JP3694743B2 - Nb-Si-Al-Cr quaternary alloy and method for producing the same - Google Patents

Nb-Si-Al-Cr quaternary alloy and method for producing the same Download PDF

Info

Publication number
JP3694743B2
JP3694743B2 JP2002084726A JP2002084726A JP3694743B2 JP 3694743 B2 JP3694743 B2 JP 3694743B2 JP 2002084726 A JP2002084726 A JP 2002084726A JP 2002084726 A JP2002084726 A JP 2002084726A JP 3694743 B2 JP3694743 B2 JP 3694743B2
Authority
JP
Japan
Prior art keywords
atom
atomic
alloy
oxidation resistance
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002084726A
Other languages
Japanese (ja)
Other versions
JP2003277871A (en
Inventor
敬 村上
和博 伊藤
正治 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002084726A priority Critical patent/JP3694743B2/en
Publication of JP2003277871A publication Critical patent/JP2003277871A/en
Application granted granted Critical
Publication of JP3694743B2 publication Critical patent/JP3694743B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、火力発電用Ni基超合金製空冷翼に置き換わる超高温用構造材料の一候補とされながら、高温で酸化しやすいことで実用化への大きな障害となっているNb基合金のコーティング用材料として応用される。
【0002】
【従来の技術】
火力発電の熱効率を改善するために、現在空冷翼として用いられているNi基超合金製部材をより高融点の材料に置き換えることが検討されている。Nb基合金はNi基超合金より融点が約1000K高く、比重もNi基超合金と同程度であるため、Ni基超合金に置き換わる材料の有力候補として期待され、研究されている。
【0003】
【発明が解決しようとする課題】
しかしながら、Nb基合金は高温における耐酸化性が悪く、実用化への大きな障害となっている。この障害を克服する方法として、Nb基合金上に同合金と組成が近く、耐酸化性に優れる化合物をコーティングすることが考えられる。しかし、今までこのような条件を満たすNb系材料は発見されてこなかった。本発明は1023K〜1673Kの大気中で内部酸化を抑制する皮膜を形成し、優れた耐酸化性を示す材料を提供することを目的とするものである。
【0004】
【課題を解決するための手段】
本発明は上記課題を解決すべく、鋭意研究した結果、(Nb,Cr )(Si,Al)単相からなるNb-Si-Al-Cr四元系合金を用いれば、大気中1023K付近および1273K〜1673Kで表面にそれぞれ内部酸化を抑制するSiO2あるいはAl2O3皮膜を形成し、耐酸化性に優れていることを見出した。
とくに、組成Nb-56原子%Si-11原子%Al-3原子%CrのNb-Si-Al-Cr四元系合金は、1023K〜1673Kの大気中で、内部酸化を抑制するSiO2(1273K未満)、Al2O3皮膜(1273K以上)を効率よく形成し、優れた耐酸化性を示す組成であることがわかった。
【0005】
【発明の実施の形態】
本発明は、(Nb,Cr )(Si,Al)単相からなるNb-Si-Al-Cr四元系合金ならば、どれでも良いが、とくに本発明の典型的な組成であるNb-56原子%Si-11原子%Al-3原子%Cr合金とその製造方法について、詳述する。
本発明の典型例は、ニオブ合金の内、内部酸化を抑制する皮膜を形成せず、優れた耐酸化性を示さない従来のNbSi2(組成Nb-67原子%Si)について、当該組成中の11原子%のSiをAlに、3原子%のNbをCrに置換すると格別の効果が得られる。
【0006】
Nb、Si、Al、Cr濃度を系統的に変化させたNb-Si-Al-Cr四元系放電プラズマ焼結体について、組成と相の関係および高温における耐酸化性を評価した結果、効率よく、1023K〜1673Kにおいて焼結体表面に内部酸化を抑制するSiO2(1273K未満)あるいはAl2O3(1273K以上)皮膜を形成し、優れた耐酸化性を示すのは、ほぼ(Nb,Cr)(Si,Al)2単相からなる組成Nb-56原子%Si-11原子%Al-3原子%CrのNb-Si-Al-Cr四元系合金であることが明らかになった。
【0007】
そして、Si濃度を56原子%より大きくした場合は、(Nb,Cr)(Si,Al)2相と融点が低いSi相の2相共存になり、Si濃度が56原子%未満の場合は(Nb,Cr)(Si,Al)2相と1023K〜1673Kで保護皮膜が形成されないNb5Si3相との2相共存になり、効率が悪くなる。この点から、Si濃度を56原子%とした場合が効率よく、1023K〜1673Kの高温で内部酸化を抑制する皮膜を形成し耐酸化性に優れるNb-Si-Al-Cr四元系合金が得られることが判明した。
【0008】
また、Al濃度を11原子%より大きくした場合は、(Nb,Cr)(Si,Al)2相と1273K以下で耐酸化性に劣るNb3Si5Al2相の2相共存になり、Al濃度が11原子%未満の場合は(Nb,Cr)(Si,Al)2単相であるものの、1023K〜1673Kで内部酸化を抑制する皮膜が形成されにくくなる。
この点から、Al濃度を11原子%とした場合は、効率よく、1023K〜1673Kの高温で内部酸化を抑制する皮膜を形成し、耐酸化性に優れるNb-Si-Al-Cr四元系合金が得られる。
【0009】
さらに、Cr濃度が3原子%より大きい場合は、(Nb,Cr)(Si,Al)2相と1273K以上で耐酸化性に劣る(Cr,Nb)(Si,Al)2相の2相共存になり、Cr濃度が3原子%未満の場合は(Nb,Cr)(Si,Al)2単相であるものの、1023K〜1673Kで内部酸化を抑制する皮膜が形成されにくくなる。
この点から、Cr濃度を3原子%とした場合は、効率よく、1023K〜1673Kで保護皮膜を形成し耐酸化性に優れるNb-Si-Al-Cr四元系合金が得られる。
【0010】
一方、Nb、Si、Al、Cr混合粉末の放電プラズマ焼結時の型(グラファイト製が好ましく用いられる)の表面温度を1323Kとした理由は、1323Kより高温の場合、試料の一部溶解が起こり、1323K未満の場合、非平衡な相が形成され、(Nb,Cr)(Si,Al)2単相から構成される焼結体が得にくいためである。
また放電プラズマ焼結を真空中あるいは不活性ガス雰囲気中(アルゴンガスが好ましく用いられる)で行う理由は、焼結中原料粉末およびグラファイト製型などの酸化を抑制するためである。
さらに1回仮焼結を行った後、仮焼結体を粒径50ミクロン以下まで粉末化し再焼結を行った理由は、Nb、Si、Al、C混合粉末を1回焼結しただけでは均一な組織を持つ焼結体が得られないためである。
【0011】
さらに再焼結時加圧する圧力を20〜80MPaとした理由は、20MPa未満の場合緻密な焼結体が得られず、80MPaより加圧が大きい場合グラファイト製型が割れやすくなるためである。
【0012】
NbSi2金属間化合物はNb-Si二元系では最も耐酸化性が良好であるが、高温で内部酸化を抑制するSiO2皮膜を形成せず酸化の抑制が不充分であるので、本発明は、(Nb,Cr )(Si,Al)単相からなるNb-Si-Al-Cr四元系合金が目的を達成できることを見出したものである。
とくに、このNbSi2中の11原子%SiをAlに置換し、3原子%NbをCrに置換した組成になるようにNb、Si、Al、Cr粉末を混合後、放電プラズマ焼結することにより得られたNb-56原子%Si-11原子%Al-3原子%合金Nb-Si-Al-Cr四元系合金は、大気中1023K〜1673Kで表面に内部酸化を抑制するSiO2あるいはAl2O3皮膜を形成し、優れた耐酸化性を示す。
【0013】
次に実施例を詳述するが、本発明が実施例に示す構成に限定されることなく、いろいろな実施の態様が可能であることは言うまでもない。
(実施例1)
Nb(純度99.8%、-325 mesh)、Si(純度99.9%、-300 mesh)、Al(純度99.5%、-325 mesh)、Cr(純度99.9%、-300 mesh)粉末を組成がNb-56原子%Si-11原子%Al-3原子%Crになるように秤量混合し、ボールミルで1時間混合した後、グラファイト製型の表面温度1323Kで放電プラズマ焼結による仮焼結を行った。さらに得られた仮焼結体を粒径50ミクロン以下まで粉砕、粉末化後、グラファイト製型の表面温度1323K、加圧力50MPa、保持時間1.8ksの条件で放電プラズマ焼結による再焼結を行った。
【0014】
再焼結して得た焼結体を乾燥空気中1023K〜1673Kで保持したときの連続重量変化を図1に示す。この温度域におけるNb-56原子%Si-11原子%Al-3原子%Cr焼結体の重量変化は、非常に小さく、優れた耐酸化性を示すことが示された。
【0015】
乾燥空気中1023K及び1573Kで120時間保持したNb-56原子%Si-11原子%Al-3原子%Cr焼結体表面付近の断面組織写真を図2(a)、(b)にそれぞれ示す。1023K、1573K付近で当該焼結体表面にはそれぞれSiO2、Al2O3の保護皮膜が形成され、焼結体内部への酸化の進行が大幅に抑制されていることが示された。
実施例のものは、同合金と組成が近く、Nb基合金上に耐酸化性に優れる化合物として被膜を形成したり、コーティングすることができる。
【0016】
【発明の効果】
以上説明した通り、本発明組成のNb-Si-Al-Cr四元系合金は大気中1023K〜1673Kで内部酸化を抑制するSiO2、Al2O3皮膜を形成して非常に優れた耐酸化性を示し、耐酸化性に劣る従来のNb基合金用耐酸化コーティング材として応用できる。
【図面の簡単な説明】
【図1】乾燥空気中1023K〜1673Kで保持したNb-56原子%Si-11原子%Al-3原子%Cr焼結体の連続重量変化図。
【図2】乾燥空気中(a)1023K及び(b)1573Kで120時間保持したNb-56原子%Si-11原子%Al-3原子%Cr焼結体表面付近の断面組織写真。
[0001]
BACKGROUND OF THE INVENTION
The present invention is a candidate for an ultra-high temperature structural material that replaces an air-cooled blade made of a Ni-based superalloy for thermal power generation, and is a coating material for an Nb-based alloy that is a major obstacle to practical use because it is easily oxidized at high temperatures. It is applied as a material.
[0002]
[Prior art]
In order to improve the thermal efficiency of thermal power generation, replacement of Ni-based superalloy members currently used as air-cooled blades with materials having higher melting points is being studied. Nb-based alloys have a melting point about 1000K higher than Ni-based superalloys and have the same specific gravity as Ni-based superalloys, so they are expected and studied as potential candidates for replacing Ni-based superalloys.
[0003]
[Problems to be solved by the invention]
However, Nb-based alloys have poor oxidation resistance at high temperatures, which is a major obstacle to practical use. As a method for overcoming this obstacle, it is conceivable to coat a Nb-based alloy with a compound having a composition close to that of the alloy and excellent in oxidation resistance. However, no Nb-based material satisfying such conditions has been discovered so far. An object of the present invention is to provide a material that forms a film that suppresses internal oxidation in the atmosphere of 1023K to 1673K and exhibits excellent oxidation resistance.
[0004]
[Means for Solving the Problems]
As a result of diligent research to solve the above-mentioned problems, the present invention uses Nb—Si—Al—Cr quaternary alloy composed of (Nb, Cr) (Si, Al) 2 single phase, and near 1023K in the atmosphere and It was found that SiO 2 or Al 2 O 3 film that suppresses internal oxidation was formed on the surface at 1273K to 1673K, respectively, and was excellent in oxidation resistance.
In particular, the Nb-Si-Al-Cr quaternary alloy with the composition Nb-56 atom% Si-11 atom% Al-3 atom% Cr is SiO 2 (1273 K) which suppresses internal oxidation in the atmosphere of 1023 K to 1673 K. Less), an Al 2 O 3 film (1273K or more) was formed efficiently, and the composition showed excellent oxidation resistance.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The present invention may be any Nb—Si—Al—Cr quaternary alloy composed of a single phase of (Nb, Cr) (Si, Al) 2 , but particularly Nb— which is a typical composition of the present invention. The 56 atom% Si-11 atom% Al-3 atom% Cr alloy and its production method will be described in detail.
A typical example of the present invention is a conventional NbSi 2 (composition Nb-67 atomic% Si) that does not form a film that suppresses internal oxidation and does not exhibit excellent oxidation resistance among niobium alloys. Substituting 11 atomic percent of Si for Al and 3 atomic percent of Nb for Cr gives a special effect.
[0006]
The Nb-Si-Al-Cr quaternary discharge plasma sintered body with systematically changing Nb, Si, Al, Cr concentration was evaluated as a result of evaluating the relationship between composition and phase and oxidation resistance at high temperatures. It is almost (Nb, Cr) that forms an SiO 2 (less than 1273K) or Al 2 O 3 (more than 1273K) film that suppresses internal oxidation on the surface of the sintered body at 1023K to 1673K and exhibits excellent oxidation resistance. ) (Si, Al) 2 Nb-Si-Al-Cr quaternary alloy with Nb-56 atom% Si-11 atom% Al-3 atom% Cr composition.
[0007]
And when the Si concentration is larger than 56 atomic%, the (Nb, Cr) (Si, Al) 2 phase and the Si phase with a low melting point coexist, and when the Si concentration is less than 56 atomic% ( The Nb, Cr) (Si, Al) 2 phase and the Nb 5 Si 3 phase in which a protective film is not formed between 1023K to 1673K coexists, resulting in poor efficiency. From this point, an Nb-Si-Al-Cr quaternary alloy with excellent oxidation resistance by forming a film that suppresses internal oxidation at high temperatures from 1023K to 1673K is obtained when the Si concentration is 56 atomic%. Turned out to be.
[0008]
Also, when the Al concentration is higher than 11 atomic%, the two phases coexist of the (Nb, Cr) (Si, Al) 2 phase and the Nb 3 Si 5 Al 2 phase, which is less than 1273 K and has poor oxidation resistance. When the concentration is less than 11 atomic%, although it is a single phase (Nb, Cr) (Si, Al) 2 , it becomes difficult to form a film that suppresses internal oxidation at 1023K to 1673K.
From this point, when Al concentration is 11 atomic%, Nb-Si-Al-Cr quaternary alloy that efficiently forms a film that suppresses internal oxidation at high temperatures from 1023K to 1673K and has excellent oxidation resistance Is obtained.
[0009]
Furthermore, if the Cr concentration is greater than 3 atomic%, the two-phase coexistence of the (Nb, Cr) (Si, Al) 2 phase and the (Cr, Nb) (Si, Al) 2 phase, which is inferior in oxidation resistance at 1273K or higher When the Cr concentration is less than 3 atomic%, although it is a single phase of (Nb, Cr) (Si, Al) 2 , it is difficult to form a film that suppresses internal oxidation at 1023K to 1673K.
From this point, when the Cr concentration is 3 atomic%, an Nb—Si—Al—Cr quaternary alloy excellent in oxidation resistance can be obtained efficiently by forming a protective film at 1023 K to 1673 K.
[0010]
On the other hand, the reason why the surface temperature of the Nb, Si, Al, and Cr mixed powder during the discharge plasma sintering (preferably made of graphite) is 1323K is that when the temperature is higher than 1323K, partial dissolution of the sample occurs. If it is less than 1323K, a non-equilibrium phase is formed, and it is difficult to obtain a sintered body composed of (Nb, Cr) (Si, Al) 2 single phase.
The reason why the discharge plasma sintering is performed in a vacuum or in an inert gas atmosphere (argon gas is preferably used) is to suppress oxidation of the raw material powder and the graphite mold during the sintering.
The reason why the pre-sintered body was pulverized to a particle size of 50 microns or less and re-sintered after performing pre-sintering once was that the Nb, Si, Al, and C mixed powders were sintered only once. This is because a sintered body having a uniform structure cannot be obtained.
[0011]
The reason why the pressure applied during re-sintering is 20 to 80 MPa is that a dense sintered body cannot be obtained when the pressure is less than 20 MPa, and the graphite mold is liable to crack when the pressure is higher than 80 MPa.
[0012]
The NbSi 2 intermetallic compound has the best oxidation resistance in the Nb-Si binary system, but it does not form an SiO 2 film that suppresses internal oxidation at high temperatures and is insufficiently suppressed. And Nb—Si—Al—Cr quaternary alloys composed of (Nb, Cr) (Si, Al) 2 single phase have been found to achieve the purpose.
In particular, by mixing Nb, Si, Al, and Cr powder so that 11 atomic% Si in NbSi 2 is replaced with Al and 3 atomic% Nb is replaced with Cr, and then performing discharge plasma sintering. The obtained Nb-56 atom% Si-11 atom% Al-3 atom% alloy Nb-Si-Al-Cr quaternary alloy is SiO 2 or Al 2 that suppresses internal oxidation on the surface at 1023 K to 1673 K in the atmosphere. Forms an O 3 film and exhibits excellent oxidation resistance.
[0013]
Next, although an Example is explained in full detail, it cannot be overemphasized that various aspects are possible for this invention, without being limited to the structure shown in an Example.
(Example 1)
Nb (purity 99.8%, -325 mesh), Si (purity 99.9%, -300 mesh), Al (purity 99.5%, -325 mesh), Cr (purity 99.9%, -300 mesh) powder, composition is Nb-56 After being weighed and mixed so as to be atomic% Si-11 atomic% Al-3 atomic% Cr and mixed for 1 hour with a ball mill, pre-sintering was performed by spark plasma sintering at a surface temperature of 1323 K of a graphite mold. Furthermore, the obtained pre-sintered body was pulverized to a particle size of 50 microns or less and pulverized, and then re-sintered by spark plasma sintering under the conditions of a graphite mold surface temperature of 1323K, pressure of 50MPa, and holding time of 1.8ks. It was.
[0014]
The continuous weight change when the sintered body obtained by re-sintering is held at 1023K to 1673K in dry air is shown in FIG. The change in the weight of the Nb-56 atomic% Si-11 atomic% Al-3 atomic% Cr sintered body in this temperature range was very small, indicating excellent oxidation resistance.
[0015]
FIGS. 2 (a) and 2 (b) show cross-sectional structure photographs in the vicinity of the Nb-56 atomic% Si-11 atomic% Al-3 atomic% Cr sintered body surface held at 1023 K and 1573 K in dry air for 120 hours, respectively. In the vicinity of 1023K and 1573K, a protective film of SiO 2 and Al 2 O 3 was formed on the surface of the sintered body, respectively, indicating that the progress of oxidation inside the sintered body was greatly suppressed.
In the examples, the composition is similar to that of the alloy, and a film can be formed or coated on the Nb-based alloy as a compound having excellent oxidation resistance.
[0016]
【The invention's effect】
As explained above, the Nb-Si-Al-Cr quaternary alloy of the composition of the present invention forms a SiO 2 and Al 2 O 3 film that suppresses internal oxidation at 1023K to 1673K in the atmosphere and has excellent oxidation resistance It can be applied as a conventional oxidation-resistant coating material for Nb-based alloys that exhibits low resistance and oxidation resistance.
[Brief description of the drawings]
FIG. 1 is a continuous weight change diagram of an Nb-56 atomic% Si-11 atomic% Al-3 atomic% Cr sintered body held at 1023 K to 1673 K in dry air.
FIG. 2 is a photograph of a cross-sectional structure near the surface of an Nb-56 atomic% Si-11 atomic% Al-3 atomic% Cr sintered body held in dry air at (a) 1023K and (b) 1573K for 120 hours.

Claims (3)

( NbNb , Cr Cr )() ( SiSi , AlAl ) 2 単相からなり、Consisting of a single phase, Nb-56Nb-56 原子atom %Si-11% Si-11 原子atom %Al-3% Al-3 原子atom %Cr% Cr であるIs Nb-Si-Al-CrNb-Si-Al-Cr 四元系合金。Quaternary alloy. Nb-56原子%Si-11原子%Al-3原子%Crの組成になるようにNb、Si、Al、Cr粉末を混合し、真空中あるいはアルゴンガス雰囲気中、型の表面温度1323Kで放電プラズマ焼結による仮焼結後、仮焼結体を粒径50ミクロン以下まで粉砕し、型の表面温度1323K、加圧力20〜80MPaで再焼結することにより得られるNb-Si-Al-Cr四元系合金の製造方法。  Nb, Si, Al, Cr powder is mixed so that the composition is Nb-56 atom% Si-11 atom% Al-3 atom% Cr, and discharge plasma is performed in vacuum or argon gas atmosphere at a mold surface temperature of 1323K. After pre-sintering by sintering, the pre-sintered body is pulverized to a particle size of 50 microns or less and re-sintered at a mold surface temperature of 1323K and a pressure of 20 to 80MPa. A manufacturing method of a ternary alloy. ( NbNb , Cr Cr )() ( SiSi , AlAl ) 2 単相からなり、Consisting of a single phase, Nb-56Nb-56 原子atom %Si-11% Si-11 原子atom %Al-3% Al-3 原子atom %Cr% Cr であるIs Nb-Si-Al-CrNb-Si-Al-Cr 四元系合金からなるMade of quaternary alloy NbNb 基合金のコーティング用材料。Base alloy coating material.
JP2002084726A 2002-03-26 2002-03-26 Nb-Si-Al-Cr quaternary alloy and method for producing the same Expired - Lifetime JP3694743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002084726A JP3694743B2 (en) 2002-03-26 2002-03-26 Nb-Si-Al-Cr quaternary alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002084726A JP3694743B2 (en) 2002-03-26 2002-03-26 Nb-Si-Al-Cr quaternary alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003277871A JP2003277871A (en) 2003-10-02
JP3694743B2 true JP3694743B2 (en) 2005-09-14

Family

ID=29231938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002084726A Expired - Lifetime JP3694743B2 (en) 2002-03-26 2002-03-26 Nb-Si-Al-Cr quaternary alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP3694743B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005040067A1 (en) * 2003-10-29 2005-05-06 Sumitomo Precision Products Co., Ltd. Carbon nanotube-dispersed composite material, method for producing same and article same is applied to
JP4593473B2 (en) * 2003-10-29 2010-12-08 住友精密工業株式会社 Method for producing carbon nanotube dispersed composite material
JPWO2005040066A1 (en) * 2003-10-29 2007-03-01 住友精密工業株式会社 Carbon nanotube-dispersed composite material, production method thereof, and application thereof

Also Published As

Publication number Publication date
JP2003277871A (en) 2003-10-02

Similar Documents

Publication Publication Date Title
Hodge et al. Synthesis of nickel–aluminide foams by pack-aluminization of nickel foams
CN104120325A (en) Low thermal expansion coefficient NaMxAlySiz high entropy alloy and preparation method thereof
JP2003529677A (en) Heat resistant structural member and method of manufacturing the same
JP2011074493A (en) Nickel-based superalloy and article
CN103074536A (en) Carbon-silicon-tungsten-yttrium lamellar structure high-niobium titanium-aluminum alloy and preparation method thereof
JP4994843B2 (en) Nickel-containing alloy, method for producing the same, and article obtained therefrom
JP2011089201A (en) Nickel-containing alloy, method of manufacture thereof and articles derived therefrom
Babalola et al. Influence of nanocrystalline nickel powder on oxidation resistance of spark plasma sintered Ni-17Cr6. 5Co1. 2Mo6Al4W7. 6Ta alloy
JP6552137B2 (en) Oxide particle dispersion strengthened Ni base super alloy
JP3694743B2 (en) Nb-Si-Al-Cr quaternary alloy and method for producing the same
US7632455B2 (en) High temperature niobium alloy
CN114045446A (en) Zr-based amorphous alloy with nanoscale thermoplastic forming capability and preparation method and application thereof
JP5876943B2 (en) Alloy and production method thereof
US20050079377A1 (en) Coatings, method of manufacture, and the articles derived therefrom
CN111148587B (en) Alloy turbine assembly comprising MAX phases
US6582812B1 (en) Article made of a ceramic foam joined to a metallic nonfoam, and its preparation
CN101429607B (en) Special particle reinforced high-temperature alloy and method for producing the same
KR100359187B1 (en) Intermetallic Nickel-Aluminum Alloy
JP2630323B2 (en) Oxide dispersion hardened nickel-base superalloy with improved corrosion resistance
JP6311912B2 (en) Cu-Ga binary sputtering target and method for producing the same
CN106591747A (en) Beta-Si3N4 whisker and Ni3Al binding phase synergistic toughened WC composite and preparation method thereof
US6265080B1 (en) Pest resistant molybdenum disilicide type materials
JP2001140030A (en) Oxidation resistant alloy material for high temperature use and producing method therefor
JP3321600B2 (en) High oxidation resistance Nb-Al-Si based intermetallic compound
KR102477415B1 (en) Multi-nano-phase separation-based high-entropy refractory metal-oxide composite and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

R150 Certificate of patent or registration of utility model

Ref document number: 3694743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term