JP3692511B2 - Stretch molding method for crystalline glass - Google Patents

Stretch molding method for crystalline glass Download PDF

Info

Publication number
JP3692511B2
JP3692511B2 JP27357495A JP27357495A JP3692511B2 JP 3692511 B2 JP3692511 B2 JP 3692511B2 JP 27357495 A JP27357495 A JP 27357495A JP 27357495 A JP27357495 A JP 27357495A JP 3692511 B2 JP3692511 B2 JP 3692511B2
Authority
JP
Japan
Prior art keywords
devitrification
preform
glass
crystalline glass
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27357495A
Other languages
Japanese (ja)
Other versions
JPH0986944A (en
Inventor
正紀 和田
義徳 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP27357495A priority Critical patent/JP3692511B2/en
Publication of JPH0986944A publication Critical patent/JPH0986944A/en
Application granted granted Critical
Publication of JP3692511B2 publication Critical patent/JP3692511B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/047Re-forming tubes or rods by drawing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/043Heating devices specially adapted for re-forming tubes or rods in general, e.g. burners

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、ガラスの予備成形体を加熱すると所望しない結晶が析出する現象、所謂失透が起こり易いガラス(以下、結晶性ガラスと呼ぶ)を延伸成形する方法に関し、特に、電子部品や光学部品に用いられる断面形状が円形や矩形等の棒状スペーサ、棒状レンズ或いは薄板や毛細管等の高精度な製品を延伸して成形する方法に関するものである。
【0002】
【従来の技術】
従来、ガラス材料を再成形する方法として、通称リドロー成形法と呼ばれる延伸成形方法が知られている。この方法は、先ず、溶融ガラスを適当な成形方法により成形して予備成形体を準備し、次に、該予備成形体の一端を送り機構部のチャック部に把持し、一定速度で成形炉に供給して該予備成形体を軟化変形可能な温度に加熱し、駆動するローラー対等を用いて軟化変形可能な状態となった該予備成形体の他端より引張力を与えて延伸し、高い寸法精度を有する再成形体に成形する延伸成形方法である。
【0003】
前記した従来の延伸成形方法によれば、ガラスが失透を生じ難い性質を有する場合には、前記の通り予備成形体を単に軟化変形可能な温度に加熱し延伸して成形すれば、延伸成形中に失透が生じることなく高い寸法精度を有する再成形体が得られる。
【0004】
【発明が解決しようとする課題】
しかしながら、失透を起こし易い性質を有する結晶性ガラスの場合には、従来の延伸成形方法により予備成形体を加熱して成形すると、予備成形体の本体のガラス中に所望しない結晶が析出したり、失透物が生成して全く延びなくなったり、また、延伸途中のガラスが失透して延びないために破断して延伸成形そのものが困難となる問題が生じた。仮に、延伸はできたとしても、析出した失透物のために成形精度が悪く所望の寸法公差を逸脱したり、また、所望しない結晶の析出により熱膨張係数や硬度等の面で所望の特性が得られない等の問題が生じた。
【0005】
そのため、従来では、結晶性ガラス材料には延伸成形方法を採用することは困難とされ、高い寸法精度を有し、所望する特性を備えた結晶性ガラスからなる製品を製造する場合には、溶融ガラスから最終の寸法形状に近い形状に直接成形し、その成形体に数度の研削、研磨等の加工を施して最終の寸法形状にする方法が実施されているが、加工コストが高く、量産化に多々問題があった。
【0006】
本発明は、上記の問題を解決した結晶性ガラスの延伸成形方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するためになした本発明の結晶性ガラスの延伸成形方法は、結晶性ガラスからなる予備成形体の一端を把持し、一定速度で送りつつ該予備成形体を軟化変形可能な温度に加熱し、該予備成形体の他端より引張力を与えて延伸することからなる結晶性ガラスの延伸成形方法において、結晶性ガラスからなる予備成形体を該結晶性ガラスの失透領域未満の温度に加熱し、次いで失透が生じない、または失透が部分的に生じても、その失透により延伸時の成形性や得られた再成形体の特性に悪影響を与えない程度の時間内で軟化変形可能な温度に昇温加熱し、その後失透が生じない、または失透が部分的に生じても、その失透により延伸時の成形性や得られた再成形体の特性に悪影響を与えない程度の時間内で降温冷却することを特徴とする。
【0008】
本発明の方法では、結晶性ガラスからなる予備成形体が延伸成形されて再成形体になるまでにたどる温度と時間の条件(以下、成形温度スケジュールと呼ぶ)が重要であり、その結晶性ガラスが有する失透領域に入らないようにして延伸成形を行うことが肝要である。従って、本発明では、結晶性ガラスの予備成形体を先ず当該結晶性ガラスの失透領域未満の温度に予備的に加熱し、次いで実質的に失透が起こらない時間内で軟化変形可能な温度に昇温加熱して延伸し、その後実質的に失透が生じない時間内で降温冷却するようにしたものである。ここで、実質的に失透が生じないとは、失透が部分的に生じても、その失透により延伸時の成形性や得られた再成形体の特性に悪影響を与えない程度の場合を含むことを意味するものである。
【0009】
本発明で用いる結晶性ガラスと呼ばれるものとして、例えば、SiO2 −Al23 −Li2 O系の組成を有するガラスがある。この結晶性ガラスは、所定の熱処理を施され結晶化するとβ−石英固溶体又はβ−スポジュメン固溶体を主結晶として析出し、低膨張で、且つ高い機械的強度の特性を有する結晶化ガラスとなる。本発明の方法に用いる結晶性ガラスとしては、延伸成形に際してその予備成形体が、ガラス状態にあるガラス体、および予め所定の熱処理により結晶化されたガラス体の両方のガラス体を対象とするものである。ここで、上記例示した結晶性ガラスを、ガラスAと呼ぶ。このガラスAの場合、図1に示すように、そのガラスA内に結晶が析出して失透が生じる温度と時間の条件領域は、縦軸に温度と横軸に時間をとった同図上に斜線部で示される失透領域Zとして表すことができる。
【0010】
本願発明の発明者等は、上記の結晶性ガラスの特性に着目して、失透を生じ易い結晶性ガラスからなる予備成形体を特性に悪影響を与える程度の失透が生じることなく延伸成形する方法を見いだしたのである。即ち、上記の延伸成形を行う際、結晶性ガラスAの失透領域Z以外の領域において、延伸成形する場合の温度と時間の条件を組み合わせることにより成形温度スケジュールを画定することで、実質的に失透が生じることなく成形することが可能となった。
【0011】
図2は、本発明の成形方法により結晶性ガラスからなる予備成形体1を送り機構部3により成形炉4に供給して軟化変形可能な温度に加熱し、引張り機構部5により延伸成形して再成形体2を得る装置の概略を示すものである。
【0012】
以下、具体的に、先記の図1に示した失透領域Zを有する結晶性ガラスAからなる予備成形体1を延伸成形方法を用いて成形する場合について説明する。
【0013】
まず、溶融ガラスAを鋳込み成形して、例えば、丸棒の予備成形体1を作成する。この予備成形体1の上端を図2に示すように、送り機構部3のチャック部3aに把持し、一定速度で成形炉4に供給する。
【0014】
成形炉4内で予備成形体1が延伸成形されて再成形体2となる成形温度スケジュールは、図3に示すように、結晶性ガラスAの失透領域Zの最高温度T1から最低温度T2の温度範囲内に、且つまた失透が生じる失透時間tm以上滞留しないように設定される。即ち、図2の成形炉4の第一の加熱部4aの位置では予備成形体1をガラスAの失透領域Z未満で且つそれの最も高い温度まで加熱し、第二の加熱部4cの位置では予備成形体1を軟化変形させその粘度が延伸成形に適する1×104 〜1×106 ポイズ付近のT1を超える温度まで急加熱する。その際、第二の加熱部4cでT2からT1までの温度範囲を昇温時間t1がtm以内になるように昇温する。このような急激な昇温が可能な温度勾配をなすために、第二の加熱部4cの熱が、第一の加熱部4aに伝わらないように両加熱部の間に断熱部4bを設ける。この断熱部4bは、冷媒として水や空気等の流体を流す中空部を有するジャケット状の構造としてもよいし、放熱面積の大きな板状の金属製でもよい。次に、引張り機構部5の一対の駆動ローラー5a、5bを用いて、該成形炉4内で加熱されて軟化変形状態になった予備成形体1の下端より引張力を与え所定の引張速度で延伸する。冷却部4dでは、延伸されて成形された再成形体に失透が生じないようにT1からT2までの温度範囲を降温時間t2がtm以内になるように冷却する。このような急激な降温が可能な温度勾配をなすために冷却部4dで、第二の加熱部4cの熱を遮断する。この冷却部4dの構造も断熱部4bと同様に、冷媒として水や空気等の流体を流す中空部を有するジャケット状の構造としてもよいし、放熱面積の大きな板状の金属製でもよい。
【0015】
以上のようにして、所望の断面寸法を有する丸棒の再成形体2が延伸成形される。その後、この再成形体2は、引張り機構部5の下方に位置する切断機構部(図示せず)により所定の長さに切り出される。
【0016】
予備成形体1として未だガラス状態の結晶性ガラスを用いた場合には、上記の延伸成形後において、再成形体2を結晶化処理して所望する機械的強度及び膨張係数等の特性を有する結晶化ガラス体にする。これは、所定の温度スケジュールで熱処理し、その再成形体2のガラス中にβ−石英固溶体又はβ−スポジュメン固溶体からなる結晶を所望の特性が得られるように所定の量析出させる。
【0017】
上記の説明では、例として丸棒を延伸成形する方法を挙げたが、延伸成形の対象物の形状は、板状、管状、その他各種の形状であってもよい。
【0018】
尚、図3に例示した場合は、T1を超える温度まで昇温されているが、T1を超えない場合でも、失透領域での滞留時間が失透時間tm以内の場合であれば、特性に悪影響を与える程度の失透が生じることなく十分に延伸成形が可能である。
【0019】
【作用】
本発明の結晶性ガラスの延伸成形方法は、まず結晶性ガラスからなる予備成形体を該結晶性ガラスの失透領域未満の温度に加熱するので、ガラス中に結晶が析出して失透する時間の制約を受けることなく予備成形体を十分且つ均一に予備的に昇温することができ、次いで失透が生じない、または失透が部分的に生じても、その失透により延伸時の成形性や得られた再成形体の特性に悪影響を与えない程度の時間内で軟化変形可能な温度に昇温加熱するので、既に失透領域未満の温度まで昇温されている予備成形体を軟化変形可能な温度に失透が生じることなく短時間で急激な昇温が可能となり、その後失透が生じない、または失透が部分的に生じても、その失透により延伸時の成形性や得られた再成形体の特性に悪影響を与えない程度の時間内で降温冷却するので、短時間で急激な温度降下が図られて失透領域に入ることを防止でき、よって高い寸法精度を有し、且つ特性に悪影響を与える失透物のない再成形体を得ることができる。
【0020】
【実施例】
(実施例1)
本発明に係る結晶性ガラスの延伸成形方法の一実施例を以下に説明する。
【0021】
延伸成形する結晶性ガラスの具体例として、SiO2 −Al23 −Li2 O系の組成を有し、所定の結晶化熱処理を施した場合、β−スポジュメン固溶体を主結晶として析出するガラスの一組成例を示す。この結晶性ガラスの組成は、重量%で表すとSiO2 65%、Al23 18%、Li2 O 2%、MgO1%、ZnO 3%、BaO 1%、TiO2 3%、ZrO2 2%、K2 O 5%からなっている。この結晶性ガラスは、先に図1で示したものとほぼ同じ失透領域を有するものであり、失透領域の最高温度T1は1200℃で、最低温度T2は780℃、失透時間tmは5分である。
【0022】
まず、予備成形体1の材料には、前記の組成を有する溶融ガラスを成形して失透物や結晶を全く含まないガラス状態の材料を準備し、このガラス材料を、断面形状が正方形で寸法が40±0.1mm×40±0.1mmで長さ1000mmの角棒に加工して予備成形体1を作成し、図2に示すように、予備成形体1の上端を予備成形体送り機構部3のチャック部4aに把持し、5mm/分の一定速度で成形炉4に供給し、第一の加熱部4aの位置で予備成形体1を失透領域未満の750℃まで序々に昇温加熱し、次いで第二の加熱部4cの位置で予備成形体1を失透領域を超えて軟化状態になる1230℃まで5分以内で急速に昇温加熱する。次に、引張り機構部5の一対の駆動ローラー5a、5bを用いて第二の加熱部4cで加熱されて軟化状態になった予備成形体1の下端に引張力を与え、2m/分の引張速度で延伸し、冷却部4dで失透領域未満の750℃まで5分以内で冷却して、断面寸法が予備成形体1の1/20の2.0mm×2.0mmで、断面形状が正方形をした再成形体2を得た。
【0023】
本実施例1で得られた再成形体を調べたところ、高精度に成形されており、失透も全く観察されなかった。
【0024】
前記実施例1で得られた再成形体2を500mmに切断した後、これを室温〜780℃までを2℃/分で昇温し、780℃で30分保持し、次いで780〜1000℃までを0.5℃/分で昇温し、1000℃で30分保持する結晶化熱処理を行った。この熱処理により、再成形体2に平均径が0.3μmのβ−スポジュメン固溶体からなる結晶が80体積%析出し、ガラス質の部分が約20体積%の結晶化ガラスを得た。この結晶化ガラスは、熱膨張係数が35×10-7/℃でビッカース硬度600であり、所望する特性を有するものであった。
【0025】
(実施例2)
実施例1と同じ組成を有する結晶性ガラスのガラス素材を40±0.1mm×40±0.1mm×長さ1000mmの寸法の角棒に加工し、これを室温〜780℃までを3℃/分で昇温し、780℃で60分保持し、次いで780〜1000℃までを0.5℃/分で昇温し、1000℃で60分保持する結晶化熱処理を行った。この熱処理により、予備成形体1に平均径が0.2μmのβ−スポジュメン固溶体からなる結晶が50体積%析出し、ガラス質の部分が約50体積%であって、熱膨張係数が30×10-7/℃でビッカース硬度650の結晶化ガラスにした。この結晶化ガラスを延伸成形する対象の予備成形体として、上記の実施例1と同様の成形温度スケジュールで延伸成形を実施して断面寸法が2.0mm×2.0mmの再成形体を得た。
【0026】
このようにして得た再成形体を調べたところ、結晶化状態を維持したままで高精度に延伸成形されており、延伸成形で失透が生じることなく所望の特性を有する再成形体が得られた。
【0027】
【発明の効果】
本発明による結晶性ガラスの延伸成形方法によれば、特性に悪影響を与える程度の失透が生じることなく所望の特性を有し、且つ高い寸法精度を有する再成形体を大量に製造できるので、実用上優れた効果を奏する。
【図面の簡単な説明】
【図1】結晶性ガラスAの失透領域Zを示す説明図。
【図2】本発明の結晶性ガラスの延伸成形に用いる装置の一例を示す概念図。
【図3】本発明における成形温度スケジュールの一例を示す説明図。
【符号の説明】
1 予備成形体
2 再成形体
3 送り機構部
4 成形炉
4a 第一の加熱部
4b 断熱部
4c 第二の加熱部
4d 冷却部
5 引張り機構部
5a,5b 駆動ローラー
[0001]
[Industrial application fields]
The present invention relates to a phenomenon in which undesired crystals precipitate when a glass preform is heated, so-called devitrification glass (hereinafter referred to as crystalline glass), and particularly to a method of stretch-molding. The present invention relates to a method of stretching and molding a highly accurate product such as a rod-shaped spacer, rod-shaped lens, thin plate or capillary tube having a circular or rectangular cross-sectional shape.
[0002]
[Prior art]
Conventionally, a stretch molding method called a redraw molding method is known as a method for remolding a glass material. In this method, first, molten glass is molded by an appropriate molding method to prepare a preform, and then one end of the preform is gripped by the chuck portion of the feed mechanism unit, and is placed in a molding furnace at a constant speed. The preform is heated to a temperature at which the preform can be softened and deformed, and stretched by applying a tensile force from the other end of the preform that has been softened and deformed using a pair of driven rollers or the like. This is a stretch molding method for forming into a reshaped body having accuracy.
[0003]
According to the conventional stretch molding method described above, when glass has a property that hardly causes devitrification, as described above, if the preform is simply heated and stretched to a temperature at which it can be softened and deformed, stretch molding is performed. A remolded body having high dimensional accuracy can be obtained without devitrification.
[0004]
[Problems to be solved by the invention]
However, in the case of crystalline glass having the property of easily causing devitrification, if the preform is heated and molded by a conventional stretch molding method, undesired crystals may be precipitated in the glass of the preform body. The devitrified material is generated and cannot be extended at all, or the glass in the middle of stretching is devitrified and does not extend, so that there is a problem that the stretch molding itself becomes difficult. Even if the film can be stretched, the formed devitrified material has poor molding accuracy and deviates from the desired dimensional tolerance, or the desired characteristics in terms of thermal expansion coefficient and hardness due to undesired crystal precipitation. The problem that cannot be obtained occurred.
[0005]
Therefore, conventionally, it has been difficult to adopt a stretch molding method for a crystalline glass material, and when manufacturing a product made of crystalline glass having high dimensional accuracy and having desired characteristics, it is necessary to melt There is a method in which glass is directly molded into a shape close to the final dimensional shape, and the molded body is subjected to several degrees of grinding, polishing, etc. to obtain the final dimensional shape. There were a lot of problems.
[0006]
An object of the present invention is to provide a method for stretch-forming crystalline glass that solves the above-described problems.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the crystalline glass stretch molding method of the present invention is capable of softening and deforming the preform while holding one end of the preform made of crystalline glass and feeding it at a constant speed. In a crystalline glass stretch molding method comprising heating to a temperature and stretching by applying a tensile force from the other end of the preform, the preform composed of the crystalline glass is less than the devitrification region of the crystalline glass. Heating to the temperature of, and then devitrification does not occur, or even when partial devitrification occurs, the devitrification does not adversely affect the moldability during stretching and the properties of the obtained remolded product Even if devitrification does not occur or partially devitrification occurs, the moldability during stretching and the properties of the resulting remolded product are reduced by devitrification. to cooling cooled in a degree that does not adversely affect the time And butterflies.
[0008]
In the method of the present invention, the temperature and time conditions (hereinafter referred to as a molding temperature schedule) required for a preformed body made of crystalline glass to be stretch-molded to become a reshaped body are important. It is important to perform the stretch molding so as not to enter the devitrification region. Therefore, in the present invention, the crystalline glass preform is first preliminarily heated to a temperature below the devitrification region of the crystalline glass, and then softened and deformable within a time period during which no devitrification occurs substantially. The film is heated and heated to stretch, and then cooled down within a time period during which devitrification does not substantially occur. Here, substantially devitrification does not occur, even if devitrification partially occurs, when the devitrification does not adversely affect the formability at the time of stretching and the properties of the obtained remolded body It is meant to include.
[0009]
As called crystalline glass used in the present invention, for example, a glass having a composition of SiO 2 -Al 2 O 3 -Li 2 O system. When this crystalline glass is crystallized after being subjected to a predetermined heat treatment, β-quartz solid solution or β-spodumene solid solution is precipitated as a main crystal, and becomes a crystallized glass having low expansion and high mechanical strength characteristics. As the crystalline glass used in the method of the present invention, when the preform is subjected to stretch molding, the preform is a glass body that is both in a glass state and a glass body that has been previously crystallized by a predetermined heat treatment. It is. Here, the crystalline glass exemplified above is referred to as glass A. In the case of this glass A, as shown in FIG. 1, the temperature and time condition regions in which crystals are precipitated in the glass A and devitrification occurs are as follows. Can be expressed as a devitrification region Z indicated by hatching.
[0010]
The inventors of the present invention pay attention to the characteristics of the above-mentioned crystalline glass, and stretch-mold a preform made of crystalline glass that easily causes devitrification without causing devitrification to the extent that the characteristics are adversely affected. I found a way. That is, when performing the above-mentioned stretch molding, in the region other than the devitrification region Z of the crystalline glass A, by substantially defining the molding temperature schedule by combining the temperature and time conditions in the case of stretch molding, It became possible to mold without devitrification.
[0011]
FIG. 2 shows that a preform 1 made of crystalline glass is supplied to a molding furnace 4 by a feed mechanism 3 by a molding method of the present invention, heated to a temperature at which it can be softened and deformed, and stretched and molded by a tension mechanism 5. An outline of an apparatus for obtaining the remolded body 2 is shown.
[0012]
Hereinafter, the case where the preforming body 1 made of the crystalline glass A having the devitrification region Z shown in FIG. 1 is molded by using the stretch molding method will be described.
[0013]
First, the molten glass A is cast and formed, for example, to produce a preform 1 of a round bar. As shown in FIG. 2, the upper end of the preform 1 is gripped by the chuck portion 3a of the feed mechanism portion 3 and supplied to the molding furnace 4 at a constant speed.
[0014]
As shown in FIG. 3, the molding temperature schedule in which the preform 1 is stretched and molded into the remolded body 2 in the molding furnace 4 is from the highest temperature T1 to the lowest temperature T2 in the devitrification region Z of the crystalline glass A. It is set so as not to stay within the temperature range and for more than the devitrification time tm at which devitrification occurs. That is, at the position of the first heating unit 4a of the molding furnace 4 in FIG. 2, the preform 1 is heated to a temperature lower than the devitrification region Z of the glass A and to its highest temperature, and the position of the second heating unit 4c. Then, the preform 1 is softened and deformed and rapidly heated to a temperature exceeding T1 in the vicinity of 1 × 10 4 to 1 × 10 6 poise, which is suitable for stretch molding. At that time, the second heating unit 4c raises the temperature range from T2 to T1 so that the temperature raising time t1 is within tm. In order to make such a temperature gradient capable of rapid temperature increase, a heat insulating part 4b is provided between the two heating parts so that the heat of the second heating part 4c is not transmitted to the first heating part 4a. The heat insulating part 4b may have a jacket-like structure having a hollow part for flowing a fluid such as water or air as a refrigerant, or may be made of a plate-like metal having a large heat radiation area. Next, using a pair of driving rollers 5a and 5b of the pulling mechanism 5, a tensile force is applied from the lower end of the preform 1 that has been heated and softened in the molding furnace 4 at a predetermined tensile speed. Stretch. In the cooling unit 4d, the temperature range from T1 to T2 is cooled so that the temperature drop time t2 is within tm so that devitrification does not occur in the stretched and molded remolded body. In order to form a temperature gradient capable of such a rapid temperature decrease, the cooling unit 4d blocks the heat of the second heating unit 4c. The structure of the cooling part 4d may be a jacket-like structure having a hollow part for flowing a fluid such as water or air as a coolant, or may be made of a plate-like metal having a large heat radiation area, similarly to the heat insulating part 4b.
[0015]
As described above, the round bar reshaped body 2 having a desired cross-sectional dimension is stretch-molded. Thereafter, the remolded body 2 is cut to a predetermined length by a cutting mechanism (not shown) located below the pulling mechanism 5.
[0016]
When crystalline glass that is still in the glass state is used as the preform 1, a crystal having characteristics such as desired mechanical strength and expansion coefficient by crystallization treatment of the remolded body 2 after the above stretch molding. Make a vitrified glass. This is heat-treated at a predetermined temperature schedule, and a predetermined amount of crystals made of β-quartz solid solution or β-spodumene solid solution is precipitated in the glass of the reshaped body 2 so as to obtain desired characteristics.
[0017]
In the above description, the method of stretch-molding a round bar has been described as an example. However, the shape of an object to be stretch-molded may be plate-shaped, tubular, or other various shapes.
[0018]
In the case illustrated in FIG. 3, the temperature is raised to a temperature exceeding T1, but even if the temperature does not exceed T1, if the residence time in the devitrification region is within the devitrification time tm , Stretch molding can be sufficiently performed without causing devitrification to such an extent that adverse effects are caused.
[0019]
[Action]
In the crystalline glass stretch molding method of the present invention, the preformed body made of the crystalline glass is first heated to a temperature lower than the devitrification region of the crystalline glass, so that the time required for the crystal to precipitate and devitrify in the glass. The preform can be preliminarily heated uniformly and uniformly without being restricted by the above, and even when devitrification does not occur or partial devitrification occurs, molding at the time of stretching is caused by the devitrification. The preform is heated to a temperature that can be softened and deformed within a time that does not adversely affect the properties and the properties of the resulting remolded body, so the preform that has already been heated to a temperature below the devitrification region is softened. It is possible to rapidly raise the temperature in a short time without causing devitrification at the deformable temperature, and after that, even if devitrification does not occur or partial devitrification occurs, the devitrification causes moldability during stretching and time so as not adversely affect the properties of the resulting reshaped body In since the cooling cooling, it is possible to prevent the short time into the rapid temperature drop is achieved by devitrification area, thus high has a dimensional accuracy and characteristics of the re-formed body without devitrification adversely affect Obtainable.
[0020]
【Example】
(Example 1)
One embodiment of the method for stretch-forming crystalline glass according to the present invention will be described below.
[0021]
As a specific example of the crystalline glass to be stretch-molded, a glass having a SiO 2 —Al 2 O 3 —Li 2 O composition and precipitating β-spodumene solid solution as a main crystal when subjected to a predetermined crystallization heat treatment One composition example is shown. The composition of this crystalline glass is expressed as% by weight of SiO 2 65%, Al 2 O 3 18%, Li 2 O 2%, MgO 1%, ZnO 3%, BaO 1%, TiO 2 3%, ZrO 2 2 %, K 2 O 5%. This crystalline glass has almost the same devitrification region as previously shown in FIG. 1. The maximum temperature T1 of the devitrification region is 1200 ° C., the minimum temperature T2 is 780 ° C., and the devitrification time tm is 5 minutes.
[0022]
First, as the material of the preform 1, a molten glass having the above composition is molded to prepare a glass-like material that does not contain devitrified substances or crystals. The glass material has a square cross-sectional shape and dimensions. Is processed into a square bar having a length of 40 ± 0.1 mm × 40 ± 0.1 mm and a length of 1000 mm, and the preform 1 is prepared. As shown in FIG. Gripped by the chuck part 4a of the part 3 and supplied to the molding furnace 4 at a constant speed of 5 mm / min, the preform 1 is gradually heated up to 750 ° C. below the devitrification region at the position of the first heating part 4a. Then, the preform 1 is heated at a temperature of the second heating unit 4c within a period of 5 minutes up to 1230 ° C. where the preform 1 is softened beyond the devitrification region. Next, a tensile force is applied to the lower end of the preform 1 that has been softened by being heated by the second heating unit 4c using the pair of drive rollers 5a and 5b of the pulling mechanism unit 5 at a tension of 2 m / min. Stretched at a speed, cooled within 5 minutes to 750 ° C. below the devitrification region in the cooling part 4d, and the cross-sectional dimension is 2.0 mm × 2.0 mm which is 1/20 of the preform 1 and the cross-sectional shape is square Remolded body 2 was obtained.
[0023]
When the remolded body obtained in Example 1 was examined, it was molded with high accuracy and no devitrification was observed.
[0024]
After cutting the reshaped body 2 obtained in Example 1 to 500 mm, the temperature was raised from room temperature to 780 ° C. at 2 ° C./min, maintained at 780 ° C. for 30 minutes, and then to 780 to 1000 ° C. Was heated at 0.5 ° C./min, and crystallization heat treatment was performed at 1000 ° C. for 30 minutes. By this heat treatment, 80% by volume of crystals made of a β-spodumene solid solution having an average diameter of 0.3 μm was precipitated on the reshaped body 2, and a crystallized glass having a vitreous portion of about 20% by volume was obtained. The crystallized glass had a thermal expansion coefficient of 35 × 10 −7 / ° C., a Vickers hardness of 600, and had desired characteristics.
[0025]
(Example 2)
A glass material of crystalline glass having the same composition as in Example 1 is processed into a square bar having dimensions of 40 ± 0.1 mm × 40 ± 0.1 mm × length 1000 mm, and this is processed at room temperature to 780 ° C. at 3 ° C. / The temperature was raised at 780 ° C., held at 780 ° C. for 60 minutes, then heated from 780 to 1000 ° C. at 0.5 ° C./minute, and crystallization heat treatment was held at 1000 ° C. for 60 minutes. By this heat treatment, 50% by volume of a crystal composed of a β-spodumene solid solution having an average diameter of 0.2 μm is deposited on the preform 1, the vitreous part is about 50% by volume, and the thermal expansion coefficient is 30 × 10. Crystallized glass having a Vickers hardness of 650 at -7 / ° C. As a preform for subjecting this crystallized glass to stretch molding, stretch molding was performed at the same molding temperature schedule as in Example 1 to obtain a remolded body having a cross-sectional dimension of 2.0 mm × 2.0 mm. .
[0026]
As a result of examining the remolded body thus obtained, it was stretch-molded with high accuracy while maintaining the crystallization state, and a re-molded body having desired characteristics was obtained without causing devitrification in stretch molding. It was.
[0027]
【The invention's effect】
According to the stretch molding method for crystalline glass according to the present invention, it is possible to produce a large number of remolded bodies having desired characteristics and high dimensional accuracy without causing devitrification to an extent that adversely affects the characteristics. There is an excellent practical effect.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a devitrification region Z of a crystalline glass A. FIG.
FIG. 2 is a conceptual diagram showing an example of an apparatus used for stretch molding of the crystalline glass of the present invention.
FIG. 3 is an explanatory diagram showing an example of a molding temperature schedule in the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Preliminarily molded object 2 Reformed object 3 Feed mechanism part 4 Molding furnace 4a 1st heating part 4b Heat insulation part 4c 2nd heating part 4d Cooling part 5 Pulling mechanism parts 5a and 5b Drive roller

Claims (1)

結晶性ガラスからなる予備成形体の一端を把持し、一定速度で送りつつ該予備成形体を軟化変形可能な温度に加熱し、該予備成形体の他端より引張力を与えて延伸することからなる結晶性ガラスの延伸成形方法において、
結晶性ガラスからなる予備成形体を該結晶性ガラスの失透領域未満の温度に加熱し、次いで失透が生じない、または失透が部分的に生じても、その失透により延伸時の成形性や得られた再成形体の特性に悪影響を与えない程度の時間内で軟化変形可能な温度に昇温加熱し、その後失透が生じない、または失透が部分的に生じても、その失透により延伸時の成形性や得られた再成形体の特性に悪影響を与えない程度の時間内で降温冷却することを特徴とする結晶性ガラスの延伸成形方法。
Because one end of a preform made of crystalline glass is gripped and heated to a temperature at which the preform can be softened and deformed while being fed at a constant speed, and stretched by applying a tensile force from the other end of the preform. In the crystalline glass stretch molding method,
A preform formed of crystalline glass is heated to a temperature lower than the devitrification region of the crystalline glass, and then, when devitrification does not occur or partial devitrification occurs, molding during stretching is caused by the devitrification. Even if the devitrification does not occur or the devitrification partially occurs, it is heated up to a temperature at which it can be softened and deformed within a time period that does not adversely affect the properties and the properties of the obtained reshaped product. A method for stretching and forming a crystalline glass, characterized by cooling and cooling within a time that does not adversely affect the formability at the time of stretching and the properties of the obtained remolded body due to devitrification .
JP27357495A 1995-09-26 1995-09-26 Stretch molding method for crystalline glass Expired - Fee Related JP3692511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27357495A JP3692511B2 (en) 1995-09-26 1995-09-26 Stretch molding method for crystalline glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27357495A JP3692511B2 (en) 1995-09-26 1995-09-26 Stretch molding method for crystalline glass

Publications (2)

Publication Number Publication Date
JPH0986944A JPH0986944A (en) 1997-03-31
JP3692511B2 true JP3692511B2 (en) 2005-09-07

Family

ID=17529706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27357495A Expired - Fee Related JP3692511B2 (en) 1995-09-26 1995-09-26 Stretch molding method for crystalline glass

Country Status (1)

Country Link
JP (1) JP3692511B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013070672A1 (en) * 2011-11-09 2013-05-16 Corning Incorporated Process and device for manufacturing glass ribbon
DE102015118308B4 (en) 2014-10-29 2023-07-27 Schott Ag Method for producing a ceramizable green glass component and ceramizable green glass component and glass ceramic article
DE102016107934B4 (en) 2016-04-28 2023-07-13 Schott Ag Process for the production of high-index thin glass substrates

Also Published As

Publication number Publication date
JPH0986944A (en) 1997-03-31

Similar Documents

Publication Publication Date Title
JP6732432B2 (en) Method for producing ceramizable green glass material, ceramizable green glass material, and glass-ceramic product
US4042362A (en) Production of glass-ceramic articles
US4209229A (en) Glass-ceramic coated optical waveguides
JP3586142B2 (en) Glass plate manufacturing method, glass plate manufacturing apparatus, and liquid crystal device
EP1142841B1 (en) Glass material, glass ceramic product, and process for producing the glass material
JP6643275B2 (en) Method for producing thin glass substrate with high refractive index
US20090223250A1 (en) Manufacturing method of polarizing glass and polarizing glass article
KR20130117784A (en) Strengthened glass enclosures and method
US5084328A (en) Strong, surface crystallized glass articles
US4397669A (en) Method for the precision moulding of glass articles, method of manufacturing a mould, and mould for the precision moulding of glass articles
JP5762707B2 (en) Method for producing crystallized glass and crystallized glass article
JP3692511B2 (en) Stretch molding method for crystalline glass
JPH08151228A (en) Surface-crystallized high-strength glass, its production and use thereof
US3313609A (en) Method of making high strength nepheline crystalline glass
JP3692512B2 (en) Crystalline glass stretch molding equipment
US4201559A (en) Method of producing a glass-ceramic
JP3120422B2 (en) Crystallized glass articles
JP2694860B2 (en) Method for manufacturing fluoride glass preform
US3653865A (en) Nepheline-feldspar glass-ceramics
JP4113753B2 (en) Manufacturing method of glass material for press molding, manufacturing method of glass press molded product, manufacturing method of optical element
JP3120420B2 (en) Crystallized glass article and method for producing the same
JP3962897B2 (en) Manufacturing method of optical fiber fused portion reinforcing member
JP2001072429A (en) Production of crystallized glass article
JP3952136B2 (en) Reinforcing member for optical fiber fusion part
CN116813188A (en) Method and apparatus for molding continuous crystalline plate-like glass molded body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees