JP3694283B2 - Residual chlorine meter - Google Patents

Residual chlorine meter Download PDF

Info

Publication number
JP3694283B2
JP3694283B2 JP2002264910A JP2002264910A JP3694283B2 JP 3694283 B2 JP3694283 B2 JP 3694283B2 JP 2002264910 A JP2002264910 A JP 2002264910A JP 2002264910 A JP2002264910 A JP 2002264910A JP 3694283 B2 JP3694283 B2 JP 3694283B2
Authority
JP
Japan
Prior art keywords
sample water
electrode
water
residual chlorine
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002264910A
Other languages
Japanese (ja)
Other versions
JP2004101393A (en
Inventor
敏夫 今泉
Original Assignee
株式会社スコープシステム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社スコープシステム filed Critical 株式会社スコープシステム
Priority to JP2002264910A priority Critical patent/JP3694283B2/en
Publication of JP2004101393A publication Critical patent/JP2004101393A/en
Application granted granted Critical
Publication of JP3694283B2 publication Critical patent/JP3694283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、飲用水道等の水中の残留塩素(次亜塩素酸等)の濃度を連続して測定可能な残留塩素計に関するものである。
【0002】
【従来の技術】
飲料水、プール水、浴場の湯水、食品工場用水等の水中に残留する残留塩素は、残留塩素計によって測定される。この残留塩素計には、さまざまな測定方法を採用したものが存在しており、その中でも、残留塩素の連続測定が可能なタイプとして、試薬不要の電流法を採用した残留塩素計が実用化されている。
【0003】
電流法を採用した残留塩素計は、2種類の電極を試料水中に浸漬して、各電極間から電流を検出し、この電流値から残留塩素濃度を求めるように構成されたものであり、電極に一定電圧を印加して両電極間の電流を検出する、所謂ポーラログラフ法のタイプと、電極に電圧を印加せず、電極間の酸化還元作用による電流を検出する、所謂ガルバニ電極法のタイプとがある。そして、上記したいずれの電流法においても電極(特に正電極)が酸化等により汚れるので、残留塩素計には、電極を機械的に洗浄(ビーズ洗浄や電極回転式洗浄)あるいは電気化学的に洗浄(電圧を印加して洗浄)するための機構を備えて、電極の感度を維持している(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開平10−185871号公報
【0005】
【発明が解決しようとする課題】
ところで、近年、家屋の蛇口等のような給水系統の末端にて手軽に残留塩素を測定するために、小型かつ低価格であって、連続測定可能な残留塩素計が求められている。しかしながら、従来の残留塩素計を小型化すると、例えば、電極を小型化すると、検査対象となる試料水と電極との接触面積が減少するので、電流検出の感度を低下させてしまう。また、上記したような洗浄機構は、例えば電極を回転するための回転駆動源や、有効な洗浄効果を得るための電圧管理機器あるいは試料水の流量管理機器が必要であり、残留塩素計の小型化およびコストダウンの障害となっていた。
【0006】
そこで、本発明は、上記の事情に鑑みてなされたものであり、その目的は、電極を小型化しても感度が良好で、洗浄機構を簡略化でき、製造コストを低減できる残留塩素計を提供するものである。
【0007】
【課題を解決するための手段】
本発明は、上記した目的を達成するために提案されたものであり、請求項1に記載のものは、内部空間に試料水を通す中空の検水容器と、この検水容器の内部空間に設けた正電極および負電極と、この両電極と電気的に接続し、両電極間から検出した電流に基づいて上記試料水中の残留塩素濃度を算出する濃度算出処理装置と、この濃度算出処理装置による算出結果に基づいて表示する表示部とを備えた残留塩素計であって、
上記検水容器の内部空間に正電極および負電極を備えた電極ユニットを縦向きに配設し、
この電極ユニットは、絶縁性支持部材に負電極用金属材を固定して負電極を構成するとともに、負電極に対して絶縁した状態で正電極用金属線材を巻回して正電極を構成し
上記検水容器は、外周面に試料水流入配管と試料水流出配管とを接続し、内部空間と前記各配管とを連通状態にして、内部空間に試料水が流れるように構成し、
前記試料水流入配管を、検水容器の中心軸と直交する軸に対して外周側へオフセットした位置に配置するとともに、試料水流出配管を、試料水流入配管に対して検水容器の中心軸に沿って上側にずれた位置に配置し、
前記電極ユニットの周囲に、前記電極に接触可能な状態で環状ブラシ材を、該ブラシ材の中央の開口部に電極ユニットを遊嵌して設けて、検水容器の内部空間を下から上に渦を巻いて流れる試料水の水流によって上記ブラシ材をほぼ水平に回転させることを特徴とする残留塩素計である。
【0009】
請求項に記載のものは、前記正電極用金属線材を巻回する絶縁性支持部材の表面に試料水が流通可能な試料水流路を設けて、絶縁性支持部材側の表面に試料水を流動状態で接触させることを特徴とする請求項に記載の残留塩素計である。
【0010】
【発明の実施の形態】
以下、連続測定可能な残留塩素計の1つであるガルバニ電極法を用いた残留塩素計を例に挙げて、本発明の実施の形態を図面に基づいて説明する。
図1は、本実施形態の残留塩素計1の概略図、図2は、残留塩素計1の電極ユニット7の概略図、図3は、残留塩素計1を試料水供給配管系に接続した状態図である。
【0011】
残留塩素計1は、図1(a)に示すように、矩形状のケーシング2内に、中空の検水容器3と、この検水容器3の内部空間4に正電極5と負電極6とを備えた電極ユニット7と、両電極5,6間から検出した電流に基づいて試料水中の残留塩素濃度を算出する濃度算出処理装置8と、この濃度算出処理装置8による算出結果に基づいて表示する表示部9とにより概略構成されている。
【0012】
検水容器3は、中空円筒状の有底容器であり、ケーシング2内に配置されている。この検水容器3は、外周面に試料水流入配管11と試料水流出配管12とを接続し、内部空間4と各配管11,12とを連通状態にして、内部空間4に試料水が渦を巻いて流れるように構成されている。
【0013】
試料水流入配管11は、検水容器3の中心軸と直交する軸に対して外周側へオフセットした位置に配置されている。一方、試料水流出配管12は、試料水流入配管11の検水容器3に接続した周辺の中心軸に対して検水容器3の中心軸側にオフセットし、さらに、検水容器3の中心軸に沿ってずれた位置(図中では、上側にずれた位置)に配置されている。このような各配管11,12を接続した検水容器3に試料水流入配管11から試料水を流すと、試料水は、検水容器3の内周に沿って旋回するとともに、検水容器3の中心軸方向(図中、上方向)にも移動して試料水流出配管12へと流出する。すなわち、内部空間4の試料水が撹拌されながら流れるので、各配管11,12の接続箇所周辺以外の内部空間4であっても古い試料水が滞留し難く、常に新鮮な試料水を内部空間4全体に導入してリアルタイムの残留塩素濃度のデータを採取できるように試料水を流すことができる。
【0014】
なお、本実施形態では、試料水流入配管11および試料水流出配管12は、ケーシング2の下面を貫通して試料水の給水配管14および排水配管15との接続ポート11a,12aを突出しているが、これに限定されず、接続ポートをケーシング2の側面を貫通して設けてもよいし、背面を貫通して設けてもよい。
【0015】
電極ユニット7は、電流を検出するための正電極5および負電極6を1つの部品に組み込んだ組立品であり、ABS樹脂等の絶縁性材料で形成された略円柱状の絶縁性支持部材17と、この絶縁性支持部材17の円周面に設けられた正電極5と、絶縁性支持部材17の先端部に固定された負電極6とにより構成されている。
【0016】
具体的に説明すると、絶縁性支持部材17は、図2(a)に示すように、基部18から円柱状の電極取付部19を上方に延設し、この電極取付部19の先端(図中、上端)に棒状の負電極用金属材(例えば、φ4mmの銀(Ag)棒材)20を固定することで負電極6を形成し、さらに、電極取付部19の外周面に正電極用金属線材(例えば、φ0.3mmの白金(Pt)線材)21を複数回巻回した状態で固定することで正電極5を形成している。このように電極ユニット7は、両電極5,6が絶縁状態となるように離間して絶縁性支持部材17に備えられており、両電極5,6が短絡するのを防いでいる。また、正電極5および負電極6は、電極ユニット7内に通されたリード線22を介して、後述する濃度算出処理装置8に電気的に接続されている。
【0017】
なお、正電極5は、正電極用金属線材21の巻きピッチをこの線材21の太さと同じにして、隙間なく巻回するようにして形成してもよいが、正電極用金属線材21の太さよりも巻きピッチを大きくして、隣り合う正電極用金属線材21が接触するのを防ぐように離間させて正電極5を形成すれば、正電極用金属線材21間に試料水が入り込んで正電極5と試料水との接触面積を増加させることができ、正電極5の感度を向上させることができるので好適である。
【0018】
また、負電極6は、残留塩素濃度測定中に放電酸化反応を生じて次第に分解消耗されるので、別途準備した新品の負電極用金属材20と交換できるようにしておくことが好ましい。したがって、負電極6は、絶縁性支持部材17に対して着脱可能な状態で固定されていることが好適である。例えば、負電極用金属材20の外周におねじ(図示せず)を刻設し、電極取付部19の先端の取付孔のめねじ(図示せず)に螺合することで負電極6を固定するようにすれば、負電極6の固定に別部品を必要としないので、製造コストを低く抑えることができる。
【0019】
そして、電極ユニット7は、検水容器3の底部に開設された電極ユニット取付開口24から電極取付部19を挿入し、電極取付部19の基端周辺に設けられたおねじ部23を電極ユニット取付開口24のめねじ部25に螺合することで、両電極5,6を内部空間4のほぼ中心に配置して、検水容器3内を流れる試料水中に両電極5,6を浸漬できるように構成されている。なお、この電極ユニット7は、絶縁性支持部材17の基部18と検水容器3の底部との間にOリング等のシール材26を挟み込んでおり、試料水が電極ユニット7の取付箇所からリークするのを防いでいる。
【0020】
さらに、上記した電極ユニット7は、図2(b)および(c)に示すように、絶縁性支持部材17の電極取付部19の周囲に、例えば合成樹脂製の環状ブラシ材28を複数(本実施形態では3つ)設けている。このブラシ材28は、中央に電極取付部19を遊嵌可能な開口部29を開設してドーナツ形状を有し、この開口部29にブラシ毛先を臨ませている。したがって、この開口部29に電極取付部19を遊嵌したブラシ材28は、ブラシ毛先を正電極5および負電極6に当接させ得るとともに、電極ユニット7の電極取付部19を中心にして回転自在な状態になる。
【0021】
なお、本発明において、電極ユニット7の向きは限定されないが、本実施形態のように電極ユニット7を上向き(縦向き)に取り付け、ブラシ材28がほぼ水平に回転するようにすると、ブラシ材28が各電極5,6の表面の一箇所に偏ることなく、ほぼ全周に均等に当接し易くなるので好ましい。
【0022】
濃度算出処理装置8は、試料水中に正電極5および負電極6を浸漬すると両電極5,6間に発生する電流を検出し、この電流値が残留塩素濃度に比例することに基づいて残留塩素濃度を算出するための装置である。この濃度算出処理装置8は、電流検出の感度を調整するための感度調整部31、および試料水中に残留塩素がない状態で表示部9にてゼロを示すように調整するためのゼロ調整部32を備えており、操作者による外部入力によって残留塩素濃度測定の環境設定を調整できるように構成されている。また、この濃度算出処理装置8は、電池33を電源とし、この電池33の交換時期を知らせるための電池交換報知ランプ34を備えている。なお、感度調整部31の調整つまみ、ゼロ調整部32の調整つまみ、および電池交換報知ランプ34は、電源スイッチ35とともにケーシング2の前面に配置されている。
【0023】
表示部9は、濃度算出処理装置8に電気的に接続され、濃度算出処理装置8による算出結果に基づいて試料水中の残留塩素濃度を可視表示するためのものである。本実施形態においては指針タイプの表示器が表示部9として適用されて、ケーシング2の前面中央に配置されている。そして、この表示部9は、例えば0〜2ppmの測定範囲の目盛36を有する表示盤37を備え、残留塩素不足の警告範囲である0〜0.1ppmの目盛36間を赤色に、残留塩素不足の注意範囲である0.1〜0.2ppmの目盛36間を黄色に、残留塩素の適量範囲である0.2〜2ppmの目盛36間を緑色に着色して、測定した試料水の残留塩素濃度が衛生管理上安全な濃度であるか否かを一目して判断できるようにしている。なお、上記した濃度目盛36の範囲は一例であって、本発明を限定するものではない。この濃度範囲や境界値は、法規制や管理基準に合わせて適宜対応させることが好適である。
【0024】
上記のような残留塩素計1において、試料水流入配管11に給水配管14を、試料水流出配管12に排水配管15を接続して(図3参照)、検水容器3に試料水を導入すると、試料水は、内部空間4を旋回しながら上昇し、この試料水によりブラシ材28が電極ユニット7の絶縁性支持部材17を中心にして、ブラシ材28の内側の毛先と正電極5および負電極6とを接触させながら回転する。すると、ブラシ材28は、各電極5,6の表面に付いた付着物(酸化物やカルシウム系の堆積物等)を落として正電極5および負電極6を洗浄することができる。なお、ブラシ材28は、上昇する試料水によって上方に持ち上げられ易いので、絶縁性支持部材17のおねじ部23や検水容器3の底部等から離間して摩擦を受け難く、スムーズに回転できる。
【0025】
このように本発明の残留塩素計1は、試料水との接触面積が減少するのを防いで、正電極5および負電極6における電流検出の感度を維持することができる。
また、ブラシ材28の毛先が正電極用金属線材21の間に入り込むので、従来のビーズ洗浄方式では洗浄し切れなかった細部まで洗浄する効果を期待でき、一層正電極5の感度を維持しやすい。しかも、この残留塩素計1は、回転駆動系等の複雑な機構や動力源を必要とせず、シンプルな構造で正電極5および負電極6の洗浄機能を備えることができ、残留塩素計1の製造コストの低減を図ることができる。
【0026】
また、正電極用金属線材21を巻回することによって形成された正電極5は、板材で同じ幅の正電極5を形成した場合と比べて、試料水に接触する面積が広い。したがって、電極を大型化することなく試料水との接触面積を広くして、残留塩素計1の感度を高めることができる。
【0027】
そして、上記のように残留塩素計1の感度を高めることで、従来の残留塩素計の試料水流量(例えば、300ml/min程度)よりも大きな試料水流量(3〜5l/min程度)であっても残留塩素濃度を測定可能な残留塩素計を実現することができる。さらに、試料水流量を増加させることで、上記したブラシ材28を十分に回転駆動させて、正電極5の洗浄効果を上昇させることができる。
【0028】
また、残留塩素計1は、ブラシ材28による洗浄方法を採用しているので、ビーズ洗浄方式のようにビーズが流れ出ないように試料水流量を厳密に調整する必要がなく、流量調整がラフであっても各電極5,6の洗浄効果を維持することができる。そして、例えば、家庭における食器洗浄や手洗い時の水流量(8〜10l/min程度)であっても電極5,6を十分に洗浄しながら残留塩素濃度を測定することができるので、幅広い測定流量範囲に対応する残留塩素計を実現することができる。
【0029】
ところで、上記した実施形態では、絶縁性支持部材17の電極取付部19に巻回した正電極用金属線材21は、内側を全周に亘って電極取付部19の外周面に当接していたが、本発明はこれに限らない。例えば、図4に示すように、絶縁性支持部材17、詳しくは電極取付部19の正電極用金属線材21を巻回する表面に試料水流路40を設けて、電極取付部19と正電極用金属線材21との接触面積を減らすようにしてもよい。
【0030】
具体的には、図4における絶縁性支持部材17は、電極取付部19の正電極5を形成する円周面上に複数(本実施形態では、60度ずつ位相をずらして6つ)の溝状の試料水流路40…を形成している。この試料水流路40は、正電極5の巻回幅Aよりも長い寸法Bで形成されて、正電極5の巻回幅両端よりも外側に試料水が出入りできる程度の開口41を設けている。このような試料水流路40を設けると、正電極用金属線材21の裏側、すなわち絶縁性支持部材17と対向する側にも試料水が流れて、正電極5と絶縁性支持部材17との間で古い試料水が淀んでしまうことを防ぐことができるし、正電極5と試料水との接触面積を増加させることもできるので、一層正確で精度のよい残留塩素濃度の測定を行うことができる。
【0031】
なお、試料水流路40は、図5(a)に示すように、試料水の旋回方向(流動方向)に沿うようにして傾斜した状態で形成したり、あるいは、図5(b)に示すように、試料水の入口側となる開口41の試料水下流側周辺に突起42を設けたりすると、試料水を導入し易くなってさらに試料水の淀みを防止することができる。
【0032】
また、上記した実施形態は、ガルバニ電極法を用いた残留塩素計1を例にして説明したが、本発明はこれに限らず、2種類の電極を試料水中に浸漬して残留塩素濃度を測定するものであればよく、例えば、2種類の電極間に一定電圧を印加し、両電極間から得られた還元ポーラロ電流に基づいて残留塩素濃度を算出する、所謂ポーラログラフ法を用いた残留塩素計であってもよい。
【0033】
【発明の効果】
以上説明したように、本発明によれば、次の効果を奏する。
請求項1に記載の発明によれば、上記検水容器の内部空間に正電極および負電極を備えた電極ユニットを配設し、該電極ユニットは、絶縁性支持部材に負電極用金属材を固定して負電極を構成するとともに、負電極に対して絶縁した状態で正電極用金属線材を巻回して正電極を構成したので、正電極を大型化することなく、試料水と接触する正電極上の表面積を増大することができる。したがって、装置全体のコンパクト化を図るとともに、一層感度の良好な残留塩素計を実現することができる。
【0034】
また、検水容器の内部空間に正電極および負電極を備えた電極ユニットを縦向きに配設し、検水容器を、外周面に試料水流入配管と試料水流出配管とを接続し、内部空間と前記各配管とを連通状態にして、内部空間に試料水が流れるように構成し、試料水流入配管を、検水容器の中心軸と直交する軸に対して外周側へオフセットした位置に配置するとともに、試料水流出配管を、試料水流入配管に対して検水容器の中心軸に沿って上側にずれた位置に配置し、前記電極ユニットの周囲に、前記電極に接触可能な状態環状ブラシ材を、該ブラシ材の中央の開口部に電極ユニットを遊嵌して設けて、検水容器の内部空間を下から上に渦を巻いて流れる試料水の水流によって上記ブラシ材をほぼ水平に回転させるので、ブラシ材が、旋回しながら上昇する試料水によって上方に持ち上げられ易くなり、検水容器の底部等から離間して摩擦を受け難く、スムーズに回転でき、また、ブラシ材の内側の毛先を正電極および負電極の表面の一箇所に偏ることなく、ほぼ全周に均等に接触させながら回転できる。これにより、表面に付いた付着物を落として正電極および負電極を洗浄することができる。しかも、複雑な機構や駆動源を備えることなく、シンプルな構造で正電極を洗浄する機能を残留塩素計に設けることができ、製造コストの低減を図ることができる。
また、試料水が検水容器の内部空間に渦を巻いて撹拌されながら流れるので、古い試料水が滞留し難く、常に新鮮な試料水を検水容器の内部空間全体に導入してリアルタイムの残留塩素濃度のデータを採取できるように試料水を流すことができる。
【0035】
請求項に記載の発明によれば、前記正電極用金属線材を巻回する絶縁性支持部材の表面に試料水が流通可能な試料水流路を設けて、絶縁性支持部材側の表面に試料水を流動状態で接触させるので、絶縁性支持部材に対向する正電極用金属線材の表面の一部も試料水中の電流の検出箇所として利用することができる。さらに、試料水が正電極と絶縁性支持部材との間で淀むのを防いで、リアルタイムの残留塩素をより精度よく測定することができる。
【図面の簡単な説明】
【図1】本発明の残留塩素計の概略図であり、(a)は正面図、(b)は平面図である。
【図2】(a)は、電極ユニットの正面図、(b)は斜視図、(c)は検水容器に取り付けた状態の電極ユニットの平面図である。
【図3】本発明の残留塩素計を試料水供給配管に取り付けた状態図であり、(a)は正面図、(b)は側面図である。
【図4】電極取付部に複数の試料水流路を設けた絶縁性支持部材の要部拡大図であり、(a)は上面から見た部分断面図、(b)は正面から見た部分断面図である。
【図5】(a)は試料水流路を試料水の流れに沿って傾けた状態の説明図、(b)は試料水流路の入口側開口に突起を設けた状態の説明図である。
【符号の説明】
1 残留塩素計
2 ケーシング
3 検水容器
4 内部空間
5 正電極
6 負電極
7 電極ユニット
8 濃度算出処理装置
9 表示部
11 試料水流入配管
11a 接続ポート
12 試料水流出配管
12a 接続ポート
14 給水配管
15 排水配管
17 絶縁性支持部材
18 基部
19 電極取付部
20 負電極用金属材
21 正電極用金属線材
22 リード線
23 おねじ部
24 電極ユニット取付開口
25 めねじ部
26 シール材
28 ブラシ材
29 開口部
31 感度調整部
32 ゼロ調整部
33 電池
34 電池交換報知ランプ
35 電源スイッチ
36 目盛
37 表示盤
40 試料水流路
41 開口
42 突起
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a residual chlorine meter capable of continuously measuring the concentration of residual chlorine (hypochlorous acid, etc.) in water such as drinking water.
[0002]
[Prior art]
Residual chlorine remaining in water such as drinking water, pool water, bath water, and food factory water is measured by a residual chlorine meter. There are various types of residual chlorine meters that use various measurement methods. Among them, a residual chlorine meter that uses a reagent-free current method has been put to practical use as a type that can continuously measure residual chlorine. ing.
[0003]
The residual chlorine meter using the current method is configured to immerse two types of electrodes in sample water, detect the current from between each electrode, and obtain the residual chlorine concentration from this current value. A so-called polarographic method in which a constant voltage is applied to the electrode to detect the current between both electrodes, and a so-called galvanic electrode method type in which no voltage is applied to the electrodes and the current due to the redox action between the electrodes is detected. There is. In any of the current methods described above, the electrode (especially the positive electrode) is contaminated by oxidation or the like, so the residual chlorine meter can be cleaned mechanically (bead cleaning or electrode rotation cleaning) or electrochemically cleaned. A mechanism for performing cleaning by applying a voltage is provided to maintain the sensitivity of the electrode (see, for example, Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-185871
[Problems to be solved by the invention]
By the way, in recent years, in order to easily measure residual chlorine at the end of a water supply system such as a faucet of a house, a small and low-priced residual chlorine meter capable of continuous measurement has been demanded. However, if the conventional residual chlorine meter is reduced in size, for example, if the electrode is reduced in size, the contact area between the sample water to be inspected and the electrode is reduced, so that the sensitivity of current detection is reduced. In addition, the cleaning mechanism as described above requires, for example, a rotational drive source for rotating the electrode, a voltage management device or a sample water flow rate management device for obtaining an effective cleaning effect, and a small residual chlorine meter. It was an obstacle to cost and cost reduction.
[0006]
Therefore, the present invention has been made in view of the above circumstances, and the purpose thereof is to provide a residual chlorine meter that has good sensitivity even if the electrodes are downsized, can simplify the cleaning mechanism, and can reduce manufacturing costs. To do.
[0007]
[Means for Solving the Problems]
The present invention has been proposed in order to achieve the above-described object, and according to the first aspect of the present invention, there is provided a hollow sample container that allows sample water to pass through the internal space, and an internal space of the sample container. Concentration calculation processing device for calculating the residual chlorine concentration in the sample water based on the current detected from both electrodes, and the positive and negative electrodes provided, and the concentration calculation processing device A residual chlorine meter with a display unit for displaying based on the calculation result by
An electrode unit provided with a positive electrode and a negative electrode in the internal space of the water sampling container is arranged vertically ,
This electrode unit comprises a negative electrode by fixing a negative electrode metal material to an insulating support member, and constitutes a positive electrode by winding a positive electrode metal wire in an insulated state with respect to the negative electrode ,
The sample container is configured such that the sample water inflow pipe and the sample water outflow pipe are connected to the outer peripheral surface, the internal space and each pipe are in communication with each other, and the sample water flows into the internal space.
The sample water inflow pipe is disposed at a position offset to the outer peripheral side with respect to an axis orthogonal to the center axis of the test water container, and the sample water outflow pipe is arranged with respect to the sample water inflow pipe. Placed at a position shifted upward along
An annular brush member is provided around the electrode unit so as to be in contact with the electrode, and the electrode unit is loosely fitted in the central opening of the brush member, so that the internal space of the water detection container is placed from below to above. The residual chlorine meter is characterized in that the brush material is rotated almost horizontally by a water flow of sample water flowing in a vortex .
[0009]
According to a second aspect of the present invention, a sample water channel through which sample water can flow is provided on the surface of the insulating support member that winds the positive electrode metal wire, and the sample water is supplied to the surface on the insulating support member side. a residual chlorine meter according to claim 1, wherein the contacting in a fluidized state.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings, taking as an example a residual chlorine meter using a galvanic electrode method which is one of the residual chlorine meters capable of continuous measurement.
FIG. 1 is a schematic diagram of a residual chlorine meter 1 of the present embodiment, FIG. 2 is a schematic diagram of an electrode unit 7 of the residual chlorine meter 1, and FIG. 3 is a state in which the residual chlorine meter 1 is connected to a sample water supply piping system. FIG.
[0011]
As shown in FIG. 1A, the residual chlorine meter 1 includes a hollow test container 3 in a rectangular casing 2, and a positive electrode 5 and a negative electrode 6 in an internal space 4 of the test container 3. , A concentration calculation processing device 8 that calculates the residual chlorine concentration in the sample water based on the current detected between the electrodes 5 and 6, and a display based on the calculation result by the concentration calculation processing device 8 The display unit 9 is configured roughly.
[0012]
The water sample container 3 is a hollow cylindrical bottomed container and is disposed in the casing 2. The sample container 3 has a sample water inflow pipe 11 and a sample water outflow pipe 12 connected to the outer peripheral surface thereof, the internal space 4 and the pipes 11 and 12 are in communication with each other, and the sample water is swirled in the internal space 4. It is configured to flow around.
[0013]
The sample water inflow pipe 11 is disposed at a position offset to the outer peripheral side with respect to an axis orthogonal to the central axis of the test water container 3. On the other hand, the sample water outflow pipe 12 is offset to the central axis side of the test water container 3 with respect to the central axis of the periphery of the sample water inflow pipe 11 connected to the test water container 3. Are arranged at positions displaced along the line (positions displaced upward in the figure). When the sample water is caused to flow from the sample water inflow pipe 11 to the water sample container 3 to which the pipes 11 and 12 are connected, the sample water turns along the inner periphery of the water sample container 3 and the water sample container 3. And also flows out to the sample water outflow pipe 12. That is, since the sample water in the internal space 4 flows while being agitated, the old sample water is unlikely to stay even in the internal space 4 other than the vicinity of the connection location of the pipes 11 and 12, and fresh sample water is always supplied to the internal space 4. Sample water can be flowed so that it can be introduced into the whole and real-time residual chlorine concentration data can be collected.
[0014]
In the present embodiment, the sample water inflow pipe 11 and the sample water outflow pipe 12 penetrate the lower surface of the casing 2 and project the connection ports 11 a and 12 a to the sample water supply pipe 14 and the drain pipe 15. Without being limited thereto, the connection port may be provided through the side surface of the casing 2 or may be provided through the back surface.
[0015]
The electrode unit 7 is an assembly in which a positive electrode 5 and a negative electrode 6 for detecting a current are incorporated into one part, and is a substantially cylindrical insulating support member 17 formed of an insulating material such as ABS resin. And the positive electrode 5 provided on the circumferential surface of the insulating support member 17 and the negative electrode 6 fixed to the distal end portion of the insulating support member 17.
[0016]
Specifically, as shown in FIG. 2A, the insulating support member 17 has a columnar electrode mounting portion 19 extending upward from the base portion 18 and the tip of the electrode mounting portion 19 (in the drawing). The negative electrode 6 is formed by fixing a rod-shaped negative electrode metal material (for example, φ4 mm silver (Ag) rod material) 20 to the upper end), and the positive electrode metal is formed on the outer peripheral surface of the electrode mounting portion 19. The positive electrode 5 is formed by fixing a wire (for example, a platinum (Pt) wire having a diameter of 0.3 mm) in a state of being wound a plurality of times. As described above, the electrode unit 7 is provided on the insulating support member 17 so as to be separated from each other so that both the electrodes 5 and 6 are in an insulated state, thereby preventing the electrodes 5 and 6 from being short-circuited. Further, the positive electrode 5 and the negative electrode 6 are electrically connected to a concentration calculation processing device 8 to be described later via a lead wire 22 passed through the electrode unit 7.
[0017]
The positive electrode 5 may be formed so that the winding pitch of the positive electrode metal wire 21 is the same as the thickness of the wire 21 and the wire is wound without any gaps. If the positive electrode 5 is formed so that the winding pitch is larger than that of the positive electrode metal wires 21 so as to prevent the adjacent positive electrode metal wires 21 from coming into contact with each other, the sample water enters between the positive electrode metal wires 21 and the positive electrode 5 is formed. It is preferable because the contact area between the electrode 5 and the sample water can be increased and the sensitivity of the positive electrode 5 can be improved.
[0018]
Further, since the negative electrode 6 undergoes a discharge oxidation reaction during measurement of the residual chlorine concentration and is gradually decomposed and consumed, it is preferable that the negative electrode 6 can be replaced with a newly prepared negative electrode metal material 20. Therefore, it is preferable that the negative electrode 6 is fixed to the insulating support member 17 in a detachable state. For example, a screw (not shown) is engraved on the outer periphery of the negative electrode metal material 20 and the negative electrode 6 is screwed into a female screw (not shown) in a mounting hole at the tip of the electrode mounting portion 19. If fixed, a separate part is not required for fixing the negative electrode 6, so that the manufacturing cost can be kept low.
[0019]
And the electrode unit 7 inserts the electrode attachment part 19 from the electrode unit attachment opening 24 opened in the bottom part of the water sampling container 3, and the external thread part 23 provided in the base end periphery of the electrode attachment part 19 is made into an electrode unit. By screwing into the female thread portion 25 of the mounting opening 24, both the electrodes 5 and 6 can be arranged at the substantially center of the internal space 4, and both the electrodes 5 and 6 can be immersed in the sample water flowing in the water sample container 3. It is configured as follows. In this electrode unit 7, a sealing material 26 such as an O-ring is sandwiched between the base portion 18 of the insulating support member 17 and the bottom portion of the water detection container 3, so that the sample water leaks from the mounting position of the electrode unit 7. To prevent it.
[0020]
Further, as shown in FIGS. 2B and 2C, the above-described electrode unit 7 includes a plurality of (for example, synthetic resin) annular brush members 28 around the electrode mounting portion 19 of the insulating support member 17. In the embodiment, three) are provided. This brush material 28 has a donut shape by opening an opening 29 in which the electrode mounting portion 19 can be loosely fitted at the center, and the brush bristle faces the opening 29. Therefore, the brush material 28 in which the electrode mounting portion 19 is loosely fitted in the opening 29 can bring the brush bristles into contact with the positive electrode 5 and the negative electrode 6 and is centered on the electrode mounting portion 19 of the electrode unit 7. It can be freely rotated.
[0021]
In the present invention, the direction of the electrode unit 7 is not limited. However, when the electrode unit 7 is mounted upward (vertically) and the brush member 28 is rotated almost horizontally as in the present embodiment, the brush member 28 is rotated. Is preferable because it is easy to contact the entire circumference evenly without being biased to one place on the surface of each of the electrodes 5 and 6.
[0022]
The concentration calculation processing device 8 detects the current generated between the electrodes 5 and 6 when the positive electrode 5 and the negative electrode 6 are immersed in the sample water, and based on the fact that this current value is proportional to the residual chlorine concentration. It is an apparatus for calculating the concentration. The concentration calculation processing device 8 includes a sensitivity adjustment unit 31 for adjusting the sensitivity of current detection, and a zero adjustment unit 32 for adjusting the display unit 9 to indicate zero when there is no residual chlorine in the sample water. And is configured so that the environment setting for residual chlorine concentration measurement can be adjusted by external input by an operator. The concentration calculation processing device 8 includes a battery replacement notification lamp 34 that uses the battery 33 as a power source and notifies the replacement timing of the battery 33. The adjustment knob of the sensitivity adjustment unit 31, the adjustment knob of the zero adjustment unit 32, and the battery replacement notification lamp 34 are disposed on the front surface of the casing 2 together with the power switch 35.
[0023]
The display unit 9 is electrically connected to the concentration calculation processing device 8 and is for visually displaying the residual chlorine concentration in the sample water based on the calculation result by the concentration calculation processing device 8. In the present embodiment, a pointer type indicator is applied as the display unit 9 and is arranged at the center of the front surface of the casing 2. And this display part 9 is equipped with the display board 37 which has the scale 36 of the measurement range of 0-2 ppm, for example, between the scales 36 of 0-0.1 ppm which is a warning range of residual chlorine short is red, and residual chlorine is insufficient. Between the scales of 0.1 to 0.2 ppm, which is the caution range of the sample, is colored yellow, and between the scales of 0.2 to 2 ppm, which is the appropriate range of residual chlorine, is colored green, and the residual chlorine of the sample water measured Whether or not the concentration is safe for hygiene management can be determined at a glance. The range of the concentration scale 36 described above is an example, and does not limit the present invention. It is preferable that the density range and the boundary value correspond appropriately according to legal regulations and management standards.
[0024]
In the residual chlorine meter 1 as described above, when the water supply pipe 14 is connected to the sample water inflow pipe 11 and the drainage pipe 15 is connected to the sample water outflow pipe 12 (see FIG. 3), The sample water rises while swirling in the internal space 4, and the sample water causes the brush material 28 to center on the insulating support member 17 of the electrode unit 7, and the hair tip inside the brush material 28 and the positive electrode 5 and It rotates while making contact with the negative electrode 6. Then, the brush material 28 can clean the positive electrode 5 and the negative electrode 6 by removing deposits (oxides, calcium-based deposits, etc.) attached to the surfaces of the electrodes 5 and 6. In addition, since the brush material 28 is easily lifted upward by the rising sample water, the brush material 28 is separated from the threaded portion 23 of the insulating support member 17 and the bottom portion of the water sampling container 3 and is not easily subjected to friction and can rotate smoothly. .
[0025]
Thus, the residual chlorine meter 1 of the present invention can prevent the contact area with the sample water from decreasing and maintain the sensitivity of current detection at the positive electrode 5 and the negative electrode 6.
Further, since the bristles of the brush material 28 enter between the metal wires 21 for the positive electrode, it is possible to expect the effect of washing the details that could not be washed by the conventional bead washing method, and further maintain the sensitivity of the positive electrode 5. Cheap. Moreover, this residual chlorine meter 1 does not require a complicated mechanism such as a rotary drive system or a power source, and can have a cleaning function for the positive electrode 5 and the negative electrode 6 with a simple structure. Manufacturing costs can be reduced.
[0026]
Further, the positive electrode 5 formed by winding the positive electrode metal wire 21 has a larger area in contact with the sample water than the case where the positive electrode 5 having the same width is formed by the plate material. Therefore, the sensitivity of the residual chlorine meter 1 can be increased by increasing the contact area with the sample water without increasing the size of the electrode.
[0027]
Then, by increasing the sensitivity of the residual chlorine meter 1 as described above, the sample water flow rate (about 3 to 5 l / min) is larger than the sample water flow rate (for example, about 300 ml / min) of the conventional residual chlorine meter. However, a residual chlorine meter capable of measuring the residual chlorine concentration can be realized. Furthermore, by increasing the sample water flow rate, the brush material 28 described above can be sufficiently rotated to increase the cleaning effect of the positive electrode 5.
[0028]
Further, since the residual chlorine meter 1 employs a cleaning method using the brush material 28, it is not necessary to strictly adjust the sample water flow rate so that the beads do not flow out unlike the bead cleaning method, and the flow rate adjustment is rough. Even if it exists, the cleaning effect of each electrode 5 and 6 can be maintained. And, for example, the residual chlorine concentration can be measured while washing the electrodes 5 and 6 sufficiently even when the water flow rate is about 8 to 10 l / min at the time of washing dishes or hand washing at home. Residual chlorine meter corresponding to the range can be realized.
[0029]
By the way, in above-mentioned embodiment, although the metal wire 21 for positive electrodes wound around the electrode attachment part 19 of the insulating support member 17 was contact | abutted to the outer peripheral surface of the electrode attachment part 19 over the inner periphery. The present invention is not limited to this. For example, as shown in FIG. 4, a sample water channel 40 is provided on the surface of the insulating support member 17, specifically, the positive electrode metal wire 21 of the electrode mounting portion 19, and the electrode mounting portion 19 and the positive electrode are provided. The contact area with the metal wire 21 may be reduced.
[0030]
Specifically, the insulating support member 17 in FIG. 4 has a plurality of (six in this embodiment, six phases shifted by 60 degrees) grooves on the circumferential surface forming the positive electrode 5 of the electrode mounting portion 19. Are formed. The sample water channel 40 is formed with a dimension B longer than the winding width A of the positive electrode 5, and an opening 41 is provided so that the sample water can enter and exit outside both ends of the winding width of the positive electrode 5. . When such a sample water flow path 40 is provided, the sample water also flows on the back side of the positive electrode metal wire 21, that is, on the side facing the insulating support member 17, and between the positive electrode 5 and the insulating support member 17. As a result, it is possible to prevent the old sample water from stagnation and to increase the contact area between the positive electrode 5 and the sample water, so that the residual chlorine concentration can be measured more accurately and accurately. .
[0031]
As shown in FIG. 5 (a), the sample water channel 40 is formed in an inclined state along the swirling direction (flow direction) of the sample water, or as shown in FIG. 5 (b). In addition, if the protrusion 42 is provided around the downstream side of the sample water of the opening 41 that is the inlet side of the sample water, it becomes easier to introduce the sample water and further stagnation of the sample water can be prevented.
[0032]
In the above embodiment, the residual chlorine meter 1 using the galvanic electrode method has been described as an example. However, the present invention is not limited to this, and the residual chlorine concentration is measured by immersing two types of electrodes in the sample water. For example, a residual chlorine meter using a so-called polarographic method in which a constant voltage is applied between two types of electrodes and a residual chlorine concentration is calculated based on a reduced polaro current obtained between the two electrodes. It may be.
[0033]
【The invention's effect】
As described above, the present invention has the following effects.
According to invention of Claim 1, the electrode unit provided with the positive electrode and the negative electrode is arrange | positioned in the internal space of the said water test container, This electrode unit has the metal material for negative electrodes in an insulating support member. The negative electrode is fixed and the positive electrode is formed by winding the positive electrode metal wire in a state insulated from the negative electrode. Therefore, the positive electrode comes into contact with the sample water without increasing the size of the positive electrode. The surface area on the electrode can be increased. Therefore, the overall apparatus can be made compact and a residual chlorine meter with better sensitivity can be realized.
[0034]
In addition, an electrode unit having a positive electrode and a negative electrode is arranged vertically in the internal space of the test container, and the test container is connected to the sample water inflow pipe and the sample water outflow pipe on the outer peripheral surface. The space and the pipes are in communication with each other so that sample water flows into the internal space, and the sample water inflow pipe is offset to the outer peripheral side with respect to an axis perpendicular to the central axis of the test container. The sample water outflow pipe is disposed at a position shifted upward along the central axis of the test vessel with respect to the sample water inflow pipe, and in a state where the electrode unit can be contacted around the electrode unit. An annular brush material is provided by loosely fitting an electrode unit in the central opening of the brush material, and the brush material is substantially tuned by the water flow of the sample water flowing in a vortex from the bottom to the inside of the test container. since rotate horizontally, brush material, swirls It is easy to be lifted upward by the rising sample water, is not easily subjected to friction away from the bottom of the sample container, etc., can rotate smoothly, and the hair tips inside the brush material are attached to the surface of the positive and negative electrodes. Without being biased to one place, it can be rotated while being in contact with the entire circumference evenly. Thereby, the deposit | attachment adhering to the surface can be dropped and a positive electrode and a negative electrode can be wash | cleaned. In addition, the residual chlorine meter can be provided with a function of cleaning the positive electrode with a simple structure without providing a complicated mechanism or drive source, and the manufacturing cost can be reduced.
In addition, since the sample water flows while being swirled and stirred in the internal space of the test vessel, the old sample water is unlikely to stay, and fresh sample water is always introduced into the entire internal space of the test vessel and remains in real time. Sample water can be flowed so that chlorine concentration data can be collected.
[0035]
According to the second aspect of the present invention, the sample water flow path through which the sample water can flow is provided on the surface of the insulating support member around which the positive electrode metal wire is wound, and the sample is formed on the surface on the insulating support member side. Since water is brought into contact in a fluid state, a part of the surface of the positive electrode metal wire facing the insulating support member can also be used as a current detection location in the sample water. Further, it is possible to prevent the sample water from being trapped between the positive electrode and the insulating support member, and to measure the real-time residual chlorine more accurately.
[Brief description of the drawings]
FIG. 1 is a schematic view of a residual chlorine meter according to the present invention, where (a) is a front view and (b) is a plan view.
2A is a front view of an electrode unit, FIG. 2B is a perspective view, and FIG. 2C is a plan view of the electrode unit in a state attached to a water sample container.
FIG. 3 is a state diagram in which the residual chlorine meter according to the present invention is attached to a sample water supply pipe, wherein (a) is a front view and (b) is a side view.
FIGS. 4A and 4B are enlarged views of a main part of an insulating support member in which a plurality of sample water channels are provided in an electrode mounting portion, where FIG. 4A is a partial cross-sectional view seen from the top surface, and FIG. FIG.
5A is an explanatory diagram of a state in which the sample water channel is inclined along the flow of the sample water, and FIG. 5B is an explanatory diagram of a state in which a protrusion is provided at the inlet side opening of the sample water channel.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Residual chlorine meter 2 Casing 3 Inspection container 4 Internal space 5 Positive electrode 6 Negative electrode 7 Electrode unit 8 Concentration calculation processing apparatus 9 Display part 11 Sample water inflow piping 11a Connection port 12 Sample water outflow piping 12a Connection port 14 Water supply piping 15 Drain pipe 17 Insulating support member 18 Base 19 Electrode mounting portion 20 Negative electrode metal material 21 Positive electrode metal wire 22 Lead wire 23 Male thread portion 24 Electrode unit mounting opening 25 Female thread portion 26 Seal material 28 Brush material 29 Opening portion 31 Sensitivity adjustment unit 32 Zero adjustment unit 33 Battery 34 Battery replacement notification lamp 35 Power switch 36 Scale 37 Display panel 40 Sample water channel 41 Opening 42 Projection

Claims (2)

内部空間に試料水を通す中空の検水容器と、この検水容器の内部空間に設けた正電極および負電極と、この両電極と電気的に接続し、両電極間から検出した電流に基づいて上記試料水中の残留塩素濃度を算出する濃度算出処理装置と、この濃度算出処理装置による算出結果に基づいて表示する表示部とを備えた残留塩素計であって、
上記検水容器の内部空間に正電極および負電極を備えた電極ユニットを縦向きに配設し、
この電極ユニットは、絶縁性支持部材に負電極用金属材を固定して負電極を構成するとともに、負電極に対して絶縁した状態で正電極用金属線材を巻回して正電極を構成し
上記検水容器は、外周面に試料水流入配管と試料水流出配管とを接続し、内部空間と前記各配管とを連通状態にして、内部空間に試料水が流れるように構成し、
前記試料水流入配管を、検水容器の中心軸と直交する軸に対して外周側へオフセットした位置に配置するとともに、試料水流出配管を、試料水流入配管に対して検水容器の中心軸に沿って上側にずれた位置に配置し、
前記電極ユニットの周囲に、前記電極に接触可能な状態で環状ブラシ材を、該ブラシ材の中央の開口部に電極ユニットを遊嵌して設けて、検水容器の内部空間を下から上に渦を巻いて流れる試料水の水流によって上記ブラシ材をほぼ水平に回転させることを特徴とする残留塩素計。
Based on the current detected from both electrodes, a hollow water sample container that allows sample water to pass through the internal space, the positive and negative electrodes provided in the internal space of the water sample container, and both electrodes A residual chlorine meter comprising a concentration calculation processing device for calculating the residual chlorine concentration in the sample water and a display unit for displaying based on a calculation result by the concentration calculation processing device,
An electrode unit provided with a positive electrode and a negative electrode in the internal space of the water sampling container is arranged vertically ,
This electrode unit comprises a negative electrode by fixing a negative electrode metal material to an insulating support member, and constitutes a positive electrode by winding a positive electrode metal wire in an insulated state with respect to the negative electrode ,
The sample container is configured such that the sample water inflow pipe and the sample water outflow pipe are connected to the outer peripheral surface, the internal space and each pipe are in communication with each other, and the sample water flows into the internal space.
The sample water inflow pipe is disposed at a position offset to the outer peripheral side with respect to an axis orthogonal to the center axis of the test water container, and the sample water outflow pipe is arranged with respect to the sample water inflow pipe. Placed at a position shifted upward along
An annular brush member is provided around the electrode unit so as to be in contact with the electrode, and the electrode unit is loosely fitted in the central opening of the brush member, so that the internal space of the water detection container is placed from below to above. A residual chlorine meter, characterized in that the brush material is rotated almost horizontally by a sample water stream flowing in a vortex .
前記正電極用金属線材を巻回する絶縁性支持部材の表面に試料水が流通可能な試料水流路を設けて、絶縁性支持部材側の表面に試料水を流動状態で接触させることを特徴とする請求項1に記載の残留塩素計。 A sample water flow path through which sample water can flow is provided on the surface of the insulating support member around which the positive electrode metal wire is wound, and the sample water is brought into contact with the surface on the insulating support member side in a flowing state. The residual chlorine meter according to claim 1.
JP2002264910A 2002-09-11 2002-09-11 Residual chlorine meter Expired - Fee Related JP3694283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002264910A JP3694283B2 (en) 2002-09-11 2002-09-11 Residual chlorine meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002264910A JP3694283B2 (en) 2002-09-11 2002-09-11 Residual chlorine meter

Publications (2)

Publication Number Publication Date
JP2004101393A JP2004101393A (en) 2004-04-02
JP3694283B2 true JP3694283B2 (en) 2005-09-14

Family

ID=32264196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002264910A Expired - Fee Related JP3694283B2 (en) 2002-09-11 2002-09-11 Residual chlorine meter

Country Status (1)

Country Link
JP (1) JP3694283B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5921510B2 (en) * 2013-09-30 2016-05-24 株式会社ユニフィードエンジニアリング Residual chlorine concentration measuring device

Also Published As

Publication number Publication date
JP2004101393A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
US10481117B2 (en) Amperometric sensor system
AU2018204817B2 (en) Multi-functional water quality sensor
US20210123875A1 (en) Multi-functional water quality sensor
KR100643175B1 (en) On-line measurement sensor system consistency of suspended solids
JP2008261770A (en) Optical sample measuring device, optical cell, and water quality measuring device
JP3694283B2 (en) Residual chlorine meter
WO1997041429A1 (en) FLOW THROUGH FLUID pH AND CONDUCTIVITY SENSOR
US6860988B2 (en) Fluid filtration system with fluid flow meter
CN214894988U (en) A sewage detection device for environmental protection
CN214703410U (en) Online pH detection device
CN210015039U (en) Automatic detection device for fluoride ions in passivator
WO2016084894A1 (en) Liquid analyzer and liquid analysis system
KR100414446B1 (en) SS Measuring Apparatus
CN217664910U (en) Cleaning device for probe of sewage online detection instrument
CN212300465U (en) Channel flow measuring equipment
CN216900198U (en) Low-range turbidity meter with self-cleaning function
JPH0334686Y2 (en)
CN218740537U (en) Water quality on-line monitoring probe device
CN216411269U (en) Domestic water quality monitoring suggestion device
JP3051921U (en) Residual chlorine concentration measurement sensor
CN208030963U (en) A kind of electric hot water bottle
JPH11142370A (en) Portable residual chlorine meter
JPH0138523Y2 (en)
JPH0515085Y2 (en)
JPH0710288Y2 (en) Water quality measurement electrode

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050623

R150 Certificate of patent or registration of utility model

Ref document number: 3694283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees