WO2005040067A1 - Carbon nanotube-dispersed composite material, method for producing same and article same is applied to - Google Patents

Carbon nanotube-dispersed composite material, method for producing same and article same is applied to Download PDF

Info

Publication number
WO2005040067A1
WO2005040067A1 PCT/JP2004/016496 JP2004016496W WO2005040067A1 WO 2005040067 A1 WO2005040067 A1 WO 2005040067A1 JP 2004016496 W JP2004016496 W JP 2004016496W WO 2005040067 A1 WO2005040067 A1 WO 2005040067A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
carbon nanotubes
composite material
carbon nanotube
dispersed
Prior art date
Application number
PCT/JP2004/016496
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuaki Katagiri
Atsushi Kakitsuji
Original Assignee
Sumitomo Precision Products Co., Ltd.
Osaka Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co., Ltd., Osaka Prefectural Government filed Critical Sumitomo Precision Products Co., Ltd.
Priority to JP2005515075A priority Critical patent/JP4593472B2/en
Publication of WO2005040067A1 publication Critical patent/WO2005040067A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/14Making alloys containing metallic or non-metallic fibres or filaments by powder metallurgy, i.e. by processing mixtures of metal powder and fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/14Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/492Bases or plates or solder therefor
    • H01L23/4924Bases or plates or solder therefor characterised by the materials
    • H01L23/4928Bases or plates or solder therefor characterised by the materials the materials containing carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/002Carbon nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Disclosed is a carbon nanotube-dispersed composite material which makes the best of excellent electrical conduction, thermal conduction and strength characteristics of a carbon nanotube while making good use of features of alumina which has corrosion resistance and heat resistance. Also disclosed is a method for producing such a carbon nanotube-dispersed composite material. Long-chain carbon nanotubes (including a carbon nanotube subjected to discharge plasma processing by itself in advance) and a sinterable alumina or aluminum powder are kneaded and dispersed using a ball mill, and then the resulting is compacted through discharge plasma sintering. Consequently, the carbon nanotubes spread inside the sintered body like a net, thereby enabling to make effective use of electrical conduction, thermal conduction and strength characteristics of the carbon nanotube together with the characteristics of the powder base.

Description

明細書  Specification
カーボンナノチューブ分散複合材料とその製造方法並びにその適用物 技術分野  FIELD OF THE INVENTION
この発明は、 耐腐食性、 耐熱性を有するアルミナセラミックスの特徴を生か しかつ電気伝導性と熱伝導性並びに優れた強度特性を付与じた複合材料に関 し、 長鎖状のカーボンナノチューブを汎用性に富むアルミニウム粉体又はアル ミニゥム合金粉体の焼結体内に網状に分散させた力一ボンナノチューブ分散複 合材料とその製造方法並びにその適用物に関する。 背景技術  The present invention relates to a composite material that takes advantage of the characteristics of alumina ceramics having corrosion resistance and heat resistance, and has electrical conductivity, thermal conductivity, and excellent strength properties. TECHNICAL FIELD The present invention relates to a carbon nanotube-dispersed composite material dispersed in a sintered body of aluminum powder or aluminum alloy powder having high flexibility, a method for producing the composite material, and an applied product thereof. Background art
今日、 カーボンナノチューブを用いて種々の機能を持たせた複合材料が提案 されている。 例えば、 優れた強度と成形性並びに導電性を兼ね備えた成形体を 目的として、 平均直径が l~45nm、 平均アスペクト比が 5以上であるカーボン ナノチューブを、 炭素繊維、 金属被覆炭素繊維、 力一ボン粉末、 ガラス繊維な どの充填材を混練したエポキシ樹脂、 不飽和ポリエステル樹脂などの樹脂中に 分散させたカーボン含有樹脂組成物を加工、 成形して得ることが提案 (特開 2003-12939)されている。  Today, composite materials having various functions using carbon nanotubes have been proposed. For example, carbon nanotubes with an average diameter of l to 45 nm and an average aspect ratio of 5 or more were produced using carbon fibers, metal-coated carbon fibers, and carbon fibers in order to produce molded articles that have excellent strength, moldability, and conductivity. It has been proposed that a carbon-containing resin composition in which a filler such as powder or glass fiber is kneaded and dispersed in a resin such as an epoxy resin or an unsaturated polyester resin is processed and molded (JP-A-2003-12939). I have.
また、 アルミニウム合金材の熱伝導率、 引っ張り強度を改善する目的で、 ァ ルミニゥム合金材の含有成分である、 Si,Mg,Mnの少なくとも一種を、 カーボ ンナノ繊維と化合させ、 力一ボンナノ繊維をアルミニウム母材に含有させたァ ルミニゥム合金材が提案されている。 これは、 力一ボンナノ繊維を 0.1~5vol% 溶融アルミニウム合金材内に混入し、 混練した後ビレットとし、 該ビレットを 押出成形して得られたアルミニウム合金材の押出型材として提供 (特開 2002- 363716)されている。 さらに、 燃料電池のセパレ一タ等に適用できる成形性に優れた高導電性材料 を目的として、 PPSや LCP等の流動性に優れた熱可塑性樹脂に金属化合物 (ホ ゥ化物: TiB2、 WB、 MoB、 CrB、 A1B2、 MgB、 炭化物: WC、 窒化物: TiN等) およびカーボンナノチューブを適量配合することにより、 成形性と導電性を両 立させた樹脂成形体が提案 (特開 2003-34751)されている。 In addition, in order to improve the thermal conductivity and tensile strength of the aluminum alloy material, at least one of Si, Mg, and Mn, which is a component of the aluminum alloy material, is combined with carbon nanofibers to form carbon nanofibers. An aluminum alloy material contained in an aluminum base material has been proposed. In this method, carbon nanofibers are mixed into a molten aluminum alloy material of 0.1 to 5 vol% and kneaded to form a billet, which is provided as an extruded material of an aluminum alloy material obtained by extruding the billet (Japanese Unexamined Patent Application Publication No. 363716). Furthermore, with the aim of providing highly conductive materials with excellent moldability that can be applied to separators for fuel cells, etc., metal compounds (borides: TiB 2 , WB , MoB, CrB, A1B 2 , MgB, carbide: WC, nitride: TiN, etc.) and a proper amount of carbon nanotubes to propose a resin molded product having both moldability and conductivity (Japanese Unexamined Patent Publication (Kokai) 2003-2003). 34751).
また、 電気的性質、 熱的性質、 機械的性質の向上を図るために、 熱可塑性樹 脂、 硬化性樹脂、 ゴム及び熱可塑性エラストマ一などの有機高分子のマトリツ クス中にカーボンナノチューブを配合して磁場中で配向させ、 一定方向に配列 されて複合された状態で成形された複合成形体が提案され、 力一ボンナノ チューブとマトリックス材料との濡れ性や接着性を向上させるために、 カーボ ンナノチューブの表面をあらかじめ脱脂処理や洗浄処理などの種々処理を施す ことが提案 (特開 2002-273741)されている。  In addition, in order to improve electrical, thermal, and mechanical properties, carbon nanotubes are compounded in the matrix of organic polymers such as thermoplastic resins, curable resins, rubber, and thermoplastic elastomers. A composite molded article that is oriented in a magnetic field, aligned in a certain direction, and molded in a composite state has been proposed.To improve wettability and adhesion between carbon nanotubes and matrix materials, carbon It has been proposed that the surface of the nanotube be subjected to various treatments such as a degreasing treatment and a washing treatment in advance (Japanese Patent Application Laid-Open No. 2002-273741).
力一ボンナノチューブを含むフィールドェミッタとして、 インジウム、 ビス マスまたは鉛のようなナノチューブ濡れ性元素の金属合金、 Ag,Auまたは Sn の場合のように比較的柔らかくかつ延性がある金属粉体等の導電性材料粉体と カーボンナノチューブをプレス成形して切断や研摩後、 表面に突き出しナノ チューブを形成し、 該表面をエッチングしてナノチューブ先端を形成、 その後 金属表面を再溶解し、 突き出しナノチューブを整列させる工程で製造する方法 が提案 (特開 2000-223004)されている。  Field emitters containing carbon nanotubes include metal alloys of nanotube wetting elements such as indium, bismuth or lead, and relatively soft and ductile metal powders such as Ag, Au or Sn. Press-molding conductive material powder and carbon nanotubes, cutting and polishing, forming protruding nanotubes on the surface, etching the surface to form nanotube tips, then re-dissolving the metal surface and aligning the protruding nanotubes A method of manufacturing in a step of causing the same to be produced has been proposed (JP-A-2000-223004).
多様な機能を多面的に実現し、 機能を最適にするためのセラミックス複合ナ ノ構造体を目的に、 ある機能を目的に選定する複数の多価金属元素の酸化物に て構成されるように、 例えば異種の金属元素が酸素を介して結合する製造方法 を選定して、 さらに公知の種々方法にて、 短軸断面の最大径が 500nm以下の柱 状体を製造することが提案 (特開 2003-238120)されている。  To realize various functions from multiple aspects and to optimize the functions, the ceramic composite nanostructure is to be composed of multiple polyvalent metal element oxides selected for a certain function. For example, it is proposed to select a manufacturing method in which different kinds of metal elements are bonded via oxygen, and to manufacture a columnar body having a short-axis cross section with a maximum diameter of 500 nm or less by various known methods (Japanese Patent Application Laid-Open 2003-238120).
上述の樹脂中やアルミニウム合金中に分散させようとする力一ボンナノ チューブは、 得られる複合材料の製造性や所要の成形性を得ることを考慮し て、 できるだけ長さの短いものが利用されて、 分散性を向上させており、 カー ボンナノチューブ自体が有するすぐれた電気伝導と熱伝導特性を有効に活用し ようとするものでない。 The above-mentioned carbon nanotubes that are to be dispersed in a resin or an aluminum alloy are required in consideration of the manufacturability of the resulting composite material and the required formability. In addition, a material having a length as short as possible is used to improve dispersibility, and does not attempt to effectively utilize the excellent electrical and thermal conductivity characteristics of the carbon nanotube itself.
また、 上述の力一ボンナノチューブ自体を活用しょうとする発明では、 例え ばフィールドェミッタのように具体的かつ特定の用途に特化することができる が、 他の用途には容易に適用できず、 一方、 ある機能を目的に多価金属元素の 酸化物を選定して特定の柱状体からなるセラミックス複合ナノ構造体を製造す る方法では、 目的設定とその元素の選定と製造方法の確率に多大の工程、 試行 錯誤を要することが避けられない。 発明の開示  In addition, in the above-mentioned invention which utilizes the carbon nanotube itself, for example, it is possible to specialize in a specific and specific application like a field emitter, but it cannot be easily applied to other applications. On the other hand, in a method of manufacturing an oxide of a polyvalent metal element for a certain function and manufacturing a ceramic composite nanostructure composed of a specific columnar body, the purpose setting, selection of the element, and the probability of the manufacturing method are limited. It is inevitable that a lot of processes, trial and error are required. Disclosure of the invention
この発明は、 例えば絶縁性であるが、 耐腐食性、 耐熱性を有するアルミナセ ラミックスあるいは汎用性に富むアルミニウムの'特徴を純粋に生かし、 これに 電気伝導性と熱伝導性を付与した複合材料の提供を目的とし、 セラミックスや 金属粉体基材の有する特性とともにカーボンナノチューブ自体、 その本来的な 長鎖状や網状の構造が有するすぐれた電気伝導と熱伝導特性並びに強度特性を できるだけ活用したカーボンナノチューブ分散複合材料とその製造方法の提供 を目的としている。  The present invention is a composite material which, for example, makes full use of the characteristics of alumina ceramics, which is insulative, but has corrosion resistance and heat resistance, or aluminum which is highly versatile, and which is provided with electrical conductivity and thermal conductivity. In addition to the properties of ceramics and metal powder substrates, carbon nanotubes themselves and carbon that make use of the excellent electrical and thermal conductivity and strength properties of their inherent long-chain or net-like structure The purpose is to provide a nanotube-dispersed composite material and a method for producing the same.
発明者らは、 独立行政法人 科学技術振興機構の開発委託に基づき、 カーボ ンナノチューブを基材中に分散させた複合材料において、 カーボンナノチュー ブの電気伝導特性と熱伝導特性並びに強度特性を有効利用できる構成について 種々検討した結果、 長鎖状のカーボンナノチューブ (力一ボンナノチューブの みを予め放電プラズマ処理したものを含む)を焼成可能なセラミックスや金属 粉体とボールミルで混練分散し、 これを放電プラズマ焼結にて一体化すること で、 焼結体内に網状にカーボンナノチューブを巡らせることができ、 前記目的 を達成できることを知見し、 この発明を完成した。 - すなわち、 この発明は、 絶縁性のセラミックスであるアルミナ粉体又はアル ミニゥム及びその合金粉体からなる放電プラズマ焼結体中に、 長鎖状のカーボ ンナノチューブが網状に分散一体化し、 電気伝導性と熱伝導性並びに高強度を 有することを特徴とするカーボンナノチューブ分散複合材料である。 The present inventors, based on the development commission of the Japan Science and Technology Agency, have made effective use of the electric conductivity, heat conduction, and strength properties of carbon nanotubes in a composite material in which carbon nanotubes are dispersed in a base material. As a result of various studies on the available configurations, long-chain carbon nanotubes (including those obtained by treating only carbon nanotubes in advance with discharge plasma) were kneaded and dispersed in a ball mill with ceramics or metal powder that could be fired. By integrating by spark plasma sintering, the carbon nanotubes can be wrapped around the sintered body in a net-like manner. - That is, according to the present invention, long-chain carbon nanotubes are dispersed and integrated in a net-like manner in a discharge plasma sintered body composed of alumina powder or aluminum, which is an insulating ceramic, and its alloy powder. And a carbon nanotube-dispersed composite material having high thermal conductivity and high strength.
また、 この発明は、 アルミナ粉体あるいはアルミニウム粉体又はアルミニゥ ム合金粉体と、 長鎖状カーボンナノチューブ (カーボンナノチューブのみを予 め放電プラズマ処理したものを含む)とを、 ボールミルで混練分散する工程、 あるいはさらに分散剤を用いて前記粉体とカーボンナノチューブとを湿式分散 させる工程、 乾燥した混練分散材を放電ブラズマ焼結する工程とを有すること を特徴とするカーボンナノチューブ分散複合材料の製造方法である。  Further, the present invention provides a process for kneading and dispersing an alumina powder, an aluminum powder, or an aluminum alloy powder, and long-chain carbon nanotubes (including those in which only carbon nanotubes have been subjected to discharge plasma treatment) using a ball mill. Or further comprising a step of wet-dispersing the powder and the carbon nanotubes using a dispersant, and a step of subjecting the dried kneading and dispersing material to electric discharge plasma sintering. is there.
この発明による複合材料は、 耐腐食性、 耐熱性に優れるアルミナ粉体、 また は耐食性や放熱性にすぐれた純アルミ二ゥム、 アルミニゥム合金粉体の焼結体 を基体とすることで、 前記材料自体が本来的に腐食性や高温環境下でのすぐれ た耐久性を有しており、 これに長鎖状カーボンナノチューブを均一に分散させ たことにより、 力一ボンナノチューブ自体が有するすぐれた電気伝導と熱伝導 特性並びに強度とを併せて、 所要特性の増強、 相乗効果、 あるいは新たな機能 を発揮させることができる。  The composite material according to the present invention is characterized in that the base material is a sintered body of alumina powder having excellent corrosion resistance and heat resistance, or a sintered body of pure aluminum and aluminum alloy powder having excellent corrosion resistance and heat dissipation. The material itself is inherently corrosive and has excellent durability in high-temperature environments, and by dispersing long-chain carbon nanotubes uniformly, the excellent electrical properties of carbon nanotubes themselves The combination of conduction and heat conduction properties and strength can enhance required properties, synergistic effects, or exert new functions.
この発明による複合材料は、 アルミナ粉体あるいはアルミニウム粉体又はァ ルミニゥム合金粉体と長鎖状カーボンナノチューブを、 ボールミルで混練分散 させて、 分散材を放電プラズマ焼結するという比較的簡単な製法で製造でき、 例えば、 腐食、 高温環境下での電極や発熱体、 配線材料、 熱伝導度を向上させ た熱交換器やヒートシンンク材料、 ブレーキ部品として応用することができ る。 図面の簡単な説明  The composite material according to the present invention is a relatively simple manufacturing method in which alumina powder or aluminum powder or aluminum alloy powder and long-chain carbon nanotubes are kneaded and dispersed by a ball mill, and the dispersed material is spark plasma sintered. It can be manufactured and used as electrodes, heating elements, wiring materials, heat exchangers and heat sink materials with improved thermal conductivity, and brake parts under corrosion and high temperature environments. Brief Description of Drawings
図 1は、 プラズマ焼結温度と電気伝導率との関係を示すグラフである。 図 2は、 焼結加圧力と電気伝導率との関係を示すグラフである。 Figure 1 is a graph showing the relationship between plasma sintering temperature and electrical conductivity. FIG. 2 is a graph showing the relationship between the sintering pressure and the electrical conductivity.
図 3は、 この発明によるアルミニウムをマトリックスとしたカーボンナノ チューブ分散複合材料の電子顕微鏡写真の模式図である。  FIG. 3 is a schematic view of an electron micrograph of a carbon nanotube dispersed composite material using aluminum as a matrix according to the present invention.
図 4は、 この発明による繭状のカーボンナノチューブの電子顕微鏡写真の模 式図である。  FIG. 4 is a schematic view of an electron micrograph of a cocoon-shaped carbon nanotube according to the present invention.
図 5は、 この発明による繭状のカーボンナノチューブの電子顕微鏡写真の模 式図である。  FIG. 5 is a schematic diagram of an electron micrograph of a cocoon-shaped carbon nanotube according to the present invention.
図 6は、 この発明によるカーボンナノチューブ分散複合材料の電子顕微鏡写 真の模式図である。 発明を実施するための最良の形態  FIG. 6 is a schematic diagram of an electron micrograph of the carbon nanotube dispersed composite material according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
この発明において、 耐腐食性、 耐熱性の機能を発揮するアルミナを採用する が、 粉体の粒子径としては、 必要な焼結体を形成できる焼結性を考慮したり、 カーボンナノチューブとの混練分散時の解碎能力を考慮して決定するが、 およ そ ΙΟμπι以下が好ましく、 例えば大小数種の粒径とすることもでき、 5μπι以 下、, さらに Ιμπι以下が好ましい。 また、 粉体には球体以外に繊維状、 不定形や 種々形態のものも適宜利用することができる。  In the present invention, alumina, which exhibits corrosion resistance and heat resistance, is employed, but the particle size of the powder may be determined in consideration of the sintering property capable of forming a required sintered body, or kneaded with carbon nanotubes. It is determined in consideration of the crushing ability at the time of dispersion, but it is preferably about ΙΟμπι or less, for example, it is possible to use several kinds of particle sizes, and it is preferably 5μπι or less, more preferably Ιμπι or less. In addition to the spheres, fibrous, amorphous and various types of powders can be used as appropriate.
この発明において、 耐腐食性、 熱伝導性、 耐熱性等の必要とする機能を発揮 する純アルミニウム、 JISなどのアルミニウム合金を採用が、 粉体の粒子径と しては、 必要な焼結体を形成できる焼結性、 並びにカーボンナノチューブとの 混練分散時の解碎能力を有するおよそ 200μπι以下、 さらに 150μπι以下の粒子 径のものが好ましく、 大小数種の粒径とすることもでき、 50μπι~ 150μπιが好 ましい。 また、 粉体には球体以外に繊維状、 不定形、 樹木状や種々形態のもの も適宜利用することができる。  In the present invention, pure aluminum, an aluminum alloy such as JIS, which exhibits the required functions such as corrosion resistance, thermal conductivity, heat resistance, etc., is employed. A particle size of about 200 μπι or less, more preferably 150 μπι or less, which has a sintering property capable of forming a carbon nanotube and a crushing ability at the time of kneading and dispersing with carbon nanotubes, is preferable. 150μπι is preferred. In addition to the spheres, fibrous, amorphous, tree-like or various forms of powder can be used as appropriate.
この発明において、 使用する長鎖状のカーボンナノチューブは、 文字どおり 力一ボンナノチューブが連なり長鎖を形成したもので、 これらが絡まったりさ らには繭のような塊を形成しているもの、 あるいはカーボンナノチューブのみ を放電ブラズマ処理して得られる繭や網のような形態を有するものを用いる。 また、 力一ボンナノチューブ自体の構造も単層、 多層のいずれも利用できる。 この発明による複合材料おいて、 カーボンナノチューブの含有量は、 所要形 状や強度を有する焼結体が形成できれば特に限定されるものでないが、 セラ ミックス粉体又は金属粉体の種や粒径を適宜選定することで、 例えば重量比でIn the present invention, the long-chain carbon nanotubes used are literally carbon nanotubes connected to form a long chain, and these are not entangled. Those which form a lump like a cocoon, or those having a cocoon or net-like form obtained by discharge plasma treatment of only carbon nanotubes are used. In addition, the structure of the carbon nanotube itself can be either single-walled or multi-walled. In the composite material according to the present invention, the content of carbon nanotubes is not particularly limited as long as a sintered body having a required shape and strength can be formed. By selecting as appropriate, for example, by weight ratio
90wt%以下を含有させることが可能である。 特に複合材料の均質性を目的とす る場合は、 例えばカーボンナノチューブの含有量を 3wt%以下、 0.05wt%程度 まで少なくして、 混練分散方法を工夫する必要がある。 90 wt% or less can be contained. In particular, when aiming for the homogeneity of the composite material, it is necessary to devise a kneading and dispersing method by reducing the content of carbon nanotubes to, for example, 3 wt% or less and about 0.05 wt%.
この発明によるカーボンナノチューブ分散複合材料の製造方法は、  The method for producing a carbon nanotube-dispersed composite material according to the present invention comprises:
(P)長鎖状カーボンナノチューブを放電プラズマ処理する工程、 (P) a step of subjecting the long-chain carbon nanotubes to discharge plasma treatment,
(1)セラミックス粉体又は金属粉体あるいはセラミックスと金属との混合粉体 と、 長鎖状カーボンナノチューブとを、 ボールミルで混練分散する工程、 (1) a step of kneading and dispersing a ceramic powder or a metal powder or a mixed powder of a ceramic and a metal, and a long-chain carbon nanotube in a ball mill;
(2)さらに、 分散剤を用いて前記粉体と力一ボンナノチューブとを湿式分散さ せる工程、 (2) a step of wet-dispersing the powder and carbon nanotubes using a dispersant,
(3)乾燥した混練分散材を放電ブラズマ焼結する工程とを^ ir含むもので、 (1)(3)、 (P)(l)(3)、 (1)(2)(3)、 (P)(l)(2)(3)の各工程がある。  (3) a process of subjecting the dried kneading and dispersing material to electric discharge plasma sintering, including (1) (3), (P) (l) (3), (1) (2) (3), There are steps (P), (1), (2) and (3).
ボ' 'ルミルで混練分散する工程は、 前述の長鎖状のカーボンナノチューブを アルミナ粉体あるいはアルミニゥム粉体又はアルミニウム合金粉体において、 これをほぐし解砕することが重要である。 混練分散するには、 公知の粉砕、 破 砕、 解砕を行うための各種のミル、 クラッシャー、 シエイカー装置が適宜採用 でき、 その機構も回転衝撃式、 回転剪断式、 回転衝撃剪断式、 媒体撹拌式、 撹 拌式、 撹拌羽根のない撹拌式、 気流粉砕式など公知の機構を適宜利用できる。 特にボールミルは、 公知の横型や遊星型、 撹拌型等のミルの如く、 ボール等 のメディアを使用して粉砕、 解砕を行う構成であれば 、ずれの構造であっても 利用できる。 また、 メディアもその材質、 粒径を適宜選定することができる。 湿式分散させる工程は、 公知の非イオン系分散剤、 陽陰イオン系分散剤を添 加して超音波、 ボールミルを用いて分散させることができ、 前記の乾式分散時 間の短縮や高効率化を図ることができる。 また、 湿式分散後のスラリーを乾燥 させる方法は、 公知の熱源やスピン法を適宜採用できる。 In the step of kneading and dispersing with a ball mill, it is important to disintegrate and disintegrate the long-chain carbon nanotubes in alumina powder, aluminum powder or aluminum alloy powder. For kneading and dispersing, various known mills, crushers and shakers for pulverizing, crushing and disintegrating can be appropriately employed, and the mechanism is also a rotary shock type, a rotary shear type, a rotary shock shear type, and a medium stirring. A well-known mechanism such as a stirring type, a stirring type, a stirring type without a stirring blade, and an air-flow crushing type can be appropriately used. In particular, a ball mill, such as a known horizontal mill, planetary mill, or stirring mill, can be used even if it has a misaligned structure as long as it is configured to pulverize and break using media such as balls. Also, the material and particle size of the media can be appropriately selected. In the wet dispersing step, a known nonionic dispersant and a cationic anionic dispersant can be added and dispersed by using an ultrasonic wave or a ball mill, thereby shortening the dry dispersion time and increasing the efficiency. Can be achieved. In addition, as a method of drying the slurry after the wet dispersion, a known heat source or a spin method can be appropriately employed.
放電プラズマ焼結 (処理)する工程は、 力一ボン製のダイとパンチの間に乾燥 した混練分散材を装填し、 上下のパンチで加圧しながら直流パルス電流を流す ことにより、 ダイ、 パンチ、 および被処理材にジュール熱が発生し、 混練分散 材を焼結する方法であり、 パルス電流を流すことで粉体と粉体、 カーボンナノ チューブの間で放電プラズマが発生し、 粉体とカーボンナノチューブ表面の不 純物などが消失して活性化されるなど等の作用によリ焼結が円滑に進行する。 この発明において、 放電プラズマ焼結は、 用いるセラミックス粉体や金属粉 体の通常の焼結温度より低温で処理することが好ましい。 また、 特に高い圧力 を必要とせず、 焼結時、 比較的低圧、 低温処理となるように条件設定すること が好ましい。 また、 上記の混練分散材を放電プラズマ焼結する工程において、 まず低圧下で低温のプラズマ放電を行い、 その後高圧下で低温の放電プラズマ 焼結を行う 2工程とすることも好ましい。  In the process of spark plasma sintering (processing), a dry kneading and dispersing material is loaded between a die made of Rybon and a punch, and a DC pulse current is applied while pressurizing the upper and lower punches, so that the die, punch, And a method in which Joule heat is generated in the material to be processed and the kneading and dispersing material is sintered.Discharge plasma is generated between the powder and the powder or carbon nanotubes by passing a pulse current, Re-sintering proceeds smoothly due to actions such as activation of the nanotube surface due to disappearance of impurities. In the present invention, the spark plasma sintering is preferably performed at a temperature lower than the normal sintering temperature of the ceramic powder or metal powder to be used. In addition, it is preferable to set conditions so that a relatively low pressure and a low temperature treatment are not required during sintering without requiring a particularly high pressure. Further, in the step of spark plasma sintering of the kneading and dispersing material, it is also preferable to have two steps of first performing low-temperature plasma discharge under low pressure and then performing low-temperature discharge plasma sintering under high pressure.
この発明による複合材料は、 上述の比較的簡単な製法で製造でき、 腐食、 高 温環境下での電極や発熱体、 配線材料、 熱伝導度を向上させた熱交換器やヒー トシンク材料、 ブレーキ部品として応用することができるが、 特に、 実施例に 示すごとく、 600 W/mK以上の熱伝導率を得ることが可能となり、 これらの材 料は例えば予備成形後に放電プラズマ焼結装置にて所要形状に容易に焼成で き、 熱交換器の用途に最適である。 実施例 The composite material according to the present invention can be manufactured by the above-described relatively simple manufacturing method, and is provided with electrodes, heating elements, wiring materials, heat exchangers and heat sink materials with improved thermal conductivity, and brakes under corrosion, high temperature environment. Although it can be applied as a part, it is possible to obtain a thermal conductivity of 600 W / mK or more, as shown in the examples. It can be easily fired into a shape and is ideal for heat exchanger applications. Example
実施例 1  Example 1
平均粒子径 06μπιのアルミナ粉体と、 長鎖状のカーボンナノチューブを、 ァ ルミナ製のボウルとボールを用いたボールミルで分散させた。 まず、 5wt%の カーボンナノチューブを配合し、 予め十分に分散処理したアルミナ粉体を配合 し、 それらの粉末同士をドライ状態で 96時間の混練分散を行った。  Alumina powder having an average particle diameter of 06 μπι and long-chain carbon nanotubes were dispersed in a ball mill using an alumina bowl and balls. First, 5 wt% of carbon nanotubes were blended, alumina powder which had been sufficiently dispersed in advance was blended, and these powders were kneaded and dispersed in a dry state for 96 hours.
さらに、 分散剤として非イオン性界面活性剤(トリトン X-100、 lwt%)を加 え、 2時間以上、 超音波をかけて湿式分散した。 得られたスラリーをろ過して 乾燥させた。  Furthermore, a nonionic surfactant (Triton X-100, lwt%) was added as a dispersant, and the mixture was wet-dispersed by applying ultrasonic waves for 2 hours or more. The resulting slurry was filtered and dried.
乾燥した混練分散材を放電ブラズマ焼結装置のダイ内に装填し、  The dried kneading and dispersing material is loaded into a die of a discharge plasma sintering apparatus,
1300°C~1500°Cで 5分間のプラズマ固化した。 その際、 昇温速度は Plasma solidification was performed at 1300 ° C to 1500 ° C for 5 minutes. At that time, the heating rate is
100°C/Min、 230°C/Minとし、 15~40MPaの圧力を負荷し続けた。 得られた複 合材料の電気伝導率を測定し、 図 1、 図 2の結果を得た。 The temperature was set to 100 ° C / Min and 230 ° C / Min, and a pressure of 15 to 40 MPa was continuously applied. The electrical conductivity of the obtained composite material was measured, and the results shown in FIGS. 1 and 2 were obtained.
実施例 2  Example 2
平均粒子径 30μπιの純アルミニゥム粉体と、 0.25wt%の長鎖状の力一ボンナ ノチューブとの混練解砕において、 力一ボンナノチューブのみを予め放電プラ ズマ焼結装置のダイ内に装填し、 800°Cで 5分間の放電プラズマ処理し、 ステ ンレス鋼製の容器を用いた遊星ミルで、 分散メディアを使用することなくドラ ィ状態で 3時間以下の種々時分単位と容器の回転 を組み合せた混練分散を 行った。  In the kneading and disintegration of pure aluminum powder with an average particle diameter of 30μπι and 0.25 wt% of long-chain carbon nanotubes, only carbon nanotubes were previously loaded into the die of the discharge plasma sintering device. , A plasma mill for 5 minutes at 800 ° C, and a planetary mill using a stainless steel container.The rotation of the container and various time units of 3 hours or less in a dry state without using dispersing media. The combined kneading and dispersion was performed.
混練分散材を放電プラズマ焼結装置のダイ内に装填し、 575°Cで 60分間の放 電プラズマ焼結した。 その際、 昇温速度は 100°C/Minとし、 60MPaの圧力を負 荷し続けた。  The kneading and dispersing material was loaded into a die of a discharge plasma sintering apparatus, and discharge plasma sintering was performed at 575 ° C for 60 minutes. At that time, the heating rate was 100 ° C / Min, and the pressure of 60 MPa was continuously applied.
得られた複合材料の強制破断面の電子顕微鏡写真図を図 3に示す。 スケール が ΙΟΟμπιオーダ一の図 3を 5.0μπιオーダ一に拡大した際の網状のカーボンナノ チューブの電子顕微鏡写真図を図 4に示す。 得られた複合材料の熱伝導率を測定した結果、 221 W/mKであった。 なお、 純アルミニウム粉体のみを上記条件の放電プラズマ焼結して得た固化体の熱伝 導率は、 194 W/mKであり、 この発明による複合材料の熱伝導率は、 約 14%上 昇したことが分かる。 Fig. 3 shows an electron micrograph of the forced fracture surface of the obtained composite material. Fig. 4 shows an electron micrograph of the reticulated carbon nanotube when the scale of Fig. 3 with the scale of the order of ΙΟΟμπι is enlarged to the order of 5.0μπι. As a result of measuring the thermal conductivity of the obtained composite material, it was 221 W / mK. The thermal conductivity of the solidified body obtained by spark plasma sintering of pure aluminum powder alone under the above conditions is 194 W / mK, and the thermal conductivity of the composite material according to the present invention is about 14% higher. You can see that it has risen.
実施例 3  Example 3
平均粒子径 ΙΟΟμιηの純アルミニウム粉体、 あるいは平均粒子径 ΙΟΟμπιのァ ルミニゥム合金粉体 (铸造用合金相当)と、 10wt%の長鎖状のカーボンナノ チューブを、 ステンレス鋼製のボウルとクロム鉄製のボールを用いたボールミ ルで、 分散剤として非イオン性界面活性剤(トリトン X-100、 lwt%)を加え、 ゥエツト状態で 100時間以上の混練分散を行った。  A pure aluminum powder with an average particle size of ΙΟΟμιη, or an aluminum alloy powder with an average particle size of ΙΟΟμπι (equivalent to a forging alloy), and a 10 wt% long-chain carbon nanotube are placed in a stainless steel bowl and chrome iron In a ball mill using a ball, a nonionic surfactant (Triton X-100, lwt%) was added as a dispersing agent, and the mixture was kneaded and dispersed for at least 100 hours in a wet state.
混練分散材を放電プラズマ焼結装置のダイ内に装填し、 1400°Cで 5分間の放 電プラズマ焼結した。 その際、 昇温速度は 250°C/Minとし、 lOMPaの圧力を負 荷し続けた。 得られた複合材料の熱伝導率を測定した結果、 400~600 W/mK となった。  The kneading and dispersing material was loaded into a die of a discharge plasma sintering apparatus, and discharge plasma sintering was performed at 1400 ° C for 5 minutes. At that time, the heating rate was 250 ° C / Min, and the pressure of lOMPa was continuously applied. The thermal conductivity of the obtained composite material was measured to be 400 to 600 W / mK.
実施例 4  Example 4
カーボンナノチューブだけを予め放電プラズマ焼結装置のダイ内に装填し、 1400°Cで 5分間の放電プラズマ処理した。 得られた繭状の力一ボンナノチュー ブの電子顕微鏡写真図を図 5に示す。  Only carbon nanotubes were pre-loaded into the die of the discharge plasma sintering apparatus and were subjected to discharge plasma treatment at 1400 ° C for 5 minutes. Fig. 5 shows an electron micrograph of the obtained cocoon-shaped nanotube.
平均粒子径 05μιηのアルミナ粉体と、 上記カーボンナノチューブを、 アルミ ナ製のボウルとボールを用いたボールミルで分散させた。 まず、 5wt%のカー ボンナノチューブを配合し、 次いで十分に分散させたアルミナ粉体を配合し、 ドライ状態で 96時間の混練分散を行った。 さらに、 実施例 1と同様の超音波湿 式分散した。 得られたスラリーをろ過して乾燥させた。  The alumina powder having an average particle size of 05 μιη and the carbon nanotubes were dispersed by a ball mill using an alumina bowl and balls. First, 5 wt% of carbon nanotubes were blended, and then sufficiently dispersed alumina powder was blended and kneaded and dispersed in a dry state for 96 hours. Further, the same ultrasonic wet dispersion as in Example 1 was performed. The resulting slurry was filtered and dried.
乾燥した混練分散材を放電プラズマ焼結装置のダイ内に装填し、 1400°Cで 5 分間のプラズマ固化した。 その際、 昇温速度は 200°C/Minとし、 初め 15MPa、 次いで 30MPaの圧力を負荷した。 得られた複合材料の電気伝導率は、 実施例 1 と同様範囲であつた。 得られた複合材料の電子顕微鏡写真図を図 6に示す。 The dried kneading and dispersing material was loaded into a die of a discharge plasma sintering apparatus, and was plasma-solidified at 1400 ° C for 5 minutes. At that time, the heating rate was 200 ° C / Min, Then, a pressure of 30 MPa was applied. The electric conductivity of the obtained composite material was in the same range as in Example 1. FIG. 6 shows an electron micrograph of the obtained composite material.
産業上の利用可能性  Industrial applicability
この発明によるカーボンナノチューブ分散複合材料は、 例えば、 セラミック ス粉体を用いて、 耐腐食性、 耐高温特性に優れた電極材料、 発熱体、 配線材 料、 熱交換器などを製造することができる。 また、 セラミックス粉体、 アルミ 二ゥム合金粉体を用 、て高熱伝導度に優れた熱交換器やヒートシンクなどを製 造することができる。  The carbon nanotube-dispersed composite material according to the present invention can produce, for example, an electrode material, a heating element, a wiring material, a heat exchanger, and the like having excellent corrosion resistance and high temperature resistance using ceramic powder. . Further, a heat exchanger, a heat sink, and the like having excellent high thermal conductivity can be manufactured by using ceramic powder and aluminum alloy powder.

Claims

請求の範囲 The scope of the claims
1. アルミナ粉体からなる放電プラズマ焼結体中に、 長鎖状のカーボンナノ チューブが網状に分散一体化したカーボンナノチューブ分散複合材料。1. A carbon nanotube-dispersed composite material in which long-chain carbon nanotubes are dispersed and integrated in a net-like manner in a discharge plasma sintered body made of alumina powder.
2. アルミ二ゥム粉体又はアルミニゥム合金粉体からなる放電ブラズマ焼結 体中に、 長鎖状の力一ボンナノチューブ力網状に分散一体化したカーボ ンナノチューブ分散複合材料。 2. Carbon nanotube-dispersed composite material that is integrated into a discharge plasma sintered compact made of aluminum powder or aluminum alloy powder in the form of a long chain force-bon nanotube force network.
3. アルミナ粉体の平均粒径が ΙΟμια以下、 あるいはアルミニウム粉体又は アルミニウム合金粉体の平均粒径が 200μιη以下である請求項 1又は請求 項 2に記載のカーボンナノチューブ分散複合体。  3. The carbon nanotube-dispersed composite according to claim 1, wherein the average particle size of the alumina powder is ΙΟμια or less, or the average particle size of the aluminum powder or the aluminum alloy powder is 200μιη or less.
4. カーボンナノチューブは、 重量比で 90wt%以下の含有である請求項 1又 は請求項 2に記載の力一ボンナノチューブ分散複合材料。  4. The carbon nanotube dispersed composite material according to claim 1 or 2, wherein the carbon nanotubes are contained in a weight ratio of 90 wt% or less.
5. アルミナ粉体あるいはアルミニゥム粉体又はアルミニゥム合金粉体と、 10wt%以下の長鎖状カーボンナノチューブとを、 ボールミルで混練分散 する工程、 分散材を放電プラズマ焼結する工程とを有する力一ボンナノ チューブ分散複合材料の製造方法。  5. A process for kneading and dispersing alumina powder, aluminum powder, or aluminum alloy powder, and long-chain carbon nanotubes of 10 wt% or less by a ball mill, and a process of discharge plasma sintering the dispersing material. A method for producing a tube-dispersed composite material.
6. アルミナ粉体あるいはアルミニゥム粉体又はアルミニゥム合金粉体と、 10wt%以下の予め放電プラズマ処理した長鎖状カーボンナノチューブと を、 ボールミルで混練分散する工程、 分散材を放電プラズマ焼結するェ 程とを有するカーボンナノチューブ分散複合材料の製造方法。  6. A process of kneading and dispersing alumina powder, aluminum powder or aluminum alloy powder and 10 wt% or less of long-chain carbon nanotubes previously subjected to discharge plasma treatment in a ball mill, and a process of discharge plasma sintering the dispersing material. A method for producing a carbon nanotube-dispersed composite material comprising:
7. アルミナ粉体あるいはアルミニウム粉体又はアルミニウム合金粉体と、 長鎖状カーボンナノチューブとを、 ボールミルで混練分散する工程、 分 散剤を用いて前記粉体と力一ボンナノチューブとを湿式分散させるェ 程、 乾燥した混練分散材を放電プラズマ焼結する工程とを有するカーボ ンナノチューブ分散複合材料の製造方法。 7. A step of kneading and dispersing alumina powder, aluminum powder or aluminum alloy powder and long-chain carbon nanotubes in a ball mill, and wet-dispersing the powder and carbon nanotubes using a dispersant. And subjecting the dried kneading and dispersing material to spark plasma sintering.
8. アルミナ粉体あるいはアルミニゥム粉体又はアルミニゥム合金粉体と、 予め放電プラズマ処理した長鎖状カーボンナノチューブとを、 ボールミ ルで混練分散する工程、 分散剤を用いて前記粉体とカーボンナノチュー ブとを湿式分散させる工程、 乾燥した混練分散材を放電プラズマ焼結す る工程とを有するカーボンナノチューブ分散複合材料の製造方法。8. A step of kneading and dispersing alumina powder, aluminum powder or aluminum alloy powder, and long-chain carbon nanotubes previously subjected to discharge plasma treatment with a ball mill, and using a dispersant to disperse the powder and carbon nanotubes. And a step of subjecting the dried kneading / dispersing material to spark plasma sintering.
9. 混練分散材を放電プラズマ焼結する工程が、 低圧下で低温のプラズマ放 電を行い、 その後高圧下で低温の放電プラズマ焼結を行う 2工程である 請求項 5から請求項 8のいずれかに記載のカーボンナノチューブ分散複合 材料の製造方法。 9. The step of spark plasma sintering of the kneading and dispersing material is a two-step process of performing low-temperature plasma discharge under low pressure and then performing low-temperature discharge plasma sintering under high pressure. Or a method for producing a carbon nanotube-dispersed composite material.
10. アルミナ粉体からなる放電プラズマ焼結体中に、 長鎖状のカーボンナノ チューブが網状に分散一体化したカーボンナノチューブ分散複合材料に て形成された熱交換器。  10. A heat exchanger formed of a carbon nanotube-dispersed composite material in which long-chain carbon nanotubes are dispersed and integrated in a net-like manner in a discharge plasma sintered body made of alumina powder.
11. アルミニウム粉体又はアルミニウム合金粉体からなる放電プラズマ焼結 体中に、 長鎖状の力一ボンナノチューブが網状に分散一体化したカーボ ンナノチューブ分散複合材料にて形成された熱交換器。  11. A heat exchanger formed of a carbon nanotube dispersion composite material in which long-chain carbon nanotubes are dispersed and integrated in a net-like manner in a discharge plasma sintered body made of aluminum powder or aluminum alloy powder.
PCT/JP2004/016496 2003-10-29 2004-10-29 Carbon nanotube-dispersed composite material, method for producing same and article same is applied to WO2005040067A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005515075A JP4593472B2 (en) 2003-10-29 2004-10-29 Method for producing carbon nanotube-dispersed composite material and application thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003368399 2003-10-29
JP2003-368399 2003-10-29
JP2004057083 2004-03-02
JP2004-057083 2004-03-02

Publications (1)

Publication Number Publication Date
WO2005040067A1 true WO2005040067A1 (en) 2005-05-06

Family

ID=34525473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016496 WO2005040067A1 (en) 2003-10-29 2004-10-29 Carbon nanotube-dispersed composite material, method for producing same and article same is applied to

Country Status (2)

Country Link
JP (1) JP4593472B2 (en)
WO (1) WO2005040067A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005343749A (en) * 2004-06-03 2005-12-15 Shinko Electric Ind Co Ltd Cemented carbide and method of manufacturing the same
WO2006120803A1 (en) * 2005-05-10 2006-11-16 Sumitomo Precision Products Co., Ltd Highly thermally conductive composite material
JP2006321968A (en) * 2004-11-29 2006-11-30 Showa Denko Kk Composition for heat conductive composite material containing carbon material and its use
JP2006327886A (en) * 2005-05-27 2006-12-07 Taimei Chemicals Co Ltd Aluminum composite precursor, aluminum composite and aluminum composite sintered compact
EP2145972A1 (en) * 2007-04-17 2010-01-20 Sumitomo Precision Products Co., Ltd. Highly thermally conductive composite material
FR2935989A1 (en) * 2008-09-16 2010-03-19 Arkema France Preparing a masterbatch based on multi-walled carbon nanotubes, comprises contacting the nanotubes with a metal compound having a fusion point of specified value, and mechanically treating the obtained mixture
US20100189995A1 (en) * 2007-07-18 2010-07-29 Alcan Technology & Management Ag Duplex-aluminium material based on aluminium with a first phase and a second phase and method for producing the duplex-aluminium material
WO2010136899A1 (en) * 2009-05-29 2010-12-02 The Governors Of The University Of Alberta Reinforced composites and methods of making and using thereof
KR101169355B1 (en) 2011-03-31 2012-07-30 주식회사 대유신소재 Encapsulation of carbon material within aluminum using step-method
US8323789B2 (en) 2006-08-31 2012-12-04 Cambridge Enterprise Limited Nanomaterial polymer compositions and uses thereof
WO2013058382A1 (en) * 2011-10-19 2013-04-25 株式会社環境・エネルギーナノ技術研究所 Dense material including carbon nanohorns and use thereof
CN106040075A (en) * 2016-06-20 2016-10-26 青岛科技大学 Nanometer material scattering device
JPWO2019163978A1 (en) * 2018-02-26 2021-01-07 国立大学法人東海国立大学機構 Heat exchangers, refrigerators and sintered bodies

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107099758A (en) * 2017-03-18 2017-08-29 华南理工大学 A kind of continuous reinforced aluminum matrix composites of CNT/carbon fiber and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333165A (en) * 1995-06-02 1996-12-17 Mitsubishi Materials Corp Production of silicon nitride composite ceramic
JPH1088256A (en) * 1996-09-19 1998-04-07 Tokyo Univ Carbon nano-tube reinforced aluminum composite material
JPH10168502A (en) * 1996-12-10 1998-06-23 Osaka Gas Co Ltd Composite material with high thermal conductivity
JP2000128648A (en) * 1998-10-23 2000-05-09 Asahi Optical Co Ltd Production of sintered body
JP2002226268A (en) * 2001-01-26 2002-08-14 Hitachi Metals Ltd Method for manufacturing strontium/ruthenium oxide sintered compact and sintered compact
JP2003277871A (en) * 2002-03-26 2003-10-02 National Institute Of Advanced Industrial & Technology Nb-Si-Al-Cr QUARTERNARY ALLOY AND PRODUCTION METHOD THEREOF
JP2003301048A (en) * 2002-04-10 2003-10-21 Polymatech Co Ltd Thermally conductive molded product

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4499431B2 (en) * 2003-07-07 2010-07-07 日本碍子株式会社 Aluminum nitride sintered body, electrostatic chuck, conductive member, member for semiconductor manufacturing apparatus, and method for manufacturing aluminum nitride sintered body
JP4449387B2 (en) * 2003-09-25 2010-04-14 富士ゼロックス株式会社 Manufacturing method of composite material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333165A (en) * 1995-06-02 1996-12-17 Mitsubishi Materials Corp Production of silicon nitride composite ceramic
JPH1088256A (en) * 1996-09-19 1998-04-07 Tokyo Univ Carbon nano-tube reinforced aluminum composite material
JPH10168502A (en) * 1996-12-10 1998-06-23 Osaka Gas Co Ltd Composite material with high thermal conductivity
JP2000128648A (en) * 1998-10-23 2000-05-09 Asahi Optical Co Ltd Production of sintered body
JP2002226268A (en) * 2001-01-26 2002-08-14 Hitachi Metals Ltd Method for manufacturing strontium/ruthenium oxide sintered compact and sintered compact
JP2003277871A (en) * 2002-03-26 2003-10-02 National Institute Of Advanced Industrial & Technology Nb-Si-Al-Cr QUARTERNARY ALLOY AND PRODUCTION METHOD THEREOF
JP2003301048A (en) * 2002-04-10 2003-10-21 Polymatech Co Ltd Thermally conductive molded product

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4636816B2 (en) * 2004-06-03 2011-02-23 新光電気工業株式会社 Cemented carbide and method for producing the same
JP2005343749A (en) * 2004-06-03 2005-12-15 Shinko Electric Ind Co Ltd Cemented carbide and method of manufacturing the same
JP2006321968A (en) * 2004-11-29 2006-11-30 Showa Denko Kk Composition for heat conductive composite material containing carbon material and its use
WO2006120803A1 (en) * 2005-05-10 2006-11-16 Sumitomo Precision Products Co., Ltd Highly thermally conductive composite material
JP2006327886A (en) * 2005-05-27 2006-12-07 Taimei Chemicals Co Ltd Aluminum composite precursor, aluminum composite and aluminum composite sintered compact
US8323789B2 (en) 2006-08-31 2012-12-04 Cambridge Enterprise Limited Nanomaterial polymer compositions and uses thereof
EP2145972A1 (en) * 2007-04-17 2010-01-20 Sumitomo Precision Products Co., Ltd. Highly thermally conductive composite material
EP2145972A4 (en) * 2007-04-17 2012-06-27 Sumitomo Precision Prod Co Highly thermally conductive composite material
US20100189995A1 (en) * 2007-07-18 2010-07-29 Alcan Technology & Management Ag Duplex-aluminium material based on aluminium with a first phase and a second phase and method for producing the duplex-aluminium material
FR2935989A1 (en) * 2008-09-16 2010-03-19 Arkema France Preparing a masterbatch based on multi-walled carbon nanotubes, comprises contacting the nanotubes with a metal compound having a fusion point of specified value, and mechanically treating the obtained mixture
WO2010136899A1 (en) * 2009-05-29 2010-12-02 The Governors Of The University Of Alberta Reinforced composites and methods of making and using thereof
KR101169355B1 (en) 2011-03-31 2012-07-30 주식회사 대유신소재 Encapsulation of carbon material within aluminum using step-method
WO2013058382A1 (en) * 2011-10-19 2013-04-25 株式会社環境・エネルギーナノ技術研究所 Dense material including carbon nanohorns and use thereof
JPWO2013058382A1 (en) * 2011-10-19 2015-04-02 株式会社環境・エネルギーナノ技術研究所 Dense material containing carbon nanohorn and use thereof
CN106040075A (en) * 2016-06-20 2016-10-26 青岛科技大学 Nanometer material scattering device
JPWO2019163978A1 (en) * 2018-02-26 2021-01-07 国立大学法人東海国立大学機構 Heat exchangers, refrigerators and sintered bodies
JP7128544B2 (en) 2018-02-26 2022-08-31 国立大学法人東海国立大学機構 heat exchangers, refrigerators and sintered bodies
US11796228B2 (en) 2018-02-26 2023-10-24 National University Corporation Tokai National Higher Education And Research System Heat exchanger, refrigerating machine and sintered body

Also Published As

Publication number Publication date
JPWO2005040067A1 (en) 2007-03-01
JP4593472B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
JP4593473B2 (en) Method for producing carbon nanotube dispersed composite material
WO2005040066A1 (en) Carbon nanotube-dispersed composite material, method for producing same and article same is applied to
JP5288441B2 (en) High thermal conductive composite material and its manufacturing method
JP2006315893A (en) Method for producing carbon nanotube-dispersed composite material
Duan et al. Effect of CNTs content on the microstructures and properties of CNTs/Cu composite by microwave sintering
Wang et al. Rapid and low temperature spark plasma sintering synthesis of novel carbon nanotube reinforced titanium matrix composites
WO2005040067A1 (en) Carbon nanotube-dispersed composite material, method for producing same and article same is applied to
CN105624445B (en) A kind of graphene strengthens the preparation method of Cu-base composites
CN104988438B (en) High-strength and high-conductivity carbon nano tube strengthening copper-based composite material and preparing method thereof
Xue et al. Preparation and elevated temperature compressive properties of multi-walled carbon nanotube reinforced Ti composites
CN104846231B (en) Preparation method of copper-based graphene composite blocky material
WO2008013252A1 (en) Heat conductive adhesive
CN101151384A (en) High-heat-conduction composite with graphite grain dispersed and process for producing the same
CN107651667A (en) Solid carbon product comprising CNT with and forming method thereof
JP2008285745A (en) High thermal conductive composite material
KR101722582B1 (en) Method for processing Composite Wire for Electrical Cable using Carbon NanoTube - Aluminum Composite Powder
WO2006043431A1 (en) Composite metal article and method for preparation thereof
CN110157931B (en) Nano carbon reinforced metal matrix composite material with three-dimensional network structure and preparation method thereof
Sethuram et al. Characterization of graphene reinforced Al-Sn nanocomposite produced by mechanical alloying and vacuum hot pressing
CN108048684A (en) A kind of preparation method of MWCNTs Reinforced Cus-Ti composite materials
CN109811177A (en) A kind of preparation method of highly conductive high-intensitive silver-graphene composite material
CA2783939A1 (en) A compound material comprising a metal and nanoparticles
Babu et al. Sintering behaviour of copper/carbon nanotube composites and their characterization
JP5709239B2 (en) Method for producing titanium matrix composite material and titanium matrix composite material produced by the method
JP2010189214A (en) Ceramic sintered compact and method for producing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515075

Country of ref document: JP

122 Ep: pct application non-entry in european phase