JP3692345B2 - Knife bending machine - Google Patents

Knife bending machine Download PDF

Info

Publication number
JP3692345B2
JP3692345B2 JP2002264745A JP2002264745A JP3692345B2 JP 3692345 B2 JP3692345 B2 JP 3692345B2 JP 2002264745 A JP2002264745 A JP 2002264745A JP 2002264745 A JP2002264745 A JP 2002264745A JP 3692345 B2 JP3692345 B2 JP 3692345B2
Authority
JP
Japan
Prior art keywords
knife
inner shaft
bending
opening
rotating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002264745A
Other languages
Japanese (ja)
Other versions
JP2004098137A (en
Inventor
忠二 柳本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laserck Corp
Original Assignee
Laserck Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laserck Corp filed Critical Laserck Corp
Priority to JP2002264745A priority Critical patent/JP3692345B2/en
Publication of JP2004098137A publication Critical patent/JP2004098137A/en
Application granted granted Critical
Publication of JP3692345B2 publication Critical patent/JP3692345B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は,打ち抜きプレス加工等により,紙,プラスチック,ダンボール等のシート状の材料を所定形状に打ち抜いたり,これに折り目を付けるために用いられる長尺薄板状のシート加工用ナイフ(以下,略してナイフという)を所定の形状に折り曲げるナイフの曲げ加工装置に係り,詳しくは,一度に大きな曲げ半径での曲げ加工を実施でき,更には,前記ナイフの粘弾性特性(スプリングバック等)の影響を受けずに曲げ加工を実施できるナイフの曲げ加工装置に関する。
【0002】
【従来の技術】
従来より,打ち抜きプレス加工に用いられる長尺薄板状のナイフを,所定の形状に折り曲げ加工する際には,前記ナイフを挿通させる開口部が形成された内軸と,前記開口部近傍を前記内軸の周方向に移動する可動部と,を備え,前記ナイフを前記開口部から送り出すと共に,送り出された前記ナイフを前記可動部により押圧し,前記ナイフの側部を前記開口部に押し当てることにより,前記ナイフを所定の形状に曲げ加工するナイフの曲げ加工装置が知られている(例えば,特許文献1,及び特許文献2参照)。
図6は,上述した従来のナイフの曲げ加工装置における曲げ加工に関係する部分(本発明における曲げ加工部5に該当)の構成を説明する図である。
ここに,図6(a)は従来のナイフの曲げ加工装置における曲げ加工部5''の分解斜視図,図6(b)はナイフを曲げ加工中である曲げ加工部5''の断面図を示す。
同図に示すように,従来公知の曲げ加工装置における曲げ加工部5''は,搬送ローラ92,93(図6(a)には不図示)により間欠的に長手方向に送り出されるナイフ100を通過させる開口部11が形成された内軸10と,該内軸10に外嵌され,前記開口部11近傍を該内軸10の周方向に移動する可動部12と,を備え,前記ナイフの送り出しが停止しているときに前記可動部12により前記ナイフ100を押圧し,前記開口部11を通過した前記ナイフ100の側部を前記開口部11の角部11a或いは11bに押し当てることにより,前記ナイフ100を所定の形状に曲げ加工するものである。
尚,図6(b)は,前記可動部12を図に示す矢印Xの方向(図6では反時計回り方向)に回転させ,前記ナイフ100を前記角部11b(図6では右側)に押し当てることによって,前記ナイフ100を図に示す矢印Yの方向に曲げ加工する場合を示しているが,前記可動部12をXの方向と逆向き(時計回り方向)に回転させた場合には,同図とは逆に,前記ナイフ100が前記角部11a(図6では左側)に押し当てられ,前記ナイフ100は矢印Yと逆の方向に曲げ加工される。
このような構成により,従来公知のナイフ曲げ加工装置(曲げ加工部6')では,前記ナイフ100を送り出す量,及び/若しくは前記可動部12により前記ナイフ100を押圧する押圧力を,所望する形状や前記ナイフ100の材質等に応じて好適に設定することにより,該ナイフ100を所定形状に加工することが可能である。
【0003】
【特許文献1】
特許第2648889号明細書
【特許文献2】
特開平6−328133号公報
【0004】
【発明が解決しようとする課題】
上述の説明のように,従来公知のナイフ曲げ加工装置は,前記可動部12の押圧力によりナイフを前記角部11a或いは11bに押し当てることで該ナイフを押し曲げるという構造である。
ところで,前記可動部12による押圧力或いは押し量は,該可動部12の強度その他の要因により,所定の値(トルク/押し量)以上に設定できない。つまり,従来公知のナイフ曲げ加工装置では,その所定の押圧力に応じた所定の曲げ半径(以下,最大加工半径という)による曲げ加工しかできない。
その結果,ナイフに対して,最大加工半径以上の大きな曲げ半径の加工を望む場合には,一度にその曲げ加工を行えず,断続的に(繰り返し)ナイフを送り出しつつ,該送り出しの都度前記可動部12で前記ナイフ100を押圧することで段階的に(徐々に)曲げ加工せざるを得なかった。
そのため,実質的に複数回の曲げ加工を行うことになるため,その加工誤差が機械の製作精度と相俟って累積され加工精度の低下を招くと共に,作業時間も増大するという問題があった。
更に,従来公知のナイフ曲げ加工装置では,ナイフの有する粘弾性特性(スプリングバック等)の補正が困難である。
この困難性は,特に前記ナイフ100の屈曲部(曲げ加工される部分)の曲げ半径が小さい場合に顕著に表れ,前記可動部12の押圧する押圧力及びナイフの送り出し量が少ない場合,前記粘弾性特性の影響を完璧に除去することができず,ナイフを所望する曲げ半径(形状)を得ることが至難の技であった。
そこで,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,長手方向に送り出される長尺薄板状のナイフを,可動部により前記ナイフを押圧して曲げ加工を施すナイフ曲げ加工装置において,前記ナイフを一度に大きく曲げ加工可能であって,更には前記ナイフの粘弾性特性(スプリングバック等)の影響を受けない全く新しい基本原理に基くナイフ曲げ加工装置を提供することにある。
【0005】
【課題を解決するための手段】
上記課題を解決するために,第1の発明は,長尺薄板状のナイフを保持部によって保持した状態で該ナイフに可動部を押し当てて該ナイフを押し曲げるナイフ曲げ加工装置において,
前記可動部を前記ナイフに作用させたときに前記保持部を振動させる加振機構を具備し,前記加振機構による振動方向が,前記ナイフ面に平行でナイフ長手方向に直角の垂直軸方向であることを特徴とするナイフ曲げ加工装置として構成される。
このように構成することによって,前記可動部により押し曲げられる前記ナイフに対し,前記可動部による押圧力に加え,前記保持部の振動による新たなエネルギー(衝突エネルギー,或いは摩擦エネルギー等)が付与され,その新たなエネルギーによって該ナイフの屈曲部近傍が軟化されることとなる。つまり,本発明によれば,前記ナイフの屈曲部近傍を軟化させた状態で該ナイフの曲げ加工を行うことができる。
従って,前記可動部の押圧力が,従来公知の装置と同じ値(トルク)であったとしても,より大きな最大加工半径を実現することが可能である。
逆にいえば,同じ曲げ半径の曲げ加工については,より小さな押圧力により曲げ加工できるため,前記可動部の損傷(曲がり,欠け)等を防止することが可能であることに加え,加工精度の面でも有利である。
更には,前記ナイフの屈曲部を軟化させつつ押し曲げることは,より確実な塑性変形を可能とし,その曲げ半径が小さい場合であっても,前記ナイフの粘弾性特性(スプリングバック等)の影響を受けることの少ない,高精度な曲げ加工を実現できる
【0006】
また,第2の本発明は,長尺薄板状のナイフを挿通させる開口部が形成された内軸と,前記開口部近傍を前記内軸の周方向に移動する可動部とを備え,前記ナイフを前記内軸に保持させた状態で前記可動部により押圧し,前記ナイフの側部を前記開口部に押し当てて前記ナイフを押し曲げるナイフ曲げ加工装置において,
前記可動部を前記ナイフに作用させたときに前記内軸を振動させる加振機構を具備し,前記加振機構による振動方向が,前記内軸の軸方向であることを特徴とするナイフ曲げ加工装置である。
さらに第3の発明は,前記加振機構が,
第2の発明において,前記内軸の端部近傍に設けられる電動機と,該電動機により回転され,その底面に所定の斜面が形成された円柱状の第1の回転部材とを具備し,該第1の回転部材を,前記所定の斜面を前記内軸の縁部に当接させた状態で回転させるよう構成したものである。
さらにまた第4の発明においては,前記円柱状の第1の回転部材に,該第1の回転部材を上記内軸の軸心方向に弾性的に変位させることのできる切り欠きが形成されてなる請求項3に記載のナイフ曲げ加工装置である。
【0007】
さらに第5の発明は,長尺薄板状のナイフを挿通させる開口部が形成された内軸と,前記開口部近傍を前記内軸の周方向に移動する可動部とを備え,前記ナイフを前記内軸に保持させた状態で前記可動部により押圧し,前記ナイフの側部を前記開口部に押し当てて前記ナイフを押し曲げるナイフ曲げ加工装置において,
前記可動部を前記ナイフに作用させたときに前記内軸を振動させる加振機構を具備し,前記加振機構による振動方向が,前記内軸の周方向であることを特徴とするナイフ曲げ加 工装置であり,第6の発明は,前記加振機構が,
前記内軸の端部近傍に設けられる電動機と,該電動機により回転され,その周面上に潤滑油を収容する油溜まりが形成された円柱状の第2の回転部材と,前記内軸の縁部に設けられ,その壁面に潤滑油を収容する油溜まりが形成された凹部と,を具備し,該第2の回転部材を,前記凹部に枢着させた状態で回転させるよう構成されてなる請求項5に記載のナイフ曲げ加工装置である。
【0008】
【発明の実施の形態】
以下添付図面を参照しながら,本発明の実施の形態について説明し,本発明の理解に供する。尚,以下の実施の形態及び実施例は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の実施形態に係るナイフ曲げ加工装置の全体を示す図,図2は曲げ加工部の第1の実施形態の正断面図,及び要部拡大図,図3は曲げ加工部の第2の実施形態の正断面図,及び要部拡大図,図4は曲げ加工部における内軸の周方向への振動について説明する図,図5は曲げ加工中のナイフの状態を説明する図,図6は従来のナイフ曲げ加工装置の要部斜視図,及び断面図,図7曲げ加工部のその他の実施例を示す図である。
本実施の形態に係るナイフ曲げ加工装置Aは,図1((a):平面図,(b):側面図)に示す如く具現化される。
同図に示す如く,本発明の実施形態に係るナイフ曲げ加工装置Aは,ナイフストック部1,曲がり矯正部2,ナイフ搬送部3,前処理部4,曲げ加工部5,切断部6,表示部7,操作部8を具備して概略構成され,これらが所定高さに水平な面を形成する架台B上に,ナイフの搬送方向に沿って,前記ナイフストック部1,前記曲がり矯正部2,前記ナイフ搬送部3,前記前処理部4,前記曲げ加工部5,前記切断部6の順に配置される。
ここで,前記ナイフストック部1は,加工前のナイフを渦巻状に巻いて収容するものであり,前記ナイフ搬送部3によるナイフの搬送に応じ,収容されたナイフを供給する。
前記曲がり矯正部2は,前記ナイフストック1から前記ナイフ搬送部3に至る搬送経路の途中に設けられ,前記ナイフストック1における収容(保管)中に,ナイフに生じた変形(曲がり)を矯正するものである。そのため,例えば複数のローラ等を組み合わせて構成されるものであり,前記ナイフストック1での保管の際に巻かれていた方向と逆の方向に,ナイフを反らせつつナイフを搬送する。
前記ナイフ搬送部3は,例えば複数のパルスモータ,クランプ等を組み合わせて構成されるものであり,前記ナイフストック部1に収容されていたナイフを,所定量づつ搬送方向下流に設けられる前記前処理部4その他に対して搬送するものである。
前記前処理部4は,曲げ加工を施す前のナイフに対し,該ナイフを削る加工(ニック加工),或いは該ナイフの刃面とは逆方向の背部側に所定の切り欠きを形成する加工(ブリッジ加工)等を施すものである。
前記曲げ加工部5は,前記前処理部4での前処理を終え,搬送されてきたナイフを所定の形状に曲げ加工するものである。(詳細は後述する)
前記切断部6は,前記曲げ加工部5により曲げ加工されたナイフを必要に応じて所定の位置(長さ)で切断するものである。
前記操作部8は,所望する加工形状(加工角度)等のデータ入力,種々の設定等の種々の操作を行うものであり,その操作結果が前記表示部7に表示されるようになっている。また,該表示部7には,ナイフ加工に関する情報,或いは加工状況が逐一表示されるようになっている。
尚,同図には不図示であるが,当該ナイフ曲げ加工装置A内には,制御部が設けられている。該制御部は,前記操作部8から入力される加工データ,設定値に基いて,ナイフを所定形状に曲げ加工するべく上述した各部を統合的な制御を行うものである。
このような構成により,当該ナイフ曲げ加工装置Aでは,前記ナイフストック部1に収容されたナイフが,前記曲がり矯正部2により矯正され,前記前処理部4により所定の処理を施された後に,前記曲げ加工部5へ搬送される。そして,該曲げ加工部5により所定の曲げ加工が施され,曲げ加工が終わった段階で前記切断部6によりナイフが切断され,処理(加工)が完了する。
このように,本実施形態に係るナイフ曲げ加工装置Aの基本的構成或いは処理手順は従来公知の装置と同様のものである。
しかしながら,当該ナイフ曲げ加工装置Aは,前記曲げ加工部5の構成が従来公知の装置と異なり,それにより著しい効果を奏するものであるため,以下に,本発明の特徴点である当該曲げ加工部5について詳説する。
【0009】
ここでは,前記曲げ加工部の第1の実施形態の構成について,図2を参照しつつ,説明する。
ここに,図2(a)は第1の実施形態に係る曲げ加工部5をナイフ搬送方向からみた正断面図,図2(b)は前記曲げ加工部5に設けられる内軸10の平面図,図2(c)は前記曲げ加工部5の矢印Dにおける断面図,図2(d)は前記曲げ加工部5に設けられる第1の回転部材20の拡大図である
図2(a)に示す如く,前記曲げ加工部5は,内軸10,可動部12,加振機構5aを具備して概略構成され,更に前記加振機構5aは,モータM,第1の回転部材20,鋼球21を具備して構成される。
前記可動部12は略円筒形状であり,下架台B2(前記架台Bの一部,或いは該架台Bに接続され,装置本体に固定される)に対して固定された不図示であるモータに接続されると共に,該下架台B2及び上架台B1(前記架台Bの一部,或いは該架台Bに接続され,装置本体に固定される)に対しベアリング30b,30aにより支承され,そのモータの回転に応じて周方向に回動自在である。尚,当該可動部12には,前記内軸10に形成された開口部11に対応する位置に第1開口部13,第2開口部14(断面図2(c)参照)が形成される。これにより,当該曲げ加工部5に搬送されたナイフは,前記第2開口部14から搬入される共に,前記内軸10の開口部11を挿通された後に前記第1開口部13から搬出可能であり,更には,ナイフを前記開口部11に保持(挿通)させた状態で,当該可動部12を回動させることにより,前記可動部12(つまりは,前記第1開口部13の縁部)でナイフを押圧し,ナイフの側部を前記開口部11に押し当てて,ナイフを曲げることができる。(図5参照)。
また,前記内軸10は,円盤状の端部10'を有する略円柱形状であり,前記可動部12との回転摺動による摩擦抵抗の軽減化を図る断面形状(本実施形態では,略六角形)を有し,その所定位置にナイフを挿通させる前記開口部11が形成されると共に,前記可動部12に対して上方より挿入され,その円盤状の端部10'に形成された孔22'(平面図2(b)参照)に差し込まれる位置決めピン22により前記上架台B1に固定される。ここで,前記位置決めピン22は,当該内軸10の周方向への回転を規制するものであり,軸方向への動きを規制するものではない。つまり,当該内軸10は,図中に矢印Cで示す軸方向に対し,前記可動部12内を摺動自在に構成される。更に,当該内軸10の端部のうち,前記可動部12に対して挿入される側の端部(下端)には圧縮バネ19が設けられ,軸方向上向きに当該内軸10を付勢するよう構成される。これにより,後述する加振機構5aにより与えられる軸方向の振動(作用)に応じ,当該内軸10を軸方向に対し周期的に振動させることができる。尚,前記圧縮バネ19としては,例えば,コイルバネであっても良いし,空気バネであっても良い。
また,前記加振機構5aは,モータMと,該モータMの出力軸に設けられ,その底面に所定の斜面が形成された円柱状の第1の回転部材20と,前記内軸10の上端に当接され,前記第1の回転部材20の底面に当接する鋼球21と,を具備して構成され,前記モータMの回転により生ずる前記第1の回転部材の底面の偏心運動(軸方向への往復運動)を,前記鋼球21を介して前記内軸10に伝達する構成である。尚,前記鋼球21が前記内軸10の上端中心部から離れないようにするために,前記内軸10の上端面には,図2(b)に示すように,該鋼球21を収容する固定孔21'が形成される。更に,プレート24の裏面,スペーサ25の内壁,前記上架台B1の内壁,前記内軸10の円盤状の端部10'の上面により形成(密閉)される領域Oには潤滑油が満たされ,各部への集中給油による潤滑を行うと共に偏磨耗を防止している。
ここで,前記モータMは前記プレート24に固定される。また,前記プレート24は,前記スペーサ25と共に前記内軸10の端部近傍に固定ネジ23により固定される。尚,前記モータMは,該モータMの軸心と,前記内軸10の軸心が若干ずれた状態となるよう位置決めされる。
このような前記固定ネジ23により当該加振機構5aが固定された構成により,図2(a)に示すように,前記第1の回転部材20が,前記鋼球21と共に前記内軸10を軸方向下向きに押し下げるため,前記内軸10は,前記第1の回転部材20により押し下げられる力と,前記圧縮バネ19による付勢力とが釣り合う位置で弾性的に支持される。
この状態で,前記モータMを回転させると,底面に斜面を形成した前記第1の回転部材20が回転され,該第1の回転部材20の底面(斜面)に当接する前記鋼球21には,その斜面に応じた偏心運動(軸方向への往復運動)が伝達される。その結果,前記内軸10には軸方向上方からの力が作用することとなり,当該内軸10が,軸方向(矢印Cの方向)に対し周期的に振動される。
尚,前記第1の回転部材20には,図2(d)に示す如く,切り欠き20'が形成されていることが望ましい。このような切り欠きを形成することで,該第1の回転部材20の底面を,矢印Eで示す方向に弾性的に変位させることが可能となる。これにより,高速回転する前記第1の回転部材20と前記鋼球21との間で生ずるガタを抑えることが可能となり,ガタによる振動,或いは騒音等の発生を防止できる。
以上のように,当該曲げ加工部5は,前記上架台B1に片持ち状に固定された前記内軸10に対し,前記下架台B2に片持ちに固定された前記可動部12を外嵌することによって,両者を回転自在に固定するという従来通りの構成に加え,前記内軸10をその軸方向に対し,振動させるという新たな構成を付加したものである。
これにより,当該曲げ加工部5によれば,前記可動部12を回動させ,ナイフを押圧することにより,該ナイフの側部を前記内軸10(開口部11)に押し当てることで該ナイフを曲げ加工する場合に,該ナイフに対して,前記可動部12による押圧力のみならず,前記内軸10の振動による新たなエネルギー(衝突エネルギー,或いは摩擦エネルギー等)が付与される。そのため,その新たなエネルギーによってナイフの屈曲部近傍を軟化させた状態で,該ナイフの曲げ加工を行うことが可能となり,従来の装置に較べ,より大きな曲げ加工可能であると同時に,粘弾性特性(スプリングバック等)の影響を除去した正確な塑性変形が可能である。
尚,本実施形態では,前記モータMとしては,10000rpm〜40000rpmの高速回転モータを用い,前記内軸10に対する振動は10000回/分に設定している。しかしながら,この振動の設定は,この値に限定されるものでなく,加工するナイフの材質或いは曲げ角度等に応じて変更することが望ましい。更には,前記第1の回転部材20の底面の形状(傾斜角度,凹凸の個数等)を変更することによっても,前記内軸10に発生する振動の振幅,周期を任意に調整可能であり,ナイフの屈曲部に対して付与されるエネルギー量を調整可能である。
また,本実施形態では,前記モータMを,その出力軸が前記内軸10の軸方向と同一方向に設けているが,該モータMを,その出力軸が前記内軸10の軸方向と直角方向に設けると共に,前記第1の回転部材20を該モータMの出力軸に対して軸偏心させて設け,前記鋼球21を前記第1の回転部材20の周面に当接させ,振動させる,所謂偏心カムのような構成とすることも可能である。
【0010】
次に,前記曲げ加工部の第2の実施形態の構成について,図3を参照しつつ,説明する。
ここに,図3(a)は第2の実施形態に係る曲げ加工部5'をナイフ搬送方向からみた正断面図,図3(b)は前記曲げ加工部5'に設けられる第2の回転部材26の拡大図(図3(a)に一点破線Jで囲む領域),図3(c)は前記曲げ加工部5'に設けられる内軸10,及び前記第2の回転部材26の平面図である
図3(a)に示す如く,前記曲げ加工部5'は,内軸10,可動部12,加振機構5bを具備して概略構成され,更に前記加振機構5bは,モータM,第2の回転部材26,前記内軸10の縁部に形成される凹部10aを具備して構成される。
ここで,当該曲げ加工部5'は,上述説明した第1の実施形態である前記曲げ加工部5と略同様の構造を有するものであるが,前記曲げ加工部5が軸方向への振動を与えるものであったのに対し,当該曲げ加工部5'は周方向への振動を与えるものである点で異なる。
前記可動部12は略円筒形状であり,下架台B2に対して固定された不図示であるモータに接続されると共に,該下架台B2及び上架台B1に対しベアリング30b,30aにより支承され,そのモータの回転に応じて周方向に回動自在である。尚,当該可動部12には,前記曲げ加工部5の場合と同様,前記内軸10に形成された開口部11に対応する位置に第1開口部13,第2開口部14が形成される。これにより,当該曲げ加工部5に搬送されたナイフは,前記第2開口部14から搬入される共に,前記内軸10の開口部11を挿通された後に前記第1開口部13から搬出可能であり,更には,ナイフを前記開口部11に保持(挿通)させた状態で,当該可動部12を回動させることにより,該可動部12(つまりは,前記第1開口部13の縁部)でナイフを押圧し,ナイフの側部を前記開口部11に押し当てて,ナイフを曲げることができる(図5参照)。
また,前記内軸10は,円盤状の端部10'を有する略円柱形状であり,前記可動部12との回転摺動による摩擦抵抗の軽減化を図る断面形状(本実施形態では,略六角形)を有し,その所定位置には,ナイフを挿通させる前記開口部11が形成されると共に,前記可動部12に対して上方より挿入され,その円盤状の端部10'に形成された孔22'(平面図3(c)参照)に差し込まれる位置決めピン22により前記上架台B1に固定される。ここで,前記位置決めピン22が挿入される孔22'は,当該内軸10の周方向に対する若干量の回転(図中には矢印L1,L2で示す)を許容するよう形成されたものである。また,当該内軸10の軸方向への動きは,後述する加振機構5bをその上部に取り付けることにより規制される。つまり,当該内軸10は,図3(c)中に矢印L1,L2で示す周方向にのみ若干量の移動可能に構成され,後述する加振機構5bにより与えられる周方向の振動(作用)に応じ,当該内軸10を周方向に対し周期的に振動させることができる。
また,前記加振機構5bは,モータMと,該モータMの出力軸に設けられ,その周面上に潤滑油を収容する油溜まり27(図3(b)参照)が形成された円柱状の第2の回転部材26と,前記内軸10の円盤状の端部10'に設けられ,その壁面に潤滑油を収容する油溜まり28(図3(b)参照)が形成された前記凹部10aと,を具備して構成され,前記モータMの回転により生ずる前記第2の回転部材に設けられる前記油溜まり27と,前記凹部10aに設けられる前記油溜まり28との間の潤滑油の脈動(圧力変動)を,前記内軸10に伝達する構成(詳細は後述する)である。尚,プレート24の裏面,前記上架台B1の内壁,前記内軸10の円盤状の端部10'の上面により形成(密閉)される領域Oには潤滑油が満たされ,各部への集中給油による潤滑を行うと共に偏磨耗を防止している。
ここで,前記モータMは前記プレート24に固定される。また,前記プレート24は,前記内軸10の端部近傍に固定ネジ23により固定される。尚,前記モータMは,該モータMの軸心が前記内軸10の軸心に一致した状態となるよう位置決めされる。
このような前記固定ネジ23により当該加振機構5bが固定された構成により,図3(a)に示すように,前記第2の回転部材26が前記凹部10aに枢着される。このような構成により,前記内軸10は,その軸方向には固定され,矢印L1,L2で示す方向(周方向)にのみ若干量の移動(振動)可能に支持される。
この状態で,前記モータMを回転させると,前記第2の回転部材26が回転され,その周面上に形成された前記油溜まり27と,該回転部材26が枢着される前記凹部10aの壁面に形成された前記油溜まり28との間で潤滑油の脈動が発生し,結果的に,前記内軸10を周方向に対して周期的に振動させることができる。
【0011】
ここでは,前記油溜まり27と前記油溜まり28との間で発生する潤滑油の脈動により,前記内軸10に対し周方向の振動を発生させる機構について,図3(b),(c),及び図4を参照しつつ,説明する。
ここで,前記油溜まり27,28は,図3(b)に示すように,前記第2の回転部材26と,前記凹部10aとが枢着される(摺接する)領域に形成される。
更に,図3(c)に示すように,前記第2の回転部材26の周面上に形成される前記油溜まり27は,該第2の回転部材26の回転方向K1,K2夫々の方向に,その回転方向上流側が最も深く,その回転方向下流側に進むにつれて徐々に浅くなるよう形成された27a,27bとからなり,一方の前記凹部10aの壁面に形成される前記油溜まり28は,逆に,前記第2の回転部材26の回転方向K1,K2夫々の方向に,その回転方向上流側が最も浅く,その回転方向下流側に進むにつれて徐々に深くなるよう形成された28a,28bとかなる。つまり,回転方向K1に対応して形成されたものが前記油溜まり27a,28aであり,回転方向K2に対応して形成されたものが前記油溜まり27b,28bである。
かかるように形成された前記油溜まり27,28の相互作用により,前記内軸10を振動させる原理について図4を参照しつつ,説明する。
ここに,図4は,前記第2の回転部材26を回転方向K1に回転させた場合の前記油溜まり27,28についての拡大図である。
図4(a)は,前記第2の回転部材26を図中矢印K1の方向に回転させた場合の前記油溜まり27a,28aを示している。
この場合には,前記油溜まり27aと,前記油溜まり28aとは,互いに最も浅く形成された側同士から,前記第2の回転部材26の回転に伴って徐々に対向することになる。そのため,前記油溜まり27aに収容されていた潤滑油がその回転により前記油溜まり28aに急激に流入(図中には潤滑油の流れを矢印Mにより示す)し,所謂脈動を発生する。その結果,潤滑油の急激な流入に受ける前記油溜まり28aを形成する前記内軸10は,図中に矢印L1で示す,前記第2の回転部材26の回転方向K1と同方向への振動が発生する。
一方,図4(b)は,同様の場合についての前記油溜まり27b,28bを示している。
この場合には,前記油溜まり27bと,前記油溜まり28bとは,互いに最も深く形成された側同士から,前記第2の回転部材26の回転に伴って徐々に対向することになる。そのため,前記油溜まり27aに収容されていた潤滑油は前記油溜まり28aに緩やか(図中には潤滑油の流れを矢印Mにより示す)に流入し,急激な圧力変動を生じさせることはなく,前記内軸1に対する振動を発生させることはない。
尚,前記内軸10を図中矢印K2の方向に回転させた場合については,特に図示しないが,基本的な考え方は上述と同様であり,前記油溜まり27bと前記油溜まり28bとの間で発生する脈動により,前記内軸10には,図中に矢印L2で示す方向への振動が発生する。
このように,当該曲げ加工部5'では,前記内軸10と前記第2の回転部材26とに,夫々の回転方向に応じて形成された前記油溜まり27,28間に発生する脈動により,前記内軸10を周方向に振動を発生させることができる。
尚,その振動を発生させる方向は,ナイフを曲げる方向に応じて決定され,前記可動部12により前記内側軸に押し当てられているナイフに対し,前記内軸1を衝突させる方向の振動を発生させるよう前記モータMの回転方向を選択する。つまり,前記可動部12の回動方向とは逆方向に,前記内軸1を振動させるよう,前記モータMを回転させる。例えば,図5では,前記可動部12を反時計回り(矢印X1で示す方向)に回動させているので,前記内側軸10には時計回り方向の振動を発生させ,ナイフの屈曲部に対して前記内側軸10を衝突させ,ナイフ100の屈曲部近傍を軟化させることとなる。
【0012】
以上のように,曲げ加工部の第2の実施形態である当該曲げ加工部5'は,前記上架台B1に片持ち状に固定された前記内軸10に対し,前記下架台B2に片持ちに固定された前記可動部12を外嵌することによって,両者を回転自在に固定するという従来通りの構成に加え,前記内軸10をその周方向に対し,振動させるという新たな構成を付加したものである。
これにより,当該曲げ加工部5'によれば,前記可動部12を回動させ,ナイフを押圧することにより,該ナイフの側部を前記内軸10(開口部11)に押し当てることで該ナイフを曲げ加工する場合に,該ナイフに対して,前記可動部12による押圧力に加え,前記内軸10の振動による新たなエネルギー(衝突エネルギー,或いは摩擦エネルギー等)が付与される。そのため,その新たなエネルギーによってナイフの屈曲部近傍を軟化させた状態で,該ナイフの曲げ加工を行うことが可能となり,従来の装置に較べ,より大きな最大加工半径で曲げ加工可能であると同時に,粘弾性特性(スプリングバック等)の影響を除去した正確な塑性変形が可能である。
尚,本実施形態では,前記モータMとしては,10000rpm〜40000rpmの高速回転モータを用い,前記内軸10に対する振動を10000回/分に設定している。しかしながら,この振動の設定は,この値に限定されるものでなく,加工するナイフの材質或いは曲げ角度等に応じて変更することが望ましい。更には,前記第2の回転部材26,及び前記凹部10aに形成される前記油溜まり27,28の数量を変更することによっても前記内軸10に発生する振動を調整可能であり,ナイフの屈曲部に対して付与されるエネルギー量を調整可能である。
【0013】
最後に,図5を参照しつつ,前記曲げ加工部5或いは5'により曲げ加工を施されるナイフの状況について説明する。
ここに,図5は,ナイフ100を矢印Yの方向に曲げ加工している曲げ加工部5或いは5'の要部拡大図である。
同図に示す如く,不図示である前記搬送部3により矢印Fの方向に搬送されたナイフ100は,前記内軸10に形成された開口部11及び前記第1開口部13を挿通した状態で停止される。
その状態において,前記可動部12が回動され(図中には矢印X1で示す方向),該可動部12における前記第1開口部13の一方の縁部を,前記ナイフ100に対して当接させて所定の押圧力により押圧する。
従来公知の装置の場合には,このまま前記ナイフ100を押し曲げるのであるが,本実施形態においては,この状態において,前記内軸10が不図示である前記加振機構5a或いは5bにより振動される(前記曲げ加工部5の場合には紙面に対して垂直な軸方向,前記曲げ加工部5'の場合には周方向であって矢印X1とは反対の方向)。これにより,その振動により生ずるエネルギー(摩擦エネルギー或いは衝突エネルギー)が前記ナイフ100の屈曲部近傍(図中には斜線領域Iで示す)に付与され,そのエネルギーによってその部分が軟化される。
従って,本実施形態によれば,前記ナイフ100は軟化された状態で,前記可動部12により押圧され,前記内軸10に押し当てられることとなるため,より大きな曲げ半径により曲げることができる。更には,軟化させた状態で曲げ加工することで,例え小さな曲げ半径であったとしても粘弾性特性(例えば,スプリングバック)の影響の少ない正確な曲げ加工(塑性変形)が可能となる。
ところで,前記ナイフ100に曲げ加工を施すと,その屈曲部では内側が圧縮応力により縮み,外側は引張応力により伸びる。この応力(圧縮応力と引張応力)が反転する点(以下,応力反転点という)が,前記ナイフ100の刃面100a上にある場合には,前記ナイフ100を所定形状に曲げ加工することで,前記刃面100aも所定形状に曲げ加工することができる。しかしながら,現実には,前記応力反転点は前記刃面100a上になく,該刃面100aより内側にあることが知られている。そのため,前記ナイフ100を所定形状に加工しても,前記刃面100aは外側(図中には矢印Gで示す)に倒れる(逃げる)よう曲がり(図中には仮想線Hで一例を示す),所定形状を描いていない場合が散見された。このような状況は,特に,一度に前記ナイフ100を大きな曲げ半径で曲げ加工する場合(所謂一度曲げ)に起こり易い。
しかしながら,加振機構を備えた本実施形態によれば,前記ナイフ100の屈曲部の内側を軟化させて曲げるという構成であるため,あたかも,該ナイフ100の内側面を削る加工を施した場合と同様の効果を奏し,その曲げ加工による前記応力反転点を前記刃面100a上近傍にもってくることができる。
従って,本実施形態によれば,加振により軟化させた状態で曲げ加工することで,粘弾性特性の影響の少ない正確な曲げ加工(塑性変形)を可能とすることに加え,前記刃面100aの逃げを防止することが可能であり,作業効率を著しく向上させると共に,近年要求される高精度な曲げ加工を実現可能な装置を実現することができる。
【0014】
以上説明したように,本発明では,一回の曲げ加工により,従来より大きい角度の曲げを達成できる。しかしながら,更に大きい角度の曲げをナイフに与えたい場合には,従来公知の装置同様,ナイフの送り出しつつ,曲げ加工を繰り返して行う構成としても良い。
また,当該加振機構5a,5bによる振動は,前記可動部12による押圧力(作用)によりナイフを曲げ加工している間,常に発生させる必要はなく,振動を止めた状態で曲げ加工することも可能である。つまりは,加工対象であるナイフの材質,或いは所望する角度(形状)に応じて振動を与える時間を決定すればよい。
【0015】
【実施例】
上述した実施形態では,前記内軸10でナイフを保持し,該内軸10を振動させると共に,該内軸10の周りに回動する前記可動部12でナイフを押圧することにでエネルギーの与えられたナイフの屈曲部を容易に曲がり得るようにしたものであるが,ナイフを保持する保持部の構造は上述実施形態の如く軸構造である必要はなく,またその可動部も保持部の周方向に回動するものである必要はない。
例えば,図7に示すように,丸或いは角軸形状(図には角軸形状を示す)の保持部90にナイフ100の通過するスリット90a(開口部)を形成し,搬送ローラ92,93で送り出される前記ナイフ100を前記スリット90aを通過させ,前記保持部90を振動させつつ押し部91(可動部の一例に該当)で前記スリット90aから出てきた前記ナイフ100を押圧するものであってもよい。(押し曲げられる前のナイフ100を破線で,押し曲げた後のナイフ100を実線で示す。)
前記押し部91の押圧方向(図中には矢印Xで示す方向)は,上述実施形態のように,前記保持部91の回りを回動するものであっても,直線運動するものであっても,或いはそれ以外の方向であってもよく,要するに前記ナイフ100に対し曲げを与える方向であればよい。この際,前記保持部90の振動方向は,上述実施形態のように,前記ナイフ面に平行でナイフ長手方向に直角の垂直軸方向(図中には矢印Cで示す方向)であっても,前記垂直軸方向に直交する面に含まれる方向(図中には矢印Lで示す方向)であってもよい。
【0016】
また,上述実施形態では,駆動源としてモータ等の電動機を用いているが,電動機ではなく,超音波振動を直接発生し得る超音波発振器(振動子)を用いた形態,或いは,エア駆動のロータリー方式の駆動源を用いた形態であってもよい。
【0017】
【発明の効果】
以上説明したように,本発明によれば,長尺薄板状のナイフを挿通させる開口部が形成された内軸と,前記開口部近傍を前記内軸の周方向に移動する可動部と,を備え,前記ナイフを前記内軸に保持させた状態で前記可動部により押圧し,前記ナイフの側部を前記開口部に押し当てることにより,前記ナイフに曲げ加工を施すナイフ曲げ加工装置において,前記可動部により押圧され前記内軸に当接されている前記ナイフに対し,前記可動部による押圧力に加え,前記内軸の振動による新たなエネルギー(衝突エネルギー,或いは摩擦エネルギー等)が付与され,その新たなエネルギーによって該ナイフの屈曲部近傍が軟化された状態で押し曲げ加工することが可能となる。従って,従来装置に較べて,より大きな最大加工半径を実現することが可能である。更には,前記ナイフの屈曲部を軟化させつつ押し曲げることで,より確実な塑性変形を可能とし,その曲げ半径が小さい場合であっても,前記ナイフの粘弾性特性(スプリングバック等)の影響を受けることのない,高精度な曲げ加工を実現できる。
【図面の簡単な説明】
【図1】 本発明の実施形態に係るナイフ曲げ加工装置の全体を示す図。
【図2】 曲げ加工部の第1の実施形態の正断面図,及び要部拡大図。
【図3】 曲げ加工部の第2の実施形態の正断面図,及び要部拡大図。
【図4】 曲げ加工部における内軸の周方向への振動について説明する図。
【図5】 曲げ加工中のナイフの状態を説明する図。
【図6】 従来のナイフ曲げ加工装置の要部斜視図,及び断面図。
【図7】 曲げ加工部のその他の実施例を示す図。
【符号の説明】
A …ナイフ曲げ加工装置
B …架台
B1 …上架台
B2 …下架台
M …モータ
1 …ナイフストック部
2 …曲がり矯正部
3 …ナイフ搬送部
4 …前処理部
5 …曲げ加工部
5a …加振機構
5b …加振機構
6 …切断部
7 …表示部
8 …操作部
10 …内軸
10'…円盤状の縁部
10a…凹部
11 …開口部
12 …可動部
13 …第1開口部
14 …第2開口部
19 …圧縮バネ
20 …第1の回転部材
20'…切り欠き
21 …鋼球
21'…固定孔
22 …位置決めピン
22'…孔
23 …固定ネジ
24 …プレート
25 …スペーサ
26 …第2の回転部材
27 …油溜まり
28 …油溜まり
30 …ベアリング
90 …保持部
91 …押し部(可動部)
92 …搬送ローラ
93 …搬送ローラ
100 …ナイフ
100a …刃面
[0001]
BACKGROUND OF THE INVENTION
  The present invention is a sheet processing knife (hereinafter abbreviated as a long thin plate) used for punching a sheet-like material such as paper, plastic, cardboard or the like into a predetermined shape by punching press processing or the like, or for making a crease. In particular, it is possible to perform bending with a large bending radius at a time, and to influence the viscoelastic properties (springback, etc.) of the knife. The present invention relates to a knife bending apparatus that can perform bending without being subjected to bending.
[0002]
[Prior art]
  Conventionally, when a long thin plate-like knife used for punching press processing is bent into a predetermined shape, an inner shaft formed with an opening through which the knife is inserted, and the vicinity of the opening are formed in the inner portion. A movable portion that moves in the circumferential direction of the shaft, and sends out the knife from the opening, presses the delivered knife by the movable portion, and presses the side of the knife against the opening Thus, there is known a knife bending apparatus for bending the knife into a predetermined shape (see, for example, Patent Document 1 and Patent Document 2).
  FIG. 6 is a diagram for explaining the configuration of a portion (corresponding to the bending portion 5 in the present invention) related to bending in the conventional knife bending apparatus described above.
  6A is an exploded perspective view of the bending portion 5 ″ in the conventional knife bending apparatus, and FIG. 6B is a sectional view of the bending portion 5 ″ in which the knife is being bent. Indicates.
  As shown in the figure, a bending section 5 ″ in a conventionally known bending apparatus includes a knife 100 that is intermittently fed in a longitudinal direction by conveying rollers 92 and 93 (not shown in FIG. 6A). An inner shaft 10 having an opening 11 to be passed therethrough, and a movable portion 12 that is externally fitted to the inner shaft 10 and moves in the circumferential direction of the inner shaft 10 in the vicinity of the opening 11. By pressing the knife 100 by the movable part 12 when the feeding is stopped, and pressing the side part of the knife 100 that has passed through the opening part 11 against the corner part 11a or 11b of the opening part 11, The knife 100 is bent into a predetermined shape.
  6B, the movable portion 12 is rotated in the direction of the arrow X shown in the drawing (counterclockwise direction in FIG. 6), and the knife 100 is pushed to the corner portion 11b (right side in FIG. 6). Although the case where the knife 100 is bent in the direction of the arrow Y shown in the drawing by being applied is shown, when the movable part 12 is rotated in the direction opposite to the direction of X (clockwise direction), Contrary to the figure, the knife 100 is pressed against the corner 11a (left side in FIG. 6), and the knife 100 is bent in the direction opposite to the arrow Y.
  With such a configuration, in a conventionally known knife bending apparatus (bending section 6 ′), the amount of feeding the knife 100 and / or the pressing force for pressing the knife 100 by the movable section 12 is in a desired shape. Alternatively, the knife 100 can be processed into a predetermined shape by suitably setting according to the material of the knife 100 or the like.
[0003]
[Patent Document 1]
          Japanese Patent No. 2664889
[Patent Document 2]
          JP-A-6-328133
[0004]
[Problems to be solved by the invention]
  As described above, the conventionally known knife bending apparatus has a structure in which the knife is pushed and bent by pressing the knife against the corner portion 11a or 11b by the pressing force of the movable portion 12.
  Incidentally, the pressing force or pressing amount by the movable part 12 cannot be set to a predetermined value (torque / pushing amount) or more due to the strength of the movable part 12 and other factors. That is, the conventionally known knife bending apparatus can only perform bending with a predetermined bending radius (hereinafter referred to as a maximum processing radius) corresponding to the predetermined pressing force.
  As a result, when it is desired to process the knife with a large bending radius that is greater than the maximum processing radius, the bending process cannot be performed at one time, and the knife is intermittently (repetitively) sent out, and the movable is performed each time the feeding is performed. By pressing the knife 100 with the part 12, it was forced to bend gradually (gradually).
  As a result, the bending process is actually performed a plurality of times, so that the processing errors are accumulated in combination with the machine manufacturing accuracy, resulting in a decrease in processing accuracy and an increase in working time. .
  Furthermore, it is difficult to correct the viscoelastic properties (spring back, etc.) of the knife in a conventionally known knife bending apparatus.
  This difficulty is particularly noticeable when the bending radius of the bent portion (the portion to be bent) of the knife 100 is small, and when the pressing force pressed by the movable portion 12 and the knife feed amount are small, the viscosity is reduced. The effect of elastic properties could not be completely removed, and it was extremely difficult to obtain the desired bending radius (shape) of the knife.
  Accordingly, the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a long thin plate-like knife that is fed in the longitudinal direction, and a knife that performs bending by pressing the knife with a movable part. In a bending apparatus, a knife bending apparatus based on a completely new basic principle capable of bending the knife largely at a time and not affected by the viscoelastic properties (springback, etc.) of the knife is provided. It is in.
[0005]
[Means for Solving the Problems]
  In order to solve the above-mentioned problems, the first invention is a knife bending apparatus for pressing and bending a movable part against the knife in a state where a long thin plate-like knife is held by a holding part.
  When the movable part is applied to the knifeProvided with an excitation mechanism that vibrates the holding part.The vibration direction by the vibration mechanism is a vertical axis direction parallel to the knife surface and perpendicular to the knife longitudinal direction.It is comprised as a knife bending apparatus characterized by this.
  With this configuration, new energy (collision energy, friction energy, or the like) is applied to the knife that is pushed and bent by the movable part, in addition to the pressing force by the movable part, due to the vibration of the holding part. , The new energy softens the vicinity of the bent portion of the knife. That is, according to the present invention, the knife can be bent while the vicinity of the bent portion of the knife is softened.
  Therefore, even if the pressing force of the movable part is the same value (torque) as that of a conventionally known apparatus, it is possible to realize a larger maximum processing radius.
  In other words, since bending with the same bending radius can be performed with a smaller pressing force, it is possible to prevent damage (bending, chipping, etc.) of the movable part, as well as the processing accuracy. This is also advantageous.
  Furthermore, pushing and bending while softening the bending portion of the knife enables more reliable plastic deformation, and even when the bending radius is small, the effect of the viscoelastic properties (springback, etc.) of the knife is small. High-accuracy bending can be achieved.
[0006]
  The second aspect of the present invention providesA state in which an inner shaft formed with an opening through which a long thin plate-like knife is inserted and a movable portion that moves in the vicinity of the opening in the circumferential direction of the inner shaft, the knife being held by the inner shaft In a knife bending apparatus that presses and bends the knife by pressing the movable portion with the movable portion and pressing the side of the knife against the opening,
A knife bending process comprising a vibration mechanism that vibrates the inner shaft when the movable part is applied to the knife, and the vibration direction of the vibration mechanism is the axial direction of the inner shaft. Device.
Furthermore, in a third aspect of the invention, the excitation mechanism is
According to a second aspect of the invention, there is provided an electric motor provided in the vicinity of the end of the inner shaft, and a columnar first rotating member that is rotated by the electric motor and has a predetermined slope formed on the bottom surface thereof. The rotating member 1 is configured to rotate in a state where the predetermined inclined surface is in contact with the edge of the inner shaft.
Furthermore, in the fourth invention, the cylindrical first rotating member is formed with a notch that can elastically displace the first rotating member in the axial direction of the inner shaft. A knife bending apparatus according to claim 3.
[0007]
  Further, the fifth invention comprises an inner shaft formed with an opening through which a long thin plate-like knife is inserted, and a movable portion that moves in the vicinity of the opening in the circumferential direction of the inner shaft, In a knife bending apparatus that presses the movable part while holding it on the inner shaft, and presses and bends the knife by pressing the side of the knife against the opening,
A knife bending mechanism is provided, comprising a vibration mechanism that vibrates the inner shaft when the movable portion is applied to the knife, and a vibration direction of the vibration mechanism is a circumferential direction of the inner shaft. A sixth aspect of the present invention relates to the sixth aspect, wherein the vibration exciting mechanism is
An electric motor provided near the end of the inner shaft; a second rotating member having a cylindrical shape that is rotated by the electric motor and has an oil reservoir for containing lubricating oil formed on a peripheral surface thereof; and an edge of the inner shaft And a recess having an oil reservoir for containing lubricating oil formed on its wall surface, the second rotating member being configured to rotate while being pivotally attached to the recess. A knife bending apparatus according to claim 5.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings so that the present invention can be understood. It should be noted that the following embodiments and examples are examples embodying the present invention, and do not limit the technical scope of the present invention.
  Here, FIG. 1 is a diagram showing the entire knife bending apparatus according to the embodiment of the present invention, FIG. 2 is a front sectional view of the first embodiment of the bending section, and an enlarged view of the main part, and FIG. FIG. 4 is a diagram for explaining the vibration in the circumferential direction of the inner shaft in the bending portion, and FIG. 5 shows the state of the knife during bending. FIGS. 6A and 6B are a perspective view of a main part of a conventional knife bending apparatus, a cross-sectional view, and FIG. 7 showing another embodiment of the bending section.
  The knife bending apparatus A according to the present embodiment is embodied as shown in FIG. 1 ((a): plan view, (b): side view).
  As shown in the figure, a knife bending apparatus A according to an embodiment of the present invention includes a knife stock part 1, a bending correction part 2, a knife conveying part 3, a pre-processing part 4, a bending part 5, a cutting part 6, a display. The section 7 and the operation section 8 are schematically configured, and the knife stock section 1 and the bending correction section 2 are arranged on a gantry B which forms a horizontal surface at a predetermined height along the knife conveying direction. , The knife conveying section 3, the pre-processing section 4, the bending section 5, and the cutting section 6 are arranged in this order.
  Here, the knife stock unit 1 accommodates a knife before processing in a spiral shape, and supplies the stored knife according to the conveyance of the knife by the knife conveyance unit 3.
  The bending correction unit 2 is provided in the middle of a conveyance path from the knife stock 1 to the knife conveyance unit 3, and corrects deformation (curvature) generated in the knife during accommodation (storage) in the knife stock 1. Is. Therefore, for example, it is configured by combining a plurality of rollers and the like, and the knife is conveyed while warping the knife in the direction opposite to the direction wound when the knife stock 1 is stored.
  The knife transport unit 3 is configured by combining, for example, a plurality of pulse motors, clamps, and the like, and the pretreatment is performed by providing a predetermined amount of the knife stored in the knife stock unit 1 downstream in the transport direction. It conveys to part 4 and others.
  The pre-processing unit 4 is a process of cutting the knife (nick process) with respect to the knife before bending, or a process of forming a predetermined notch on the back side opposite to the blade surface of the knife ( Bridge processing) and the like.
  The bending section 5 finishes the pretreatment in the pretreatment section 4 and bends the conveyed knife into a predetermined shape. (Details will be described later)
  The cutting part 6 cuts the knife bent by the bending part 5 at a predetermined position (length) as required.
  The operation unit 8 performs various operations such as data input such as a desired machining shape (machining angle) and various settings, and the operation result is displayed on the display unit 7. . The display unit 7 displays information about the knife processing or the processing status one by one.
  Although not shown in the figure, a control unit is provided in the knife bending apparatus A. The control unit performs integrated control of the above-described units so as to bend the knife into a predetermined shape based on the processing data and setting values input from the operation unit 8.
  With such a configuration, in the knife bending apparatus A, after the knife accommodated in the knife stock unit 1 is corrected by the bending correction unit 2 and subjected to predetermined processing by the preprocessing unit 4, It is conveyed to the bending section 5. Then, a predetermined bending process is performed by the bending unit 5, and when the bending process is finished, the knife is cut by the cutting unit 6 to complete the processing (processing).
  As described above, the basic configuration or processing procedure of the knife bending apparatus A according to this embodiment is the same as that of a conventionally known apparatus.
  However, the knife bending apparatus A is different from a conventionally known apparatus in the configuration of the bending section 5 and has a remarkable effect. Therefore, the bending section which is a feature of the present invention will be described below. 5 will be described in detail.
[0009]
  Here, the configuration of the first embodiment of the bending portion will be described with reference to FIG.
  2A is a front sectional view of the bending portion 5 according to the first embodiment as viewed from the knife conveying direction, and FIG. 2B is a plan view of the inner shaft 10 provided in the bending portion 5. 2C is a cross-sectional view taken along arrow D of the bending portion 5, and FIG. 2D is an enlarged view of the first rotating member 20 provided in the bending portion 5.
  As shown in FIG. 2 (a), the bending portion 5 includes an inner shaft 10, a movable portion 12, and a vibration mechanism 5a. The vibration mechanism 5a includes a motor M, a first vibration mechanism 5a. The rotating member 20 and the steel ball 21 are provided.
  The movable part 12 has a substantially cylindrical shape, and is connected to a motor (not shown) fixed to a lower base B2 (part of the base B or connected to the base B and fixed to the apparatus body). At the same time, the lower base B2 and the upper base B1 (part of the base B or connected to the base B and fixed to the apparatus main body) are supported by bearings 30b and 30a to rotate the motor. Accordingly, it can rotate in the circumferential direction. The movable portion 12 is formed with a first opening 13 and a second opening 14 (refer to FIG. 2C) at positions corresponding to the opening 11 formed in the inner shaft 10. Thereby, the knife conveyed to the bending section 5 can be carried in from the second opening 14 and can be carried out from the first opening 13 after being inserted through the opening 11 of the inner shaft 10. Further, the movable portion 12 (that is, the edge portion of the first opening portion 13) is rotated by rotating the movable portion 12 with the knife held (inserted) in the opening portion 11. The knife can be bent by pressing the knife and pressing the side of the knife against the opening 11. (See FIG. 5).
  The inner shaft 10 has a substantially cylindrical shape having a disk-like end portion 10 ', and has a cross-sectional shape for reducing frictional resistance caused by rotational sliding with the movable portion 12 (approximately six in this embodiment). The opening 11 for inserting the knife into the predetermined position is formed, and the hole 22 is inserted into the movable portion 12 from above and formed in the disk-shaped end 10 ′. It is fixed to the upper base B1 by positioning pins 22 inserted into '(see the plan view 2 (b)). Here, the positioning pin 22 restricts rotation of the inner shaft 10 in the circumferential direction, and does not restrict movement in the axial direction. That is, the inner shaft 10 is configured to be slidable in the movable portion 12 with respect to the axial direction indicated by the arrow C in the drawing. Furthermore, a compression spring 19 is provided at an end (lower end) of the inner shaft 10 on the side inserted with respect to the movable portion 12 to urge the inner shaft 10 upward in the axial direction. It is configured as follows. As a result, the inner shaft 10 can be periodically vibrated in the axial direction in accordance with axial vibration (action) provided by a vibration mechanism 5a described later. For example, the compression spring 19 may be a coil spring or an air spring.
  The vibration mechanism 5a is provided on the motor M, an output shaft of the motor M, a columnar first rotating member 20 having a predetermined slope formed on the bottom surface thereof, and an upper end of the inner shaft 10. And a steel ball 21 in contact with the bottom surface of the first rotating member 20, and the eccentric motion (axial direction) of the bottom surface of the first rotating member caused by the rotation of the motor M Reciprocating motion) to the inner shaft 10 via the steel ball 21. In order to prevent the steel ball 21 from separating from the center of the upper end of the inner shaft 10, the upper end surface of the inner shaft 10 accommodates the steel ball 21 as shown in FIG. A fixing hole 21 'is formed. Further, the region O formed (sealed) by the back surface of the plate 24, the inner wall of the spacer 25, the inner wall of the upper base B1, and the upper surface of the disk-shaped end portion 10 ′ of the inner shaft 10 is filled with lubricating oil, Lubrication is performed by centralized oil supply to each part and uneven wear is prevented.
  Here, the motor M is fixed to the plate 24. The plate 24 is fixed together with the spacer 25 by a fixing screw 23 in the vicinity of the end of the inner shaft 10. The motor M is positioned so that the shaft center of the motor M and the shaft center of the inner shaft 10 are slightly shifted.
  With the configuration in which the vibration mechanism 5a is fixed by the fixing screw 23 as described above, the first rotating member 20 pivots the inner shaft 10 together with the steel ball 21 as shown in FIG. In order to push downward in the direction, the inner shaft 10 is elastically supported at a position where the force pushed by the first rotating member 20 and the biasing force by the compression spring 19 balance.
  When the motor M is rotated in this state, the first rotating member 20 having the inclined surface formed on the bottom surface is rotated, and the steel ball 21 in contact with the bottom surface (inclined surface) of the first rotating member 20 , Eccentric motion (reciprocating motion in the axial direction) according to the slope is transmitted. As a result, a force from above in the axial direction acts on the inner shaft 10, and the inner shaft 10 is periodically vibrated in the axial direction (the direction of arrow C).
  The first rotating member 20 is preferably provided with a notch 20 ′ as shown in FIG. 2 (d). By forming such a notch, it is possible to elastically displace the bottom surface of the first rotating member 20 in the direction indicated by the arrow E. As a result, it is possible to suppress the play that occurs between the first rotating member 20 that rotates at a high speed and the steel ball 21, and it is possible to prevent the occurrence of vibration or noise due to the play.
  As described above, the bending portion 5 externally fits the movable portion 12 fixed to the lower mount B2 in a cantilever manner to the inner shaft 10 fixed to the upper mount B1 in a cantilever manner. Accordingly, in addition to the conventional configuration in which both are rotatably fixed, a new configuration in which the inner shaft 10 is vibrated in the axial direction is added.
  Thereby, according to the said bending process part 5, by rotating the said movable part 12 and pressing a knife, this knife is pressed by pressing the side part of this knife against the said inner shaft 10 (opening part 11). When bending is performed, not only the pressing force by the movable portion 12 but also new energy (collision energy, friction energy, etc.) due to vibration of the inner shaft 10 is applied to the knife. Therefore, it becomes possible to perform bending of the knife with the new energy softened in the vicinity of the bent part of the knife, and it is possible to bend larger than conventional devices, and at the same time, viscoelastic properties Accurate plastic deformation without the influence of (spring back, etc.) is possible.
  In this embodiment, as the motor M, a high-speed rotating motor of 10,000 rpm to 40000 rpm is used, and the vibration with respect to the inner shaft 10 is set to 10,000 times / minute. However, the setting of this vibration is not limited to this value, and it is desirable to change it according to the material of the knife to be processed or the bending angle. Furthermore, the amplitude and period of vibration generated in the inner shaft 10 can be arbitrarily adjusted by changing the shape of the bottom surface of the first rotating member 20 (inclination angle, number of irregularities, etc.) The amount of energy applied to the bent portion of the knife can be adjusted.
  In this embodiment, the motor M is provided with its output shaft in the same direction as the axial direction of the inner shaft 10, but the motor M has its output shaft perpendicular to the axial direction of the inner shaft 10. The first rotating member 20 is provided eccentrically with respect to the output shaft of the motor M, and the steel ball 21 is brought into contact with the peripheral surface of the first rotating member 20 to vibrate. The so-called eccentric cam can be used.
[0010]
  Next, the configuration of the second embodiment of the bending portion will be described with reference to FIG.
  3A is a front sectional view of the bending portion 5 ′ according to the second embodiment as viewed from the knife conveying direction, and FIG. 3B is a second rotation provided in the bending portion 5 ′. FIG. 3C is an enlarged view of the member 26 (a region surrounded by a one-dot broken line J in FIG. 3A), and FIG. 3C is a plan view of the inner shaft 10 provided in the bending portion 5 ′ and the second rotating member 26. Is
  As shown in FIG. 3 (a), the bending portion 5 ′ is schematically configured to include an inner shaft 10, a movable portion 12, and a vibration mechanism 5b, and the vibration mechanism 5b includes a motor M, a second vibration mechanism 5b. And a recess 10a formed at the edge of the inner shaft 10.
  Here, the bending portion 5 ′ has a structure substantially similar to that of the bending portion 5 according to the first embodiment described above, but the bending portion 5 does not vibrate in the axial direction. The bending portion 5 'differs from the above in that it gives vibration in the circumferential direction.
  The movable portion 12 has a substantially cylindrical shape, is connected to a motor (not shown) fixed to the lower base B2, and is supported by bearings 30b and 30a on the lower base B2 and the upper base B1, It is freely rotatable in the circumferential direction according to the rotation of the motor. The movable portion 12 is formed with a first opening 13 and a second opening 14 at positions corresponding to the opening 11 formed in the inner shaft 10 as in the case of the bending portion 5. . Thereby, the knife conveyed to the bending section 5 can be carried in from the second opening 14 and can be carried out from the first opening 13 after being inserted through the opening 11 of the inner shaft 10. Further, the movable portion 12 (that is, the edge portion of the first opening portion 13) is rotated by rotating the movable portion 12 in a state where the knife is held (inserted) in the opening portion 11. The knife can be bent by pressing the knife and pressing the side of the knife against the opening 11 (see FIG. 5).
  The inner shaft 10 has a substantially cylindrical shape having a disk-like end portion 10 ', and has a cross-sectional shape for reducing frictional resistance caused by rotational sliding with the movable portion 12 (approximately six in this embodiment). The opening portion 11 through which the knife is inserted is formed at a predetermined position, and the opening portion 11 is inserted into the movable portion 12 from above and is formed at the disc-shaped end portion 10 ′. It is fixed to the upper base B1 by positioning pins 22 inserted into the holes 22 '(see the plan view 3c). Here, the hole 22 'into which the positioning pin 22 is inserted is formed to allow a slight amount of rotation (indicated by arrows L1 and L2 in the drawing) of the inner shaft 10 in the circumferential direction. . Further, the movement of the inner shaft 10 in the axial direction is restricted by attaching a vibration mechanism 5b described later to the upper portion thereof. That is, the inner shaft 10 is configured to be movable only in the circumferential direction indicated by the arrows L1 and L2 in FIG. 3C, and the circumferential vibration (action) provided by the vibration mechanism 5b described later. Accordingly, the inner shaft 10 can be periodically vibrated in the circumferential direction.
  The vibration mechanism 5b is provided in a motor M and an output shaft of the motor M, and has a cylindrical shape in which an oil reservoir 27 (see FIG. 3B) for containing lubricating oil is formed on the peripheral surface. The second rotating member 26 and the concave portion provided in the disk-like end portion 10 ′ of the inner shaft 10 and having an oil reservoir 28 (see FIG. 3B) for accommodating lubricating oil formed on the wall surface thereof. And a pulsation of lubricating oil between the oil reservoir 27 provided in the second rotating member and the oil reservoir 28 provided in the recess 10a, which is generated by the rotation of the motor M. This is a configuration for transmitting (pressure fluctuation) to the inner shaft 10 (details will be described later). A region O formed (sealed) by the back surface of the plate 24, the inner wall of the upper base B1, and the upper surface of the disk-like end portion 10 'of the inner shaft 10 is filled with lubricating oil, and concentrated oil supply to each portion. Lubrication is performed and uneven wear is prevented.
  Here, the motor M is fixed to the plate 24. The plate 24 is fixed near the end of the inner shaft 10 by a fixing screw 23. The motor M is positioned so that the axis of the motor M is aligned with the axis of the inner shaft 10.
  With the structure in which the vibration mechanism 5b is fixed by the fixing screw 23, the second rotating member 26 is pivotally attached to the recess 10a as shown in FIG. With such a configuration, the inner shaft 10 is fixed in the axial direction, and supported so as to be able to move (vibrate) by a small amount only in the directions (circumferential directions) indicated by arrows L1 and L2.
  When the motor M is rotated in this state, the second rotating member 26 is rotated, the oil reservoir 27 formed on the peripheral surface thereof, and the recess 10a to which the rotating member 26 is pivotally attached. Lubricating oil pulsation occurs between the oil reservoir 28 formed on the wall surface, and as a result, the inner shaft 10 can be periodically vibrated in the circumferential direction.
[0011]
  3 (b), (c), FIG. 3 (b), and FIG. 3 (b), FIG. This will be described with reference to FIG.
  Here, as shown in FIG. 3B, the oil reservoirs 27 and 28 are formed in a region where the second rotating member 26 and the recess 10a are pivotally attached (slidably contacted).
  Further, as shown in FIG. 3C, the oil sump 27 formed on the peripheral surface of the second rotating member 26 extends in the rotational directions K1 and K2 of the second rotating member 26, respectively. The oil sump 28 formed on the wall surface of one of the recesses 10a is reversely formed with 27a and 27b formed so that the upstream side in the rotational direction is deepest and gradually becomes shallower as it goes downstream in the rotational direction. Further, in each of the rotation directions K1 and K2 of the second rotation member 26, the upstream side in the rotation direction is the shallowest, and the depth is gradually increased toward the downstream side in the rotation direction. That is, the oil reservoirs 27a and 28a are formed corresponding to the rotation direction K1, and the oil reservoirs 27b and 28b are formed corresponding to the rotation direction K2.
  The principle of vibrating the inner shaft 10 by the interaction of the oil reservoirs 27 and 28 formed in this way will be described with reference to FIG.
  FIG. 4 is an enlarged view of the oil reservoirs 27 and 28 when the second rotating member 26 is rotated in the rotation direction K1.
  FIG. 4A shows the oil reservoirs 27a and 28a when the second rotating member 26 is rotated in the direction of the arrow K1 in the drawing.
  In this case, the oil sump 27a and the oil sump 28a gradually face each other with the rotation of the second rotating member 26 from the sides that are formed most shallowly. Therefore, the lubricating oil stored in the oil reservoir 27a suddenly flows into the oil reservoir 28a due to its rotation (the flow of the lubricating oil is indicated by an arrow M in the figure), and so-called pulsation is generated. As a result, the inner shaft 10 that forms the oil reservoir 28a that receives the sudden inflow of lubricating oil is subject to vibration in the same direction as the rotational direction K1 of the second rotating member 26, indicated by an arrow L1 in the drawing. appear.
  On the other hand, FIG.4 (b) has shown the said oil sumps 27b and 28b about the same case.
  In this case, the oil sump 27b and the oil sump 28b gradually face each other as the second rotating member 26 rotates from the deepest sides. Therefore, the lubricating oil stored in the oil reservoir 27a gently flows into the oil reservoir 28a (the flow of the lubricating oil is indicated by an arrow M in the figure), and does not cause a sudden pressure fluctuation. The vibration with respect to the inner shaft 1 is not generated.
  The case where the inner shaft 10 is rotated in the direction of the arrow K2 in the figure is not particularly shown, but the basic idea is the same as described above, and between the oil reservoir 27b and the oil reservoir 28b. Due to the generated pulsation, the inner shaft 10 is vibrated in the direction indicated by the arrow L2 in the figure.
  Thus, in the bending portion 5 ′, the inner shaft 10 and the second rotating member 26 are pulsated between the oil reservoirs 27 and 28 formed in accordance with the respective rotational directions, The inner shaft 10 can be vibrated in the circumferential direction.
  The direction in which the vibration is generated is determined according to the direction in which the knife is bent, and the vibration in the direction in which the inner shaft 1 collides with the knife pressed against the inner shaft by the movable portion 12 is generated. The rotation direction of the motor M is selected so that That is, the motor M is rotated so as to vibrate the inner shaft 1 in the direction opposite to the rotating direction of the movable portion 12. For example, in FIG. 5, since the movable part 12 is rotated counterclockwise (in the direction indicated by the arrow X1), the inner shaft 10 is caused to vibrate in the clockwise direction with respect to the bent part of the knife. Thus, the inner shaft 10 is caused to collide and the vicinity of the bent portion of the knife 100 is softened.
[0012]
  As described above, the bending portion 5 ′, which is the second embodiment of the bending portion, is cantilevered on the lower frame B2 with respect to the inner shaft 10 that is fixed to the upper frame B1 in a cantilevered manner. In addition to the conventional configuration in which the movable part 12 fixed to the outer surface is externally fitted to fix both of them in a freely rotatable manner, a new configuration has been added in which the inner shaft 10 is vibrated in the circumferential direction. Is.
  Thereby, according to the bending part 5 ′, the movable part 12 is rotated and the knife is pressed to press the side part of the knife against the inner shaft 10 (opening part 11). When the knife is bent, new energy (collision energy, friction energy, or the like) is given to the knife by the vibration of the inner shaft 10 in addition to the pressing force by the movable portion 12. Therefore, it becomes possible to perform bending of the knife with the new energy softened in the vicinity of the bent portion of the knife, and at the same time, it can be bent with a larger maximum processing radius than the conventional apparatus. Therefore, accurate plastic deformation is possible without the influence of viscoelastic properties (springback, etc.).
  In the present embodiment, the motor M is a high-speed rotating motor of 10,000 rpm to 40000 rpm, and the vibration with respect to the inner shaft 10 is set to 10,000 times / minute. However, the setting of this vibration is not limited to this value, and it is desirable to change it according to the material of the knife to be processed or the bending angle. Furthermore, the vibration generated in the inner shaft 10 can be adjusted by changing the quantity of the oil reservoirs 27 and 28 formed in the second rotating member 26 and the recess 10a, and the bending of the knife can be adjusted. The amount of energy applied to the part can be adjusted.
[0013]
  Finally, referring to FIG. 5, the situation of the knife that is bent by the bending portion 5 or 5 ′ will be described.
  FIG. 5 is an enlarged view of a main part of the bending portion 5 or 5 ′ where the knife 100 is bent in the direction of the arrow Y.
  As shown in the figure, the knife 100 transported in the direction of arrow F by the transport section 3 (not shown) is inserted through the opening 11 and the first opening 13 formed in the inner shaft 10. Stopped.
  In this state, the movable portion 12 is rotated (in the direction indicated by the arrow X1 in the drawing), and one edge portion of the first opening 13 in the movable portion 12 is brought into contact with the knife 100. And press with a predetermined pressing force.
  In the case of a conventionally known apparatus, the knife 100 is pushed and bent as it is, but in this embodiment, the inner shaft 10 is vibrated by the vibration mechanism 5a or 5b (not shown) in this state. (In the case of the bending portion 5, the axial direction is perpendicular to the paper surface, and in the case of the bending portion 5 ′, the circumferential direction is the direction opposite to the arrow X 1). Thereby, energy (friction energy or collision energy) generated by the vibration is applied to the vicinity of the bent portion of the knife 100 (indicated by a hatched area I in the drawing), and the portion is softened by the energy.
  Therefore, according to the present embodiment, the knife 100 is pressed by the movable portion 12 and pressed against the inner shaft 10 in a softened state, so that it can be bent with a larger bending radius. Further, by bending in a softened state, even if the bending radius is small, accurate bending (plastic deformation) with less influence of viscoelastic properties (for example, springback) becomes possible.
  By the way, when the bending process is performed on the knife 100, the inner side of the bent portion is contracted by the compressive stress and the outer side is extended by the tensile stress. When the point where the stress (compression stress and tensile stress) is reversed (hereinafter referred to as the stress reversal point) is on the blade surface 100a of the knife 100, the knife 100 is bent into a predetermined shape, The blade surface 100a can also be bent into a predetermined shape. However, in reality, it is known that the stress reversal point is not on the blade surface 100a but inside the blade surface 100a. Therefore, even if the knife 100 is processed into a predetermined shape, the blade surface 100a is bent so as to fall (escape) outward (indicated by an arrow G in the figure) (an example is indicated by an imaginary line H in the figure). In some cases, a predetermined shape was not drawn. Such a situation is likely to occur particularly when the knife 100 is bent with a large bending radius at one time (so-called once bending).
  However, according to the present embodiment provided with the vibration mechanism, since the inside of the bent portion of the knife 100 is softened and bent, it is as if the inner surface of the knife 100 is cut. The same effect can be obtained, and the stress reversal point by the bending can be brought near the blade surface 100a.
  Therefore, according to the present embodiment, in addition to enabling accurate bending (plastic deformation) with less influence of viscoelastic properties by bending in a state softened by vibration, the blade surface 100a Can be prevented, the working efficiency can be remarkably improved, and an apparatus capable of realizing the highly accurate bending work required in recent years can be realized.
[0014]
  As described above, in the present invention, bending at a larger angle than before can be achieved by a single bending process. However, when it is desired to give the knife a greater angle of bending, the bending process may be repeated while feeding out the knife, as in the known apparatus.
  Further, the vibration by the vibration mechanisms 5a and 5b need not always be generated while the knife is bent by the pressing force (action) of the movable part 12, and the bending is performed with the vibration stopped. Is also possible. In other words, the time for applying vibration may be determined according to the material of the knife to be processed or the desired angle (shape).
[0015]
【Example】
  In the embodiment described above, the knife is held by the inner shaft 10, the inner shaft 10 is vibrated, and energy is applied by pressing the knife with the movable portion 12 rotating around the inner shaft 10. However, the structure of the holding part for holding the knife does not have to be a shaft structure as in the above-described embodiment, and the movable part also has a periphery of the holding part. It does not have to rotate in the direction.
  For example, as shown in FIG. 7, a slit 90a (opening) through which the knife 100 passes is formed in a holding part 90 having a round shape or a square axis shape (shown in the drawing). The knife 100 to be fed is passed through the slit 90a, and the knife 100 coming out of the slit 90a is pressed by a pressing portion 91 (corresponding to an example of a movable portion) while vibrating the holding portion 90. Also good. (The knife 100 before being bent is indicated by a broken line, and the knife 100 after being bent is indicated by a solid line.)
  The pressing direction of the pressing portion 91 (the direction indicated by the arrow X in the figure) is a linear motion even if it rotates around the holding portion 91 as in the above-described embodiment. Alternatively, the direction may be in any other direction, that is, any direction in which the knife 100 is bent. At this time, the vibration direction of the holding portion 90 is a vertical axis direction (direction indicated by an arrow C in the drawing) parallel to the knife surface and perpendicular to the knife longitudinal direction as in the above embodiment. A direction (a direction indicated by an arrow L in the drawing) included in a plane orthogonal to the vertical axis direction may be used.
[0016]
  In the above-described embodiment, an electric motor such as a motor is used as a drive source. However, instead of the electric motor, an ultrasonic oscillator (vibrator) that can directly generate ultrasonic vibration or an air-driven rotary is used. A mode using a driving source of a system may be used.
[0017]
【The invention's effect】
  As described above, according to the present invention, the inner shaft in which the opening for inserting the long thin plate-like knife is formed, and the movable portion that moves in the circumferential direction of the inner shaft in the vicinity of the opening. A knife bending apparatus for bending the knife by pressing the knife with the movable part while holding the knife on the inner shaft, and pressing the side of the knife against the opening. In addition to the pressing force by the movable part, new energy (collision energy or friction energy) by vibration of the inner shaft is applied to the knife pressed by the movable part and in contact with the inner shaft, The new energy can be pushed and bent in the state where the vicinity of the bent portion of the knife is softened. Therefore, it is possible to realize a larger maximum machining radius as compared with the conventional apparatus. Furthermore, the bending portion of the knife is pushed and bent while being softened, thereby enabling more reliable plastic deformation. Even when the bending radius is small, the effect of the viscoelastic properties (springback, etc.) of the knife is small. High-precision bending can be realized.
[Brief description of the drawings]
FIG. 1 is a diagram showing an entire knife bending apparatus according to an embodiment of the present invention.
FIG. 2 is a front sectional view and an enlarged view of a main part of a first embodiment of a bending portion.
FIG. 3 is a front sectional view and an enlarged view of a main part of a second embodiment of a bending portion.
FIG. 4 is a diagram for explaining vibration in the circumferential direction of an inner shaft in a bending portion.
FIG. 5 is a diagram illustrating a state of a knife during bending.
FIG. 6 is a perspective view and a cross-sectional view of a main part of a conventional knife bending apparatus.
FIG. 7 is a view showing another embodiment of the bending portion.
[Explanation of symbols]
A ... Knife bending machine
B ... Mount
B1 ...
B2 ... Understand
M: Motor
1 ... knife stock
2 ... Bending straightening part
3 ... Knife conveyor
4 Pre-processing unit
5 ... Bending part
5a: Excitation mechanism
5b: Excitation mechanism
6 ... Cutting part
7: Display section
8 ... Operation part
10 ... Inner shaft
10 '... Disc-shaped edge
10a ... recess
11 ... opening
12 ... Movable part
13 ... 1st opening part
14 ... 2nd opening part
19 ... Compression spring
20 ... 1st rotation member
20 '... Notch
21 ... Steel balls
21 '... fixing hole
22 ... Locating pin
22 '... hole
23 ... Fixing screw
24… Plate
25 ... Spacer
26: Second rotating member
27 ... Oil sump
28 ... Oil sump
30 ... Bearing
90 ... holding part
91 ... Pushing part (movable part)
92 ... Conveying roller
93 ... Conveying roller
100 ... knife
100a ... Blade face

Claims (6)

長尺薄板状のナイフを保持部によって保持した状態で該ナイフに可動部を押し当てて該ナイフを押し曲げるナイフ曲げ加工装置において,
前記可動部を前記ナイフに作用させたときに前記保持部を振動させる加振機構を具備し,前記加振機構による振動方向が,前記ナイフ面に平行でナイフ長手方向に直角の垂直軸方向であることを特徴とするナイフ曲げ加工装置。
In a knife bending apparatus that pushes and bends the knife by pressing the movable part against the knife while holding the long thin plate-like knife by the holding part,
And a vibration mechanism that vibrates the holding portion when the movable portion is applied to the knife. The vibration direction of the vibration mechanism is a vertical axis direction parallel to the knife surface and perpendicular to the knife longitudinal direction. knife bending device, characterized in that there.
長尺薄板状のナイフを挿通させる開口部が形成された内軸と,前記開口部近傍を前記内軸の周方向に移動する可動部とを備え,前記ナイフを前記内軸に保持させた状態で前記可動部により押圧し,前記ナイフの側部を前記開口部に押し当てて前記ナイフを押し曲げるナイフ曲げ加工装置において,
前記可動部を前記ナイフに作用させたときに前記内軸を振動させる加振機構を具備し,前記加振機構による振動方向が,前記内軸の軸方向であることを特徴とするナイフ曲げ加工装置。
A state in which an inner shaft formed with an opening through which a long thin plate-like knife is inserted and a movable portion that moves in the vicinity of the opening in the circumferential direction of the inner shaft, the knife being held by the inner shaft In a knife bending apparatus that presses and bends the knife by pressing the movable portion with the movable portion and pressing the side of the knife against the opening,
A knife bending process comprising a vibration mechanism that vibrates the inner shaft when the movable part is applied to the knife, and the vibration direction of the vibration mechanism is the axial direction of the inner shaft. apparatus.
前記加振機構が,
前記内軸の端部近傍に設けられる電動機と,該電動機により回転され,その底面に所定の斜面が形成された円柱状の第1の回転部材とを具備し,該第1の回転部材を,前記所定の斜面を前記内軸の縁部に当接させた状態で回転させるよう構成したものである請求項2に記載のナイフ曲げ加工装置。
The excitation mechanism is
An electric motor provided in the vicinity of the end of the inner shaft, and a columnar first rotating member that is rotated by the electric motor and has a predetermined slope formed on the bottom surface thereof, the first rotating member, The knife bending apparatus according to claim 2 , wherein the knife is configured to rotate in a state where the predetermined slope is in contact with an edge of the inner shaft .
前記円柱状の第1の回転部材に,該第1の回転部材を上記内軸の軸心方向に弾性的に変位させることのできる切り欠きが形成されてなる請求項3に記載のナイフ曲げ加工装置。The knife bending process according to claim 3 , wherein the cylindrical first rotating member is formed with a notch capable of elastically displacing the first rotating member in the axial direction of the inner shaft. apparatus. 長尺薄板状のナイフを挿通させる開口部が形成された内軸と,前記開口部近傍を前記内軸の周方向に移動する可動部とを備え,前記ナイフを前記内軸に保持させた状態で前記可動部により押圧し,前記ナイフの側部を前記開口部に押し当てて前記ナイフを押し曲げるナイフ曲げ加工装置において,
前記可動部を前記ナイフに作用させたときに前記内軸を振動させる加振機構を具備し,前記加振機構による振動方向が,前記内軸の周方向であることを特徴とするナイフ曲げ加工装置。
A state in which an inner shaft formed with an opening through which a long thin plate-like knife is inserted and a movable portion that moves in the vicinity of the opening in the circumferential direction of the inner shaft, the knife being held by the inner shaft In a knife bending apparatus that presses and bends the knife by pressing the movable portion with the movable portion and pressing the side of the knife against the opening,
A knife bending process comprising a vibration mechanism that vibrates the inner shaft when the movable portion is applied to the knife, and a vibration direction by the vibration mechanism is a circumferential direction of the inner shaft. apparatus.
前記加振機構が,
前記内軸の端部近傍に設けられる電動機と,該電動機により回転され,その周面上に潤滑油を収容する油溜まりが形成された円柱状の第2の回転部材と,前記内軸の縁部に設けられ,その壁面に潤滑油を収容する油溜まりが形成された凹部と,を具備し,該第2の回転部材を,前記凹部に枢着させた状態で回転させるよう構成されてなる請求項5に記載のナイフ曲げ加工装置。
The excitation mechanism is
An electric motor provided near the end of the inner shaft; a second rotating member having a cylindrical shape that is rotated by the electric motor and has an oil reservoir for containing lubricating oil formed on a peripheral surface thereof; and an edge of the inner shaft And a recess having an oil reservoir for containing lubricating oil formed on its wall surface, the second rotating member being configured to rotate while being pivotally attached to the recess. The knife bending apparatus according to claim 5 .
JP2002264745A 2002-09-10 2002-09-10 Knife bending machine Expired - Fee Related JP3692345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002264745A JP3692345B2 (en) 2002-09-10 2002-09-10 Knife bending machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002264745A JP3692345B2 (en) 2002-09-10 2002-09-10 Knife bending machine

Publications (2)

Publication Number Publication Date
JP2004098137A JP2004098137A (en) 2004-04-02
JP3692345B2 true JP3692345B2 (en) 2005-09-07

Family

ID=32264091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002264745A Expired - Fee Related JP3692345B2 (en) 2002-09-10 2002-09-10 Knife bending machine

Country Status (1)

Country Link
JP (1) JP3692345B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007016083A1 (en) * 2006-05-31 2007-12-06 Mizukawa, Suehiro, Settsu Method and device for bending a knife element
CN103878211B (en) * 2014-03-19 2016-03-02 西安交通大学 A kind of Electromagnetic Drive servo bender of Cycloidal pin-wheel drive mode
JP6454510B2 (en) 2014-10-09 2019-01-16 昭和電工株式会社 Forging method and forging apparatus
CN114769370B (en) * 2022-06-20 2022-09-16 太原理工大学 Full-automatic detection, correction and cutting knife platform

Also Published As

Publication number Publication date
JP2004098137A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
KR100901808B1 (en) Band saw machine
JPH0698595B2 (en) Cutter head for cutting sheet material and knife used therefor
JP2686000B2 (en) Vibration cutting method and cutting device
JP3692345B2 (en) Knife bending machine
CN109843525A (en) Hand held power machine
JP3433800B2 (en) Rotary chopper folding device
CN1871077A (en) Boring device and boring method
JP6006198B2 (en) Rotary blade for cutting sheet material, manufacturing method thereof, and rotary cutter using the same
JP4755167B2 (en) Forging apparatus and forging method
JP4555661B2 (en) Article conveying device
US20180202522A1 (en) Vibratory system having an oscillating plate
JP4898801B2 (en) Blade material bending method and blade material bending apparatus
JPS6324891B2 (en)
KR101557804B1 (en) The vibration spring manufacturring method for a vibration Motor
JP2000177917A (en) Paper sheet arranging device and method
JP3016481B1 (en) Reciprocating machine tools
JP3493334B2 (en) Super finishing equipment
JP2019025560A (en) Cutter component and sheet material cutting device
JPH10264086A (en) Sheet material cutting device
JPH06198370A (en) Device for bending knife
CN103260803B (en) Substrate and hand held power machine for hand held power machine
JPH06234017A (en) Device for bending knife
JPH072100Y2 (en) Support structure for knife processing die
JP2009297820A (en) Cutting tool and cutting machine having the same
JP2021031224A (en) Recording device, conveyance device, and support structure of spur

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050620

R150 Certificate of patent or registration of utility model

Ref document number: 3692345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees