JP3692668B2 - Anti-vibration rubber composition - Google Patents

Anti-vibration rubber composition Download PDF

Info

Publication number
JP3692668B2
JP3692668B2 JP32384596A JP32384596A JP3692668B2 JP 3692668 B2 JP3692668 B2 JP 3692668B2 JP 32384596 A JP32384596 A JP 32384596A JP 32384596 A JP32384596 A JP 32384596A JP 3692668 B2 JP3692668 B2 JP 3692668B2
Authority
JP
Japan
Prior art keywords
rubber
compound
vibration
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32384596A
Other languages
Japanese (ja)
Other versions
JPH10158433A (en
Inventor
寛也 小神
則夫 箕内
由貴 川口
富博 崎
誠 仁木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP32384596A priority Critical patent/JP3692668B2/en
Publication of JPH10158433A publication Critical patent/JPH10158433A/en
Application granted granted Critical
Publication of JP3692668B2 publication Critical patent/JP3692668B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用エンジンマウント等の防振ゴムに用いるための組成物に関する。特には、天然ゴムその他ジエン系ゴムの防振ゴム組成物に関する。
【0002】
【従来の技術】
自動車や車両の振動を吸収し騒音を防止するため、エンジンマウント等のマウント、トーショナルダンパー等のダンパー、及び、各種ブッシュに防振ゴムが用いられる。
【0003】
防振ゴムを組成するゴム高分子成分としては、防振性能と繰り返し変形に対する抵抗性とを備えたものである天然ゴム等のジエン系ゴムが一般に用いられる。通常、天然ゴム単独、または、天然ゴムを主体とした他のゴムとのゴムブレンドに対して適当な充填材、油剤等が配合され成形される。
【0004】
これらジエン系ゴムは熱劣化に対する抵抗性が元来高くないため、防振ゴムに用いるためには熱安定剤が添加される。特に、エンジンマウントといった自動車用防振ゴムは、加熱を受け続ける厳しい条件で使用され、長期にわたる耐久性とその信頼性が要求される。そのため、熱安定剤として特に適した化合物として、N−フェニル−N'−イソプロピル−パラフェニレンジアミン等の芳香族第2級アミン、又は、2−,2−,4−トリメチル−1,2−ジヒドロキノリン等のアミン−ケトン系化合物が添加される。
【0005】
【発明が解決しようとする課題】
近年、自動車メーカー間の性能についての競争が激化するに伴い、上記熱安定剤を配合した防振ゴム組成物では、年々厳しさを増す耐熱耐久性能の要求に必ずしも十分に答えることができなかった。
【0006】
特開平3−146537においては、2−メルカプトベンゾイミダゾールを一般的なアミン系熱安定剤と併用することが提案され、これにより熱安定性能を大幅に向上し得ることが示されている。
【0007】
しかしながら、2−メルカプトベンゾイミダゾールをジエン系ゴム材料に添加した場合には、スコーチ安定性が極端に悪化するため工業的な利用は困難であり、さらに、加熱下での使用後における圧縮永久変形(へたり)が極端に大きいという問題があった。
【0008】
本願発明は、上記問題点に鑑み、耐熱安定性に優れるとともに、スコーチ安定性に優れ圧縮永久変形の小さい防振ゴムを与える組成物を提供する。
【0009】
なお、本明細書において熱劣化及び熱安定剤の用語は、それぞれ熱によって促進される酸化劣化及びそれに対する安定剤を含むものとする。
【0010】
【課題を解決するための手段】
請求項1記載の防振ゴム組成物においては、下記(1)〜(3)の特徴を備える。
【0011】
(1)ゴム高分子成分がジエン系ゴムであり、
(2)下記一般式(I)で表される化合物(A)と下記化学式(II)で表される化合物(B)と下記化学式(III)で表される化合物(C)とを含み、
(3)ジエン系ゴム100重量部に対する前記各化合物(A)〜(C)の添加重量部a、b及びcが次式(i)〜(ii)を満たす。
【0012】
−10≦a+b−2c≦10 (i)
a、b、c≧0.3 (ii)
【化2】

Figure 0003692668
上記構成により、耐熱安定性に優れるとともに、スコーチ安定性及び成形品生産性に優れ圧縮永久変形の小さい防振ゴムを提供する。
【0013】
請求項2記載の防振ゴム組成物においては、請求項1記載の防振ゴム組成物において、前記ジエン系ゴムが、天然ゴム、又は、天然ゴムを50重量%以上含むゴムブレンドであることを特徴とする。
【0014】
【発明の実施の形態】
本発明の防振ゴム組成物に用いるゴム高分子成分はジエン系ゴムである。
【0015】
ジエン系ゴムとしては、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)といった一般的なもの、及び、これらのブレンドのいずれも使用可能である。好ましくは、天然ゴム単独、または、天然ゴムを主体とした他のジエン系ゴムとのゴムブレンドである。ゴムブレンドとしては、例えば天然ゴムとブタジエンゴムとを80/20の重量比で配合したものが好ましい。
【0016】
本発明の防振ゴム組成物に用いる熱安定剤化合物は、下記一般式(I)で表される化合物(A)(2−メルカプトベンゾイミダゾールの亜鉛塩、又はそのメチル化誘導体)と、下記化学式(II)で表される化合物(B)(4,4’−ビス(α,α’−ジメチルベンジル)ジフェニルアミン)と、下記化学式(III)で表される化合物(C)(N−tert−ブチル−ジ−(2−ベンソチアゾールスルフェンアミド))である。
【0017】
【化3】
Figure 0003692668
前記各化合物(A)〜(C)は、ゴム高分子成分100重量部すなわちジエン系ゴム100重量部に対する、添加重量部a、b及びcが次式(i)〜(ii)を満たす。
【0018】
−10≦a+b−2c≦10 (i)
a、b、c≧0.3 (ii)
すなわち、ゴム高分子成分100重量部に対する化合物(A)と化合物(B)との合計添加重量部から化合物(C)の添加重量部の2倍を差し引いた値(a+b−2c)が−10〜10であり、前記各化合物(A)〜(C)の添加量(a、b、c)は少なくとも0.3重量部である。a+b−2cが−10未満であると加硫に必要な時間が長く成りすぎて生産性が劣り、a+b−2cが10を越えるとムーニースコーチ時間が短く成りすぎて加工性に難がある。a、bのいずれか一方でも0.3重量部未満である場合には熱安定効果が不十分であり、cが0.3重量部未満の場合には、ムーニースコーチ時間が短くなり加工性に劣る。
【0019】
(試験方法)
<混練>
表面温度50℃に調整されたミキシングロールに天然ゴムを巻き付け、このゴム材料100重量部に対して、所定の熱安定剤2〜17部、HAF級カーボンブラック(CB)40重量部、プロセスオイル(出光興産(株)ダイナプロセスオイルAH−58)5重量部、酸化亜鉛(ZnO)5重量部、ステアリン酸2重量部、所定の加硫促進剤2.5〜6重量部及び硫黄1重量部をこの順で逐次添加した。
【0020】
<ムーニー・スコーチタイム>
JIS K 6300に準拠して、島津製作所(株)製SMV−200を用い125℃にて粘度が最低粘度から5ポイント(ムーニー単位)増加するまでの時間(分)を測定した。
【0021】
<90%加硫時間t90の評価>
ASTM D2084−75に準拠して、レオメーター(東洋精機製作所(株)製ODR−100)を用い150℃にて90%加硫時間(分)を測定した。これは、加硫温度(150℃)においてゲル化が開始する時間であり、加硫が終了するのに必要な時間(加硫時間)の指標となる。
【0022】
<引っ張り試験>
混練終了後の未加硫ゴムをロールでシート状にし、熱プレスにて150℃30分加熱して2mm厚の加硫ゴムのシートを得た。このシートを3号ダンベルで打ち抜いた試片について、東洋精機製作所(株)製ストログラフRを用いて引っ張り試験を行った。これらはJIS K 6301に準拠して行った。
【0023】
<促進劣化試験>
引っ張り試験用試験片を90℃に調整した恒温乾燥機中1000時間放置した。この後、上記引っ張り試験を行い、上記促進劣化前の値に対する保持率(%)を算出した。
【0024】
また、混練終了後の未加硫ゴムを熱プレスにて150℃30分圧縮成形して円柱形試片を作成し、上記と同様の促進劣化後に、JIS K 6301に準拠して圧縮永久歪み(%)を測定した。
【0025】
(実施例1〜9)
化合物(A)として2−メルカプトベンゾイミダゾールの亜鉛塩(大内新興化学工業(株)ノクラックMBZ)を用いた実施例について、添加剤配合量(天然ゴム100重量部に対する添加重量部)と試験結果を表1にまとめて示す。
【0026】
【表1】
Figure 0003692668
表1の結果に示すように、a+b−2cが−10〜10、かつ、a、b、cが0.5以上の条件で、促進劣化後の引っ張り強度及び伸び率の保持率が50%前後又はそれ以上、圧縮永久歪みが53%未満であり、ムーニースコーチタイムと90%加硫時間がいずれも成形に適した範囲内であった。
【0027】
(実施例10〜11)
化合物(A)としてメチル−2−メルカプトベンゾイミダゾールの亜鉛塩を用いた実施例(実施例10)、及び、4−,5−ジメチル−2−メルカプトベンゾイミダゾールの亜鉛塩を用いた実施例(実施例11)について、添加剤配合量と試験結果を表2にまとめて示す。
【0028】
【表2】
Figure 0003692668
化合物(A)の種類が異なる以外、添加剤配合が同一である実施例5の結果とほぼ同一の結果が得られた。特に、加硫ゴムについて得られた結果は測定誤差の範囲内で一致している。
【0029】
(比較例1〜3)
熱安定剤としてN−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン、2,2,4−トリメチル−1,2−ジヒドロキノリン重合体及び2−メルカプトベンゾイミダゾールをそれぞれ用いた従来技術による比較例を示す。
【0030】
【表3】
Figure 0003692668
表3の結果に示すように、芳香族第2級アミン単独(比較例1)、芳香族第2級アミンとアミン−ケトン系化合物との併用(比較例2)のいずれも促進劣化後における引っ張り強度及び伸び率の保持率が30%前後またはそれ以下と低く熱安定性に問題があった。
【0031】
一方、芳香族第2級アミンと2−メルカプトベンゾイミダゾールとの併用(比較例3)の場合、ムーニースコーチタイムが9分と極端に短いため、ゴム焼けが発生しやすく加工性に問題があった。また、圧縮永久歪みが79%と極端に大きかった。
【0032】
(比較例4〜7)
実施例1〜9と同様の添加剤配合であってa+b−2cが−10より小さい場合(比較例4)、及び、a+b−2cが10より大きい場合(比較例5〜7)について表4にまとめて示す。
【0033】
【表4】
Figure 0003692668
a+b−2cの値が−10より小さい場合(比較例4)には、90%加硫時間が21分であり、加硫時間が長く生産性が良くないことが知られた。また、促進劣化後における引っ張り強度及び伸び率の保持率が33〜35%と低く熱安定性に問題があった。これは本発明の評価方法で採用した150℃30分の加熱時間では加硫が不十分であったことに起因すると考えられる。
【0034】
a+b−2cの値が10より大きい場合(比較例5〜7)には、ムーニースコーチタイムが11分又は6分と極端に短いため、ゴム焼けが発生しやすく加工性に問題があった。
【0035】
また、比較例5〜7の結果から知られるように、化合物(C)の量を減らして化合物(C)と同様にスルフェンアミド系である加硫促進剤N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミドを加えた場合、化合物(C)の添加で見られたようなスコーチ防止効果が見られなかった。一方、一般的なスコーチ安定剤であるN−シクロヘキシルチオフタルイミドを加えても(比較例7)、加えなかった場合(比較例6)に比べてムーニースコーチタイムは全く改善されなかった。
【0036】
表1及び4中に示した、実施例1〜8及び比較例4〜7におけるa+b−2cの値とムーニースコーチタイム及び90%加硫時間t90との関係について、図1にグラフで示す。90%加硫時間が20分未満であって加硫のための時間が適切であるためにはa+b−2cの値が−10より大きくなければならず、ムーニースコーチタイムが15分以上であって加工性が適切であるためにはa+b−2cの値が10より小さくなければならない。
【0037】
【発明の効果】
耐熱安定性に優れるとともに、スコーチ安定性及び成形品生産性に優れ圧縮永久変形の小さい防振ゴムを与える。
【図面の簡単な説明】
【図1】実施例及び比較例におけるa+b−2cの値とムーニースコーチタイム及び90%加硫時間t90との関係について示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composition for use in an anti-vibration rubber such as an automobile engine mount. In particular, the present invention relates to an anti-vibration rubber composition of natural rubber or other diene rubber.
[0002]
[Prior art]
Anti-vibration rubber is used for mounts such as engine mounts, dampers such as torsional dampers, and various bushes in order to absorb vibrations of automobiles and vehicles and prevent noise.
[0003]
As the rubber polymer component constituting the vibration-proof rubber, a diene rubber such as natural rubber having vibration-proof performance and resistance to repeated deformation is generally used. Usually, natural rubber alone or a rubber blend with other rubber mainly composed of natural rubber is blended and molded with an appropriate filler, oil agent, and the like.
[0004]
Since these diene rubbers are not inherently highly resistant to heat deterioration, a heat stabilizer is added for use in vibration-proof rubbers. In particular, anti-vibration rubber for automobiles such as engine mounts is used under severe conditions that continue to be heated, and long-term durability and reliability are required. Therefore, aromatic secondary amines such as N-phenyl-N′-isopropyl-paraphenylenediamine or 2-, 2-, 4-trimethyl-1,2-dihydro are particularly suitable as heat stabilizers. An amine-ketone compound such as quinoline is added.
[0005]
[Problems to be solved by the invention]
In recent years, as competition for performance between automakers intensified, anti-vibration rubber compositions blended with the above heat stabilizers have not always been able to adequately meet the demands for heat-resistant durability performance, which is becoming more severe every year. .
[0006]
In JP-A-3-146537, 2-mercaptobenzimidazole is proposed to be used in combination with a general amine heat stabilizer, and it is shown that the heat stability performance can be greatly improved.
[0007]
However, when 2-mercaptobenzimidazole is added to the diene rubber material, the scorch stability is extremely deteriorated, so that it is difficult to industrially use it. Further, compression permanent deformation after use under heating ( There was a problem that the size was extremely large.
[0008]
In view of the above-mentioned problems, the present invention provides a composition that provides a vibration-proof rubber having excellent heat stability and scorch stability and small compression set.
[0009]
In the present specification, the terms “thermal degradation” and “thermal stabilizer” include oxidative degradation promoted by heat and a stabilizer for the degradation.
[0010]
[Means for Solving the Problems]
The anti-vibration rubber composition according to claim 1 has the following features (1) to (3).
[0011]
(1) The rubber polymer component is a diene rubber,
(2) including a compound (A) represented by the following general formula (I), a compound (B) represented by the following chemical formula (II), and a compound (C) represented by the following chemical formula (III),
(3) The added weight parts a, b and c of the respective compounds (A) to (C) with respect to 100 parts by weight of the diene rubber satisfy the following formulas (i) to (ii).
[0012]
−10 ≦ a + b−2c ≦ 10 (i)
a, b, c ≧ 0.3 (ii)
[Chemical formula 2]
Figure 0003692668
With the above configuration, a vibration-proof rubber having excellent heat resistance stability, excellent scorch stability and molded product productivity and small compression set is provided.
[0013]
The anti-vibration rubber composition according to claim 2, wherein in the anti-vibration rubber composition according to claim 1, the diene rubber is natural rubber or a rubber blend containing 50% by weight or more of natural rubber. Features.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The rubber polymer component used in the vibration-proof rubber composition of the present invention is a diene rubber.
[0015]
As the diene rubber, any of general rubbers such as natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), and blends thereof can be used. Preferably, natural rubber alone or a rubber blend with other diene rubber mainly composed of natural rubber. As the rubber blend, for example, a blend of natural rubber and butadiene rubber at a weight ratio of 80/20 is preferable.
[0016]
The heat stabilizer compound used in the vibration-proof rubber composition of the present invention includes a compound (A) represented by the following general formula (I) (zinc salt of 2-mercaptobenzimidazole or a methylated derivative thereof) and the following chemical formula: Compound (B) (4,4′-bis (α, α′-dimethylbenzyl) diphenylamine) represented by (II) and compound (C) represented by the following chemical formula (III) (N-tert-butyl) -Di- (2-benzthiazolesulfenamide)).
[0017]
[Chemical 3]
Figure 0003692668
In each of the compounds (A) to (C), the addition parts a, b and c satisfy the following formulas (i) to (ii) with respect to 100 parts by weight of the rubber polymer component, that is, 100 parts by weight of the diene rubber.
[0018]
−10 ≦ a + b−2c ≦ 10 (i)
a, b, c ≧ 0.3 (ii)
That is, a value (a + b-2c) obtained by subtracting twice the added weight part of the compound (C) from the total added weight part of the compound (A) and the compound (B) with respect to 100 parts by weight of the rubber polymer component is -10 to 10. 10 and the addition amount (a, b, c) of each of the compounds (A) to (C) is at least 0.3 parts by weight. If a + b-2c is less than −10, the time required for vulcanization becomes too long and the productivity is inferior. If a + b−2c exceeds 10, the Mooney scorch time becomes too short and the workability is difficult. When either a or b is less than 0.3 parts by weight, the thermal stability effect is insufficient, and when c is less than 0.3 parts by weight, the Mooney scorch time is shortened and workability is reduced. Inferior.
[0019]
(Test method)
<Kneading>
Natural rubber is wrapped around a mixing roll adjusted to a surface temperature of 50 ° C., and 2 to 17 parts of a predetermined heat stabilizer, 40 parts by weight of HAF grade carbon black (CB), process oil Idemitsu Kosan Co., Ltd. Dyna Process Oil AH-58) 5 parts by weight, zinc oxide (ZnO) 5 parts by weight, stearic acid 2 parts by weight, predetermined vulcanization accelerator 2.5-6 parts by weight and sulfur 1 part by weight Sequential additions were made in this order.
[0020]
<Mooney Scorch Time>
Based on JIS K 6300, SMV-200 manufactured by Shimadzu Corporation was used to measure the time (min) until the viscosity increased 5 points (Mooney unit) from the lowest viscosity at 125 ° C.
[0021]
<Evaluation of 90% vulcanization time t90>
Based on ASTM D2084-75, 90% vulcanization time (min) was measured at 150 ° C. using a rheometer (ODR-100 manufactured by Toyo Seiki Seisakusho Co., Ltd.). This is the time at which gelation starts at the vulcanization temperature (150 ° C.), and is an indicator of the time required to complete vulcanization (vulcanization time).
[0022]
<Tensile test>
The unvulcanized rubber after kneading was formed into a sheet with a roll and heated at 150 ° C. for 30 minutes with a hot press to obtain a vulcanized rubber sheet having a thickness of 2 mm. About the test piece which punched this sheet | seat with the No. 3 dumbbell, the tension test was done using Toyo Seiki Seisakusho Co., Ltd. strograph R. These were performed in accordance with JIS K 6301.
[0023]
<Accelerated deterioration test>
The tensile test specimen was left in a constant temperature dryer adjusted to 90 ° C. for 1000 hours. Then, the said tension test was done and the retention (%) with respect to the value before the said accelerated deterioration was computed.
[0024]
Further, the unvulcanized rubber after kneading is compression-molded at 150 ° C. for 30 minutes by a hot press to prepare a cylindrical specimen, and after accelerated deterioration similar to the above, compression set (in accordance with JIS K 6301) %).
[0025]
(Examples 1-9)
About the Example using the zinc salt of 2-mercaptobenzimidazole (Ouchi Shinsei Chemical Co., Ltd. NOCRACK MBZ) as a compound (A), additive compounding quantity (added weight part with respect to 100 weight part of natural rubber), and test result Are summarized in Table 1.
[0026]
[Table 1]
Figure 0003692668
As shown in the results in Table 1, the tensile strength and elongation retention after accelerated deterioration are around 50% under the conditions that a + b-2c is −10 to 10 and a, b, and c are 0.5 or more. Or more than that, the compression set was less than 53%, and both Mooney scorch time and 90% vulcanization time were within the range suitable for molding.
[0027]
(Examples 10 to 11)
Example (Example 10) using a zinc salt of methyl-2-mercaptobenzimidazole as the compound (A) and Example (Example) using a zinc salt of 4-, 5-dimethyl-2-mercaptobenzimidazole Table 2 summarizes the additive blending amounts and test results for Example 11).
[0028]
[Table 2]
Figure 0003692668
Except for the difference in the type of compound (A), almost the same result as that of Example 5 in which the additive composition was the same was obtained. In particular, the results obtained for the vulcanized rubber agree within the measurement error.
[0029]
(Comparative Examples 1-3)
N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine, 2,2,4-trimethyl-1,2-dihydroquinoline polymer and 2-mercaptobenzimidazole are used as heat stabilizers, respectively. The comparative example by the prior art which has been shown.
[0030]
[Table 3]
Figure 0003692668
As shown in the results of Table 3, both the aromatic secondary amine alone (Comparative Example 1) and the combined use of the aromatic secondary amine and the amine-ketone compound (Comparative Example 2) are tensile after accelerated deterioration. There was a problem in thermal stability because the strength and elongation retention were as low as about 30% or less.
[0031]
On the other hand, in the case of the combined use of an aromatic secondary amine and 2-mercaptobenzimidazole (Comparative Example 3), the Mooney scorch time was extremely short as 9 minutes, so that rubber burn was likely to occur and there was a problem in processability. . Further, the compression set was extremely large at 79%.
[0032]
(Comparative Examples 4-7)
Table 4 shows the same additive composition as in Examples 1 to 9 when a + b-2c is smaller than -10 (Comparative Example 4) and when a + b-2c is larger than 10 (Comparative Examples 5-7). Shown together.
[0033]
[Table 4]
Figure 0003692668
When the value of a + b-2c was smaller than −10 (Comparative Example 4), it was known that the 90% vulcanization time was 21 minutes, and the vulcanization time was long and the productivity was not good. In addition, the tensile strength and elongation retention after accelerated deterioration were as low as 33 to 35%, and there was a problem in thermal stability. This is considered to be due to insufficient vulcanization at the heating time of 150 ° C. for 30 minutes employed in the evaluation method of the present invention.
[0034]
When the value of a + b-2c was larger than 10 (Comparative Examples 5 to 7), the Mooney scorch time was extremely short as 11 minutes or 6 minutes, so that rubber burn was likely to occur and there was a problem in workability.
[0035]
Further, as is known from the results of Comparative Examples 5 to 7, the amount of the compound (C) is reduced, and the vulcanization accelerator N-cyclohexyl-2-benzothiazoli which is a sulfenamide type as in the compound (C). When rusulfenamide was added, the scorch prevention effect as seen with the addition of compound (C) was not observed. On the other hand, even when N-cyclohexylthiophthalimide, which is a general scorch stabilizer, was added (Comparative Example 7), the Mooney scorch time was not improved at all as compared with the case where N-cyclohexylthiophthalimide was not added (Comparative Example 6).
[0036]
The relationship between the values of a + b-2c, Mooney scorch time, and 90% vulcanization time t90 in Examples 1-8 and Comparative Examples 4-7 shown in Tables 1 and 4 is shown graphically in FIG. In order for the 90% vulcanization time to be less than 20 minutes and the time for vulcanization to be adequate, the value of a + b-2c must be greater than −10 and the Mooney scorch time is 15 minutes or more. In order for workability to be appropriate, the value of a + b−2c must be less than 10.
[0037]
【The invention's effect】
An anti-vibration rubber having excellent heat resistance stability, scorch stability and molded product productivity, and small compression set.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the value of a + b−2c, Mooney scorch time, and 90% vulcanization time t90 in Examples and Comparative Examples.

Claims (2)

下記(1)〜(3)の特徴を備えた防振ゴム組成物。
(1)ゴム高分子成分がジエン系ゴムであり、
(2)下記一般式(I)で表される化合物(A)と下記化学式(II)で表される化合物(B)と下記化学式(III)で表される化合物(C)とを含み、
(3)ジエン系ゴム100重量部に対する前記各化合物(A)〜(C)の添加重量部a、b及びcが次式(i)〜(ii)を満たす。
−10≦a+b−2c≦10 (i)
a、b、c≧0.3 (ii)
Figure 0003692668
An anti-vibration rubber composition having the following features (1) to (3).
(1) The rubber polymer component is a diene rubber,
(2) including a compound (A) represented by the following general formula (I), a compound (B) represented by the following chemical formula (II), and a compound (C) represented by the following chemical formula (III),
(3) The added weight parts a, b and c of the respective compounds (A) to (C) with respect to 100 parts by weight of the diene rubber satisfy the following formulas (i) to (ii).
−10 ≦ a + b−2c ≦ 10 (i)
a, b, c ≧ 0.3 (ii)
Figure 0003692668
請求項1記載の防振ゴム組成物において、
前記ジエン系ゴムが、天然ゴム、又は、天然ゴムを50重量%以上含むゴムブレンドであることを特徴とする防振ゴム組成物。
In the vibration-proof rubber composition according to claim 1,
The anti-vibration rubber composition, wherein the diene rubber is natural rubber or a rubber blend containing 50% by weight or more of natural rubber.
JP32384596A 1996-12-04 1996-12-04 Anti-vibration rubber composition Expired - Lifetime JP3692668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32384596A JP3692668B2 (en) 1996-12-04 1996-12-04 Anti-vibration rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32384596A JP3692668B2 (en) 1996-12-04 1996-12-04 Anti-vibration rubber composition

Publications (2)

Publication Number Publication Date
JPH10158433A JPH10158433A (en) 1998-06-16
JP3692668B2 true JP3692668B2 (en) 2005-09-07

Family

ID=18159236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32384596A Expired - Lifetime JP3692668B2 (en) 1996-12-04 1996-12-04 Anti-vibration rubber composition

Country Status (1)

Country Link
JP (1) JP3692668B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4750837B2 (en) * 2007-12-07 2011-08-17 住友ゴム工業株式会社 Rubber composition for breaker topping

Also Published As

Publication number Publication date
JPH10158433A (en) 1998-06-16

Similar Documents

Publication Publication Date Title
JP4622619B2 (en) Anti-vibration rubber composition
EP1541627B1 (en) Vibration damping rubber composition
JP4622618B2 (en) Anti-vibration rubber composition
US10301456B2 (en) Rubber composition for vibration damping rubbers
JP3692668B2 (en) Anti-vibration rubber composition
JPWO2020202597A1 (en) Anti-vibration rubber composition and anti-vibration rubber member
JP2014105236A (en) Rubber composition for vibration proof rubber and vibration proof rubber
JP2010111742A (en) Rubber composition for vibration-proof rubber and vibration-proof rubber
JP2007314697A (en) Vibration-proof rubber composition and rubber vibration isolator
JP2002206035A (en) Rubber composition for heavy-load tire tread
JP3652030B2 (en) Anti-vibration rubber composition and anti-vibration rubber
JP2010106202A (en) Rubber composition for vibration-proof rubber and vibration-proof rubber
JP6517639B2 (en) Method of producing rubber composition
JP2000336206A (en) Vibration-proof rubber composition
JP5872843B2 (en) Rubber composition for anti-vibration rubber
JP3639938B2 (en) Anti-vibration rubber composition
JP4871554B2 (en) Manufacturing method of rubber composition
JP2001181458A (en) Epdm-based rubber composition and epdm-based vulcanized rubber
JP5248174B2 (en) Rubber composition for anti-vibration rubber and anti-vibration rubber
JP2011111504A (en) Rubber composition for vibration-proof rubber and vibration-proof rubber
JP2004307621A (en) Rubber composition for rubber vibration insulator
JPH10120826A (en) Composition for vibrationproof rubber and vibrationproof rubber
JP2004307820A (en) Heat-resistant vibration-insulating rubber composition
JP4060623B2 (en) Rubber composition for anti-vibration rubber
JP3639937B2 (en) Anti-vibration rubber composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080701

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term