JPH0138523Y2 - - Google Patents
Info
- Publication number
- JPH0138523Y2 JPH0138523Y2 JP1981012397U JP1239781U JPH0138523Y2 JP H0138523 Y2 JPH0138523 Y2 JP H0138523Y2 JP 1981012397 U JP1981012397 U JP 1981012397U JP 1239781 U JP1239781 U JP 1239781U JP H0138523 Y2 JPH0138523 Y2 JP H0138523Y2
- Authority
- JP
- Japan
- Prior art keywords
- detection electrode
- dissolved oxygen
- water
- cleaning
- casing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 48
- 238000001514 detection method Methods 0.000 claims description 41
- 238000004140 cleaning Methods 0.000 claims description 35
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 34
- 229910052760 oxygen Inorganic materials 0.000 claims description 34
- 239000001301 oxygen Substances 0.000 claims description 34
- 238000005070 sampling Methods 0.000 claims description 15
- 238000012937 correction Methods 0.000 claims description 8
- 238000005406 washing Methods 0.000 claims description 3
- 238000012360 testing method Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 8
- 239000010802 sludge Substances 0.000 description 7
- 239000000428 dust Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000005273 aeration Methods 0.000 description 5
- 230000002265 prevention Effects 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000010865 sewage Substances 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000010782 bulky waste Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Landscapes
- Sampling And Sample Adjustment (AREA)
Description
【考案の詳細な説明】
本考案は溶存酸素計に関するもので、特に下水
処理場の曝気槽などにおいて、汚水(検水)中に
溶存する酸素量を測定するに当り、長期間無保守
で精度良く測定できる溶存酸素計に関するもので
ある。[Detailed description of the invention] This invention relates to a dissolved oxygen meter, which can be used to measure the amount of oxygen dissolved in sewage (test water), especially in aeration tanks of sewage treatment plants, with long-term maintenance-free accuracy. It is related to a dissolved oxygen meter that can measure well.
一般に溶存酸素計はその検出電極の表面に汚泥
が付着したり、粗大ゴミ(髪の毛等)が絡み付い
たりすると測定感度が劣化する。そこで、このよ
うな欠点を除去するために本出願人は種々の実験
を行つた結果、次のことが判明した。検出電極
を浮力により無秩序に運動しながら上昇する気泡
群により覆うようにすると、検出電極に付着した
汚泥をほぼ100%除去できる。ただし、気泡群が
検出電極の表面から離れた所を上昇する場合には
あまり洗浄効果がないので、浮力で上昇する気泡
群が検出電極の表面にまんべんなく触れながら上
昇するように気泡発生孔を配置することが必要で
ある。粗大ゴミは検水に流れが存在する(例え
ば曝気槽においては散気により1〜2m/secの流
速の施回流が存在する。)ために沈殿せずに浮遊
し検水の採水口などに絡み付くのであるから、粗
大ゴミが採水口などに直接触れないようにすれば
粗大ゴミは流れに押流されて絡み付くことはな
い。 Generally, the measurement sensitivity of a dissolved oxygen meter deteriorates if sludge adheres to the surface of its detection electrode or if large particles (hair, etc.) become entangled. Therefore, in order to eliminate such drawbacks, the present applicant conducted various experiments and found the following. By covering the detection electrode with a group of bubbles that rise while moving randomly due to buoyancy, almost 100% of the sludge adhering to the detection electrode can be removed. However, if the bubble group rises away from the surface of the detection electrode, there is not much cleaning effect, so the bubble generation holes are arranged so that the bubble group rises due to buoyancy and evenly touches the surface of the detection electrode. It is necessary to. Since there is a flow in the test water (for example, in an aeration tank, there is a circulating flow with a flow rate of 1 to 2 m/sec due to aeration), bulky waste does not settle but floats and becomes entangled in the water sampling port of the test water. Therefore, if you prevent bulky garbage from coming into direct contact with water intake ports, etc., bulky garbage will not be swept away by the flow and become tangled.
本出願人は上記のことを利用して、種々の改良
された溶存酸素計を既に提案した。まず特公昭54
−24876号においては、上下に開口部を有する筒
状のケーシングの内部に検出電極を設けるととも
にこの検出電極より下位においてケーシングに気
泡発生孔を設け、かつ検水の採水口となるケーシ
ングの下部開口部の上流側にゴミ阻止部材を設け
ており、常時気泡発生孔から気泡を発生すること
により下部開口部からエアリフト効果により検水
を上昇させるとともに該気泡により検出電極を洗
浄する。この溶存酸素計では気泡洗浄により検出
電極への汚泥の付着が防止できるとともに、検水
は絶えず上昇して検出電極には新しい検水が接触
するので気泡洗浄により出力に誤差を生じること
がないので、ケーシングの下部開口部では常に検
水を吸込んでいるのでこの下部開口部に粗大ゴミ
が絡み付く易く、これにより採水が阻害されて出
力に誤差が生じ溶存酸素濃度制御などに使用でき
なくなる。 The applicant has already proposed various improved dissolved oxygen meters by taking advantage of the above. First of all, special public service in Showa 54.
-24876, a detection electrode is provided inside a cylindrical casing having openings at the top and bottom, a bubble generation hole is provided in the casing below the detection electrode, and an opening at the bottom of the casing serves as a water sampling port. A dust prevention member is provided on the upstream side of the chamber, and by constantly generating air bubbles from the air bubble generation hole, the sample water is raised from the lower opening by an air lift effect, and the detection electrode is cleaned by the air bubbles. In this dissolved oxygen meter, bubble cleaning prevents sludge from adhering to the detection electrode, and since the sample water constantly rises and new sample water comes into contact with the detection electrode, bubble cleaning does not cause errors in the output. Since sample water is constantly sucked into the lower opening of the casing, bulky debris tends to get entangled in the lower opening, which obstructs water sampling and causes errors in output, making it unusable for controlling dissolved oxygen concentration, etc.
又、特開昭51−74691号に示した溶存酸素計に
おいては、両端が閉塞された筒状のケーシングの
周部に検出電極を設けるとともにケーシングの周
壁に採水部となる窓を設け、又ケーシングの検出
電極より下位には気泡発生孔を設けるとともにケ
ーシングの上流側にはゴミ阻止部材を設けてい
る。この溶存酸素計では気泡洗浄によりやはり検
出電極への汚泥付着が防止できるとともに、検水
を吸込む方式ではないので粗大ゴミの絡み付きも
防止できるが、検出電極近傍の検水は停滞気味で
あるので気泡洗浄時に気泡から検水への酸素溶け
込み量が多くなり、出力に誤差を生じる欠点があ
る。このため、この溶存酸素計の出力信号(溶存
酸素濃度値)を下水処理場などの制御系に使用し
た場合、気泡洗浄に出力信号が急変し、制御系に
好ましくない外乱を与える。そこで連続洗浄とす
ることが考えられ、この場合には出力信号に急変
が生じず制御系に外乱を与えることがなく、又洗
浄効果を大きくなるが、常時出力誤差を生じるこ
ととなり、溶存酸素量の測定を正確に行うことが
できず、制御系も正確な制御を行うことができな
くなる。 Furthermore, in the dissolved oxygen meter shown in JP-A-51-74691, a detection electrode is provided around the periphery of a cylindrical casing with both ends closed, and a window serving as a water sampling section is provided on the periphery of the casing. A bubble generating hole is provided in the casing below the detection electrode, and a dust blocking member is provided on the upstream side of the casing. In this dissolved oxygen meter, bubble cleaning can prevent sludge from adhering to the detection electrode, and since the test water is not sucked in, it can also prevent large debris from getting entangled, but since the test water near the detection electrode is stagnant, air bubbles There is a drawback that the amount of oxygen dissolved into the test water from air bubbles during cleaning increases, causing errors in the output. Therefore, when the output signal (dissolved oxygen concentration value) of this dissolved oxygen meter is used in a control system of a sewage treatment plant or the like, the output signal changes suddenly due to bubble cleaning, causing an undesirable disturbance to the control system. Therefore, continuous cleaning may be considered. In this case, there will be no sudden change in the output signal and no disturbance will be caused to the control system, and the cleaning effect will be increased, but it will always cause an output error and the amount of dissolved oxygen cannot be measured accurately, and the control system cannot perform accurate control.
本考案は上記の点を考慮して、検出電極に対す
る気泡洗浄の洗浄効果が良好であるとともに採水
口などへの粗大ゴミの絡み付きが生じ難く、かつ
気泡洗浄により生じる測定誤差を補正することが
できる溶存酸素計を提供することを目的とする。 Taking the above points into consideration, the present invention has a good cleaning effect of bubble cleaning on the detection electrode, prevents bulky debris from getting entangled in the water sampling port, and can correct measurement errors caused by bubble cleaning. The purpose is to provide a dissolved oxygen meter.
以下本考案の実施例を図面とともに説明する。
第1図は本実施例に係る溶存酸素計の全体構成を
示し、1は検水源例えば曝気槽、2は第2〜4図
に示す溶存酸素計の本体部、3は本体部2内に設
けられている検出電極、4は検出電極3と信号変
換器12とを接続する信号線、13は信号変換器
12と指示記録計14とを接続する信号線であ
る。又、5は電動開閉弁6と本体部2とを結ぶ空
気配管、7は空気源例えばエアポンプ8と電動開
閉弁6とを結ぶ空気配管である。 Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows the overall configuration of the dissolved oxygen meter according to this embodiment, where 1 is a water test source, such as an aeration tank, 2 is the main body of the dissolved oxygen meter shown in FIGS. 2 to 4, and 3 is installed in the main body 2. 4 is a signal line connecting the detection electrode 3 and the signal converter 12, and 13 is a signal line connecting the signal converter 12 and the indicator recorder 14. Further, 5 is an air pipe that connects the electric on-off valve 6 and the main body portion 2, and 7 is an air pipe that connects an air source, for example, an air pump 8 and the electric on-off valve 6.
又、第2〜4図は溶存酸素計の本体部2を示
し、51は曝気槽1の一端に取付けられたホルダ
(図示せず)に支持されたパイプで、その上部は
検水面上にあるとともにその下部は検水中に没し
ている。パイプ51は空気配管も兼ねており、そ
の上端には蓋9を介して配管接続金具53が螺着
され、配管接続金具53には空気配管5が接続さ
れている。パイプ51の下部外周にはジヨイント
21の上部が螺着され、ジヨイント21の周壁に
は配管接続金具54が螺着されるとともにジヨイ
ント21の下端には円錐台部212が形成され
る。又、ジヨイント21の下部外周には保護管2
2の上端が螺着され、保護管22の周壁には複数
個(図では4個)の細長い採水口(窓)23が設
けられ、検水は採水口23を介して保護管22内
に自由に出入し検出部3と接触する。保護管22
の下部内周には電極ホルダ24が螺着され、電極
ホルダ24の内周には検出電極3を支持する支持
部材10が嵌合挿入され、電極ホルダ24の下端
にキヤツプ25を螺着することに支持部材10は
しつかりと固定される。電極ホルダ24の下部に
は円環状の溝242が形成され、溝242から上
方に向つて複数個の気泡発生孔243が円周配置
で形成される。電極ホルダ24の周壁には配管接
続金具55が溝242と連通するよう螺着され、
接続金具54,55間には空気配管52が連結さ
れる。信号線4はキヤツプ25および支持部材1
0を挿通して検出電極3に接続する。パイプ5
1、ジヨイント21、保護管22、電極ホルダ2
4などによつてケーシングが形成され、第4図の
100で示す検水の流れの方向に対してケーシン
グの上流側にゴミ阻止部材101をねじ102に
より取付ける。 2 to 4 show the main body 2 of the dissolved oxygen meter, and 51 is a pipe supported by a holder (not shown) attached to one end of the aeration tank 1, the upper part of which is above the water test surface. At the same time, the lower part is submerged in water. The pipe 51 also serves as an air pipe, and a pipe connection fitting 53 is screwed onto the upper end of the pipe through a lid 9, and the air pipe 5 is connected to the pipe connection fitting 53. The upper part of the joint 21 is screwed onto the outer periphery of the lower part of the pipe 51, the pipe connection fitting 54 is screwed onto the peripheral wall of the joint 21, and a truncated conical part 212 is formed at the lower end of the joint 21. In addition, a protective tube 2 is installed on the outer periphery of the lower part of the joint 21.
2 is screwed onto the upper end of the protective tube 22, and a plurality (four in the figure) of elongated water sampling ports (windows) 23 are provided on the peripheral wall of the protective tube 22. Water can be sampled freely into the protective tube 22 through the water sampling ports 23. and comes into contact with the detection unit 3. Protection tube 22
An electrode holder 24 is screwed onto the lower inner periphery of the electrode holder 24, a support member 10 for supporting the detection electrode 3 is fitted and inserted into the inner periphery of the electrode holder 24, and a cap 25 is screwed onto the lower end of the electrode holder 24. The support member 10 is firmly fixed. An annular groove 242 is formed in the lower part of the electrode holder 24, and a plurality of bubble generating holes 243 are formed in a circumferential arrangement upward from the groove 242. A pipe connection fitting 55 is screwed onto the peripheral wall of the electrode holder 24 so as to communicate with the groove 242.
An air pipe 52 is connected between the connecting fittings 54 and 55. The signal line 4 is connected to the cap 25 and the support member 1.
0 and connect it to the detection electrode 3. pipe 5
1, joint 21, protection tube 22, electrode holder 2
4, etc., and a dust prevention member 101 is attached with screws 102 on the upstream side of the casing with respect to the flow direction of the sample water shown at 100 in FIG.
又、信号変換器12は第5図に示すようにプリ
アンプ26と洗浄誤差補正回路27から構成さ
れ、洗浄誤差補正回路27は第6図に示すように
構成されている。第6図において、28,29は
オペアンプ、VR0,VR1は可変抵抗、R1〜R3は
抵抗である。 Further, the signal converter 12 includes a preamplifier 26 and a cleaning error correction circuit 27 as shown in FIG. 5, and the cleaning error correction circuit 27 is configured as shown in FIG. In FIG. 6, 28 and 29 are operational amplifiers, VR 0 and VR 1 are variable resistors, and R 1 to R 3 are resistors.
上記構成の溶存酸素計は、本体部2が検水源1
に浸漬されると検水は採水口23を介して本体部
2内に出入して検出電極3と接触し、検出電極3
は検水中の溶存酸素量(Do;溶存酸素飽和度)
を検出し、Do値に比例した電気信号を信号線4
により出力する。一方、空気源8を作動させると
ともに電動開閉弁6を開とし、空気を空気配管
5,7を介してパイプ51に送入する。空気は接
続金具54、空気配管52および接続金具55を
通つて溝242に至る。この結果、気泡発生孔2
43からは気泡群が発生され、この気泡群は浮力
により無秩序に運動しながら検出電極3の表面に
触れつつ上昇し、円錐台部212に当り採水口2
3から出ていく。このため、検出電極3の表面は
気泡により洗浄されて汚泥などの付着は防止され
る。 In the dissolved oxygen meter with the above configuration, the main body 2 is the water test source 1.
When the sample water is immersed in water, it enters and exits the main body 2 through the water sampling port 23 and comes into contact with the detection electrode 3.
is the amount of dissolved oxygen in the sample water (Do; dissolved oxygen saturation)
is detected, and an electrical signal proportional to the Do value is sent to signal line 4.
Output by On the other hand, the air source 8 is activated and the electric on-off valve 6 is opened to send air into the pipe 51 via the air pipes 5 and 7. Air reaches the groove 242 through the fitting 54, the air pipe 52, and the fitting 55. As a result, the bubble generation hole 2
A group of bubbles is generated from 43, and this group of bubbles rises while touching the surface of the detection electrode 3 while moving chaotically due to buoyancy, hits the truncated cone portion 212, and enters the water sampling port 2.
Go out from 3. Therefore, the surface of the detection electrode 3 is cleaned by air bubbles and adhesion of sludge and the like is prevented.
又、矢印100で示す検水の流れに乗つて移動
してきた粗大ゴミはゴミ阻止部材101に当り流
れの方向と直角な方向に押流されるので、保護管
22に接続することがなく採水口23にからみ付
くこともない。従つて、洗浄機能および測定機能
が失なわれることがない。又、矢印100で示す方
向に進んできた検水の並進運動エネルギーはゴミ
阻止部材101に当つた際にその一部がゴミ阻止
部材101の後側に発生する渦エネルギーに変化
する。この渦により検水はゴミ阻止部材101を
上流側に設けたにもかかわらず採水口から自由に
出入することができ、検出電極3により精確な測
定ができるこことになる。さらに、検出電極3の
周囲の検水の流れは渦運動が主になり並進運動が
減少するため、発生した気泡群は押流されること
なく検出電極3周囲を確実に上昇し、洗浄効果が
高められる。 Also, since the bulky debris that has moved along with the flow of the test water shown by the arrow 100 hits the debris prevention member 101 and is swept away in a direction perpendicular to the flow direction, it does not connect to the protection tube 22 and passes through the water sampling port 23. It won't get tangled. Therefore, the cleaning function and measurement function are not lost. Further, when the translational kinetic energy of the sample water that has proceeded in the direction indicated by the arrow 100 hits the dust prevention member 101, a part of it changes into vortex energy generated on the rear side of the dust prevention member 101. Due to this vortex, the sample water can freely enter and exit from the water sampling port even though the dust blocking member 101 is provided on the upstream side, and the detection electrode 3 can perform accurate measurements. Furthermore, since the flow of the test water around the detection electrode 3 is mainly vortex motion and translational motion is reduced, the generated bubbles are not swept away and reliably rise around the detection electrode 3, increasing the cleaning effect. It will be done.
又、測定中においては電動開閉弁6は常時開と
なし、気泡発生孔243からは常時気泡を発生さ
せ、連続洗浄を行う。この連続洗浄により洗浄効
果は向上するが、気泡中の酸素が検水中に溶け込
んで検出電極3の出力に誤差を生じる。この誤差
量は実験の結果真のDo値と第7図に示す関係に
あることが判明した。この関係を式で表すと
連続洗浄時電極出力∝100−Δ0/100
×(溶存酸素飽和度)+Δ0 …(1)
となる。ここで、Δ0は1〜3程度の値であり、
検水源1によつて決まる値である。従つて、本体
部2の設置場所を変えない限り定数となる。この
定数は例えばポータブル溶存酸素計を用いて出力
を比較することにより容易に求めることができ
る。真の溶存酸素飽和度をDo(真)、プリアンプ
26の非洗浄時の出力をVDpとするとVDp=kDo
(真)〔ボルト〕となる。kは定数である。従つ
て、プリアンプ26の洗浄時の出力をVDp(洗)
とすると
VDp(洗)=k{100−Δ0/100Do(真)
+Δ0}〔ボルト …(2)
となる。Do(真)の値は0〜100(%)の範囲であ
る。従つて、第6図に示す洗浄誤差補正回路27に
おいて、電源に接続された可変抵抗VR0の出力側
の電圧を−V0とするとオペアンプ28の出力電
圧V1は
V1=VR1/R1{V0−VDp(洗)}
洗浄誤差補正回路27の出力電圧V2は
V2=R3/R2{V0(1−VR1/R1)
+VR1/R1VDp(洗)} …(3)
となる。(3)式へ(2)式を代入すると
V2=R3/R2{V0(1−VR1/R1)
+VR1/R1k(100−Δ0/100Do(真)+Δ0)}…(4)
となる。Do(真)=0のときVDp=0ボルト、Do
(真)=100のときVDp=1ボルトとなるようにす
ればk=1/100となる。又、V0=1ボルトと設定
し、VR1/R1=100/100−Δ0となるように調整すれば、
(4)式は
V2=R3/R2×1/100Do(真)〔ボルト〕
となり、V2はDo(真)に比例したものとなり洗
浄誤差を除去することができる。尚、VR1を固定
抵抗とし、二個のR1を可変抵抗としても同様な
機能を得ることができる。この出力V2を信号線
13を介して指示記録計14に入力して指示記録
する。監視員は指示記録計14を監視することに
より検水中の溶存酸素量を正確に知ることができ
る。又、出力V2を制御系に接続することにより
溶存酸素濃度制御を外乱もなく精確に行うことが
できる。 Further, during measurement, the electric on-off valve 6 is always open, and bubbles are always generated from the bubble generation hole 243 to perform continuous cleaning. Although the cleaning effect is improved by this continuous cleaning, oxygen in the bubbles dissolves into the test water, causing an error in the output of the detection electrode 3. As a result of experiments, it was found that this amount of error has a relationship with the true Do value as shown in FIG. Expressing this relationship in a formula is: Electrode output during continuous cleaning ∝100−Δ 0 /100 × (dissolved oxygen saturation) + Δ 0 …(1). Here, Δ 0 is a value of about 1 to 3,
This value is determined by the water test source 1. Therefore, it remains constant unless the installation location of the main body 2 is changed. This constant can be easily determined by comparing the outputs using, for example, a portable dissolved oxygen meter. If the true dissolved oxygen saturation is Do (true) and the output of the preamplifier 26 during non-cleaning is V Dp , then V Dp = kDo
(true) becomes [volt]. k is a constant. Therefore, the output when cleaning the preamplifier 26 is V Dp (washing)
Then, V Dp (Wash) = k {100−Δ 0 /100Do (True) + Δ 0 } [Volt...(2). The value of Do (true) ranges from 0 to 100 (%). Therefore, in the cleaning error correction circuit 27 shown in FIG. 6, if the voltage on the output side of the variable resistor VR 0 connected to the power supply is -V 0 , the output voltage V 1 of the operational amplifier 28 is V 1 = VR 1 /R 1 {V 0 −V Dp (washing)} The output voltage V 2 of the cleaning error correction circuit 27 is V 2 = R 3 /R 2 {V 0 (1 − VR 1 /R 1 ) +VR 1 /R 1 V Dp ( Wash)} …(3) becomes. Substituting equation (2) into equation (3), we get V 2 = R 3 /R 2 {V 0 (1-VR 1 /R 1 ) +VR 1 /R 1 k (100-Δ 0 /100Do (true) + Δ 0 )}…(4) becomes. When Do (true) = 0, V Dp = 0 volts, Do
If (true) = 100, then V Dp = 1 volt, then k = 1/100. Also, if we set V 0 = 1 volt and adjust it so that VR 1 /R 1 = 100/100−Δ 0 , equation (4) becomes V 2 = R 3 /R 2 × 1/100Do (true ) [volts], and V 2 is proportional to Do (true), and cleaning errors can be eliminated. Note that the same function can be obtained by using VR 1 as a fixed resistor and the two R 1s as variable resistors. This output V 2 is input to the instruction recorder 14 via the signal line 13 to record the instruction. By monitoring the indicator recorder 14, the monitor can accurately know the amount of dissolved oxygen in the sample water. Furthermore, by connecting the output V2 to the control system, dissolved oxygen concentration control can be performed accurately without disturbance.
以上のように本考案においては、ケーシング内
に検出電極を設けるとともに検出電極の下位には
検出電極近傍を浮力により無秩序に運動しながら
上昇する気泡群を常時発生する気泡発生孔を設け
ており、検出電極は気泡群により常時洗浄され、
検出電極への汚泥付着を防止する洗浄効果が高ま
り、汚泥付着は完全に防止される。又、洗浄時気
泡から検水中へ酸素が溶入するため常時洗浄を行
うと検出電極の出力は常に洗浄誤差を含むが、検
出電極の出力側に洗浄誤差を補正する補正回路を
設けたので溶存酸素計の出力は常に正しいDo値
を示すことになる。又、間欠的な洗浄を行つた場
合、洗浄時に検出電極の出力は大きく変化し、制
御系に外乱を与えて正確な制御を行い難くなる
が、本考案は常時洗浄を行つているため出力の急
変はなくしかも常時正確な出力を出すので溶存酸
素濃度を外乱もなく精確に行うことができる。
又、ケーシングに採水口を設け、検水がケーシン
グ内に自由に出入して検出電極と接触するように
しており、エアリフト効果により検水をケーシン
グ内に吸込む方式でないために粗大ゴミが採水口
に絡み付くことにより計測不能となる恐れが少
い。 As described above, in the present invention, a detection electrode is provided in the casing, and a bubble generation hole is provided below the detection electrode to constantly generate a group of bubbles that move up while moving chaotically near the detection electrode due to buoyancy. The detection electrode is constantly cleaned by a group of bubbles,
The cleaning effect to prevent sludge from adhering to the detection electrode is enhanced, and sludge adhesion is completely prevented. In addition, oxygen dissolves into the sample water from air bubbles during cleaning, so if constant cleaning is performed, the output of the detection electrode will always include a cleaning error, but a correction circuit is installed on the output side of the detection electrode to correct the cleaning error. The output of the oxygen meter will always show the correct Do value. Furthermore, when cleaning is performed intermittently, the output of the detection electrode changes greatly during cleaning, causing disturbance to the control system and making it difficult to perform accurate control. There are no sudden changes and the output is always accurate, so dissolved oxygen concentration can be measured accurately without any disturbance.
In addition, a water sampling port is provided in the casing so that the sample water can freely enter and exit the casing and come into contact with the detection electrode, and since the sample water is not sucked into the casing due to the air lift effect, large debris may enter the water sampling port. There is little chance that measurement will become impossible due to entanglement.
第1図は本考案に係る溶存酸素計の全体構成
図、第2〜4図は夫々本考案に係る溶存酸素計の
本体部の半縦断正面図、第2図X−X線横断平面
図および斜視図、第5図は本考案に係る信号変換
器のブロツク図、第6図は本考案に係る洗浄誤差
補正回路の回路図、第7図は本考案に係る溶存酸
素計における真のDo値と洗浄時の検出電極の出
力との関係図。
1……検水源、2……本体部、3……検出電
極、6……電気開閉弁、8……空気源、12……
信号変換器、14……指示記録計、21……ジヨ
イント、22……保護管、23……採水口、24
……電極ホルダ、243……気泡発生孔、26…
…プリアンプ、27……洗浄誤差補正回路、2
8,29……オペアンプ、VR0,VR1……可変抵
抗、R1〜R3……抵抗。
Fig. 1 is an overall configuration diagram of a dissolved oxygen meter according to the present invention, Figs. 2 to 4 are a half-longitudinal front view of the main body of the dissolved oxygen meter according to the present invention, Fig. 2 is a cross-sectional plan view taken along line X-X, and A perspective view, FIG. 5 is a block diagram of the signal converter according to the present invention, FIG. 6 is a circuit diagram of the cleaning error correction circuit according to the present invention, and FIG. 7 is a true Do value in the dissolved oxygen meter according to the present invention. and the output of the detection electrode during cleaning. DESCRIPTION OF SYMBOLS 1... Water test source, 2... Main body, 3... Detection electrode, 6... Electric shut-off valve, 8... Air source, 12...
Signal converter, 14... Indication recorder, 21... Joint, 22... Protection tube, 23... Water sampling port, 24
...Electrode holder, 243...Bubble generation hole, 26...
...Preamplifier, 27...Cleaning error correction circuit, 2
8, 29...Operation amplifier, VR0 , VR1 ...Variable resistor, R1 to R3 ...Resistor.
Claims (1)
ーシング内の検出電極より下位に空気源と接続さ
れ検出電極近傍を浮力により無秩序に運動しなが
ら上昇する気泡群を常時発生する気泡発生孔を設
け、ケーシングには検水が出入する採水口を設
け、かつ検出電極の出力側に該出力の気泡洗浄に
よる誤差を補正するために、真の溶存酸素飽和度
をDoとしたとき、(100−△o/100)×Do+△o
を入力とし、(但し、△oは検水源で決まる定数)
Doに比例した出力を発生させる洗浄誤差補正回
路を設けたことを特徴とする溶存酸素計。 A detection electrode is provided in the casing, and a bubble generation hole is provided below the detection electrode in the casing to constantly generate a group of bubbles that are connected to an air source and move up while moving chaotically near the detection electrode due to buoyancy. In order to provide a water sampling port through which the sample water enters and exits, and to correct the error caused by air bubble washing on the output side of the detection electrode, when the true dissolved oxygen saturation is Do, (100−△o/100) ×Do+△o
(However, △o is a constant determined by the water source)
A dissolved oxygen meter characterized by being equipped with a cleaning error correction circuit that generates an output proportional to Do.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981012397U JPH0138523Y2 (en) | 1981-01-31 | 1981-01-31 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981012397U JPH0138523Y2 (en) | 1981-01-31 | 1981-01-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57126063U JPS57126063U (en) | 1982-08-06 |
JPH0138523Y2 true JPH0138523Y2 (en) | 1989-11-17 |
Family
ID=29810508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1981012397U Expired JPH0138523Y2 (en) | 1981-01-31 | 1981-01-31 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0138523Y2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5424876A (en) * | 1977-07-22 | 1979-02-24 | Pfizer | 44pyrone derivative as antagonist of prostglandins |
-
1981
- 1981-01-31 JP JP1981012397U patent/JPH0138523Y2/ja not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5424876A (en) * | 1977-07-22 | 1979-02-24 | Pfizer | 44pyrone derivative as antagonist of prostglandins |
Also Published As
Publication number | Publication date |
---|---|
JPS57126063U (en) | 1982-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN207730303U (en) | Anti- liquid fluctuating interference liquid level detection gauge and detection device | |
JP2002168674A (en) | Submerged water level meter | |
US4125019A (en) | Probe type electromagnetic flow meter with debris shedding capability | |
JPH0138523Y2 (en) | ||
CN110824125A (en) | Water quality testing device with self-purification function | |
US4415858A (en) | pH Meter probe assembly | |
JPH0212607Y2 (en) | ||
US4138638A (en) | Apparatus for examining liquid quality | |
US4383908A (en) | Probe system for determining acidity of fluid flowing through pressurized pipe line | |
Skrentner | Instrumentation handbook for water and wastewater Treatment plants | |
JPH0416746A (en) | Bubble-cleaning device | |
JPS5920662Y2 (en) | Water quality measuring device | |
JPS585968Y2 (en) | Cleaning device for detection terminals for water quality measurement | |
JPH0350446Y2 (en) | ||
CN214667024U (en) | Accurate corrosion-resistant precession vortex flowmeter | |
US4202749A (en) | Probe system for determining acidity of fluid flowing through pressurized pipe line | |
KR200323192Y1 (en) | Automatic creaner for flow meter sensor | |
JPH0710288Y2 (en) | Water quality measurement electrode | |
JPS59618Y2 (en) | Electrode automatic cleaning device | |
CN221124538U (en) | Floating type water quality detector mounting bracket | |
JPS5690251A (en) | Dissolved oxygen meter | |
JPS5817252Y2 (en) | dissolved oxygen meter | |
KR200250440Y1 (en) | Water gauge meter for drain pipe | |
JPS5933224B2 (en) | Diaphragm electrode cleaning device | |
JPS5815873Y2 (en) | Flow velocity flow measuring device |