタ13の排出口33の間に、ミクロフイルタ13の抵抗により洗浄給水圧が所定値を超えると洗浄給水の一部を内部フイルタ本体34を通さずにミクロフイルタ排出口33に流す迂回路35を設けたことをさらに特徴とする請求項2又は3記載の非耐圧型の先止め式電解水生成装置When the cleaning water supply pressure exceeds a predetermined value due to the resistance of the microfilter 13 between the cleaning pipe 22 serving as a water supply pipe for cleaning of the microfilter 13 and the discharge port 33 of the microfilter 13, a part of the cleaning water supply is supplied to the internal filter body. 4. A non-pressure-resistant, first-stop type electrolyzed water generator according to claim 2 or 3, further comprising a bypass circuit 35 that flows through the microfilter outlet 33 without passing through the microfilter outlet 33. 給水管路の電動開閉弁が閉じたのち、所定時間遅延して非利用側排水管路の電動開閉弁が閉じるようにしたことをさらに特徴とする請求項1、2、3又は4記載の非耐圧型の先止め式電解水生成装置5. The non-operating device according to claim 1, wherein the electric on-off valve of the non-use side drain pipe is closed after a predetermined time delay after the electric on-off valve of the water supply pipe is closed. Pressure-resistant type first-stop electrolyzed water generator
JP02426897A 1996-10-03 1997-01-23 Non-pressure-proof, front-stop type electrolyzed water generator Expired - Fee Related JP3694820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02426897A JP3694820B2 (en) 1996-10-03 1997-01-23 Non-pressure-proof, front-stop type electrolyzed water generator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28175796 1996-10-03
JP8-281757 1996-10-03
JP02426897A JP3694820B2 (en) 1996-10-03 1997-01-23 Non-pressure-proof, front-stop type electrolyzed water generator

Publications (2)

Publication Number Publication Date
JPH10156364A JPH10156364A (en) 1998-06-16
JP3694820B2 true JP3694820B2 (en) 2005-09-14

Family

ID=26361768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02426897A Expired - Fee Related JP3694820B2 (en) 1996-10-03 1997-01-23 Non-pressure-proof, front-stop type electrolyzed water generator

Country Status (1)

Country Link
JP (1) JP3694820B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002035745A (en) * 2000-07-27 2002-02-05 Hitachi Chem Co Ltd Protection method for water softener and water softener
JP2002260087A (en) * 2001-03-02 2002-09-13 Fuji Electric Co Ltd Water supply control method for cup-type vending machine
JP2003136059A (en) * 2001-08-24 2003-05-13 Hoshizaki Electric Co Ltd Electrolytic water maker
WO2004083127A1 (en) * 2003-03-18 2004-09-30 The Chugoku Electric Power Co., Inc. Alkali ion water conditioner
JP2013066830A (en) * 2011-09-21 2013-04-18 Panasonic Corp Water treatment apparatus

Also Published As

Publication number Publication date
JPH10156364A (en) 1998-06-16

Similar Documents

Publication Publication Date Title
US5944978A (en) Cleaning method of an electrolyzed water forming apparatus and an electrolyzed water forming apparatus having mechanism for conducting the method
JP2558567B2 (en) Continuous electrolyzed water generator with flow path switching valve device
JP3694820B2 (en) Non-pressure-proof, front-stop type electrolyzed water generator
JP3106193B2 (en) Electrolyzed water generator
JPH0716568A (en) Water supply device for preparing ionic water
JP3653135B2 (en) Electrolyzed water generator
CN218665523U (en) Water treatment equipment
JPH1071393A (en) Method for washing and sterilizing continuous water supply type electrolytic water making apparatus and continuous water supply type electrolytic fresh water generating apparatus equipped with mechanism executing this method
JPH07256256A (en) Apparatus for forming electrolytic ionic water
JPH10235359A (en) Sterilizing and washing of continuous electrolytic water-making apparatus, and continuous electrolytic water making apparatus equipped with washing mechanism for the execution
KR100459977B1 (en) Continuous electrolytic water generating device equipped with a method of cleaning the continuous electrolytic water generating device and a mechanism for implementing the method.
JP5097320B2 (en) Electrolyzed water generator
JPH07121393B2 (en) Continuous water flow type electrolytic ion water generator
JPH06238280A (en) Electrolytic water preparation and its device
JPH0623358A (en) Water electrolytic apparatus
JP3359660B2 (en) Backwashing method for continuous electrolytic water regulator and backwashing mechanism for implementing the method
JP3283938B2 (en) Stopped continuous electrolyzed water generator
JPH0550066A (en) Ionized water supplying device
JP3548687B2 (en) Electrolyzed water generator
JPH05115878A (en) Continuous water feeding type electrolytic ionized-water rectifyer with motor valve
JPH10235353A (en) Electrolytic water making apparatus
JPH11151491A (en) Washing method of continuous electrolyzed water forming device and continuous electrolyzed water forming device provided with mechanism performing this method
JPH07251177A (en) Ionized water generator
JP2003225665A (en) End stop system electrolyzed water producing equipment
JPH026588B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees