【0001】
【産業上の利用分野】
本発明は、各種OA機器、各種光学機器および各種測定機器等において、振動および推力変動を嫌う各種移動部の駆動の用に供され、脈動の無い推力の発生、全ストロークに対する推力変動の減少、大推力化およびロング・ストローク化を可能とする偏平コイル形リニア直流モータに関するものである。
【0002】
【従来の技術】
一般に、リニア直流モータは脈動を伴わない推力を発生し得る唯一のリニア・モータであり、各種位置検出装置等を装着してサーボ制御することにより推力および速度の広範囲の制御と、停止位置の高精度の制御とを可能とし、振動および推力変動を嫌う負荷と、広範囲の速度での運転を必要とする負荷とに対応し得る唯一のリニア・アクチュエータであり、偏平コイル形リニア直流モータは、固定子の薄型化および可動子の軽量化を可能とする優れた応答性を有するリニア直流モータである。
【0003】
従来の偏平コイル形リニア直流モータの構造および動作を、図1および図2に示す断面図と、図3および図4に示す推力特性図とにより説明する。
【0004】
図1および図2に示す従来の偏平コイル形リニア直流モータは、所定の距離を隔て相対する第1の構成部材8と第2の構成部材9とを備え、それぞれの相対面が構成する空間21内に方向の異なる二つの磁界を形成し、空間21を介して一つの閉磁路を形成する固定子1と、第1の偏平コイル12を備え、空間21内を自由に移動し得る構造に配置される可動子11とにより構成される。
【0005】
第1の構成部材8は、平板状をなす第1のヨーク2と、第1のヨーク2の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲にN極の極性を有する磁極面が固着される第1の永久磁石4と、第1のヨーク2の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲にS極の極性を有する磁極面が固着される第2の永久磁石5とにより構成される。
【0006】
第2の構成部材9は、平板状をなす第2のヨーク3により構成される。
【0007】
尚、図1に示す従来の偏平コイル形リニア直流モータにおいて、第1の永久磁石4と第2の永久磁石5とは、隣接して第1のヨーク2に配置され、図2に示す従来の偏平コイル形リニア直流モータにおいて、第1の永久磁石4と第2の永久磁石5とは、それぞれが影響を及ぼさない所定の距離を隔て第1のヨーク2に配置される。
【0008】
固定子1は、第1の永久磁石4のN極の極性を有する磁極面から、第1のヨーク2の内部を通り、第2の永久磁石5のS極の極性を有する磁極面に至り、第2の永久磁石5のN極の極性を有する磁極面から、空間21を介して第2のヨーク3の第2の永久磁石5への相対面に至り、第2のヨーク3の内部を通り、第2のヨーク3の第1の永久磁石4への相対面から、空間21を介して第1の永久磁石4のS極の極性を有する磁極面に至る閉磁路31を形成する。
【0009】
可動子11は、四つのコイル辺を備えた第1の偏平コイル12を主に構成され、第1の永久磁石4の第2のヨーク3への相対面が構成する空間21の範囲に第1のコイル辺13が位置し、第2の永久磁石5の第2のヨーク3への相対面が構成する空間21の範囲に第2のコイル辺14が位置し、空間21内を矢印A方向および矢印B方向に自由に移動し得る構造に配置され、第1の偏平コイル12に図示の方向に所定の電流を流すことにより所定の推力をもって矢印B方向に移動し、第1の偏平コイル12に図示と異なる方向に所定の電流を流すことにより所定の推力をもって矢印A方向に移動する。
【0010】
可動子11の移動範囲、即ち、偏平コイル形リニア直流モータのストロークは、第1のコイル辺13の矢印A方向の端部が第1の永久磁石4の矢印A方向の端部に相対する位置から第1のコイル辺13の矢印B方向の端部が第1の永久磁石4の矢印B方向の端部に相対する位置まで移動する距離、あるいは第2のコイル辺14の矢印A方向の端部が第2の永久磁石5の矢印A方向の端部に相対する位置から第2のコイル辺14の矢印B方向の端部が第2の永久磁石5の矢印B方向の端部に相対する位置まで移動する距離である。
【0011】
図3は図1に示す従来の偏平コイル形リニア直流モータの推力特性図であり、図4は図2に示す従来の偏平コイル形リニア直流モータの推力特性図である。
【0012】
図3および図4は、ストロークx[mm]を6[mm]に設定し、可動子11を構成する第1の偏平コイル12に、図1あるいは図2に示す方向に所定の電流を流し、可動子11が矢印A方向の端部から矢印B方向の端部まで移動する際、あるいは第1の偏平コイル12に、図示と異なる方向に所定の電流を流し、可動子11が矢印B方向の端部から矢印A方向の端部まで移動する際の推力特性図である。
【0013】
曲線Aおよび直線Aは第1の偏平コイル12にI[A]の電流を流した際の推力特性であり、曲線Bは第1の偏平コイル12に3×I[A]の電流を流した際の推力特性であり、曲線Cは第1の偏平コイル12に5×I[A]の電流を流した際の推力特性である。
【0014】
図3に示す推力特性図において、曲線Aは0.8×Fa[N]からFa[N]まで増加し、Fa[N]から0.8×Fa[N]まで減少する推力が可動子11に作用する状態を示し、曲線Bは2.5×Fa[N]から3×Fa[N]まで増加し、3×Fa[N]から2×Fa[N]まで減少する推力が可動子11に作用する状態を示し、曲線Cは4×Fa[N]から5×Fa[N]まで増加し、5×Fa[N]から3×Fa[N]まで減少する推力が可動子11に作用する状態を示す。
【0015】
図4に示す推力特性図において、直線AはFa[N]の推力が可動子11の位置にかかわらず可動子11に作用する状態を示し、曲線Bは3×Fa[N]から2.5×Fa[N]まで減少する推力が可動子11に作用する状態を示し、曲線Cは4.5×Fa[N]から3.5×Fa[N]まで減少する推力が可動子11に作用する状態を示す。
【0016】
図1に示す従来の偏平コイル形リニア直流モータは、小型化、軽量化および低価格化を目的としたものであり、通常、図3の曲線Bで示される推力特性の状態で使用され、全ストロークに対し両端部の推力が小さく成る問題点を有し、図2に示す従来の偏平コイル形リニア直流モータは、ロング・ストローク化を目的としたものであり、通常、図4の曲線Bで示される推力特性の状態で使用され、可動子11の大型化、応答性の劣化および可動子11の移動に伴い推力が減少する問題点を有するものである。
【0017】
一般に、偏平コイル形リニア直流モータの推力は、可動子を構成する偏平コイルに鎖交する固定子が形成する閉磁路を流れる磁束あるいは偏平コイルが位置する範囲の磁界と、偏平コイルの巻数と、偏平コイルに流れる電流とに比例して増加する。
【0018】
図1あるいは図2に示す従来の偏平コイル形リニア直流モータの大推力化は、第1の偏平コイル12を構成する第1のコイル辺13および第2のコイル辺14に鎖交する磁束の増加と、第1の偏平コイル12の巻数の増加と、第1の偏平コイル12に流れる電流の増加とにより可能に成る。しかし、第1の偏平コイル12に鎖交する磁束の増加は、固定子1の大型化、大重量化および高価格化等の問題点を有し、第1の偏平コイル12の巻数の増加は、可動子11の大型化、大重量化、応答性の劣化およびストロークの減少等の問題点を有するため、第1の偏平コイル12に流れる電流の増加により対処されている。
【0019】
図1あるいは図2に示す従来の偏平コイル形リニア直流モータの可動子11を構成する第1の偏平コイル12に流れる電流の増加は、第1のコイル辺13および第2のコイル辺14の周囲に発生する磁界の傾斜を大きくし、第1の永久磁石4および第2の永久磁石5が空間21内に形成する磁界の分布に傾斜を与え、図3あるいは図4に示す推力特性の曲線Bあるいは曲線Cに示すように、推力が可動子11の移動に伴い大きく変動する。
【0020】
図1あるいは図2に示す従来の偏平コイル形リニア直流モータは、小型化、軽量化、薄型化、低価格化および可動子の軽量化に伴う応答性の向上を可能とする反面、ロング・ストローク化、大電流化による推力の増加および推力変動の減少を困難とする問題点を有するものである。
【0021】
【発明が解決しようとする課題】
解決しようとする問題点は、従来の偏平コイル形リニア直流モータの大推力化と全ストロークに対する推力変動の減少とを共に実現することが困難である点である。
【0022】
【課題を解決するための手段】
従来の偏平コイル形リニア直流モータの空間21の中央部から一方の端部までの範囲を構成する固定子1の構成部材と、空間21の中央部から他方の端部までの範囲を構成する固定子1の構成部材とに、それぞれ一組の巻線あるいは偏平コイルを装着することを最も主要な特徴とし、可動子11を構成する第1の偏平コイル12の大電流化による大推力化および全ストロークに対する推力変動を減少させるという目的を極めて簡単に実現した。
【0023】
【実施例】
次に、図5ないし図21に示す断面図と、図22および図23に示す磁界分布図と、図24および図25に示す推力特性図とに基づいて、本発明の偏平コイル形リニア直流モータの構造および動作を説明する。
【0024】
図5ないし図10に示す本発明の偏平コイル形リニア直流モータの実施例において固定子1は、第1の構成部材8と、第1の構成部材8に所定の距離を隔て相対する第2の構成部材9と、第1の構成部材8と第2の構成部材9との、それぞれの相対面が構成する空間21の中央部から矢印A方向の端部までの範囲を構成する第1の構成部材8の周囲に、列設して巻装される第1の巻線41および第2の巻線42より成る一組の巻線と、空間21の中央部から矢印B方向の端部までの範囲を構成する第1の構成部材8の周囲に、列設して巻装される第3の巻線43および第4の巻線44より成る一組の巻線と、空間21の中央部から矢印A方向の端部までの範囲を構成する第2の構成部材9の周囲に、列設して巻装される第5の巻線45および第6の巻線46より成る一組の巻線と、空間21の中央部から矢印B方向の端部までの範囲を構成する第2の構成部材9の周囲に、列設して巻装される第7の巻線47および第8の巻線48より成る一組の巻線とにより構成される。尚、固定子1は空間21を介して一つの閉磁路を形成し、空間21内には方向の異なる二つの磁界が形成される。
【0025】
図5ないし図10に示す本発明の偏平コイル形リニア直流モータの実施例において可動子11は、四つのコイル辺を備えた第1の偏平コイル12により構成され、固定子1が構成する空間21の中央部から矢印A方向の端部までの範囲に第1のコイル辺13が位置し、空間21の中央部から矢印B方向の端部までの範囲に第2のコイル辺14が位置し、空間21内を自由に移動し得る構造に配置される。
【0026】
可動子11は、第1の偏平コイル12と、第1の巻線41、第2の巻線42、第3の巻線43、第4の巻線44、第5の巻線45、第6の巻線46、第7の巻線47および第8の巻線48とに、図示の方向に所定の電流を流すことにより所定の推力をもって矢印B方向に移動し、図示と異なる方向に所定の電流を流すことにより所定の推力をもって矢印A方向に移動する。
【0027】
図5は、本発明の第1の実施例の構造説明を目的とした断面図である。
【0028】
第1の構成部材8は、平板状をなす第1のヨーク2と、第1のヨーク2の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲にN極の極性を有する磁極面が固着される平板状をなす第1の永久磁石4と、第1のヨーク2の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲にS極の極性を有する磁極面が固着される平板状をなす第2の永久磁石5とにより構成され、第1の永久磁石4と第2の永久磁石5とは、隣接して第1のヨーク2に配置される。
【0029】
第2の構成部材9は、平板状をなす第2のヨーク3により構成される。
【0030】
第1の巻線41は、第1の永久磁石4の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲に巻装され、第2の巻線42は、第1の永久磁石4の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲に巻装される。第3の巻線43は、第2の永久磁石5の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲に巻装され、第4の巻線44は、第2の永久磁石5の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲に巻装される。
【0031】
第5の巻線45は、第2のヨーク3の第1の構成部材8への相対面の第1の巻線41に相対する位置に巻装され、第6の巻線46は、第2のヨーク3の第1の構成部材8への相対面の第2の巻線42に相対する位置に巻装される。第7の巻線47は、第2のヨーク3の第1の構成部材8への相対面の第3の巻線43に相対する位置に巻装され、第8の巻線48は、第2のヨーク3の第1の構成部材8への相対面の第4の巻線44に相対する位置に巻装される。
【0032】
固定子1は、第1の永久磁石4のN極の極性を有する磁極面から、第1のヨーク2の内部を通り、第2の永久磁石5のS極の極性を有する磁極面に至り、第2の永久磁石5のN極の極性を有する磁極面から、第3の巻線43および第4の巻線44を鎖交し、空間21を介して第7の巻線47および第8の巻線48を鎖交し、第2のヨーク3の第2の永久磁石5への相対面に至り、第2のヨーク3の内部を通り、第2のヨーク3の第1の永久磁石4への相対面から、第5の巻線45および第6の巻線46を鎖交し、空間21を介して第1の巻線41および第2の巻線42を鎖交し、第1の永久磁石4のS極の極性を有する磁極面に至る閉磁路31を形成する。
【0033】
図6は、本発明の第2の実施例の構造説明を目的とした断面図である。
【0034】
第1の構成部材8は、平板状をなす第1のヨーク2と、第1のヨーク2の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲にN極の極性を有する磁極面が固着される平板状をなす第1の永久磁石4と、第1のヨーク2の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲にS極の極性を有する磁極面が固着される平板状をなす第2の永久磁石5とにより構成され、第1の永久磁石4と第2の永久磁石5とは、隣接して第1のヨーク2に配置される。
【0035】
第2の構成部材9は、平板状をなす第2のヨーク3と、第2のヨーク3の第1の構成部材8への相対面の中央部から矢印A方向の端部までの範囲にS極の極性を有する磁極面が固着される平板状をなす第3の永久磁石6と、第2のヨーク3の第1の構成部材8への相対面の中央部から矢印B方向の端部までの範囲にN極の極性を有する磁極面が固着される平板状をなす第4の永久磁石7とにより構成され、第3の永久磁石6と第4の永久磁石7とは、隣接して第2のヨーク3に配置される。
【0036】
第1の巻線41は、第1の永久磁石4の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲に巻装され、第2の巻線42は、第1の永久磁石4の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲に巻装される。第3の巻線43は、第2の永久磁石5の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲に巻装され、第4の巻線44は、第2の永久磁石5の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲に巻装される。
【0037】
第5の巻線45は、第3の永久磁石6の第1の構成部材8への相対面の中央部から矢印A方向の端部までの範囲に巻装され、第6の巻線46は、第3の永久磁石6の第1の構成部材8への相対面の中央部から矢印B方向の端部までの範囲に巻装される。第7の巻線47は、第4の永久磁石7の第1の構成部材8への相対面の中央部から矢印A方向の端部までの範囲に巻装され、第8の巻線48は、第4の永久磁石7の第1の構成部材8への相対面の中央部から矢印B方向の端部までの範囲に巻装される。
【0038】
固定子1は、第1の永久磁石4のN極の極性を有する磁極面から、第1のヨーク2の内部を通り、第2の永久磁石5のS極の極性を有する磁極面に至り、第2の永久磁石5のN極の極性を有する磁極面から、第3の巻線43および第4の巻線44を鎖交し、空間21を介して第7の巻線47および第8の巻線48を鎖交し、第4の永久磁石7のS極の極性を有する磁極面に至り、第4の永久磁石7のN極の極性を有する磁極面から、第2のヨーク3の内部を通り、第3の永久磁石6のS極の極性を有する磁極面に至り、第3の永久磁石6のN極の極性を有する磁極面から、第5の巻線45および第6の巻線46を鎖交し、空間21を介して第1の巻線41および第2の巻線42を鎖交し、第1の永久磁石4のS極の極性を有する磁極面に至る閉磁路31を形成する。
【0039】
図7は、本発明の第3の実施例の構造説明を目的とした断面図である。
【0040】
第1の構成部材8は、平板状をなす第1のヨーク2と、第1のヨーク2の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲にS極の極性を有する磁極面が固着される平板状をなす第1の永久磁石4とにより構成される。
【0041】
第2の構成部材9は、平板状をなす第2のヨーク3と、第2のヨーク3の第1の構成部材8への相対面の中央部から矢印B方向の端部までの範囲にS極の極性を有する磁極面が固着される平板状をなす第4の永久磁石7とにより構成される。
【0042】
第1の巻線41は、第1の永久磁石4の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲に巻装され、第2の巻線42は、第1の永久磁石4の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲に巻装される。第7の巻線47は、第4の永久磁石7の第1の構成部材8への相対面の中央部から矢印A方向の端部までの範囲に巻装され、第8の巻線48は、第4の永久磁石7の第1の構成部材8への相対面の中央部から矢印B方向の端部までの範囲に巻装される。
【0043】
第3の巻線43は、第1のヨーク2の第2の構成部材9への相対面の第7の巻線47に相対する位置に巻装され、第4の巻線44は、第1のヨーク2の第2の構成部材9への相対面の第8の巻線48に相対する位置に巻装される。第5の巻線45は、第2のヨーク3の第1の構成部材8への相対面の第1の巻線41に相対する位置に巻装され、第6の巻線46は、第2のヨーク3の第1の構成部材8への相対面の第2の巻線42に相対する位置に巻装される。
【0044】
固定子1は、第1の永久磁石4のN極の極性を有する磁極面から、第1の巻線41および第2の巻線42を鎖交し、空間21を介して第5の巻線45および第6の巻線46を鎖交し、第2のヨーク3の第1の永久磁石4への相対面に至り、第2のヨーク3の内部を通り、第4の永久磁石7のS極の極性を有する磁極面に至り、第4の永久磁石7のN極の極性を有する磁極面から、第7の巻線47および第8の巻線48を鎖交し、空間21を介して第3の巻線43および第4の巻線44を鎖交し、第1のヨーク2の第4の永久磁石7への相対面に至り、第1のヨーク2の内部を通り、第1の永久磁石4のS極の極性を有する磁極面に至る閉磁路31を形成する。
【0045】
図8は、本発明の第4の実施例の構造説明を目的とした断面図である。
【0046】
第1の構成部材8は、平板状をなす第1のヨーク2と、第1のヨーク2の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲にS極の極性を有する磁極面が固着される平板状をなす第1の永久磁石4と、第1のヨーク2の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲にN極の極性を有する磁極面が固着される平板状をなす第2の永久磁石5とにより構成され、第1の永久磁石4と第2の永久磁石5とは、それぞれが影響を及ぼさない所定の距離を隔て第1のヨーク2に配置される。
【0047】
第2の構成部材9は、平板状をなす第2のヨーク3により構成される。
【0048】
第1の巻線41は、第1の永久磁石4の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲に巻装され、第2の巻線42は、第1の永久磁石4の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲に巻装される。第3の巻線43は、第2の永久磁石5の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲に巻装され、第4の巻線44は、第2の永久磁石5の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲に巻装される。
【0049】
第5の巻線45は、第2のヨーク3の第1の構成部材8への相対面の第1の巻線41に相対する位置に巻装され、第6の巻線46は、第2のヨーク3の第1の構成部材8への相対面の第2の巻線42に相対する位置に巻装される。第7の巻線47は、第2のヨーク3の第1の構成部材8への相対面の第3の巻線43に相対する位置に巻装され、第8の巻線48は、第2のヨーク3の第1の構成部材8への相対面の第4の巻線44に相対する位置に巻装される。
【0050】
固定子1は、第1の永久磁石4のN極の極性を有する磁極面から、第1の巻線41および第2の巻線42を鎖交し、空間21を介して第5の巻線45および第6の巻線46を鎖交し、第2のヨーク3の第1の永久磁石4への相対面に至り、第2のヨーク3の内部を通り、第2のヨーク3の第2の永久磁石5への相対面から、第7の巻線47および第8の巻線48を鎖交し、空間21を介して第3の巻線43および第4の巻線44を鎖交し、第2の永久磁石5のS極の極性を有する磁極面に至り、第2の永久磁石5のN極の極性を有する磁極面から、第1のヨーク2の内部を通り、第1の永久磁石4のS極の極性を有する磁極面に至る閉磁路31を形成する。
【0051】
図9は、本発明の第5の実施例の構造説明を目的とした断面図である。
【0052】
第1の構成部材8は、平板状をなす第1のヨーク2と、第1のヨーク2の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲にS極の極性を有する磁極面が固着される平板状をなす第1の永久磁石4と、第1のヨーク2の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲にN極の極性を有する磁極面が固着される平板状をなす第2の永久磁石5とにより構成され、第1の永久磁石4と第2の永久磁石5とは、それぞれが影響を及ぼさない所定の距離を隔て第1のヨーク2に配置される。
【0053】
第2の構成部材9は、平板状をなす第2のヨーク3と、第2のヨーク3の第1の構成部材8への相対面の中央部から矢印A方向の端部までの範囲にN極の極性を有する磁極面が固着される平板状をなす第3の永久磁石6と、第2のヨーク3の第1の構成部材8への相対面の中央部から矢印B方向の端部までの範囲にS極の極性を有する磁極面が固着される平板状をなす第4の永久磁石7とにより構成され、第3の永久磁石6と第4の永久磁石7とは、それぞれが影響を及ぼさない所定の距離を隔て第2のヨーク3に配置される。
【0054】
第1の巻線41は、第1の永久磁石4の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲に巻装され、第2の巻線42は、第1の永久磁石4の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲に巻装される。第3の巻線43は、第2の永久磁石5の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲に巻装され、第4の巻線44は、第2の永久磁石5の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲に巻装される。
【0055】
第5の巻線45は、第3の永久磁石6の第1の構成部材8への相対面の中央部から矢印A方向の端部までの範囲に巻装され、第6の巻線46は、第3の永久磁石6の第1の構成部材8への相対面の中央部から矢印B方向の端部までの範囲に巻装される。第7の巻線47は、第4の永久磁石7の第1の構成部材8への相対面の中央部から矢印A方向の端部までの範囲に巻装され、第8の巻線48は、第4の永久磁石7の第1の構成部材8への相対面の中央部から矢印B方向の端部までの範囲に巻装される。
【0056】
固定子1は、第1の永久磁石4のN極の極性を有する磁極面から、第1の巻線41および第2の巻線42を鎖交し、空間21を介して第5の巻線45および第6の巻線46を鎖交し、第3の永久磁石6のS極の極性を有する磁極面に至り、第3の永久磁石6のN極の極性を有する磁極面から、第2のヨーク3の内部を通り、第4の永久磁石7のS極の極性を有する磁極面に至り、第4の永久磁石7のN極の極性を有する磁極面から、第7の巻線47および第8の巻線48を鎖交し、空間21を介して第3の巻線43および第4の巻線44を鎖交し、第2の永久磁石5のS極の極性を有する磁極面に至り、第2の永久磁石5のN極の極性を有する磁極面から、第1のヨーク2の内部を通り、第1の永久磁石4のS極の極性を有する磁極面に至る閉磁路31を形成する。
【0057】
図10は、本発明の第6の実施例の構造説明を目的とした断面図である。
【0058】
第1の構成部材8は、平板状をなす第1のヨーク2と、第1のヨーク2の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲にS極の極性を有する磁極面が固着される平板状をなす第2の永久磁石5とにより構成される。
【0059】
第2の構成部材9は、平板状をなす第2のヨーク3と、第2のヨーク3の第1の構成部材8への相対面の中央部から矢印A方向の端部までの範囲にS極の極性を有する磁極面が固着される平板状をなす第3の永久磁石6とにより構成される。
【0060】
第2の永久磁石5は、第1のヨーク2の中央部から矢印B方向に、第3の永久磁石6は、第2のヨーク3の中央部から矢印A方向に、それぞれが影響を及ぼさない所定の距離を隔て配置される。
【0061】
第3の巻線43は、第2の永久磁石5の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲に巻装され、第4の巻線44は、第2の永久磁石5の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲に巻装される。第5の巻線45は、第3の永久磁石6の第1の構成部材8への相対面の中央部から矢印A方向の端部までの範囲に巻装され、第6の巻線46は、第3の永久磁石6の第1の構成部材8への相対面の中央部から矢印B方向の端部までの範囲に巻装される。
【0062】
第1の巻線41は、第1のヨーク2の第2の構成部材9への相対面の第5の巻線45に相対する位置に巻装され、第2の巻線42は、第1のヨーク2の第2の構成部材9への相対面の第6の巻線46に相対する位置に巻装される。第7の巻線47は、第2のヨーク3の第1の構成部材8への相対面の第3の巻線43に相対する位置に巻装され、第8の巻線48は、第2のヨーク3の第1の構成部材8への相対面の第4の巻線44に相対する位置に巻装される。
【0063】
固定子1は、第2の永久磁石5のN極の極性を有する磁極面から、第3の巻線43および第4の巻線44を鎖交し、空間21を介して第7の巻線47および第8の巻線48を鎖交し、第2のヨーク3の第2の永久磁石5への相対面に至り、第2のヨーク3の内部を通り、第3の永久磁石6のS極の極性を有する磁極面に至り、第3の永久磁石6のN極の極性を有する磁極面から、第5の巻線45および第6の巻線46を鎖交し、空間21を介して第1の巻線41および第2の巻線42を鎖交し、第1のヨーク2の第3の永久磁石6への相対面に至り、第1のヨーク2の内部を通り、第2の永久磁石5のS極の極性を有する磁極面に至る閉磁路31を形成する。
【0064】
図11ないし図13に示す本発明の偏平コイル形リニア直流モータの実施例において固定子1は、第1の構成部材8と、第1の構成部材8に所定の距離を隔て相対する第2の構成部材9と、第1の構成部材8の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲に固着される第2の偏平コイル52と、第1の構成部材8の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲に固着される第3の偏平コイル53と、第2の構成部材9の第1の構成部材8への相対面の中央部から矢印A方向の端部までの範囲に固着される第4の偏平コイル54と、第2の構成部材9の第1の構成部材8への相対面の中央部から矢印B方向の端部までの範囲に固着される第5の偏平コイル55とにより構成される。尚、第1の構成部材8と第2の構成部材9との、それぞれの相対面は空間21を構成し、固定子1は空間21を介して一つの閉磁路を形成し、空間21内には方向の異なる二つの磁界が形成される。
【0065】
図11ないし図13に示す本発明の偏平コイル形リニア直流モータの実施例において可動子11は、四つのコイル辺を備えた第1の偏平コイル12により構成され、固定子1が構成する空間21の中央部から矢印A方向の端部までの範囲に第1のコイル辺13が位置し、空間21の中央部から矢印B方向の端部までの範囲に第2のコイル辺14が位置し、空間21内を自由に移動し得る構造に配置される。
【0066】
可動子11は、第1の偏平コイル12と、第2の偏平コイル52、第3の偏平コイル53、第4の偏平コイル54および第5の偏平コイル55とに、図示の方向に所定の電流を流すことにより所定の推力をもって矢印B方向に移動し、図示と異なる方向に所定の電流を流すことにより所定の推力をもって矢印A方向に移動する。
【0067】
図11は、本発明の第7の実施例の構造説明を目的とした断面図である。
【0068】
第1の構成部材8は、平板状をなす第1のヨーク2と、第1のヨーク2の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲にS極の極性を有する磁極面が固着される平板状をなす第1の永久磁石4と、第1のヨーク2の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲にN極の極性を有する磁極面が固着される平板状をなす第2の永久磁石5とにより構成され、第1の永久磁石4と第2の永久磁石5とは、隣接して第1のヨーク2に配置される。
【0069】
第2の構成部材9は、平板状をなす第2のヨーク3により構成される。
【0070】
第2の偏平コイル52および第3の偏平コイル53は、それぞれ四つのコイル辺を備え、第2の偏平コイル52は、第1の永久磁石4の第2の構成部材9への相対面の、中央部から矢印A方向の端部までの範囲に一つのコイル辺が位置し、中央部から矢印B方向の端部までの範囲に他の一つのコイル辺が位置するように、第1の永久磁石4の第2の構成部材9への相対面に固着され、第3の偏平コイル53は、第2の永久磁石5の第2の構成部材9への相対面の、中央部から矢印A方向の端部までの範囲に一つのコイル辺が位置し、中央部から矢印B方向の端部までの範囲に他の一つのコイル辺が位置するように、第2の永久磁石5の第2の構成部材9への相対面に固着される。
【0071】
第4の偏平コイル54および第5の偏平コイル55は、それぞれ四つのコイル辺を備え、第4の偏平コイル54は、第2のヨーク3の第1の構成部材8への相対面の第2の偏平コイル52に相対する位置に固着され、第5の偏平コイル55は、第2のヨーク3の第1の構成部材8への相対面の第3の偏平コイル53に相対する位置に固着される。
【0072】
固定子1は、第1の永久磁石4のN極の極性を有する磁極面から、第2の偏平コイル52を鎖交し、空間21を介して第4の偏平コイル54を鎖交し、第2のヨーク3の第1の永久磁石4への相対面に至り、第2のヨーク3の内部を通り、第2のヨーク3の第2の永久磁石5への相対面から、第5の偏平コイル55を鎖交し、空間21を介して第3の偏平コイル53を鎖交し、第2の永久磁石5のS極の極性を有する磁極面に至り、第2の永久磁石5のN極の極性を有する磁極面から、第1のヨークの内部を通り、第1の永久磁石4のS極の極性を有する磁極面に至る閉磁路31を形成する。
【0073】
図12は、本発明の第8の実施例の構造説明を目的とした断面図である。
【0074】
第1の構成部材8は、平板状をなす第1のヨーク2と、第1のヨーク2の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲にS極の極性を有する磁極面が固着される平板状をなす第1の永久磁石4と、第1のヨーク2の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲にN極の極性を有する磁極面が固着される平板状をなす第2の永久磁石5とにより構成され、第1の永久磁石4と第2の永久磁石5とは、隣接して第1のヨーク2に配置される。
【0075】
第2の構成部材9は、平板状をなす第2のヨーク3と、第2のヨーク3の第1の構成部材8への相対面の中央部から矢印A方向の端部までの範囲にN極の極性を有する磁極面が固着される平板状をなす第3の永久磁石6と、第2のヨーク3の第1の構成部材8への相対面の中央部から矢印B方向の端部までの範囲にS極の極性を有する磁極面が固着される平板状をなす第4の永久磁石7とにより構成され、第3の永久磁石6と第4の永久磁石7とは、隣接して第2のヨーク3に配置される。
【0076】
第2の偏平コイル52および第3の偏平コイル53は、それぞれ四つのコイル辺を備え、第2の偏平コイル52は、第1の永久磁石4の第2の構成部材9への相対面の、中央部から矢印A方向の端部までの範囲に一つのコイル辺が位置し、中央部から矢印B方向の端部までの範囲に他の一つのコイル辺が位置するように、第1の永久磁石4の第2の構成部材9への相対面に固着され、第3の偏平コイル53は、第2の永久磁石5の第2の構成部材9への相対面の、中央部から矢印A方向の端部までの範囲に一つのコイル辺が位置し、中央部から矢印B方向の端部までの範囲に他の一つのコイル辺が位置するように、第2の永久磁石5の第2の構成部材9への相対面に固着される。
【0077】
第4の偏平コイル54および第5の偏平コイル55は、それぞれ四つのコイル辺を備え、第4の偏平コイル54は、第3の永久磁石6の第1の構成部材8への相対面の、中央部から矢印A方向の端部までの範囲に一つのコイル辺が位置し、中央部から矢印B方向の端部までの範囲に他の一つのコイル辺が位置するように、第3の永久磁石6の第1の構成部材8への相対面に固着され、第5の偏平コイル55は、第4の永久磁石7の第1の構成部材8への相対面の、中央部から矢印A方向の端部までの範囲に一つのコイル辺が位置し、中央部から矢印B方向の端部までの範囲に他の一つのコイル辺が位置するように、第4の永久磁石7の第1の構成部材8への相対面に固着される。
【0078】
固定子1は、第1の永久磁石4のN極の極性を有する磁極面から、第2の偏平コイル52を鎖交し、空間21を介して第4の偏平コイル54を鎖交し、第3の永久磁石6のS極の極性を有する磁極面に至り、第3の永久磁石6のN極の極性を有する磁極面から、第2のヨーク3の内部を通り、第4の永久磁石7のS極の極性を有する磁極面に至り、第4の永久磁石7のN極の極性を有する磁極面から、第5の偏平コイル55を鎖交し、空間21を介して第3の偏平コイル53を鎖交し、第2の永久磁石5のS極の極性を有する磁極面に至り、第2の永久磁石5のN極の極性を有する磁極面から、第1のヨーク2の内部を通り、第1の永久磁石4のS極の極性を有する磁極面に至る閉磁路31を形成する。
【0079】
図13は、本発明の第9の実施例の構造説明を目的とした断面図である。
【0080】
第1の構成部材8は、平板状をなす第1のヨーク2と、第1のヨーク2の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲にN極の極性を有する磁極面が固着される平板状をなす第1の永久磁石4とにより構成される。
【0081】
第2の構成部材9は、平板状をなす第2のヨーク3と、第2のヨーク3の第1の構成部材8への相対面の中央部から矢印B方向の端部までの範囲にN極の極性を有する磁極面が固着される平板状をなす第4の永久磁石7とにより構成される。
【0082】
第2の偏平コイル52および第5の偏平コイル55は、それぞれ四つのコイル辺を備え、第2の偏平コイル52は、第1の永久磁石4の第2の構成部材9への相対面の、中央部から矢印A方向の端部までの範囲に一つのコイル辺が位置し、中央部から矢印B方向の端部までの範囲に他の一つのコイル辺が位置するように、第1の永久磁石4の第2の構成部材9への相対面に固着され、第5の偏平コイル55は、第4の永久磁石7の第1の構成部材8への相対面の、中央部から矢印A方向の端部までの範囲に一つのコイル辺が位置し、中央部から矢印B方向の端部までの範囲に他の一つのコイル辺が位置するように、第4の永久磁石7の第1の構成部材8への相対面に固着される。
【0083】
第3の偏平コイル53および第4の偏平コイル54は、それぞれ四つのコイル辺を備え、第3の偏平コイル53は、第1のヨーク2の第2の構成部材9への相対面の第5の偏平コイル55に相対する位置に固着され、第4の偏平コイル54は、第2のヨーク3の第1の構成部材8への相対面の第2の偏平コイル52に相対する位置に固着される。
【0084】
固定子1は、第1の永久磁石4のN極の極性を有する磁極面から、第1のヨーク2の内部を通り、第1のヨーク2の第4の永久磁石7への相対面から、第3の偏平コイル53を鎖交し、空間21を介して第5の偏平コイル55を鎖交し、第4の永久磁石7のS極の極性を有す磁極面に至り、第4の永久磁石7のN極の極性を有す磁極面から、第2のヨーク3の内部を通り、第2のヨーク3の第1の永久磁石4への相対面から、第4の偏平コイル54を鎖交し、空間21を介して第2の偏平コイル52を鎖交し、第1の永久磁石4のS極の極性を有する磁極面に至る閉磁路31を形成する。
【0085】
図14ないし図16に示す本発明の偏平コイル形リニア直流モータの実施例において固定子1は、第1の構成部材8と、第1の構成部材8に所定の距離を隔て相対する第2の構成部材9と、第1の構成部材8と第2の構成部材9との、それぞれの相対面が構成する空間21の中央部から矢印A方向の端部までの範囲を構成する第1の構成部材8の周囲に、列設して巻装される第1の巻線41および第2の巻線42より成る一組の巻線、空間21の中央部から矢印B方向の端部までの範囲を構成する第1の構成部材8の周囲に、列設して巻装される第3の巻線43および第4の巻線44より成る一組の巻線、空間21の中央部から矢印A方向の端部までの範囲を構成する第2の構成部材9の周囲に、列設して巻装される第5の巻線45および第6の巻線46より成る一組の巻線、あるいは空間21の中央部から矢印B方向の端部までの範囲を構成する第2の構成部材9の周囲に、列設して巻装される第7の巻線47および第8の巻線48より成る一組の巻線の、どちらか二つとにより構成される。尚、固定子1は空間21を介して一つの閉磁路を形成し、空間21内には方向の異なる二つの磁界が形成される。
【0086】
図14ないし図16に示す本発明の偏平コイル形リニア直流モータの実施例において可動子11は、四つのコイル辺を備えた第1の偏平コイル12により構成され、固定子1が構成する空間21の中央部から矢印A方向の端部までの範囲に第1のコイル辺13が位置し、空間21の中央部から矢印B方向の端部までの範囲に第2のコイル辺14が位置し、空間21内を自由に移動し得る構造に配置される。
【0087】
可動子11は、第1の偏平コイル12と、第1の巻線41、第2の巻線42、第3の巻線43、第4の巻線44、第5の巻線45、第6の巻線46、第7の巻線47あるいは第8の巻線48とに、図示の方向に所定の電流を流すことにより所定の推力をもって矢印B方向に移動し、図示と異なる方向に所定の電流を流すことにより所定の推力をもって矢印A方向に移動する。
【0088】
図14は、本発明の第10の実施例の構造説明を目的とした断面図である。
【0089】
第1の構成部材8は、平板状をなす第1のヨーク2と、第1のヨーク2の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲にN極の極性を有する磁極面が固着される平板状をなす第1の永久磁石4と、第1のヨーク2の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲にS極の極性を有する磁極面が固着される平板状をなす第2の永久磁石5とにより構成され、第1の永久磁石4と第2の永久磁石5とは、隣接して第1のヨーク2に配置される。
【0090】
第2の構成部材9は、平板状をなす第2のヨーク3により構成される。
【0091】
第5の巻線45は、第1の永久磁石4の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲に相対する第2のヨーク3に巻装され、第6の巻線46は、第1の永久磁石4の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲に相対する第2のヨーク3に巻装される。第7の巻線47は、第2の永久磁石5の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲に相対する第2のヨーク3に巻装され、第8の巻線48は、第2の永久磁石5の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲に相対する第2のヨーク3に巻装される。
【0092】
固定子1は、第1の永久磁石4のN極の極性を有する磁極面から、第1のヨーク2の内部を通り、第2の永久磁石5のS極の極性を有する磁極面に至り、第2の永久磁石5のN極の極性を有する磁極面から、空間21を介して第7の巻線47および第8の巻線48を鎖交し、第2のヨーク3の第2の永久磁石5への相対面に至り、第2のヨーク3の内部を通り、第2のヨーク3の第1の永久磁石4への相対面から、第5の巻線45および第6の巻線46を鎖交し、空間21を介して第1の永久磁石4のS極の極性を有する磁極面に至る閉磁路31を形成する。
【0093】
図15は、本発明の第11の実施例の構造説明を目的とした断面図である。
【0094】
第1の構成部材8は、平板状をなす第1のヨーク2と、第1のヨーク2の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲にS極の極性を有する磁極面が固着される平板状をなす第1の永久磁石4と、第1のヨーク2の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲にN極の極性を有する磁極面が固着される平板状をなす第2の永久磁石5とにより構成され、第1の永久磁石4と第2の永久磁石5とは、隣接して第1のヨーク2に配置される。
【0095】
第2の構成部材9は、平板状をなす第2のヨーク3と、第2のヨーク3の第1の構成部材8への相対面の中央部から矢印A方向の端部までの範囲にN極の極性を有する磁極面が固着される平板状をなす第3の永久磁石6と、第2のヨーク3の第1の構成部材8への相対面の中央部から矢印B方向の端部までの範囲にS極の極性を有する磁極面が固着される平板状をなす第4の永久磁石7とにより構成され、第3の永久磁石6と第4の永久磁石7とは、隣接して第2のヨーク3に配置される。
【0096】
第1の巻線41は、第1の永久磁石4の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲に巻装され、第2の巻線42は、第1の永久磁石4の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲に巻装される。第3の巻線43は、第2の永久磁石5の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲に巻装され、第4の巻線44は、第2の永久磁石5の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲に巻装される。
【0097】
固定子1は、第1の永久磁石4のN極の極性を有する磁極面から、第1の巻線41および第2の巻線42を鎖交し、空間21を介して第3の永久磁石6のS極の極性を有する磁極面に至り、第3の永久磁石6のN極の極性を有する磁極面から、第2のヨーク3の内部を通り、第4の永久磁石7のS極の極性を有する磁極面に至り、第4の永久磁石7のN極の極性を有する磁極面から、空間21を介して第3の巻線43および第4の巻線44を鎖交し、第2の永久磁石5のS極の極性を有する磁極面に至り、第2の永久磁石5のN極の極性を有する磁極面から、第1のヨーク2の内部を通り、第1の永久磁石4のS極の極性を有する磁極面に至る閉磁路31を形成する。
【0098】
図16は、本発明の第12の実施例の構造説明を目的とした断面図である。
【0099】
第1の構成部材8は、平板状をなす第1のヨーク2と、第1のヨーク2の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲にN極の極性を有する磁極面が固着される平板状をなす第1の永久磁石4とにより構成される。
【0100】
第2の構成部材9は、平板状をなす第2のヨーク3と、第2のヨーク3の第1の構成部材8への相対面の中央部から矢印B方向の端部までの範囲にN極の極性を有する磁極面が固着される平板状をなす第4の永久磁石7とにより構成される。
【0101】
第3の巻線43は、第4の永久磁石7の第1の構成部材8への相対面の中央部から矢印A方向の端部までの範囲に相対する第1のヨーク2に巻装され、第4の巻線44は、第4の永久磁石7の第1の構成部材8への相対面の中央部から矢印B方向の端部までの範囲に相対する第1のヨーク2に巻装される。第5の巻線45は、第1の永久磁石4の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲に相対する第2のヨーク3に巻装され、第6の巻線46は、第1の永久磁石4の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲に相対する第2のヨーク3に巻装される。
【0102】
固定子1は、第1の永久磁石4のN極の極性を有する磁極面から、第1のヨーク2の内部を通り、第1のヨーク2の第4の永久磁石7への相対面から、第3の巻線および第4の巻線を鎖交し、空間21を介して第4の永久磁石7のS極の極性を有する磁極面に至り、第4の永久磁石7のN極の極性を有する磁極面から、第2のヨーク3の内部を通り、第2のヨーク3の第1の永久磁石4への相対面から、第5の巻線45および第6の巻線46を鎖交し、空間21を介して第1の永久磁石4のS極の極性を有する磁極面に至る閉磁路31を形成する。
【0103】
図8ないし図10に示す本発明の偏平コイル形リニア直流モータの実施例は、空間21の中央部から矢印A方向の端部までの範囲を構成する第1の構成部材8の周囲に列設して巻装される第1の巻線41および第2の巻線42より成る一組の巻線、空間21の中央部から矢印B方向の端部までの範囲を構成する第1の構成部材8の周囲に列設して巻装される第3の巻線43および第4の巻線44より成る一組の巻線、空間21の中央部から矢印A方向の端部までの範囲を構成する第2の構成部材9の周囲に列設して巻装される第5の巻線45および第6の巻線46より成る一組の巻線、あるいは空間21の中央部から矢印B方向の端部までの範囲を構成する第2の構成部材9の周囲に列設して巻装される第7の巻線47および第8の巻線48より成る一組の巻線を、どちらか二つ装着して構成し得るものである。
【0104】
図17ないし図19に示す本発明の偏平コイル形リニア直流モータの実施例において固定子1は、第1の構成部材8と、第1の構成部材8に所定の距離を隔て相対する第2の構成部材9と、第1の構成部材8の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲に固着される第2の偏平コイル52、第1の構成部材8の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲に固着される第3の偏平コイル53、第2の構成部材9の第1の構成部材8への相対面の中央部から矢印A方向の端部までの範囲に固着される第4の偏平コイル54、あるいは第2の構成部材9の第1の構成部材8への相対面の中央部から矢印B方向の端部までの範囲に固着される第5の偏平コイル55の、どちらか二つとにより構成される。尚、第1の構成部材8と第2の構成部材9との、それぞれの相対面は空間21を構成し、固定子1は空間21を介して一つの閉磁路を形成し、空間21内には方向の異なる二つの磁界が形成される。
【0105】
図17ないし図19に示す本発明の偏平コイル形リニア直流モータの実施例において可動子11は、四つのコイル辺を備えた第1の偏平コイル12により構成され、固定子1が構成する空間21の中央部から矢印A方向の端部までの範囲に第1のコイル辺13が位置し、空間21の中央部から矢印B方向の端部まで範囲に第2のコイル辺14が位置し、空間21内を自由に移動し得る構造に配置される。
【0106】
可動子11は、第1の偏平コイル12と、第2の偏平コイル52、第3の偏平コイル53、第4の偏平コイル54あるいは第5の偏平コイル55とに、図示の方向に所定の電流を流すことにより所定の推力をもって矢印B方向に移動し、図示と異なる方向に所定の電流を流すことにより所定の推力をもって矢印A方向に移動する。
【0107】
図17は、本発明の第13の実施例の構造説明を目的とした断面図である。
【0108】
第1の構成部材8は、平板状をなす第1のヨーク2と、第1のヨーク2の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲にN極の極性を有する磁極面が固着される平板状をなす第1の永久磁石4と、第1のヨーク2の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲にS極の極性を有する磁極面が固着される平板状をなす第2の永久磁石5とにより構成され、第1の永久磁石4と第2の永久磁石5とは、隣接して第1のヨーク2に配置される。
【0109】
第2の構成部材9は、平板状をなす第2のヨーク3により構成される。
【0110】
第2の偏平コイル52および第3の偏平コイル53は、それぞれ四つのコイル辺を備え、第2の偏平コイル52は、第1の永久磁石4の第2の構成部材9への相対面の、中央部から矢印A方向の端部までの範囲に一つのコイル辺が位置し、中央部から矢印B方向の端部までの範囲に他の一つのコイル辺が位置するように、第1の永久磁石4の第2の構成部材9への相対面に固着され、第3の偏平コイル53は、第2の永久磁石5の第2の構成部材9への相対面の、中央部から矢印A方向の端部までの範囲に一つのコイル辺が位置し、中央部から矢印B方向の端部までの範囲に他の一つのコイル辺が位置するように、第2の永久磁石5の第2の構成部材9への相対面に固着される。
【0111】
固定子1は、第1の永久磁石4のN極の極性を有する磁極面から、第1のヨーク2の内部を通り、第2の永久磁石5のS極の極性を有する磁極面に至り、第2の永久磁石5のN極の極性を有する磁極面から、第3の偏平コイル53を鎖交し、空間21を介して第2のヨーク3の第2の永久磁石5への相対面に至り、第2のヨーク3の内部を通り、第2のヨーク3の第1の永久磁石4への相対面から、空間21を介して第2の偏平コイル52を鎖交し、第1の永久磁石4のS極の極性を有する磁極面に至る閉磁路31を形成する。
【0112】
図18は、本発明の第14の実施例の構造説明を目的とした断面図である。
【0113】
第1の構成部材8は、平板状をなす第1のヨーク2と、第1のヨーク2の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲にN極の極性を有する磁極面が固着される平板状をなす第1の永久磁石4と、第1のヨーク2の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲にS極の極性を有する磁極面が固着される平板状をなす第2の永久磁石5とにより構成され、第1の永久磁石4と第2の永久磁石5とは、隣接して第1のヨーク2に配置される。
【0114】
第2の構成部材9は、平板状をなす第2のヨーク3と、第2のヨーク3の第1の構成部材8への相対面の中央部から矢印A方向の端部までの範囲にS極の極性を有する磁極面が固着される平板状をなす第3の永久磁石6と、第2のヨーク3の第1の構成部材8への相対面の中央部から矢印B方向の端部までの範囲にN極の極性を有する磁極面が固着される平板状をなす第4の永久磁石7とにより構成され、第3の永久磁石6と第4の永久磁石7とは、隣接して第2のヨーク3に配置される。
【0115】
第4の偏平コイル54および第5の偏平コイル55は、それぞれ四つのコイル辺を備え、第4の偏平コイル54は、第3の永久磁石6の第1の構成部材8への相対面の、中央部から矢印A方向の端部までの範囲に一つのコイル辺が位置し、中央部から矢印B方向の端部までの範囲に他の一つのコイル辺が位置するように、第3の永久磁石6の第1の構成部材8への相対面に固着され、第5の偏平コイル55は、第4の永久磁石7の第1の構成部材8への相対面の、中央部から矢印A方向の端部までの範囲に一つのコイル辺が位置し、中央部から矢印B方向の端部までの範囲に他の一つのコイル辺が位置するように、第4の永久磁石7の第1の構成部材8への相対面に固着される。
【0116】
固定子1は、第1の永久磁石4のN極の極性を有する磁極面から、第1のヨーク2の内部を通り、第2の永久磁石5のS極の極性を有する磁極面に至り、第2の永久磁石5のN極の極性を有する磁極面から、空間21を介して第5の偏平コイル55を鎖交し、第4の永久磁石7のS極の極性を有する磁極面に至り、第4の永久磁石7のN極の極性を有する磁極面から、第2のヨーク3の内部を通り、第3の永久磁石6のS極の極性を有する磁極面に至り、第3の永久磁石6のN極の極性を有する磁極面から、第4の偏平コイル54を鎖交し、空間21を介して第1の永久磁石4のS極の極性を有する磁極面に至る閉磁路31を形成する。
【0117】
図19は、本発明の第15の実施例の構造説明を目的とした断面図である。
【0118】
第1の構成部材8は、平板状をなす第1のヨーク2と、第1のヨーク2の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲にS極の極性を有する磁極面が固着される平板状をなす第1の永久磁石4とにより構成される。
【0119】
第2の構成部材9は、平板状をなす第2のヨーク3と、第2のヨーク3の第1の構成部材8への相対面の中央部から矢印B方向の端部までの範囲にS極の極性を有する磁極面が固着される平板状をなす第4の永久磁石7とにより構成される。
【0120】
第3の偏平コイル53および第4の偏平コイル54は、それぞれ四つのコイル辺を備え、第3の偏平コイル53は、第4の永久磁石7の第1の構成部材8への相対面の、中央部から矢印A方向の端部までの範囲に相対する第1のヨーク2に一つのコイル辺が位置し、中央部から矢印B方向の端部までの範囲に相対する第1のヨーク2に他の一つのコイル辺が位置するように、第1のヨーク2の第4の永久磁石7への相対面に固着され、第4の偏平コイル54は、第1の永久磁石4の第2の構成部材9への相対面の、中央部から矢印A方向の端部までの範囲に相対する第2のヨーク3に一つのコイル辺が位置し、中央部から矢印B方向の端部までの範囲に相対する第2のヨーク3に他の一つのコイル辺が位置するように、第2のヨーク3の第1の永久磁石4への相対面に固着される。
【0121】
固定子1は、第1の永久磁石4のN極の極性を有する磁極面から、空間21を介して第4の偏平コイル54を鎖交し、第2のヨーク3の第1の永久磁石4への相対面に至り、第2のヨーク3の内部を通り、第4の永久磁石7のS極の極性を有する磁極面に至り、第4の永久磁石7のN極の極性を有する磁極面から、空間21を介して第3の偏平コイル53を鎖交し、第1のヨーク2の第4の永久磁石7への相対面に至り、第1のヨーク2の内部を通り、第1の永久磁石4のS極の極性を有する磁極面に至る閉磁路31を形成する。
【0122】
図20および図21に示す本発明の偏平コイル形リニア直流モータの実施例において固定子1は、第1の構成部材8と、第1の構成部材8に所定の距離を隔て相対する第2の構成部材9と、第1の構成部材8と第2の構成部材9との、それぞれの相対面が構成する空間21の中央部から矢印A方向の端部までの範囲を構成する第1の構成部材8の周囲に、列設して巻装される第1の巻線41および第2の巻線42より成る一組の巻線、空間21の中央部から矢印B方向の端部までの範囲を構成する第1の構成部材8の周囲に、列設して巻装される第3の巻線43および第4の巻線44より成る一組の巻線、空間21の中央部から矢印A方向の端部までの範囲を構成する第2の構成部材9の周囲に、列設して巻装される第5の巻線45および第6の巻線46より成る一組の巻線、あるいは空間21の中央部から矢印B方向の端部までの範囲を構成する第2の構成部材9の周囲に、列設して巻装される第7の巻線47および第8の巻線48より成る一組の巻線の、どちらか一つないし三つと、第1の構成部材8の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲に固着される第2の偏平コイル52、第1の構成部材8の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲に固着される第3の偏平コイル53、第2の構成部材9の第1の構成部材8への相対面の中央部から矢印A方向の端部までの範囲に固着される第4の偏平コイル54、あるいは第2の構成部材9の第1の構成部材8への相対面の中央部から矢印B方向の端部までの範囲に固着される第5の偏平コイル55の、どちらか一つないし三つとにより構成される。
【0123】
尚、第1の巻線41および第2の巻線42より成る一組の巻線、第3の巻線43および第4の巻線44より成る一組の巻線、第5の巻線45および第6の巻線46より成る一組の巻線、あるいは第7の巻線47および第8の巻線48より成る一組の巻線と、第2の偏平コイル42、第3に偏平コイル43、第4の偏平コイル44あるいは第5の偏平コイル55とは、それぞれの合計が二つあるいは四つに成るように、第1の構成部材8あるいは第2の構成部材9に装着される。固定子1は空間21を介して一つの閉磁路を形成し、空間21内には方向の異なる二つの磁界が形成される。
【0124】
図20および図21に示す本発明の偏平コイル形リニア直流モータの実施例において可動子11は、四つのコイル辺より成る第1の偏平コイル12により構成され、固定子1が構成する空間21の中央部から矢印A方向の端部までの範囲に第1のコイル辺13が位置し、空間21の中央部から矢印B方向の端部までの範囲に第2のコイル辺14が位置し、空間21内を自由に移動し得る構造に配置される。
【0125】
可動子11は、第1の偏平コイル12と、第1の巻線41、第2の巻線42、第3の巻線43、第4の巻線44、第5の巻線45、第6の巻線46、第7の巻線47あるいは第8の巻線48と、第2の偏平コイル52、第3の偏平コイル53、第4の偏平コイル54あるいは第5の偏平コイル55とに、図示の方向に所定の電流を流すことにより所定の推力をもって矢印B方向に移動し、図示と異なる方向に所定の電流を流すことにより所定の推力をもって矢印A方向に移動する。
【0126】
図20は、本発明の第16の実施例の構造説明を目的とした断面図である。
【0127】
第1の構成部材8は、平板状をなす第1のヨーク2と、第1のヨーク2の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲にS極の極性を有する磁極面が固着される平板状をなす第1の永久磁石4と、第1のヨーク2の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲にN極の極性を有する磁極面が固着される平板状をなす第2の永久磁石5とにより構成され、第1の永久磁石4と第2の永久磁石5とは、隣接して第1のヨーク2に配置される。
【0128】
第2の構成部材9は、平板状をなす第2のヨーク3により構成される。
【0129】
第5の巻線45は、第1の永久磁石4の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲に相対する第2のヨーク3に巻装され、第6の巻線46は、第1の永久磁石4の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲に相対する第2のヨーク3に巻装される。第7の巻線47は、第2の永久磁石5の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲に相対する第2のヨーク3に巻装され、第8の巻線48は、第2の永久磁石5の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲に相対する第2のヨーク3に巻装される。
【0130】
第2の偏平コイル52および第3の偏平コイル53は、それぞれ四つのコイル辺を備え、第2の偏平コイル52は、第1の永久磁石4の第2の構成部材9への相対面の、中央部から矢印A方向の端部までの範囲に一つのコイル辺が位置し、中央部から矢印B方向の端部までの範囲に他の一つのコイル辺が位置するように、第1の永久磁石4の第2の構成部材9への相対面に固着され、第3の偏平コイル53は、第2の永久磁石5の第2の構成部材9への相対面の、中央部から矢印A方向の端部までの範囲に一つのコイル辺が位置し、中央部から矢印B方向の端部までの範囲に他の一つのコイル辺が位置するように、第2の永久磁石5の第2の構成部材9への相対面に固着される。
【0131】
固定子1は、第1の永久磁石4のN極の極性を有する磁極面から、第2の偏平コイル52を鎖交し、空間21を介して第5の巻線45および第6の巻線46を鎖交し、第2のヨーク3の第1の永久磁石4への相対面に至り、第2のヨーク3の内部を通り、第2のヨーク3の第2の永久磁石5への相対面に至り、第7の巻線47および第8の巻線48を鎖交し、空間21を介して第3の偏平コイル53を鎖交し、第2の永久磁石5のS極の極性を有する磁極面に至り、第2の永久磁石5のN極の極性を有する磁極面から、第1のヨーク2の内部を通り、第1の永久磁石4のS極の極性を有する磁極面に至る閉磁路31を形成する。
【0132】
図21は、本発明の第17の実施例の構造説明を目的とした断面図である。
【0133】
第1の構成部材8は、平板状をなす第1のヨーク2と、第1のヨーク2の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲にS極の極性を有する磁極面が固着される平板状をなす第1の永久磁石4と、第1のヨーク2の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲にN極の極性を有する磁極面が固着される平板状をなす第2の永久磁石5とにより構成され、第1の永久磁石4と第2の永久磁石5とは、隣接して第1のヨーク2に配置される。
【0134】
第2の構成部材9は、平板状をなす第2のヨーク3により構成される。
【0135】
第1の巻線41は、第1の永久磁石4の第2の構成部材9への相対面の中央部から矢印A方向の端部までの範囲に巻装され、第2の巻線42は、第1の永久磁石4の第2の構成部材9への相対面の中央部から矢印B方向の端部までの範囲に巻装される。
【0136】
第5の偏平コイル55は、四つのコイル辺を備え、第2の永久磁石5の第2の構成部材9への相対面の、中央部から矢印A方向の端部までの範囲に相対する第2のヨーク3に一つのコイル辺が位置し、中央部から矢印B方向の端部までの範囲に相対する第2のヨーク3に他の一つのコイル辺が位置するように、第2のヨーク3の第2の永久磁石5への相対面に固着される。
【0137】
固定子1は、第1の永久磁石4のN極の極性を有する磁極面から、第1の巻線41および第2の巻線42を鎖交し、空間21を介して第2のヨーク3の第1の永久磁石4への相対面に至り、第2のヨーク3の内部を通り、第2のヨーク3の第2の永久磁石5への相対面に至り、第5の偏平コイル55を鎖交し、空間21を介して第2の永久磁石5のS極の極性を有する磁極面に至り、第2の永久磁石5のN極の極性を有する磁極面から、第1のヨーク2の内部を通り、第1の永久磁石4のS極の極性を有する磁極面に至る閉磁路31を形成する。
【0138】
図6、図7、図11、図12および図13に示す本発明の偏平コイル形リニア直流モータの実施例は、第1の巻線41および第2の巻線42より成る一組の巻線、第3の巻線43および第4の巻線44より成る一組の巻線、第5の巻線45および第6の巻線46より成る一組の巻線、あるいは第7の巻線47および第8の巻線48より成る一組の巻線と、第2の偏平コイル42、第3に偏平コイル43、第4の偏平コイル44あるいは第5の偏平コイル55とを、それぞれの合計が二つあるいは四つに成るように、それぞれ一つないし三つ装着して構成し得るものである。
【0139】
図22は、図5ないし図7と、図11ないし図21とに示す本発明の偏平コイル形リニア直流モータの動作原理説明を目的とした磁界分布図である。
【0140】
図5ないし図7と、図11ないし図21とに示す本発明の偏平コイル形リニア直流モータにおいて、第1の永久磁石4、第2の永久磁石5、第3の永久磁石6あるいは第4の永久磁石7により空間21内に形成される磁界は、第1の永久磁石4、第2の永久磁石5、第3の永久磁石6あるいは第4の永久磁石7の、異なる極性を有する磁極面が隣接する範囲あるいは同じ極性を有する磁極面が相対する範囲において減少する。
【0141】
即ち、図5ないし図7と、図11ないし図21とに示す本発明の偏平コイル形リニア直流モータにおいて、固定子1の構成する空間21内に形成される磁界は、矢印A方向の端部から中央部に向かい所定の割合で減少し、矢印B方向の端部から中央部に向かい所定の割合で減少する。
【0142】
更に、第1の偏平コイル12に所定の電流を流した際、第1のコイル辺13および第2のコイル辺14の周囲に形成される磁界の影響により、空間21内に形成される磁界は、可動子11の移動に伴い所定の割合で減少する。
【0143】
屈曲線Aは、本発明の偏平コイル形リニア直流モータの可動子11を構成する第1の偏平コイル12に所定の電流を流し、可動子11が空間21内を矢印A方向の端部から矢印B方向の端部まで移動する際、第1のコイル辺13の位置する空間21の範囲に形成される磁界の分布、あるいは第2のコイル辺14の位置する空間21の範囲に形成される磁界の分布を示す。
【0144】
屈曲線Aは、可動子11が矢印A方向の端部からxc[mm](1/2ストローク)まで移動する際、磁界がHa[A/m]からHb[A/m]まで所定の割合で増加し、可動子11がxc[mm](1/2ストローク)から矢印B方向の端部まで移動する際、磁界がHb[A/m]からHc[A/m]まで所定の割合で減少して分布する状態を示す。
【0145】
屈曲線Aは、図1に示す従来の偏平コイル形リニア直流モータの可動子11に、図3に示す推力特性図の曲線Cに示す推力を与える電流を流し、可動子11が所定の推力で矢印A方向の端部から矢印B方向の端部まで移動する際、空間21内に形成される磁界の分布に相当する。
【0146】
屈曲線Bは、第1の巻線41および第2の巻線42より成る一組の巻線、第3の巻線43および第4の巻線44より成る一組の巻線、第5の巻線45および第6の巻線46より成る一組の巻線、第7の巻線47および第8の巻線48より成る一組の巻線、第2の偏平コイル52、第3の偏平コイル53、第4の偏平コイル54あるいは第5の偏平コイル55に図示の方向に所定の電流を流した際、固定子1の構成する空間21内に形成される磁界の分布を示す。
【0147】
屈曲線Bは、第1の巻線41、第3の巻線43、第5の巻線45、第7の巻線47、第2の偏平コイル52の矢印A方向側を構成するコイル辺、第3の偏平コイル53の矢印A方向側を構成するコイル辺、第4の偏平コイル54の矢印A方向側を構成するコイル辺あるいは第5の偏平コイル53の矢印A方向側を構成するコイル辺の周囲に形成される磁界と、第2の巻線42、第4の巻線44、第6の巻線46、第8の巻線48、第2の偏平コイル52の矢印B方向側を構成するコイル辺、第3の偏平コイル53の矢印B方向側を構成するコイル辺、第4の偏平コイル54の矢印B方向側を構成するコイル辺あるいは第5の偏平コイル53の矢印B方向側を構成するコイル辺の周囲に形成される磁界とを合成したものである。
【0148】
屈曲線Bは、空間21の矢印A方向の端部からxc[mm](1/2ストローク)までの範囲に、磁界がHd[A/m]から−Hd[A/m]まで所定の割合で減少して分布し、空間21のxc[mm](1/2ストローク)から矢印B方向の端部までの範囲に、磁界が−Hd[A/m]からHd[A/m]まで所定の割合で増加して分布する状態を示す。
【0149】
屈曲線Cは、本発明の偏平コイル形リニア直流モータの推力の発生に関与する空間21内に形成される磁界の分布を示し、屈曲線Aと屈曲線Bとを合成したものである。
【0150】
屈曲線Cは、可動子11が矢印A方向の端部からxc[mm](1/2ストローク)まで移動する際、磁界がHe[A/m]にて一様に分布し、可動子11がxc[mm](1/2ストローク)から矢印B方向の端部まで移動する際、磁界がHe[A/m]からHf[A/m]まで所定の割合で減少して分布する状態を示す。
【0151】
尚、可動子11が矢印B方向の端部から矢印A方向の端部まで移動する際の空間21内に形成される磁界の分布も同様に、屈曲線A、屈曲線Bおよび屈曲線Cで示される。
【0152】
図23は、図8ないし図10に示す本発明の偏平コイル形リニア直流モータの動作原理説明を目的とした磁界分布図である。
【0153】
図8ないし図10に示す本発明の偏平コイル形リニア直流モータにおいて、第1の偏平コイル12に所定の電流を流した際、第1のコイル辺13および第2のコイル辺14の周囲に形成される磁界の影響により、空間21内に形成される磁界は、可動子11の移動に伴い所定の割合で減少する。
【0154】
直線Aは、本発明の偏平コイル形リニア直流モータの可動子11を構成する第1の偏平コイル12に所定の電流を流し、可動子11が空間21内を矢印A方向の端部から矢印B方向の端部まで移動する際、第1のコイル辺13の位置する空間21の範囲に形成される磁界の分布、あるいは第2のコイル辺14の位置する空間21の範囲に形成される磁界の分布を示す。
【0155】
直線Aは、可動子11が矢印A方向の端部から矢印B方向の端部まで移動する際、磁界がHa[A/m]からHb[A/m]まで所定の割合で減少して分布する状態を示す。
【0156】
直線Aは、図2に示す従来の偏平コイル形リニア直流モータの可動子11に、図4に示す推力特性図の曲線Cに示す推力を与える電流を流し、可動子11が所定の推力で矢印A方向の端部から矢印B方向の端部まで移動する際、空間21内に形成される磁界の分布に相当する。
【0157】
直線Bは、第1の巻線41および第2の巻線42より成る一組の巻線と、第3の巻線43および第4の巻線44より成る一組の巻線と、第5の巻線45および第6の巻線46より成る一組の巻線と、第7の巻線47および第8の巻線48より成る一組の巻線とに図示の方向に所定の電流を流した際、固定子1の構成する空間21内に形成される磁界の分布を示し、第1の巻線41、第3の巻線43、第5の巻線45および第7の巻線47の周囲に形成される磁界と、第2の巻線42、第4の巻線44、第6の巻線46および第8の巻線48の周囲に形成される磁界とを合成したものである。
【0158】
直線Bは、空間21の矢印A方向の端部から矢印B方向の端部までの範囲に、磁界が−Hd[A/m]からHd[A/m]まで所定の割合で増加して分布する状態を示す。
【0159】
直線Cは、本発明の偏平コイル形リニア直流モータの推力の発生に関与する空間21内に形成される磁界の分布を示し、直線Aと直線Bとを合成したものであり、可動子11が矢印A方向の端部から矢印B方向の端部まで移動する際、磁界がHe[A/m]にて一様に分布する状態を示す。
【0160】
尚、可動子11が矢印B方向の端部から矢印A方向の端部まで移動する際の空間21内に形成される磁界の分布も同様に、直線A、直線Bおよび直線Cで示される。
【0161】
図8ないし図10に示す本発明の偏平コイル形リニア直流モータの第1の構成部材8および第2の構成部材9に、第1の巻線41および第2の巻線42より成る一組の巻線、第3の巻線43および第4の巻線44より成る一組の巻線、第5の巻線45および第6の巻線46より成る一組の巻線、あるいは第7の巻線47および第8の巻線48より成る一組の巻線を、どちらか二つ装着して構成される本発明の偏平コイル形リニア直流モータの動作原理説明を目的とした磁界分布図は、図8ないし図10に示す本発明の偏平コイル形リニア直流モータの動作原理説明を目的とした磁界分布図と同様に図23で示される。
【0162】
図24は、図5ないし図7と、図11ないし図21とに示す本発明の偏平コイル形リニア直流モータの推力特性図である。
【0163】
曲線Aは、本発明の偏平コイル形リニア直流モータの可動子11を構成する第1の偏平コイル12に図示の方向に所定の電流を流し、可動子11が空間21内を矢印A方向の端部から矢印B方向の端部まで移動する際、あるいは第1の偏平コイル12に図示と異なる方向に所定の電流を流し、可動子11が空間21内を矢印B方向の端部から矢印A方向の端部まで移動する際の推力特性を示し、図3に示す従来の偏平コイル形リニア直流モータの推力特性図の曲線Cに相当するものである。
【0164】
曲線Bは、本発明の偏平コイル形リニア直流モータの可動子11を構成する第1の偏平コイル12に図示の方向に所定の電流を流し、固定子1を構成する各種巻線に図示の方向に所定の電流を流し、可動子11が空間21内を矢印A方向の端部から矢印B方向の端部まで移動する際、あるいは第1の偏平コイル12に図示と異なる方向に所定の電流を流し、固定子1を構成する各種巻線に図示と異なる方向に所定の電流を流し、可動子11が空間21内を矢印B方向の端部から矢印A方向の端部まで移動する際の推力特性を示す。
【0165】
曲線Bは、可動子11が矢印A方向の端部から矢印B方向の端部に移動する際、あるいは可動子11が矢印B方向の端部から矢印A方向の端部に移動する際、可動子11に4.5×Fa[N]の推力が一様に作用し、可動子11が矢印B方向の端部近辺に達した際、あるいは可動子11が矢印A方向の端部近辺に達した際、可動子11に4.5×Fa[N]から4×Fa[N]まで減少する推力が作用する状態を示す。
【0166】
図5ないし図7と、図14ないし図16と、図20および図21とに示す本発明の偏平コイル形リニア直流モータにおいて、可動子11が矢印A方向の端部から矢印B方向の端部に移動する際、第2の巻線42、第4の巻線44、第6の巻線46あるいは第8の巻線48に流す電流を、第1の巻線41、第3の巻線43、第5の巻線45あるいは第7の巻線47に流す電流に対して増加させることにより、図24に曲線Bで示される推力特性を全ストロークに対して変動のない直線で現すことが可能に成る。
【0167】
更に、可動子11が矢印B方向の端部から矢印A方向の端部に移動する際、第1の巻線41、第3の巻線43、第5の巻線45あるいは第7の巻線47に流す電流を、第2の巻線42、第4の巻線44、第6の巻線46あるいは第8の巻線48に流す電流に対して増加させることにより、図24に曲線Bで示される推力特性を全ストロークに対して変動のない直線で現すことが可能に成る。
【0169】
図25は、図8ないし図10に示す本発明の偏平コイル形リニア直流モータの推力特性図である。
【0170】
曲線Aは、本発明の偏平コイル形リニア直流モータの可動子11を構成する第1の偏平コイル12に図示の方向に所定の電流を流し、可動子11が空間21内を矢印A方向の端部から矢印B方向の端部まで移動する際、あるいは第1の偏平コイル12に図示と異なる方向に所定の電流を流し、可動子11が空間21内を矢印B方向の端部から矢印A方向の端部まで移動する際の推力特性を示し、図4に示す従来の偏平コイル形リニア直流モータの推力特性図の曲線Cに相当するものである。
【0171】
直線Bは、本発明の偏平コイル形リニア直流モータの可動子11を構成する第1の偏平コイル12に図示の方向に所定の電流を流し、固定子1を構成する各種巻線に図示の方向に所定の電流を流し、可動子11が空間21内を矢印A方向の端部から矢印B方向の端部まで移動する際、あるいは第1の偏平コイル12に図示と異なる方向に所定の電流を流し、固定子1を構成する各種巻線に図示と異なる方向に所定の電流を流し、可動子11が空間21内を矢印B方向の端部から矢印A方向の端部まで移動する際の推力特性を示す。
【0172】
直線Bは、可動子11が矢印A方向の端部から矢印B方向の端部に移動する際、あるいは可動子11が矢印B方向の端部から矢印A方向の端部に移動する際、可動子11に4.2×Fa[N]の推力が一様に作用する状態を示す。
【0173】
図8ないし図10に示す本発明の偏平コイル形リニア直流モータの第1の構成部材8および第2の構成部材9に、第1の巻線41および第2の巻線42より成る一組の巻線、第3の巻線43および第4の巻線44より成る一組の巻線、第5の巻線45および第6の巻線46より成る一組の巻線、あるいは第7の巻線47および第8の巻線48より成る一組の巻線を、どちらか二つ装着して構成される本発明の偏平コイル形リニア直流モータの推力特性図は、図8ないし図10に示す本発明の偏平コイル形リニア直流モータの推力特性図と同様に図25で示される。
【0174】
図5ないし図13に示す本発明の偏平コイル形リニア直流モータは、推力変動の減少および可動子11に作用する推力バランスの向上に重点を置いたものであり、通常、組立の簡略化および低価格化を目的として図14ないし図19に示す構造に構成される。
【0176】
一般に、本発明の偏平コイル形リニア直流モータは、固定子を構成する第1の巻線41ないし第8の巻線48の巻線抵抗および巻数等の巻線仕様、あるいは第2の偏平コイル52ないし第5の偏平コイル55の巻線抵抗および巻数等の巻線仕様を、それぞれ同一に構成し、それぞれを並列に接続して運転され、可動子11を構成する第1の偏平コイル12と固定子11を構成する各種巻線を直列あるいは並列に接続し、同一電源より電力を供給することによりサーボ運転が容易に成り、サーボ制御回路の低価格化が可能に成る。
【0177】
本発明の偏平コイル形リニア直流モータの目的は、従来の偏平コイル形リニア直流モータの大推力化および全ストロークに対する推力変動の減少を共に実現させることであるが、固定子を構成する各種巻線の巻線仕様あるいは流れる電流の大きさを変化させることにより、その使用目的にあわせた推力特性を容易に設定することが可能に成る。
【0178】
本発明の偏平コイル形リニア直流モータにおいて、第1のヨーク2および第2のヨーク3は、電磁軟鉄、構造用圧延鋼あるいは炭素鋼等の優れた磁気特性を有する金属により構成され、固定子11を構成する各種巻線は、巻枠に所定の素線を所定数巻いて構成されるが、低価格化、小型化および軽量化を図る際には自己融着線により構成され巻枠が不要と成る。
【0179】
一般に、従来の偏平コイル形リニア直流モータは、脈動の無い推力、変動の少ない推力、軽量の可動子、優れた応答性および優れた制御性を有し、HDD装置および光ディスク装置等のコンピュータの外部記憶装置のキャリジの駆動源として利用され、固定子1および可動子11を扇形に構成し、推力を円弧運動としてキャリッジに作用させ、キャリッジへの作用力の増大化、ロング・ストローク化、小型化および軽量化が図られる。
【0180】
しかし、推力の増大化を目的として図3の推力特性図の曲線Bに示す推力特性の範囲で使用され、始動時の推力の減少、全ストローク移動時の推力の減少および有効ストロークの減少等の問題点を有するものである。
【0181】
本発明の偏平コイル形リニア直流モータによれば、推力変動の増加を伴わない大電流化による大推力化が可能と成り、推力変動の少ない大推力の偏平コイル形リニア直流モータの提供が可能と成る。
【0182】
【発明の効果】
以上説明したように本発明の偏平コイル形リニア直流モータは、従来の偏平コイル形リニア直流モータの大推力化および全ストロークに対する推力変動の減少を共に実現することを可能とするものである。大推力化は可動子11を構成する偏平コイル12の大電流化により図られ、大電流化に伴い固定子1の小型化、軽量化および低価格化が可能と成り、更に、可動子11の小型化および軽量化が可能と成り、可動子11の小型化に伴いストロークが増加し、可動子11の軽量化に伴い応答性が向上する効果がある。全ストロークに対する推力変動の減少は、固定子1の小型化、軽量化および低価格化が可能と成り、推力変動の減少に伴いロング・ストローク化が可能と成る効果がある。
【図面の簡単な説明】
【図1】従来の偏平コイル形リニア直流モータの断面図である。
【図2】従来の偏平コイル形リニア直流モータの断面図である。
【図3】図1に示す従来の偏平コイル形リニア直流モータの推力特性図である。
【図4】図2に示す従来の偏平コイル形リニア直流モータの推力特性図である。
【図5】本発明の偏平コイル形リニア直流モータの第1の実施例の断面図である。
【図6】本発明の偏平コイル形リニア直流モータの第2の実施例の断面図である。
【図7】本発明の偏平コイル形リニア直流モータの第3の実施例の断面図である。
【図8】本発明の偏平コイル形リニア直流モータの第4の実施例の断面図である。
【図9】本発明の偏平コイル形リニア直流モータの第5の実施例の断面図である。
【図10】本発明の偏平コイル形リニア直流モータの第6の実施例の断面図である。
【図11】本発明の偏平コイル形リニア直流モータの第7の実施例の断面図である。
【図12】本発明の偏平コイル形リニア直流モータの第8の実施例の断面図である。
【図13】本発明の偏平コイル形リニア直流モータの第9の実施例の断面図である。
【図14】本発明の偏平コイル形リニア直流モータの第10の実施例の断面図である。
【図15】本発明の偏平コイル形リニア直流モータの第11の実施例の断面図である。
【図16】本発明の偏平コイル形リニア直流モータの第12の実施例の断面図である。
【図17】本発明の偏平コイル形リニア直流モータの第13の実施例の断面図である。
【図18】本発明の偏平コイル形リニア直流モータの第14の実施例の断面図である。
【図19】本発明の偏平コイル形リニア直流モータの第15の実施例の断面図である。
【図20】本発明の偏平コイル形リニア直流モータの第16の実施例の断面図である。
【図21】本発明の偏平コイル形リニア直流モータの第17の実施例の断面図である。
【図22】本発明の偏平コイル形リニア直流モータの磁界分布図である。
【図23】本発明の偏平コイル形リニア直流モータの磁界分布図である。
【図24】本発明の偏平コイル形リニア直流モータの推力特性図ある。
【図25】本発明の偏平コイル形リニア直流モータの推力特性図である。
【符号の説明】
1 固定子
2 第1のヨーク
3 第2のヨーク
4 第1の永久磁石
5 第2の永久磁石
6 第3の永久磁石
7 第4の永久磁石
8 第1の構成部材
9 第2の構成部材
11 可動子
12 第1の偏平コイル
13 第1のコイル辺
14 第2のコイル辺
21 空間
31 閉磁路
41 第1の巻線
42 第2の巻線
43 第3の巻線
44 第4の巻線
45 第5の巻線
46 第6の巻線
47 第7の巻線
48 第8の巻線
52 第2の偏平コイル
53 第3の偏平コイル
54 第4の偏平コイル
55 第5の偏平コイル[0001]
[Industrial application fields]
The present invention is used for driving various moving parts that dislike vibration and thrust fluctuation in various OA equipment, various optical equipment, various measuring equipment, etc., generating pulsation-free thrust, reducing thrust fluctuation for the entire stroke, The present invention relates to a flat coil type linear direct current motor capable of achieving a large thrust and a long stroke.
[0002]
[Prior art]
In general, linear DC motors are the only linear motors that can generate thrust without pulsation. A wide range of thrust and speed can be controlled by installing various position detection devices, etc. This is the only linear actuator that can control the accuracy and can handle loads that do not like vibration and thrust fluctuations, and loads that require operation over a wide range of speeds. This is a linear direct current motor having excellent responsiveness that enables the child to be thin and the mover to be light.
[0003]
The structure and operation of a conventional flat coil linear DC motor will be described with reference to cross-sectional views shown in FIGS. 1 and 2 and thrust characteristic diagrams shown in FIGS. 3 and 4. FIG.
[0004]
The conventional flat coil type linear direct current motor shown in FIGS. 1 and 2 includes a first component member 8 and a second component member 9 which are opposed to each other at a predetermined distance, and a space 21 formed by the respective relative surfaces. A stator 1 that forms two magnetic fields in different directions and forms one closed magnetic path through the space 21 and a first flat coil 12 are arranged in a structure that can move freely in the space 21. The movable element 11 is configured.
[0005]
The first component member 8 has a flat plate-shaped first yoke 2 and N in a range from the center portion of the relative surface of the first yoke 2 to the second component member 9 to the end portion in the arrow A direction. The first permanent magnet 4 to which the pole face having the polarity of the pole is fixed and the range from the center of the relative surface of the first yoke 2 to the second component member 9 to the end in the direction of the arrow B are S. It is comprised with the 2nd permanent magnet 5 to which the magnetic pole surface which has the polarity of a pole is fixed.
[0006]
The second component member 9 is constituted by a second yoke 3 having a flat plate shape.
[0007]
In the conventional flat coil type linear direct current motor shown in FIG. 1, the first permanent magnet 4 and the second permanent magnet 5 are disposed adjacent to the first yoke 2, and the conventional permanent magnet shown in FIG. In the flat coil type linear direct current motor, the first permanent magnet 4 and the second permanent magnet 5 are arranged on the first yoke 2 with a predetermined distance that does not affect each other.
[0008]
The stator 1 passes from the magnetic pole surface having the N-polarity of the first permanent magnet 4 to the magnetic pole surface having the S-polarity of the second permanent magnet 5 through the inside of the first yoke 2. From the magnetic pole surface of the second permanent magnet 5 having the N-pole polarity to the relative surface of the second yoke 3 to the second permanent magnet 5 through the space 21, the interior of the second yoke 3 is passed. A closed magnetic path 31 is formed from the relative surface of the second yoke 3 to the first permanent magnet 4 to the magnetic pole surface having the polarity of the S pole of the first permanent magnet 4 via the space 21.
[0009]
The mover 11 is mainly configured by a first flat coil 12 having four coil sides, and the first in a range of a space 21 formed by a relative surface of the first permanent magnet 4 to the second yoke 3. Coil side 13 is located, second coil side 14 is located in the range of space 21 formed by the relative surface of second permanent magnet 5 to second yoke 3, and the inside of space 21 is in the direction of arrow A and Arranged in a structure that can freely move in the direction of arrow B, and by moving a predetermined current through the first flat coil 12 in the direction shown in the figure, the first flat coil 12 moves in the direction of arrow B with a predetermined thrust. It moves in the direction of arrow A with a predetermined thrust by flowing a predetermined current in a direction different from the figure.
[0010]
The moving range of the mover 11, that is, the stroke of the flat coil type linear direct current motor, is a position where the end of the first coil side 13 in the direction of arrow A is opposite to the end of the first permanent magnet 4 in the direction of arrow A. From which the end of the first coil side 13 in the direction of arrow B moves to a position opposite to the end of the first permanent magnet 4 in the direction of arrow B, or the end of the second coil side 14 in the direction of arrow A The end of the second coil side 14 in the direction of arrow B faces the end of the second permanent magnet 5 in the direction of arrow B from the position where the portion faces the end of the second permanent magnet 5 in the direction of arrow A. The distance traveled to the position.
[0011]
FIG. 3 is a thrust characteristic diagram of the conventional flat coil linear DC motor shown in FIG. 1, and FIG. 4 is a thrust characteristic diagram of the conventional flat coil linear DC motor shown in FIG.
[0012]
3 and 4, the stroke x [mm] is set to 6 [mm], a predetermined current is passed through the first flat coil 12 constituting the mover 11 in the direction shown in FIG. 1 or FIG. When the mover 11 moves from the end in the direction of arrow A to the end in the direction of arrow B, or when a predetermined current is passed through the first flat coil 12 in a direction different from the illustration, the mover 11 moves in the direction of arrow B. It is a thrust characteristic figure at the time of moving from an edge part to the edge part of the arrow A direction.
[0013]
A curve A and a straight line A are thrust characteristics when a current of I [A] is passed through the first flat coil 12, and a curve B is a current of 3 × I [A] passed through the first flat coil 12. The curve C is the thrust characteristic when a current of 5 × I [A] is passed through the first flat coil 12.
[0014]
In the thrust characteristic diagram shown in FIG. 3, the curve A increases from 0.8 × Fa [N] to Fa [N], and the thrust that decreases from Fa [N] to 0.8 × Fa [N] is the mover 11. The curve B is increased from 2.5 × Fa [N] to 3 × Fa [N], and the thrust which decreases from 3 × Fa [N] to 2 × Fa [N] is shown in FIG. The curve C increases from 4 × Fa [N] to 5 × Fa [N], and the thrust that decreases from 5 × Fa [N] to 3 × Fa [N] acts on the mover 11. Indicates the state to be performed.
[0015]
In the thrust characteristic diagram shown in FIG. 4, the straight line A shows a state in which the thrust of Fa [N] acts on the mover 11 regardless of the position of the mover 11, and the curve B is 3 × Fa [N] to 2.5 A state in which thrust that decreases to × Fa [N] acts on the mover 11 is shown, and a curve C indicates that thrust that decreases from 4.5 × Fa [N] to 3.5 × Fa [N] acts on the mover 11. Indicates the state to be performed.
[0016]
The conventional flat coil type linear direct current motor shown in FIG. 1 is intended for miniaturization, weight reduction and price reduction, and is normally used in the state of the thrust characteristic shown by curve B in FIG. The conventional flat coil type linear direct current motor shown in FIG. 2 has the problem that the thrust at both ends becomes small with respect to the stroke. It is used in the state of the thrust characteristics shown, and has a problem that the thrust is reduced as the mover 11 is enlarged, the response is deteriorated, and the mover 11 is moved.
[0017]
In general, the thrust of the flat coil type linear direct current motor includes the magnetic flux flowing in the closed magnetic path formed by the stator linked to the flat coil constituting the mover or the magnetic field in the range where the flat coil is located, the number of turns of the flat coil, It increases in proportion to the current flowing through the flat coil.
[0018]
The increase in the thrust of the conventional flat coil type linear DC motor shown in FIG. 1 or FIG. 2 is an increase in the magnetic flux interlinking with the first coil side 13 and the second coil side 14 constituting the first flat coil 12. This can be achieved by increasing the number of turns of the first flat coil 12 and increasing the current flowing through the first flat coil 12. However, the increase in the magnetic flux linked to the first flat coil 12 has problems such as an increase in the size, weight, and cost of the stator 1, and an increase in the number of turns of the first flat coil 12 Since the movable element 11 has problems such as an increase in size, weight, deterioration in responsiveness, and reduction in stroke, it is addressed by an increase in the current flowing through the first flat coil 12.
[0019]
The increase in current flowing in the first flat coil 12 constituting the mover 11 of the conventional flat coil type linear direct current motor shown in FIG. 1 or FIG. 2 is caused around the first coil side 13 and the second coil side 14. Is increased, the distribution of the magnetic field formed in the space 21 by the first permanent magnet 4 and the second permanent magnet 5 is inclined, and the thrust characteristic curve B shown in FIG. 3 or FIG. Alternatively, as shown by the curve C, the thrust greatly varies with the movement of the mover 11.
[0020]
The conventional flat coil type linear direct current motor shown in FIG. 1 or FIG. 2 is capable of improving the responsiveness associated with downsizing, weight reduction, thickness reduction, price reduction and weight reduction of the mover, but long stroke. The problem is that it is difficult to increase thrust and decrease thrust fluctuation due to increase in current and current.
[0021]
[Problems to be solved by the invention]
The problem to be solved is that it is difficult to achieve both a large thrust of a conventional flat coil linear DC motor and a reduction in thrust fluctuation with respect to the entire stroke.
[0022]
[Means for Solving the Problems]
The constituent member of the stator 1 constituting the range from the central portion of the space 21 of the conventional flat coil type linear direct current motor to one end, and the fixing constituting the range from the central portion of the space 21 to the other end. The most important feature is that a set of windings or flat coils are respectively attached to the constituent members of the child 1, and the first flat coil 12 constituting the mover 11 has a large thrust due to an increase in current and all the features. The objective of reducing the thrust fluctuation with respect to the stroke was realized very easily.
[0023]
【Example】
Next, based on the cross-sectional views shown in FIGS. 5 to 21, the magnetic field distribution diagrams shown in FIGS. 22 and 23, and the thrust characteristic diagrams shown in FIGS. 24 and 25, the flat coil linear DC motor of the present invention is used. The structure and operation will be described.
[0024]
In the embodiment of the flat coil type linear DC motor of the present invention shown in FIGS. 5 to 10, the stator 1 has a first component member 8 and a second component member opposed to the first component member 8 at a predetermined distance. 1st structure which comprises the range from the center part of the space 21 which each relative surface comprises the component member 9, the 1st component member 8, and the 2nd component member 9 to the edge part of the arrow A direction Around the member 8, a set of windings composed of a first winding 41 and a second winding 42 wound in a line, and from the center of the space 21 to the end in the direction of arrow B A set of windings composed of a third winding 43 and a fourth winding 44 wound in a line around the first component member 8 constituting the range, and from the center of the space 21 A fifth winding 45 that is wound in a line around the second component 9 that forms the range up to the end in the direction of arrow A; A set of windings consisting of six windings 46 and a second component 9 that forms a range from the center of the space 21 to the end in the direction of the arrow B are wound in a line. And a set of windings including a seventh winding 47 and an eighth winding 48.The stator 1 forms one closed magnetic path through the space 21, and two magnetic fields having different directions are formed in the space 21.
[0025]
In the embodiment of the flat coil type linear direct current motor of the present invention shown in FIGS. 5 to 10, the mover 11 is constituted by a first flat coil 12 having four coil sides, and a space 21 formed by the stator 1. The first coil side 13 is located in the range from the center part of the space A to the end part in the arrow A direction, and the second coil side 14 is located in the range from the center part of the space 21 to the end part in the arrow B direction, It arrange | positions at the structure which can move the inside of the space 21 freely.
[0026]
The mover 11 includes a first flat coil 12, a first winding 41, a second winding 42, a third winding 43, a fourth winding 44, a fifth winding 45, and a sixth winding. When a predetermined current is passed through the winding 46, the seventh winding 47 and the eighth winding 48 in the direction shown in FIG. By flowing a current, it moves in the direction of arrow A with a predetermined thrust.
[0027]
FIG. 5 illustrates the present invention.First embodimentIt is sectional drawing for the purpose of description of the structure.
[0028]
The first component member 8 has a flat plate-shaped first yoke 2 and N in a range from the center portion of the relative surface of the first yoke 2 to the second component member 9 to the end portion in the arrow A direction. From the center part of the relative surface to the second component member 9 of the first yoke 2 to the end part in the direction of arrow B from the flat plate-shaped first permanent magnet 4 to which the magnetic pole face having the polarity of the pole is fixed And a second permanent magnet 5 having a flat plate shape to which a magnetic pole surface having the polarity of the S pole is fixed. The first permanent magnet 4 and the second permanent magnet 5 are adjacent to each other. 1 on the yoke 2.
[0029]
The second component member 9 is constituted by a second yoke 3 having a flat plate shape.
[0030]
The first winding 41 is wound in a range from the center portion of the relative surface of the first permanent magnet 4 to the second component member 9 to the end portion in the direction of arrow A, and the second winding 42 is The first permanent magnet 4 is wound in a range from the center portion of the relative surface of the first permanent magnet 4 to the second component member 9 to the end portion in the arrow B direction. The third winding 43 is wound in the range from the center of the relative surface of the second permanent magnet 5 to the second component 9 to the end in the direction of arrow A, and the fourth winding 44 is The second permanent magnet 5 is wound in a range from the center portion of the relative surface to the second component member 9 to the end portion in the arrow B direction.
[0031]
The fifth winding 45 is connected to the first component 8 of the second yoke 3.Relative surfaceThe sixth winding 46 is wound on the first component member 8 of the second yoke 3 at a position opposite to the first winding 41.Relative surfaceIs wound at a position opposite to the second winding 42. The seventh winding 47 is connected to the first component 8 of the second yoke 3.Relative surfaceIs wound at a position opposite to the third winding 43, and the eighth winding 48 is connected to the first component 8 of the second yoke 3.Relative surfaceIs wound at a position opposite to the fourth winding 44.
[0032]
The stator 1 passes from the magnetic pole surface having the N-polarity of the first permanent magnet 4 to the magnetic pole surface having the S-polarity of the second permanent magnet 5 through the inside of the first yoke 2. The third winding 43 and the fourth winding 44 are interlinked from the magnetic pole surface having the N-pole polarity of the second permanent magnet 5, and the seventh winding 47 and the eighth winding through the space 21. The windings 48 are linked to each other, reach the surface of the second yoke 3 facing the second permanent magnet 5, pass through the inside of the second yoke 3, and go to the first permanent magnet 4 of the second yoke 3. The fifth winding 45 and the sixth winding 46 are linked from the relative surface of the first winding 41, the first winding 41 and the second winding 42 are linked via the space 21, and the first permanent winding is linked. A closed magnetic path 31 reaching the magnetic pole surface having the polarity of the south pole of the magnet 4 is formed.
[0033]
FIG. 6 illustrates the present invention.Second embodimentIt is sectional drawing for the purpose of description of the structure.
[0034]
The first component member 8 has a flat plate-shaped first yoke 2 and N in a range from the center portion of the relative surface of the first yoke 2 to the second component member 9 to the end portion in the arrow A direction. From the center part of the relative surface to the second component member 9 of the first yoke 2 to the end part in the direction of arrow B from the flat plate-shaped first permanent magnet 4 to which the magnetic pole face having the polarity of the pole is fixed And a second permanent magnet 5 having a flat plate shape to which a magnetic pole surface having the polarity of the S pole is fixed. The first permanent magnet 4 and the second permanent magnet 5 are adjacent to each other. 1 on the yoke 2.
[0035]
The second component member 9 has a flat plate-like second yoke 3 and S in a range from the center of the relative surface of the second yoke 3 to the first component member 8 to the end in the direction of arrow A. From the center part of the relative surface to the first component 8 of the second yoke 3 to the end part in the direction of arrow B from the flat plate-shaped third permanent magnet 6 to which the magnetic pole face having the polar polarity is fixed And a fourth permanent magnet 7 having a flat plate shape with a magnetic pole face having an N-pole polarity fixed thereto. The third permanent magnet 6 and the fourth permanent magnet 7 are adjacent to each other. 2 on the yoke 3.
[0036]
The first winding 41 is wound in a range from the center portion of the relative surface of the first permanent magnet 4 to the second component member 9 to the end portion in the direction of arrow A, and the second winding 42 is The first permanent magnet 4 is wound in a range from the center portion of the relative surface of the first permanent magnet 4 to the second component member 9 to the end portion in the arrow B direction. The third winding 43 is wound in the range from the center of the relative surface of the second permanent magnet 5 to the second component 9 to the end in the direction of arrow A, and the fourth winding 44 is The second permanent magnet 5 is wound in a range from the center portion of the relative surface to the second component member 9 to the end portion in the arrow B direction.
[0037]
The fifth winding 45 is wound in a range from the center portion of the relative surface of the third permanent magnet 6 to the first component member 8 to the end portion in the direction of arrow A, and the sixth winding 46 is The third permanent magnet 6 is wound in the range from the center portion of the relative surface of the third permanent magnet 6 to the first component member 8 to the end portion in the arrow B direction. The seventh winding 47 is wound in the range from the center of the relative surface of the fourth permanent magnet 7 to the first component 8 to the end in the direction of arrow A, and the eighth winding 48 is The fourth permanent magnet 7 is wound in the range from the center portion of the relative surface of the fourth permanent magnet 7 to the first component member 8 to the end portion in the arrow B direction.
[0038]
The stator 1 passes from the magnetic pole surface having the N-polarity of the first permanent magnet 4 to the magnetic pole surface having the S-polarity of the second permanent magnet 5 through the inside of the first yoke 2. The third winding 43 and the fourth winding 44 are interlinked from the magnetic pole surface having the N-pole polarity of the second permanent magnet 5, and the seventh winding 47 and the eighth winding through the space 21. The windings 48 are linked to reach a magnetic pole surface having the polarity of the S pole of the fourth permanent magnet 7, and from the magnetic pole surface of the fourth permanent magnet 7 having the polarity of the N pole to the inside of the second yoke 3. To the magnetic pole surface having the polarity of the S pole of the third permanent magnet 6, and the fifth winding 45 and the sixth winding from the magnetic pole surface of the third permanent magnet 6 having the polarity of the N pole. 46, and the first winding 41 and the second winding 42 are linked via the space 21 to reach the magnetic pole surface having the polarity of the S pole of the first permanent magnet 4. To form a magnetic path 31.
[0039]
FIG. 7 illustrates the present invention.Third embodimentIt is sectional drawing for the purpose of description of the structure.
[0040]
The first component member 8 has an S in a range from the central portion of the relative surface of the first yoke 2 having a flat plate shape to the second component member 9 of the first yoke 2 to the end portion in the direction of arrow A. It is comprised with the 1st permanent magnet 4 which makes | forms flat form to which the magnetic pole surface which has the polarity of a pole adheres.
[0041]
The second component member 9 has a flat plate-like second yoke 3 and S in the range from the center of the relative surface of the second yoke 3 to the first component member 8 to the end in the arrow B direction. It is comprised with the 4th permanent magnet 7 which makes the flat form to which the magnetic pole surface which has the polarity of a pole adheres.
[0042]
The first winding 41 is wound in a range from the center portion of the relative surface of the first permanent magnet 4 to the second component member 9 to the end portion in the direction of arrow A, and the second winding 42 is The first permanent magnet 4 is wound in a range from the center portion of the relative surface of the first permanent magnet 4 to the second component member 9 to the end portion in the arrow B direction. The seventh winding 47 is wound in the range from the center of the relative surface of the fourth permanent magnet 7 to the first component 8 to the end in the direction of arrow A, and the eighth winding 48 is The fourth permanent magnet 7 is wound in the range from the center portion of the relative surface of the fourth permanent magnet 7 to the first component member 8 to the end portion in the arrow B direction.
[0043]
The third winding 43 is wound at a position facing the seventh winding 47 on the relative surface to the second component 9 of the first yoke 2, and the fourth winding 44 is the first winding 44. The yoke 2 is wound at a position opposite to the eighth winding 48 on the surface facing the second component 9 of the yoke 2. The fifth winding 45 is wound at a position facing the first winding 41 on the relative surface of the second yoke 3 to the first component 8, and the sixth winding 46 is the second winding 46. The yoke 3 is wound at a position relative to the second winding 42 on the surface facing the first component 8 of the yoke 3.
[0044]
The stator 1 links the first winding 41 and the second winding 42 from the magnetic pole surface having the N-pole polarity of the first permanent magnet 4, and the fifth winding through the space 21. 45 and the sixth winding 46 are linked to each other, reach the surface of the second yoke 3 facing the first permanent magnet 4, pass through the inside of the second yoke 3, and the S of the fourth permanent magnet 7. The seventh winding 47 and the eighth winding 48 are linked from the magnetic pole surface having the polarity of the N pole of the fourth permanent magnet 7 through the space 21. The third winding 43 and the fourth winding 44 are linked to each other, reach the relative surface of the first yoke 2 to the fourth permanent magnet 7, pass through the inside of the first yoke 2, and A closed magnetic path 31 reaching the magnetic pole surface having the polarity of the south pole of the permanent magnet 4 is formed.
[0045]
FIG. 8 illustrates the present invention.Fourth embodimentIt is sectional drawing for the purpose of description of the structure.
[0046]
The first component member 8 has an S in a range from the central portion of the relative surface of the first yoke 2 having a flat plate shape to the second component member 9 of the first yoke 2 to the end portion in the direction of arrow A. From the center part of the relative surface to the second component member 9 of the first yoke 2 to the end part in the direction of arrow B from the flat plate-shaped first permanent magnet 4 to which the magnetic pole face having the polarity of the pole is fixed And the second permanent magnet 5 having a flat plate shape to which the magnetic pole face having the N-polarity is fixed. The first permanent magnet 4 and the second permanent magnet 5 are influenced by each other. The first yoke 2 is disposed at a predetermined distance that does not extend.
[0047]
The second component member 9 is constituted by a second yoke 3 having a flat plate shape.
[0048]
The first winding 41 is wound in a range from the center portion of the relative surface of the first permanent magnet 4 to the second component member 9 to the end portion in the direction of arrow A, and the second winding 42 is The first permanent magnet 4 is wound in a range from the center portion of the relative surface of the first permanent magnet 4 to the second component member 9 to the end portion in the arrow B direction. The third winding 43 is wound in the range from the center of the relative surface of the second permanent magnet 5 to the second component 9 to the end in the direction of arrow A, and the fourth winding 44 is The second permanent magnet 5 is wound in a range from the center portion of the relative surface to the second component member 9 to the end portion in the arrow B direction.
[0049]
The fifth winding 45 is wound at a position facing the first winding 41 on the relative surface of the second yoke 3 to the first component 8, and the sixth winding 46 is the second winding 46. The yoke 3 is wound at a position relative to the second winding 42 on the surface facing the first component 8 of the yoke 3. The seventh winding 47 is wound at a position facing the third winding 43 on the relative surface to the first component 8 of the second yoke 3, and the eighth winding 48 is the second winding 48. The yoke 3 is wound at a position relative to the fourth winding 44 on the relative surface to the first component 8 of the yoke 3.
[0050]
The stator 1 links the first winding 41 and the second winding 42 from the magnetic pole surface having the N-pole polarity of the first permanent magnet 4, and the fifth winding through the space 21. 45 and the sixth winding 46 are linked to each other, reach the relative surface of the second yoke 3 to the first permanent magnet 4, pass through the inside of the second yoke 3, and the second of the second yoke 3. From the surface facing the permanent magnet 5, the seventh winding 47 and the eighth winding 48 are linked, and the third winding 43 and the fourth winding 44 are linked via the space 21. The second permanent magnet 5 reaches the magnetic pole surface having the polarity of the S pole, passes through the first yoke 2 from the magnetic pole surface of the second permanent magnet 5 having the polarity of the N pole, and passes through the first permanent magnet 5. A closed magnetic path 31 reaching the magnetic pole surface having the polarity of the south pole of the magnet 4 is formed.
[0051]
FIG. 9 illustrates the present invention.Fifth embodimentIt is sectional drawing for the purpose of description of the structure.
[0052]
The first component member 8 has an S in a range from the central portion of the relative surface of the first yoke 2 having a flat plate shape to the second component member 9 of the first yoke 2 to the end portion in the direction of arrow A. From the center part of the relative surface to the second component member 9 of the first yoke 2 to the end part in the direction of arrow B from the flat plate-shaped first permanent magnet 4 to which the magnetic pole face having the polarity of the pole is fixed And the second permanent magnet 5 having a flat plate shape to which the magnetic pole face having the N-polarity is fixed. The first permanent magnet 4 and the second permanent magnet 5 are influenced by each other. The first yoke 2 is disposed at a predetermined distance that does not extend.
[0053]
The second component member 9 includes a flat plate-like second yoke 3 and N in the range from the center of the relative surface of the second yoke 3 to the first component member 8 to the end in the direction of arrow A. From the center part of the relative surface to the first component 8 of the second yoke 3 to the end part in the direction of arrow B from the flat plate-shaped third permanent magnet 6 to which the magnetic pole face having the polar polarity is fixed And the fourth permanent magnet 7 having a flat plate shape to which the magnetic pole surface having the polarity of the S pole is fixed, and the third permanent magnet 6 and the fourth permanent magnet 7 are influenced by each other. The second yoke 3 is disposed at a predetermined distance that does not extend.
[0054]
The first winding 41 is wound in a range from the center portion of the relative surface of the first permanent magnet 4 to the second component member 9 to the end portion in the direction of arrow A, and the second winding 42 is The first permanent magnet 4 is wound in a range from the center portion of the relative surface of the first permanent magnet 4 to the second component member 9 to the end portion in the arrow B direction. The third winding 43 is wound in the range from the center of the relative surface of the second permanent magnet 5 to the second component 9 to the end in the direction of arrow A, and the fourth winding 44 is The second permanent magnet 5 is wound in a range from the center portion of the relative surface to the second component member 9 to the end portion in the arrow B direction.
[0055]
The fifth winding 45 is wound in a range from the center portion of the relative surface of the third permanent magnet 6 to the first component member 8 to the end portion in the direction of arrow A, and the sixth winding 46 is The third permanent magnet 6 is wound in the range from the center portion of the relative surface of the third permanent magnet 6 to the first component member 8 to the end portion in the arrow B direction. The seventh winding 47 is wound in the range from the center of the relative surface of the fourth permanent magnet 7 to the first component 8 to the end in the direction of arrow A, and the eighth winding 48 is The fourth permanent magnet 7 is wound in the range from the center portion of the relative surface of the fourth permanent magnet 7 to the first component member 8 to the end portion in the arrow B direction.
[0056]
The stator 1 links the first winding 41 and the second winding 42 from the magnetic pole surface having the N-pole polarity of the first permanent magnet 4, and the fifth winding through the space 21. 45 and the sixth winding 46 are interlinked to reach the magnetic pole surface having the polarity of the south pole of the third permanent magnet 6, and from the magnetic pole surface of the third permanent magnet 6 having the polarity of the north pole, Of the fourth permanent magnet 7 to the magnetic pole surface having the polarity of the S pole, and from the magnetic pole surface of the fourth permanent magnet 7 having the polarity of the N pole, the seventh winding 47 and The eighth winding 48 is linked, the third winding 43 and the fourth winding 44 are linked via the space 21, and the magnetic pole surface having the polarity of the S pole of the second permanent magnet 5 is formed. The magnetic pole surface having the N-polarity of the second permanent magnet 5 passes through the inside of the first yoke 2 and reaches the magnetic pole surface having the S-polarity of the first permanent magnet 4. To form a magnetic path 31.
[0057]
FIG. 10 illustrates the present invention.Sixth embodimentIt is sectional drawing for the purpose of description of the structure.
[0058]
The first component member 8 has an S in a range from the center portion of the relative surface of the first yoke 2 having a flat plate shape to the second component member 9 of the first yoke 2 to the end portion in the arrow B direction. It is comprised with the 2nd permanent magnet 5 which makes the flat form to which the magnetic pole surface which has the polarity of a pole adheres.
[0059]
The second component member 9 has a flat plate-like second yoke 3 and S in a range from the center of the relative surface of the second yoke 3 to the first component member 8 to the end in the direction of arrow A. It is comprised with the 3rd permanent magnet 6 which makes the flat form to which the magnetic pole surface which has the polarity of a pole adheres.
[0060]
The second permanent magnet 5 does not affect the direction of the arrow B from the center of the first yoke 2, and the third permanent magnet 6 does not affect the direction of the arrow A from the center of the second yoke 3. They are arranged at a predetermined distance.
[0061]
The third winding 43 is wound in the range from the center of the relative surface of the second permanent magnet 5 to the second component 9 to the end in the direction of arrow A, and the fourth winding 44 is The second permanent magnet 5 is wound in a range from the center portion of the relative surface to the second component member 9 to the end portion in the arrow B direction. The fifth winding 45 is wound in a range from the center portion of the relative surface of the third permanent magnet 6 to the first component member 8 to the end portion in the direction of arrow A, and the sixth winding 46 is The third permanent magnet 6 is wound in the range from the center portion of the relative surface of the third permanent magnet 6 to the first component member 8 to the end portion in the arrow B direction.
[0062]
The first winding 41 is wound at a position facing the fifth winding 45 on the relative surface to the second component 9 of the first yoke 2, and the second winding 42 is the first winding 42. The yoke 2 is wound at a position opposite to the sixth winding 46 on the surface facing the second component 9 of the yoke 2. The seventh winding 47 is wound at a position facing the third winding 43 on the relative surface to the first component 8 of the second yoke 3, and the eighth winding 48 is the second winding 48. The yoke 3 is wound at a position relative to the fourth winding 44 on the relative surface to the first component 8 of the yoke 3.
[0063]
The stator 1 links the third winding 43 and the fourth winding 44 from the magnetic pole surface having the N-pole polarity of the second permanent magnet 5, and the seventh winding through the space 21. 47 and the eighth winding 48 are linked to each other, reach the surface of the second yoke 3 facing the second permanent magnet 5, pass through the inside of the second yoke 3, and the S of the third permanent magnet 6. From the magnetic pole surface having the polarity of the N pole of the third permanent magnet 6, the fifth winding 45 and the sixth winding 46 are linked to each other through the space 21. The first winding 41 and the second winding 42 are linked to each other, reach the relative surface of the first yoke 2 to the third permanent magnet 6, pass through the inside of the first yoke 2, and A closed magnetic path 31 reaching the magnetic pole surface having the polarity of the south pole of the permanent magnet 5 is formed.
[0064]
In the embodiment of the flat coil type linear direct current motor of the present invention shown in FIGS. 11 to 13, the stator 1 has a first component member 8 and a second component member opposed to the first component member 8 at a predetermined distance. A second flat coil 52 fixed in a range from a central portion of a relative surface of the first component member 8 to the second component member 9 to an end portion in the arrow A direction; The third flat coil 53 fixed in the range from the center of the relative surface of the component member 8 to the second component member 9 to the end in the arrow B direction, and the first configuration of the second component member 9 The fourth flat coil 54 fixed in the range from the center of the relative surface to the member 8 to the end in the direction of arrow A, and the center of the relative surface of the second component 9 to the first component 8 And a fifth flat coil 55 fixed in a range from the portion to the end in the arrow B direction.The relative surfaces of the first component member 8 and the second component member 9 constitute a space 21, and the stator 1 forms one closed magnetic path through the space 21, Two magnetic fields with different directions are formed.
[0065]
In the embodiment of the flat coil type linear direct current motor of the present invention shown in FIGS. 11 to 13, the mover 11 is composed of a first flat coil 12 having four coil sides, and the space 21 formed by the stator 1. The first coil side 13 is located in the range from the center part of the space A to the end part in the arrow A direction, and the second coil side 14 is located in the range from the center part of the space 21 to the end part in the arrow B direction, It arrange | positions at the structure which can move the inside of the space 21 freely.
[0066]
The mover 11 is connected to the first flat coil 12, the second flat coil 52, the third flat coil 53, the fourth flat coil 54, and the fifth flat coil 55 with a predetermined current in the illustrated direction. Is moved in the direction of arrow B with a predetermined thrust, and by flowing a predetermined current in a direction different from that shown in the figure, it is moved in the direction of arrow A with a predetermined thrust.
[0067]
FIG. 11 shows the present invention.Seventh embodimentIt is sectional drawing for the purpose of description of the structure.
[0068]
The first component member 8 has an S in a range from the central portion of the relative surface of the first yoke 2 having a flat plate shape to the second component member 9 of the first yoke 2 to the end portion in the direction of arrow A. From the center part of the relative surface to the second component member 9 of the first yoke 2 to the end part in the direction of arrow B from the flat plate-shaped first permanent magnet 4 to which the magnetic pole face having the polarity of the pole is fixed And a second permanent magnet 5 having a flat plate shape to which a magnetic pole face having an N-pole polarity is fixed. The first permanent magnet 4 and the second permanent magnet 5 are adjacent to each other. 1 on the yoke 2.
[0069]
The second component member 9 is constituted by a second yoke 3 having a flat plate shape.
[0070]
Each of the second flat coil 52 and the third flat coil 53 includes four coil sides, and the second flat coil 52 is formed on the surface of the first permanent magnet 4 relative to the second component 9. The first permanent coil side is located in the range from the center to the end in the direction of arrow A, and the other one coil side is located in the range from the center to the end in the direction of arrow B. The third flat coil 53 is fixed to the relative surface of the magnet 4 to the second component member 9, and the third flat coil 53 is in the direction of arrow A from the center of the relative surface of the second permanent magnet 5 to the second component member 9. Of the second permanent magnet 5 so that one coil side is located in the range to the end of the second permanent magnet 5 and the other one coil side is located in the range from the center to the end in the arrow B direction. It is fixed to the relative surface to the component 9.
[0071]
Each of the fourth flat coil 54 and the fifth flat coil 55 includes four coil sides, and the fourth flat coil 54 is a second surface of the second yoke 3 relative to the first component 8. The fifth flat coil 55 is fixed at a position opposite to the third flat coil 53 on the surface of the second yoke 3 facing the first component member 8. The
[0072]
The stator 1 interlinks the second flat coil 52 from the magnetic pole surface of the first permanent magnet 4 having the N-polarity, interlinks the fourth flat coil 54 via the space 21, The second yoke 3 reaches the relative surface to the first permanent magnet 4, passes through the inside of the second yoke 3, and from the relative surface to the second permanent magnet 5 of the second yoke 3, the fifth flattening is performed. The coil 55 is linked, the third flat coil 53 is linked via the space 21, reaches the magnetic pole surface having the S pole polarity of the second permanent magnet 5, and the N pole of the second permanent magnet 5. A closed magnetic path 31 is formed from the magnetic pole surface having the following polarity to the magnetic pole surface having the polarity of the S pole of the first permanent magnet 4 through the inside of the first yoke.
[0073]
FIG. 12 illustrates the present invention.Eighth embodimentIt is sectional drawing for the purpose of description of the structure.
[0074]
The first component member 8 has an S in a range from the central portion of the relative surface of the first yoke 2 having a flat plate shape to the second component member 9 of the first yoke 2 to the end portion in the direction of arrow A. From the center part of the relative surface to the second component member 9 of the first yoke 2 to the end part in the direction of arrow B from the flat plate-shaped first permanent magnet 4 to which the magnetic pole face having the polarity of the pole is fixed And a second permanent magnet 5 having a flat plate shape to which a magnetic pole face having an N-pole polarity is fixed. The first permanent magnet 4 and the second permanent magnet 5 are adjacent to each other. 1 on the yoke 2.
[0075]
The second component member 9 includes a flat plate-like second yoke 3 and N in the range from the center of the relative surface of the second yoke 3 to the first component member 8 to the end in the direction of arrow A. From the center part of the relative surface to the first component 8 of the second yoke 3 to the end part in the direction of arrow B from the flat plate-shaped third permanent magnet 6 to which the magnetic pole face having the polar polarity is fixed And a fourth permanent magnet 7 having a flat plate shape to which a magnetic pole surface having the polarity of the S pole is fixed, and the third permanent magnet 6 and the fourth permanent magnet 7 are adjacent to each other. 2 on the yoke 3.
[0076]
Each of the second flat coil 52 and the third flat coil 53 includes four coil sides, and the second flat coil 52 is formed on the surface of the first permanent magnet 4 relative to the second component 9. The first permanent coil side is located in the range from the center to the end in the direction of arrow A, and the other one coil side is located in the range from the center to the end in the direction of arrow B. The third flat coil 53 is fixed to the relative surface of the magnet 4 to the second component member 9, and the third flat coil 53 is in the direction of arrow A from the center of the relative surface of the second permanent magnet 5 to the second component member 9. Of the second permanent magnet 5 so that one coil side is located in the range to the end of the second permanent magnet 5 and the other one coil side is located in the range from the center to the end in the arrow B direction. On the relative surface to the component 9It is fixed.
[0077]
Each of the fourth flat coil 54 and the fifth flat coil 55 includes four coil sides, and the fourth flat coil 54 is formed on the surface of the third permanent magnet 6 relative to the first component member 8. The third permanent side is positioned such that one coil side is located in the range from the center to the end in the direction of arrow A and the other one coil side is located in the range from the center to the end in the direction of arrow B. The fifth flat coil 55 is fixed to the surface of the magnet 6 relative to the first component member 8, and the fifth flat coil 55 is in the direction of arrow A from the center of the surface of the fourth permanent magnet 7 relative to the first component member 8. The first permanent magnet 7 of the fourth permanent magnet 7 is positioned so that one coil side is located in the range up to the end of the first permanent magnet and the other one coil side is located in the range from the center to the end in the arrow B direction. It is fixed to the surface relative to the component member 8.
[0078]
The stator 1 interlinks the second flat coil 52 from the magnetic pole surface of the first permanent magnet 4 having the N-polarity, interlinks the fourth flat coil 54 via the space 21, The third permanent magnet 6 reaches the magnetic pole surface having the polarity of the S pole, passes through the second yoke 3 from the magnetic pole surface of the third permanent magnet 6 having the polarity of the N pole, and passes through the inside of the second yoke 3. The fifth flat coil 55 is linked from the magnetic pole surface of the fourth permanent magnet 7 having the N-polarity to the third flat coil via the space 21. 53 is linked to the magnetic pole surface of the second permanent magnet 5 having the polarity of the S pole, and the magnetic pole surface of the second permanent magnet 5 having the polarity of the N pole passes through the inside of the first yoke 2. Then, a closed magnetic path 31 reaching the magnetic pole surface having the polarity of the S pole of the first permanent magnet 4 is formed.
[0079]
FIG. 13 illustrates the present invention.Ninth embodimentIt is sectional drawing for the purpose of description of the structure.
[0080]
The first component member 8 has a flat plate-shaped first yoke 2 and N in a range from the center portion of the relative surface of the first yoke 2 to the second component member 9 to the end portion in the arrow A direction. It is comprised with the 1st permanent magnet 4 which makes | forms flat form to which the magnetic pole surface which has the polarity of a pole adheres.
[0081]
The second component member 9 has a flat plate-like second yoke 3 and N in the range from the center portion of the relative surface of the second yoke 3 to the first component member 8 to the end portion in the arrow B direction. It is comprised with the 4th permanent magnet 7 which makes the flat form to which the magnetic pole surface which has the polarity of a pole adheres.
[0082]
Each of the second flat coil 52 and the fifth flat coil 55 has four coil sides, and the second flat coil 52 has a relative surface to the second component member 9 of the first permanent magnet 4. The first permanent coil side is located in the range from the center to the end in the direction of arrow A, and the other one coil side is located in the range from the center to the end in the direction of arrow B. The fifth flat coil 55 is fixed to the relative surface of the magnet 4 to the second component member 9, and the fifth flat coil 55 is in the direction of arrow A from the center of the relative surface of the fourth permanent magnet 7 to the first component member 8. The first permanent magnet 7 of the fourth permanent magnet 7 is positioned so that one coil side is located in the range up to the end of the first permanent magnet and the other one coil side is located in the range from the center to the end in the arrow B direction. It is fixed to the surface relative to the component member 8.
[0083]
Each of the third flat coil 53 and the fourth flat coil 54 includes four coil sides, and the third flat coil 53 has a fifth surface relative to the second component 9 of the first yoke 2. The fourth flat coil 54 is fixed at a position opposite to the second flat coil 52 on the surface facing the first component 8 of the second yoke 3. The
[0084]
The stator 1 passes through the inside of the first yoke 2 from the magnetic pole surface having the N-pole polarity of the first permanent magnet 4, and from the relative surface to the fourth permanent magnet 7 of the first yoke 2. The third flat coil 53 is interlinked, the fifth flat coil 55 is interlinked via the space 21, and the fourth permanent magnet 7 reaches the magnetic pole surface having the polarity of the S pole. The fourth flat coil 54 is chained from the magnetic pole surface of the magnet 7 having the N-pole polarity through the inside of the second yoke 3 and from the relative surface of the second yoke 3 to the first permanent magnet 4. The second flat coil 52 is linked via the space 21 to form a closed magnetic path 31 that reaches the magnetic pole surface having the polarity of the S pole of the first permanent magnet 4.
[0085]
In the embodiment of the flat coil type linear direct current motor of the present invention shown in FIGS. 14 to 16, the stator 1 has a first component member 8 and a second component member opposed to the first component member 8 at a predetermined distance. 1st structure which comprises the range from the center part of the space 21 which each relative surface comprises the component member 9, the 1st component member 8, and the 2nd component member 9 to the edge part of the arrow A direction A set of windings composed of a first winding 41 and a second winding 42 wound around the member 8 in a row, a range from the center of the space 21 to the end in the direction of arrow B A pair of windings composed of a third winding 43 and a fourth winding 44 wound in a line around the first component member 8 constituting the structure, an arrow A from the center of the space 21 A fifth winding 45 and a second winding 45 that are wound in a line around the second component 9 that forms the range to the end in the direction. A second set of windings 46, or a second winding 9 arranged in a row around the second component 9 that forms a range from the center of the space 21 to the end in the direction of arrow B. 7 windings 47 and an eighth winding 48, which is a set of windings.The stator 1 forms one closed magnetic path through the space 21, and two magnetic fields having different directions are formed in the space 21.
[0086]
In the embodiment of the flat coil type linear direct current motor of the present invention shown in FIGS. 14 to 16, the mover 11 is composed of a first flat coil 12 having four coil sides, and the space 21 formed by the stator 1. The first coil side 13 is located in the range from the center part of the space A to the end part in the arrow A direction, and the second coil side 14 is located in the range from the center part of the space 21 to the end part in the arrow B direction, It arrange | positions at the structure which can move the inside of the space 21 freely.
[0087]
The mover 11 includes a first flat coil 12, a first winding 41, a second winding 42, a third winding 43, a fourth winding 44, a fifth winding 45, and a sixth winding. When a predetermined current is passed through the winding 46, the seventh winding 47 or the eighth winding 48 in the direction shown in the figure, it moves in the direction of the arrow B with a predetermined thrust, By flowing a current, it moves in the direction of arrow A with a predetermined thrust.
[0088]
FIG. 14 illustrates the present invention.Tenth embodimentIt is sectional drawing for the purpose of description of the structure.
[0089]
The first component member 8 has a flat plate-shaped first yoke 2 and N in a range from the center portion of the relative surface of the first yoke 2 to the second component member 9 to the end portion in the arrow A direction. From the center part of the relative surface to the second component member 9 of the first yoke 2 to the end part in the direction of arrow B from the flat plate-shaped first permanent magnet 4 to which the magnetic pole face having the polarity of the pole is fixed And a second permanent magnet 5 having a flat plate shape to which a magnetic pole surface having the polarity of the S pole is fixed. The first permanent magnet 4 and the second permanent magnet 5 are adjacent to each other. 1 on the yoke 2.
[0090]
The second component member 9 is constituted by a second yoke 3 having a flat plate shape.
[0091]
The fifth winding 45 is wound around the second yoke 3 facing the range from the center of the relative surface of the first permanent magnet 4 to the second component 9 to the end in the arrow A direction. The sixth winding 46 is wound around the second yoke 3 facing the range from the center of the relative surface of the first permanent magnet 4 to the second component 9 to the end in the arrow B direction. Is done. The seventh winding 47 is wound around the second yoke 3 facing the range from the center of the relative surface of the second permanent magnet 5 to the second component 9 to the end in the arrow A direction. The eighth winding 48 is wound around the second yoke 3 facing the range from the center of the relative surface of the second permanent magnet 5 to the second component 9 to the end in the arrow B direction. Is done.
[0092]
The stator 1 passes from the magnetic pole surface having the N-polarity of the first permanent magnet 4 to the magnetic pole surface having the S-polarity of the second permanent magnet 5 through the inside of the first yoke 2. The seventh winding 47 and the eighth winding 48 are linked via the space 21 from the magnetic pole surface having the N-pole polarity of the second permanent magnet 5, and the second permanent of the second yoke 3. From the relative surface to the first permanent magnet 4 of the second yoke 3, the fifth winding 45 and the sixth winding 46 reach the relative surface to the magnet 5 and pass through the inside of the second yoke 3. To form a closed magnetic path 31 through the space 21 to the magnetic pole surface having the polarity of the south pole of the first permanent magnet 4.
[0093]
FIG. 15 illustrates the present invention.Eleventh embodimentIt is sectional drawing for the purpose of description of the structure.
[0094]
The first component member 8 has an S in a range from the central portion of the relative surface of the first yoke 2 having a flat plate shape to the second component member 9 of the first yoke 2 to the end portion in the direction of arrow A. From the center part of the relative surface to the second component member 9 of the first yoke 2 to the end part in the direction of arrow B from the flat plate-shaped first permanent magnet 4 to which the magnetic pole face having the polarity of the pole is fixed And a second permanent magnet 5 having a flat plate shape to which a magnetic pole face having an N-pole polarity is fixed. The first permanent magnet 4 and the second permanent magnet 5 are adjacent to each other. 1 on the yoke 2.
[0095]
The second component member 9 includes a flat plate-like second yoke 3 and N in the range from the center of the relative surface of the second yoke 3 to the first component member 8 to the end in the direction of arrow A. From the center part of the relative surface to the first component 8 of the second yoke 3 to the end part in the direction of arrow B from the flat plate-shaped third permanent magnet 6 to which the magnetic pole face having the polar polarity is fixed And a fourth permanent magnet 7 having a flat plate shape to which a magnetic pole surface having the polarity of the S pole is fixed, and the third permanent magnet 6 and the fourth permanent magnet 7 are adjacent to each other. 2 on the yoke 3.
[0096]
The first winding 41 is wound in a range from the center portion of the relative surface of the first permanent magnet 4 to the second component member 9 to the end portion in the direction of arrow A, and the second winding 42 is The first permanent magnet 4 is wound in a range from the center portion of the relative surface of the first permanent magnet 4 to the second component member 9 to the end portion in the arrow B direction. The third winding 43 is wound in the range from the center of the relative surface of the second permanent magnet 5 to the second component 9 to the end in the direction of arrow A, and the fourth winding 44 is The second permanent magnet 5 is wound in a range from the center portion of the relative surface to the second component member 9 to the end portion in the arrow B direction.
[0097]
The stator 1 links the first winding 41 and the second winding 42 from the magnetic pole surface having the N-pole polarity of the first permanent magnet 4, and the third permanent magnet via the space 21. To the magnetic pole surface having the polarity of S pole of 6 and passes through the inside of the second yoke 3 from the magnetic pole surface having the polarity of N pole of the third permanent magnet 6 to the S pole of the fourth permanent magnet 7. The third winding 43 and the fourth winding 44 are linked via the space 21 from the magnetic pole surface having the polarity of the N pole of the fourth permanent magnet 7 to the magnetic pole surface having the polarity. Of the first permanent magnet 4 through the inside of the first yoke 2 from the magnetic pole surface of the second permanent magnet 5 having the polarity of the N pole. A closed magnetic path 31 reaching the magnetic pole surface having the polarity of the S pole is formed.
[0098]
FIG. 16 illustrates the present invention.12th embodimentIt is sectional drawing for the purpose of description of the structure.
[0099]
The first component member 8 has a flat plate-shaped first yoke 2 and N in a range from the center portion of the relative surface of the first yoke 2 to the second component member 9 to the end portion in the arrow A direction. It is comprised with the 1st permanent magnet 4 which makes | forms flat form to which the magnetic pole surface which has the polarity of a pole adheres.
[0100]
The second component member 9 has a flat plate-like second yoke 3 and N in the range from the center portion of the relative surface of the second yoke 3 to the first component member 8 to the end portion in the arrow B direction. It is comprised with the 4th permanent magnet 7 which makes the flat form to which the magnetic pole surface which has the polarity of a pole adheres.
[0101]
The third winding 43 is wound around the first yoke 2 facing the range from the center of the relative surface of the fourth permanent magnet 7 to the first component 8 to the end in the arrow A direction. The fourth winding 44 is wound around the first yoke 2 facing the range from the center of the relative surface of the fourth permanent magnet 7 to the first component 8 to the end in the arrow B direction. Is done. The fifth winding 45 is wound around the second yoke 3 facing the range from the center of the relative surface of the first permanent magnet 4 to the second component 9 to the end in the arrow A direction. The sixth winding 46 is wound around the second yoke 3 facing the range from the center of the relative surface of the first permanent magnet 4 to the second component 9 to the end in the arrow B direction. Is done.
[0102]
The stator 1 passes through the inside of the first yoke 2 from the magnetic pole surface having the N-pole polarity of the first permanent magnet 4, and from the relative surface to the fourth permanent magnet 7 of the first yoke 2. The third winding and the fourth winding are interlinked and reach the magnetic pole surface having the polarity of the S pole of the fourth permanent magnet 7 through the space 21, and the polarity of the N pole of the fourth permanent magnet 7. HaveFrom the pole faceThe fifth winding 45 and the sixth winding 46 are linked from the relative surface to the first permanent magnet 4 of the second yoke 3 through the inside of the second yoke 3, and the space 21 is formed. A closed magnetic path 31 reaching the magnetic pole surface having the polarity of the S pole of the first permanent magnet 4 is formed.
[0103]
The embodiment of the flat coil type linear direct current motor of the present invention shown in FIGS. 8 to 10 is arranged around the first component member 8 constituting the range from the center portion of the space 21 to the end portion in the arrow A direction. A pair of windings composed of a first winding 41 and a second winding 42 wound, and a first component constituting a range from the center of the space 21 to the end in the direction of arrow B A set of windings consisting of a third winding 43 and a fourth winding 44 that are wound in a line around 8 and constitute a range from the center of the space 21 to the end in the direction of arrow A A pair of windings composed of a fifth winding 45 and a sixth winding 46 wound around the second component 9 to be wound or arranged in the direction of arrow B from the center of the space 21 A seventh winding 47 and an eighth winding 48 that are wound in a line around the second component 9 that forms the range up to the end. Ri a pair of windings consisting, as it is capable of constituting either two mounted to.
[0104]
In the embodiment of the flat coil type linear direct current motor of the present invention shown in FIGS. 17 to 19, the stator 1 has a first component member 8 and a second component member opposed to the first component member 8 at a predetermined distance. The component member 9, the second flat coil 52 fixed to the range from the center portion of the relative surface of the first component member 8 to the second component member 9 to the end portion in the arrow A direction, the first configuration The third flat coil 53 fixed in the range from the center of the relative surface of the member 8 to the second component 9 to the end in the direction of arrow B, and the first component 8 of the second component 9 From the center of the relative surface to the first component member 8 of the fourth flat coil 54 or the second component 9 fixed in the range from the center of the relative surface to the end in the direction of arrow A The fifth flat coil 55 fixed in the range up to the end in the direction of arrow B is composed of either two. It is.The relative surfaces of the first component member 8 and the second component member 9 constitute a space 21, and the stator 1 forms one closed magnetic path through the space 21, Two magnetic fields with different directions are formed.
[0105]
In the embodiment of the flat coil type linear direct current motor of the present invention shown in FIGS. 17 to 19, the mover 11 is constituted by a first flat coil 12 having four coil sides, and a space 21 formed by the stator 1. The first coil side 13 is located in the range from the central part to the end in the arrow A direction, and the second coil side 14 is located in the range from the central part of the space 21 to the end in the arrow B direction. It is arranged in a structure that can move freely within 21.
[0106]
The mover 11 is connected to the first flat coil 12, the second flat coil 52, the third flat coil 53, the fourth flat coil 54, or the fifth flat coil 55 with a predetermined current in the illustrated direction. Is moved in the direction of arrow B with a predetermined thrust, and by flowing a predetermined current in a direction different from that shown in the figure, it is moved in the direction of arrow A with a predetermined thrust.
[0107]
FIG. 17 illustrates the present invention.13th embodimentIt is sectional drawing for the purpose of description of the structure.
[0108]
The first component member 8 has a flat plate-shaped first yoke 2 and N in a range from the center portion of the relative surface of the first yoke 2 to the second component member 9 to the end portion in the arrow A direction. From the center part of the relative surface to the second component member 9 of the first yoke 2 to the end part in the direction of arrow B from the flat plate-shaped first permanent magnet 4 to which the magnetic pole face having the polarity of the pole is fixed And a second permanent magnet 5 having a flat plate shape to which a magnetic pole surface having the polarity of the S pole is fixed. The first permanent magnet 4 and the second permanent magnet 5 are adjacent to each other. 1 on the yoke 2.
[0109]
The second component member 9 is constituted by a second yoke 3 having a flat plate shape.
[0110]
Each of the second flat coil 52 and the third flat coil 53 includes four coil sides, and the second flat coil 52 is formed on the surface of the first permanent magnet 4 relative to the second component 9. The first permanent coil side is located in the range from the center to the end in the direction of arrow A, and the other one coil side is located in the range from the center to the end in the direction of arrow B. The third flat coil 53 is fixed to the relative surface of the magnet 4 to the second component member 9, and the third flat coil 53 is in the direction of arrow A from the center of the relative surface of the second permanent magnet 5 to the second component member 9. Of the second permanent magnet 5 so that one coil side is located in the range to the end of the second permanent magnet 5 and the other one coil side is located in the range from the center to the end in the arrow B direction. It is fixed to the relative surface to the component 9.
[0111]
The stator 1 passes from the magnetic pole surface having the N-polarity of the first permanent magnet 4 to the magnetic pole surface having the S-polarity of the second permanent magnet 5 through the inside of the first yoke 2. From the magnetic pole face having the N-pole polarity of the second permanent magnet 5,Third flat coil 53Are connected to each other through the space 21 to reach the relative surface of the second yoke 3 to the second permanent magnet 5, through the inside of the second yoke 3, and the first permanent magnet of the second yoke 3. 4, the second flat coil 52 is linked via the space 21 to form a closed magnetic path 31 that reaches the magnetic pole surface having the polarity of the S pole of the first permanent magnet 4.
[0112]
FIG. 18 illustrates the present invention.14th embodimentIt is sectional drawing for the purpose of description of the structure.
[0113]
The first component member 8 has a flat plate-shaped first yoke 2 and N in a range from the center portion of the relative surface of the first yoke 2 to the second component member 9 to the end portion in the arrow A direction. From the center part of the relative surface to the second component member 9 of the first yoke 2 to the end part in the direction of arrow B from the flat plate-shaped first permanent magnet 4 to which the magnetic pole face having the polarity of the pole is fixed And a second permanent magnet 5 having a flat plate shape to which a magnetic pole surface having the polarity of the S pole is fixed. The first permanent magnet 4 and the second permanent magnet 5 are adjacent to each other. 1 on the yoke 2.
[0114]
The second component member 9 has a flat plate-like second yoke 3 and S in a range from the center of the relative surface of the second yoke 3 to the first component member 8 to the end in the direction of arrow A. From the center part of the relative surface to the first component 8 of the second yoke 3 to the end part in the direction of arrow B from the flat plate-shaped third permanent magnet 6 to which the magnetic pole face having the polar polarity is fixed And a fourth permanent magnet 7 having a flat plate shape with a magnetic pole face having an N-pole polarity fixed thereto. The third permanent magnet 6 and the fourth permanent magnet 7 are adjacent to each other. 2 on the yoke 3.
[0115]
Each of the fourth flat coil 54 and the fifth flat coil 55 includes four coil sides, and the fourth flat coil 54 is formed on the surface of the third permanent magnet 6 relative to the first component member 8. The third permanent side is positioned such that one coil side is located in the range from the center to the end in the direction of arrow A and the other one coil side is located in the range from the center to the end in the direction of arrow B. The fifth flat coil 55 is fixed to the surface of the magnet 6 relative to the first component member 8, and the fifth flat coil 55 is in the direction of arrow A from the center of the surface of the fourth permanent magnet 7 relative to the first component member 8. The first permanent magnet 7 of the fourth permanent magnet 7 is positioned so that one coil side is located in the range up to the end of the first permanent magnet and the other one coil side is located in the range from the center to the end in the arrow B direction. It is fixed to the surface relative to the component member 8.
[0116]
The stator 1 passes from the magnetic pole surface having the N-polarity of the first permanent magnet 4 to the magnetic pole surface having the S-polarity of the second permanent magnet 5 through the inside of the first yoke 2. The fifth flat coil 55 is linked via the space 21 from the magnetic pole surface having the N-pole polarity of the second permanent magnet 5 to the magnetic pole surface having the S-polarity of the fourth permanent magnet 7. The magnetic pole face having the N-polarity of the fourth permanent magnet 7 passes through the inside of the second yoke 3 to the magnetic pole face having the S-polarity of the third permanent magnet 6, and reaches the third permanent magnet. A closed magnetic path 31 from the magnetic pole surface of the magnet 6 having the N-polarity to the magnetic pole surface having the S-polarity of the first permanent magnet 4 via the space 21 via the fourth flat coil 54 is linked. Form.
[0117]
FIG. 19 illustrates the present invention.15th embodimentIt is sectional drawing for the purpose of description of the structure.
[0118]
The first component member 8 has an S in a range from the central portion of the relative surface of the first yoke 2 having a flat plate shape to the second component member 9 of the first yoke 2 to the end portion in the direction of arrow A. It is comprised with the 1st permanent magnet 4 which makes | forms flat form to which the magnetic pole surface which has the polarity of a pole adheres.
[0119]
The second component member 9 has a flat plate-like second yoke 3 and S in the range from the center of the relative surface of the second yoke 3 to the first component member 8 to the end in the arrow B direction. It is comprised with the 4th permanent magnet 7 which makes the flat form to which the magnetic pole surface which has the polarity of a pole adheres.
[0120]
Each of the third flat coil 53 and the fourth flat coil 54 includes four coil sides, and the third flat coil 53 is a surface of the fourth permanent magnet 7 relative to the first component 8. One coil side is located in the first yoke 2 that is opposite the range from the center to the end in the direction of arrow A, and the first yoke 2 that is opposite to the range from the center to the end in the direction of arrow B is The fourth flat coil 54 is fixed to the surface of the first yoke 2 facing the fourth permanent magnet 7 so that the other one coil side is located. One coil side is located in the second yoke 3 facing the range from the central part to the end in the arrow A direction of the relative surface to the component member 9, and the range from the central part to the end in the arrow B direction Of the second yoke 3 so that the other coil side is located on the second yoke 3 opposite to the first yoke 3. It is secured to the facing surfaces of the permanent magnet 4.
[0121]
The stator 1 links the fourth flat coil 54 from the magnetic pole surface having the N-polarity of the first permanent magnet 4 via the space 21, and the first permanent magnet 4 of the second yoke 3. The magnetic pole surface having the polarity of the south pole of the fourth permanent magnet 7, reaching the magnetic pole surface having the polarity of the south pole of the fourth permanent magnet 7. The third flat coil 53 is linked via the space 21 to reach the relative surface of the first yoke 2 to the fourth permanent magnet 7, passes through the inside of the first yoke 2, and passes through the first yoke 2. A closed magnetic path 31 reaching the magnetic pole surface having the polarity of the south pole of the permanent magnet 4 is formed.
[0122]
In the embodiment of the flat coil linear DC motor of the present invention shown in FIGS. 20 and 21, the stator 1 has a first component member 8 and a second component member opposed to the first component member 8 with a predetermined distance therebetween. 1st structure which comprises the range from the center part of the space 21 which each relative surface comprises the component member 9, the 1st component member 8, and the 2nd component member 9 to the edge part of the arrow A direction A set of windings composed of a first winding 41 and a second winding 42 wound around the member 8 in a row, a range from the center of the space 21 to the end in the direction of arrow B A pair of windings composed of a third winding 43 and a fourth winding 44 wound in a line around the first component member 8 constituting the structure, an arrow A from the center of the space 21 The fifth winding 45 and the second winding 45 wound in a line around the second component 9 that constitutes the range to the end in the direction. A second set of windings 46, or a second winding 9 arranged in a row around the second component 9 that forms a range from the center of the space 21 to the end in the direction of arrow B. One or three of a set of windings consisting of seven windings 47 and an eighth winding 48 and the central portion of the first member 8 relative to the second member 9 The range from the center part of the relative surface to the 2nd component member 9 of the 2nd flat coil 52 fixed to the range to the edge part of the arrow A direction to the 2nd component member 9 to the edge part of the arrow B direction A third flat coil 53 fixed to the first structural member 8 and a fourth flat coil fixed to a range from the center of the relative surface of the second structural member 9 to the first structural member 8 to the end in the arrow A direction. 54, or fixed in the range from the center of the relative surface of the second component 9 to the first component 8 to the end in the direction of arrow B The fifth flat coil 55, constituted by a either one or three.
[0123]
Incidentally, a set of windings composed of the first winding 41 and the second winding 42, a set of windings composed of the third winding 43 and the fourth winding 44, and a fifth winding 45. And a sixth winding 46, or a seventh winding 47 and an eighth winding 48, a second flat coil 42, and a third flat coil. 43, the fourth flat coil 44 or the fifth flat coil 55 are attached to the first component member 8 or the second component member 9 so that the total of each of them is two or four.The stator 1 forms one closed magnetic path through the space 21, and two magnetic fields having different directions are formed in the space 21.
[0124]
In the embodiment of the flat coil type linear direct current motor of the present invention shown in FIGS. 20 and 21, the mover 11 is constituted by a first flat coil 12 composed of four coil sides, and the space 21 defined by the stator 1 is formed. The first coil side 13 is located in the range from the central part to the end in the arrow A direction, and the second coil side 14 is located in the range from the central part of the space 21 to the end in the arrow B direction. It is arranged in a structure that can move freely within 21.
[0125]
The mover 11 includes a first flat coil 12, a first winding 41, a second winding 42, a third winding 43, a fourth winding 44, a fifth winding 45, and a sixth winding. The winding 46, the seventh winding 47 or the eighth winding 48, the second flat coil 52, the third flat coil 53, the fourth flat coil 54 or the fifth flat coil 55, It moves in the direction of arrow B with a predetermined thrust by flowing a predetermined current in the direction shown in the figure, and moves in the direction of arrow A with a predetermined thrust by flowing a predetermined current in a direction different from that shown in the figure.
[0126]
FIG. 20 illustrates the present invention.Sixteenth embodimentIt is sectional drawing for the purpose of description of the structure.
[0127]
The first component member 8 has an S in a range from the central portion of the relative surface of the first yoke 2 having a flat plate shape to the second component member 9 of the first yoke 2 to the end portion in the direction of arrow A. From the center part of the relative surface to the second component member 9 of the first yoke 2 to the end part in the direction of arrow B from the flat plate-shaped first permanent magnet 4 to which the magnetic pole face having the polarity of the pole is fixed And a second permanent magnet 5 having a flat plate shape to which a magnetic pole face having an N-pole polarity is fixed. The first permanent magnet 4 and the second permanent magnet 5 are adjacent to each other. 1 on the yoke 2.
[0128]
The second component member 9 is constituted by a second yoke 3 having a flat plate shape.
[0129]
The fifth winding 45 is wound around the second yoke 3 facing the range from the center of the relative surface of the first permanent magnet 4 to the second component 9 to the end in the arrow A direction. The sixth winding 46 is wound around the second yoke 3 facing the range from the center of the relative surface of the first permanent magnet 4 to the second component 9 to the end in the arrow B direction. Is done. The seventh winding 47 is wound around the second yoke 3 facing the range from the center of the relative surface of the second permanent magnet 5 to the second component 9 to the end in the arrow A direction. The eighth winding 48 is wound around the second yoke 3 facing the range from the center of the relative surface of the second permanent magnet 5 to the second component 9 to the end in the arrow B direction. Is done.
[0130]
Each of the second flat coil 52 and the third flat coil 53 includes four coil sides, and the second flat coil 52 is formed on the surface of the first permanent magnet 4 relative to the second component 9. The first permanent coil side is located in the range from the center to the end in the direction of arrow A, and the other one coil side is located in the range from the center to the end in the direction of arrow B. The third flat coil 53 is fixed to the relative surface of the magnet 4 to the second component member 9, and the third flat coil 53 is in the direction of arrow A from the center of the relative surface of the second permanent magnet 5 to the second component member 9. Of the second permanent magnet 5 so that one coil side is located in the range to the end of the second permanent magnet 5 and the other one coil side is located in the range from the center to the end in the arrow B direction. It is fixed to the relative surface to the component 9.
[0131]
The stator 1 is formed from a magnetic pole face having an N-pole polarity of the first permanent magnet 4.Second flat coil 52Are interlinked with the fifth winding 45 and the sixth winding 46 through the space 21, reaching the surface of the second yoke 3 relative to the first permanent magnet 4, and the second winding 3. It passes through the inside of the yoke 3, reaches the relative surface of the second yoke 3 to the second permanent magnet 5, links the seventh winding 47 and the eighth winding 48, and passes through the space 21 to 3 of the second permanent magnet 5 to the magnetic pole surface having the polarity of the S pole, and from the magnetic pole surface of the second permanent magnet 5 having the polarity of the N pole to the first yoke 2. The closed magnetic path 31 is formed so as to reach the magnetic pole face having the polarity of the south pole of the first permanent magnet 4.
[0132]
FIG.Seventeenth embodimentIt is sectional drawing for the purpose of description of the structure.
[0133]
The first component member 8 has an S in a range from the central portion of the relative surface of the first yoke 2 having a flat plate shape to the second component member 9 of the first yoke 2 to the end portion in the direction of arrow A. From the center part of the relative surface to the second component member 9 of the first yoke 2 to the end part in the direction of arrow B from the flat plate-shaped first permanent magnet 4 to which the magnetic pole face having the polarity of the pole is fixed And a second permanent magnet 5 having a flat plate shape to which a magnetic pole face having an N-pole polarity is fixed. The first permanent magnet 4 and the second permanent magnet 5 are adjacent to each other. 1 on the yoke 2.
[0134]
The second component member 9 is constituted by a second yoke 3 having a flat plate shape.
[0135]
The first winding 41 is wound in a range from the center portion of the relative surface of the first permanent magnet 4 to the second component member 9 to the end portion in the direction of arrow A, and the second winding 42 is The first permanent magnet 4 is wound in a range from the center portion of the relative surface of the first permanent magnet 4 to the second component member 9 to the end portion in the arrow B direction.
[0136]
The fifth flat coil 55 includes four coil sides, and the second surface of the second permanent magnet 5 relative to the second component member 9 is opposed to the range from the center to the end in the arrow A direction. The second yoke 3 so that one coil side is positioned on the second yoke 3 and the other one coil side is positioned on the second yoke 3 facing the range from the center to the end in the arrow B direction. 3 is fixed to the surface facing the second permanent magnet 5.
[0137]
The stator 1 links the first winding 41 and the second winding 42 from the magnetic pole surface having the N-pole polarity of the first permanent magnet 4, and the second yoke 3 through the space 21. To the first permanent magnet 4, through the inside of the second yoke 3, to the surface of the second yoke 3 relative to the second permanent magnet 5, and the fifth flat coil 55. The magnetic pole surface having the polarity of the south pole of the second permanent magnet 5 is linked via the space 21, and from the magnetic pole surface of the second permanent magnet 5 having the polarity of the north pole, A closed magnetic path 31 is formed that passes through the interior and reaches the magnetic pole surface having the polarity of the south pole of the first permanent magnet 4.
[0138]
As shown in FIG. 6, FIG. 7, FIG. 11, FIG. 12, and FIG.The embodiment of the flat coil type linear direct current motor of the present invention comprises a set of windings composed of a first winding 41 and a second winding 42, a third winding 43 and a fourth winding 44. A set of windings, a set of windings consisting of a fifth winding 45 and a sixth winding 46, or a set of windings consisting of a seventh winding 47 and an eighth winding 48; The second flat coil 42, the third flat coil 43, the fourth flat coil 44, or the fifth flat coil 55, one to three so that the total of each is two or four. It can be installed and configured.
[0139]
FIG. 22 is a magnetic field distribution diagram for the purpose of explaining the operating principle of the flat coil linear DC motor of the present invention shown in FIGS. 5 to 7 and FIGS. 11 to 21.
[0140]
In the flat coil type linear direct current motor of the present invention shown in FIG. 5 to FIG. 7 and FIG. 11 to FIG. 21, the first permanent magnet 4, the second permanent magnet 5, the third permanent magnet 6 or the fourth permanent magnet. The magnetic field formed in the space 21 by the permanent magnet 7 is generated by the magnetic pole surfaces having different polarities of the first permanent magnet 4, the second permanent magnet 5, the third permanent magnet 6, or the fourth permanent magnet 7. Adjacent ranges or pole faces having the same polarity decrease in opposite ranges.
[0141]
That is, in the flat coil type linear direct current motor of the present invention shown in FIGS. 5 to 7 and FIGS. 11 to 21, the magnetic field formed in the space 21 formed by the stator 1 is the end in the direction of arrow A. From the end in the direction of arrow B toward the center, and decreases at a predetermined rate.
[0142]
Further, when a predetermined current is passed through the first flat coil 12, the magnetic field formed in the space 21 is affected by the magnetic field formed around the first coil side 13 and the second coil side 14. As the mover 11 moves, it decreases at a predetermined rate.
[0143]
The bending line A causes a predetermined current to flow through the first flat coil 12 constituting the movable element 11 of the flat coil type linear direct current motor of the present invention, and the movable element 11 moves through the space 21 from the end in the arrow A direction. When moving to the end in the B direction, the distribution of the magnetic field formed in the range of the space 21 where the first coil side 13 is located, or the magnetic field formed in the range of the space 21 where the second coil side 14 is located. The distribution of.
[0144]
The bending line A indicates a predetermined ratio of the magnetic field from Ha [A / m] to Hb [A / m] when the mover 11 moves from the end in the arrow A direction to xc [mm] (1/2 stroke). When the mover 11 moves from xc [mm] (1/2 stroke) to the end in the direction of arrow B, the magnetic field increases from Hb [A / m] to Hc [A / m] at a predetermined rate. A state of decreasing distribution is shown.
[0145]
The bending line A causes a current to be applied to the mover 11 of the conventional flat coil linear DC motor shown in FIG. 1 to give a thrust shown by the curve C in the thrust characteristic diagram shown in FIG. 3, and the mover 11 has a predetermined thrust. When moving from the end in the arrow A direction to the end in the arrow B direction, this corresponds to the distribution of the magnetic field formed in the space 21.
[0146]
The bending line B includes a set of windings including a first winding 41 and a second winding 42, a set of windings including a third winding 43 and a fourth winding 44, a fifth winding A set of windings consisting of a winding 45 and a sixth winding 46, a set of windings consisting of a seventh winding 47 and an eighth winding 48, a second flat coil 52, a third flat The distribution of a magnetic field formed in the space 21 formed by the stator 1 when a predetermined current is passed through the coil 53, the fourth flat coil 54, or the fifth flat coil 55 in the direction shown in the drawing is shown.
[0147]
Bending line B is the first winding 41, the third winding 43, the fifth winding 45, the seventh winding 47, the coil side constituting the arrow A direction side of the second flat coil 52, The coil side constituting the arrow A direction side of the third flat coil 53, the coil side constituting the arrow A direction side of the fourth flat coil 54, or the coil side constituting the arrow A direction side of the fifth flat coil 53 And the second winding 42, the fourth winding 44, the sixth winding 46, the eighth winding 48, and the second flat coil 52 in the direction of the arrow B. The coil side constituting the arrow B direction side of the third flat coil 53, the coil side constituting the arrow B direction side of the fourth flat coil 54, or the arrow B direction side of the fifth flat coil 53. This is a combination of the magnetic field formed around the coil side to be configured.
[0148]
The bending line B is a predetermined ratio from the Hd [A / m] to -Hd [A / m] in the range from the end of the space 21 in the arrow A direction to xc [mm] (1/2 stroke). It is distributed by decreasing at xc [mm] (1/2 stroke) of the space 21Arrow B directionA state in which the magnetic field increases and is distributed at a predetermined rate from -Hd [A / m] to Hd [A / m] is shown in the range up to the end of the line.
[0149]
The bending line C indicates the distribution of the magnetic field formed in the space 21 involved in the generation of thrust of the flat coil linear DC motor of the present invention, and is a combination of the bending line A and the bending line B.
[0150]
The bend line C is uniformly distributed in He [A / m] when the mover 11 moves from the end in the direction of arrow A to xc [mm] (1/2 stroke). When X is moved from xc [mm] (1/2 stroke) to the end in the direction of arrow B, the magnetic field decreases and is distributed at a predetermined rate from He [A / m] to Hf [A / m]. Show.
[0151]
Similarly, the distribution of the magnetic field formed in the space 21 when the mover 11 moves from the end in the arrow B direction to the end in the arrow A direction is also expressed by the bend line A, the bend line B, and the bend line C. Indicated.
[0152]
FIG. 23 is a magnetic field distribution diagram for the purpose of explaining the operating principle of the flat coil linear DC motor of the present invention shown in FIGS.
[0153]
In the flat coil type linear direct current motor of the present invention shown in FIGS. 8 to 10, when a predetermined current is passed through the first flat coil 12, it is formed around the first coil side 13 and the second coil side 14. Due to the influence of the magnetic field, the magnetic field formed in the space 21 decreases at a predetermined rate as the mover 11 moves.
[0154]
The straight line A causes a predetermined current to flow through the first flat coil 12 constituting the mover 11 of the flat coil type linear DC motor of the present invention, and the mover 11 passes through the space 21 from the end in the arrow A direction to the arrow B. When moving to the end of the direction, the distribution of the magnetic field formed in the range of the space 21 where the first coil side 13 is located or the magnetic field formed in the range of the space 21 where the second coil side 14 is located Show the distribution.
[0155]
The straight line A is distributed with the magnetic field decreasing at a predetermined rate from Ha [A / m] to Hb [A / m] when the mover 11 moves from the end in the arrow A direction to the end in the arrow B direction. Indicates the state to be performed.
[0156]
A straight line A causes a current to be applied to the mover 11 of the conventional flat coil type linear DC motor shown in FIG. 2 to give a thrust shown by a curve C in the thrust characteristic diagram shown in FIG. When moving from the end portion in the A direction to the end portion in the arrow B direction, this corresponds to the distribution of the magnetic field formed in the space 21.
[0157]
The straight line B includes a set of windings including a first winding 41 and a second winding 42, a set of windings including a third winding 43 and a fourth winding 44, and a fifth winding. A predetermined current is applied to the set of windings 45 and the sixth winding 46 and the set of windings 47 and 48 of the seventh winding 47 and the eighth winding 48 in the illustrated direction. 3 shows the distribution of the magnetic field formed in the space 21 formed by the stator 1 when flowing, and the first winding 41, the third winding 43, the fifth winding 45 and the seventh winding 47. , And the magnetic field formed around the second winding 42, the fourth winding 44, the sixth winding 46, and the eighth winding 48. .
[0158]
The straight line B is distributed in a range from the end of the space 21 in the direction of arrow A to the end of the direction of arrow B, with the magnetic field increasing at a predetermined rate from −Hd [A / m] to Hd [A / m]. Indicates the state to be performed.
[0159]
A straight line C shows the distribution of the magnetic field formed in the space 21 involved in the generation of thrust of the flat coil type linear direct current motor of the present invention. The straight line A and the straight line B are combined. When moving from the end in the direction of arrow A to the end in the direction of arrow B, the magnetic field is uniformly distributed at He [A / m].
[0160]
Similarly, the distribution of the magnetic field formed in the space 21 when the mover 11 moves from the end in the arrow B direction to the end in the arrow A direction is also indicated by a straight line A, a straight line B, and a straight line C.
[0161]
A set of a first winding 41 and a second winding 42 is provided on the first component member 8 and the second component member 9 of the flat coil type linear direct current motor of the present invention shown in FIGS. A winding, a set of windings consisting of a third winding 43 and a fourth winding 44, a set of windings consisting of a fifth winding 45 and a sixth winding 46, or a seventh winding The magnetic field distribution diagram for the purpose of explaining the operating principle of the flat coil type linear direct current motor of the present invention constituted by mounting either one of two sets of windings consisting of the wire 47 and the eighth winding 48 is as follows. FIG. 23 shows a magnetic field distribution diagram for the purpose of explaining the operating principle of the flat coil type linear DC motor of the present invention shown in FIGS.
[0162]
FIG. 24 is a thrust characteristic diagram of the flat coil type linear DC motor of the present invention shown in FIGS. 5 to 7 and FIGS. 11 to 21.
[0163]
A curved line A indicates that a predetermined current flows through the first flat coil 12 constituting the movable element 11 of the flat coil type linear DC motor of the present invention in the direction shown in the figure, and the movable element 11 ends in the space 21 in the direction of the arrow A. When moving from the end to the end in the arrow B direction, or a predetermined current is passed through the first flat coil 12 in a direction different from that shown in the figure, the mover 11 moves in the space 21 from the end in the arrow B direction to the arrow A direction. FIG. 3 shows the thrust characteristics when moving to the end of the motor, and corresponds to the curve C in the thrust characteristics diagram of the conventional flat coil linear DC motor shown in FIG.
[0164]
A curve B indicates a direction in which the predetermined current flows through the first flat coil 12 constituting the mover 11 of the flat coil type linear direct current motor of the present invention in the direction shown in the figure and the various windings constituting the stator 1 in the direction shown in the figure. When the movable element 11 moves in the space 21 from the end in the arrow A direction to the end in the arrow B direction, or in the direction different from that shown in the drawing, the first flat coil 12 is supplied with a predetermined current. A predetermined current is passed through the various windings constituting the stator 1 in a direction different from that shown in the figure, and the thrust when the mover 11 moves in the space 21 from the end in the arrow B direction to the end in the arrow A direction. Show properties.
[0165]
Curve B moves when the mover 11 moves from the end in the arrow A direction to the end in the arrow B direction, or when the mover 11 moves from the end in the arrow B direction to the end in the arrow A direction. When the thrust of 4.5 × Fa [N] acts uniformly on the child 11 and the mover 11 reaches the vicinity of the end in the arrow B direction, or the mover 11Arrow A directionThis shows a state in which a thrust that decreases from 4.5 × Fa [N] to 4 × Fa [N] is applied to the mover 11 when reaching the vicinity of the end portion.
[0166]
In the flat coil type linear direct current motor of the present invention shown in FIGS. 5 to 7, FIGS. 14 to 16, and FIGS. 20 and 21, the movable element 11 extends from the end in the arrow A direction to the end in the arrow B direction. When moving to the second winding 42, the fourth winding 44, the sixth winding 46 or the eighth winding 48, the first winding 41 and the third winding 43 By increasing the current flowing through the fifth winding 45 or the seventh winding 47, the thrust characteristic shown by the curve B in FIG. 24 can be expressed as a straight line having no variation with respect to the entire stroke. It becomes.
[0167]
Further, when the mover 11 moves from the end in the arrow B direction to the end in the arrow A direction, the first winding 41, the third winding 43, the fifth winding 45, or the seventh winding. By increasing the current flowing through the second winding 42, the fourth winding 44, the sixth winding 46, or the eighth winding 48, the current flowing through the second winding 42, the curve B in FIG. The thrust characteristics shown can be expressed as a straight line with no variation over the entire stroke.
[0169]
FIG. 25 is a thrust characteristic diagram of the flat coil linear DC motor of the present invention shown in FIGS.
[0170]
A curved line A indicates that a predetermined current flows through the first flat coil 12 constituting the movable element 11 of the flat coil type linear DC motor of the present invention in the direction shown in the figure, and the movable element 11 passes through the space 21 in the direction of the arrow A. When moving from the end to the end in the arrow B direction, or a predetermined current is passed through the first flat coil 12 in a direction different from that shown in the figure, the mover 11 moves in the space 21 from the end in the arrow B direction to the arrow A direction. FIG. 4 shows the thrust characteristics when moving to the end of the motor, and corresponds to the curve C in the thrust characteristics diagram of the conventional flat coil linear DC motor shown in FIG.
[0171]
Straight line BThe predetermined current is supplied to the first flat coil 12 constituting the movable element 11 of the flat coil type linear direct current motor of the present invention in the direction shown in the figure, and the various windings constituting the stator 1 are prescribed in the direction shown in the figure. When the mover 11 moves in the space 21 from the end in the direction of arrow A to the end in the direction of arrow B, or a predetermined current is passed through the first flat coil 12 in a direction different from that shown in the figure, Thrust characteristics when a predetermined current is supplied to various windings constituting the stator 1 in a direction different from the illustrated direction and the mover 11 moves in the space 21 from the end in the arrow B direction to the end in the arrow A direction. Show.
[0172]
Line B isWhen the mover 11 moves from the end in the arrow A direction to the end in the arrow B direction, or when the mover 11 moves from the end in the arrow B direction to the end in the arrow A direction, A state in which a thrust of 4.2 × Fa [N] acts uniformly is shown.
[0173]
A set of a first winding 41 and a second winding 42 is provided on the first component member 8 and the second component member 9 of the flat coil type linear direct current motor of the present invention shown in FIGS. A winding, a set of windings consisting of a third winding 43 and a fourth winding 44, a set of windings consisting of a fifth winding 45 and a sixth winding 46, or a seventh winding FIGS. 8 to 10 show thrust characteristic diagrams of the flat coil type linear direct current motor of the present invention constructed by mounting either one of two sets of windings consisting of the wire 47 and the eighth winding 48. FIG. 25 shows the thrust characteristic diagram of the flat coil type linear direct current motor of the present invention.
[0174]
The flat coil type linear direct current motor of the present invention shown in FIGS. 5 to 13 focuses on the reduction of the thrust fluctuation and the improvement of the thrust balance acting on the mover 11. For the purpose of pricing, the structure shown in FIGS.
[0176]
Generally, the flat coil type linear direct current motor of the present invention has a winding specification such as the winding resistance and the number of turns of the first winding 41 to the eighth winding 48 constituting the stator, or the second flat coil 52. Further, the winding specifications such as the winding resistance and the number of turns of the fifth flat coil 55 are configured in the same manner and connected to each other in parallel to be fixed to the first flat coil 12 constituting the mover 11. By connecting various windings constituting the child 11 in series or in parallel and supplying electric power from the same power source, servo operation is facilitated and the cost of the servo control circuit can be reduced.
[0177]
The purpose of the flat coil type linear DC motor of the present invention is to realize both the large thrust of the conventional flat coil type linear DC motor and the reduction of the thrust fluctuation with respect to the entire stroke. By changing the winding specifications or the magnitude of the flowing current, it is possible to easily set the thrust characteristics according to the purpose of use.
[0178]
In the flat coil type linear direct current motor of the present invention, the first yoke 2 and the second yoke 3 are made of a metal having excellent magnetic properties such as electromagnetic soft iron, structural rolled steel or carbon steel, and the stator 11. The various windings that make up are constructed by winding a predetermined number of strands around the winding frame, but they are composed of self-bonding wires and do not require a winding frame to reduce cost, size, and weight. It becomes.
[0179]
In general, a conventional flat coil type linear direct current motor has a thrust without pulsation, a thrust with less fluctuation, a lightweight mover, excellent responsiveness and excellent controllability, and is external to a computer such as an HDD device or an optical disk device. Used as a drive source for the carriage of the storage device, the stator 1 and the mover 11 are configured in a fan shape, and thrust is applied to the carriage as an arc motion, increasing the acting force on the carriage, increasing the stroke length, and reducing the size. And weight reduction is achieved.
[0180]
However, for the purpose of increasing the thrust, it is used in the range of the thrust characteristic shown by the curve B in the thrust characteristic diagram of FIG. 3, such as a decrease in thrust at start-up, a decrease in thrust during full stroke movement, and a decrease in effective stroke. It has a problem.
[0181]
According to the flat coil type linear DC motor of the present invention, it is possible to increase the thrust by increasing the current without increasing the thrust fluctuation, and it is possible to provide a flat coil type linear DC motor having a large thrust with little thrust fluctuation. Become.
[0182]
【The invention's effect】
As described above, the flat coil type linear direct current motor of the present invention can realize both the large thrust of the conventional flat coil type linear direct current motor and the reduction of thrust fluctuation with respect to the entire stroke. The increase in thrust is achieved by increasing the current of the flat coil 12 constituting the mover 11. With the increase in current, the stator 1 can be reduced in size, weight, and cost. It is possible to reduce the size and weight, and the stroke is increased as the mover 11 is reduced in size, and the responsiveness is improved as the mover 11 is reduced in weight. The reduction in thrust fluctuation with respect to the entire stroke has the effect that the stator 1 can be reduced in size, weight, and cost, and that a longer stroke can be achieved as the thrust fluctuation decreases.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a conventional flat coil linear DC motor.
FIG. 2 is a sectional view of a conventional flat coil linear DC motor.
FIG. 3 is a thrust characteristic diagram of the conventional flat coil linear DC motor shown in FIG.
4 is a thrust characteristic diagram of the conventional flat coil type linear DC motor shown in FIG. 2. FIG.
FIG. 5 is a cross-sectional view of the first embodiment of the flat coil linear DC motor of the present invention.
FIG. 6 is a cross-sectional view of a second embodiment of the flat coil linear DC motor of the present invention.
FIG. 7 is a cross-sectional view of a third embodiment of the flat coil linear DC motor of the present invention.
FIG. 8 is a cross-sectional view of a fourth embodiment of the flat coil linear DC motor of the present invention.
FIG. 9 is a cross-sectional view of a fifth embodiment of the flat coil linear DC motor of the present invention.
FIG. 10 is a sectional view of a sixth embodiment of the flat coil linear DC motor of the present invention.
FIG. 11 is a sectional view of a seventh embodiment of the flat coil linear DC motor of the present invention.
FIG. 12 is a sectional view of an eighth embodiment of the flat coil linear DC motor of the present invention.
FIG. 13 is a cross-sectional view of a ninth embodiment of the flat coil linear DC motor of the present invention.
FIG. 14 is a sectional view of a tenth embodiment of the flat coil linear DC motor of the present invention.
FIG. 15 is a sectional view of an eleventh embodiment of the flat coil linear DC motor of the present invention.
FIG. 16 is a sectional view of a twelfth embodiment of the flat coil linear DC motor of the present invention.
FIG. 17 is a sectional view of a thirteenth embodiment of the flat coil linear DC motor of the present invention.
FIG. 18 is a sectional view of a fourteenth embodiment of the flat coil linear DC motor of the present invention.
FIG. 19 is a sectional view of a fifteenth embodiment of the flat coil linear DC motor of the present invention.
FIG. 20 is a sectional view of a sixteenth embodiment of the flat coil linear DC motor of the present invention.
FIG. 21 is a cross-sectional view of a seventeenth embodiment of the flat coil linear DC motor of the present invention.
FIG. 22 is a magnetic field distribution diagram of the flat coil linear DC motor of the present invention.
FIG. 23 is a magnetic field distribution diagram of the flat coil linear DC motor of the present invention.
FIG. 24 is a thrust characteristic diagram of the flat coil linear DC motor of the present invention.
FIG. 25 is a thrust characteristic diagram of the flat coil linear DC motor of the present invention.
[Explanation of symbols]
1 Stator
2 First yoke
3 Second yoke
4 First permanent magnet
5 Second permanent magnet
6 Third permanent magnet
7 Fourth permanent magnet
8 First component
9 Second component
11 Mover
12 First flat coil
13 First coil side
14 Second coil side
21 space
31 Closed magnetic circuit
41 First winding
42 Second winding
43 Third winding
44 Fourth winding
45 Fifth winding
46 6th winding
47 7th winding
48 8th winding
52 second flat coil
53 Third flat coil
54 Fourth flat coil
55 Fifth flat coil