JP3691711B2 - ガスタービンプラント - Google Patents
ガスタービンプラント Download PDFInfo
- Publication number
- JP3691711B2 JP3691711B2 JP2000048928A JP2000048928A JP3691711B2 JP 3691711 B2 JP3691711 B2 JP 3691711B2 JP 2000048928 A JP2000048928 A JP 2000048928A JP 2000048928 A JP2000048928 A JP 2000048928A JP 3691711 B2 JP3691711 B2 JP 3691711B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- droplet
- compressor
- droplets
- intake chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
Landscapes
- Structures Of Non-Positive Displacement Pumps (AREA)
Description
【発明の属する技術分野】
本発明はガスタービンプラントに係わり、特に圧縮機の吸い込み気体に液滴噴霧装置により液滴を混合し、吸い込み気体を冷却するようにしたガスタービンプラントに関するものである。
【0002】
【従来の技術】
例えば、夏期など気温が上昇するとガスタービンの出力は減少する。今までにも、ガスタービン出力のみの回復方法として様々な方法や構成が考えられ、試みられてきた。例えば、特開平9−236024号公報には、ガスタービン出力の回復およびガスタービンを含むプラントの発電効率向上のための一つの方法が開示されている。
【0003】
すなわち、このものは、圧縮機の上流側に設けられている吸気室内に微細液滴を噴出する噴霧装置を設け、この噴霧装置にて吸い込み空気(吸気)に微細液滴を噴霧するようにしたものである。すなわち、吸気は液滴を含んで噴霧流を形成し、一部蒸発して吸気を冷却したのち圧縮機に流入される。吸気に含まれる液滴は、圧縮機の内部で気化し、圧縮空気を冷却する。圧縮機出口の空気温度が低下することは圧縮機の所要動力の低減をもたらし、ガスタービンの出力の低下を防止するように作用するのである。
【0004】
【発明が解決しようとする課題】
このように形成されたガスタービンプラントであると、たとえ大気温度が上昇しても、充分な圧縮空気の冷却が行われ、ガスタービンの出力低下は防止されるように思われるが、しかしこの度の綿密な実験の結果、プラント構成,特に圧縮機の吸い込み側の構成あるいは形状によっては充分ガスタービンの出力低下を防止することができない場合があることがわかったのである。
【0005】
すなわち、この従来のプラントでは、吸気室内の吸気流路に垂直の断面に対して液滴噴霧ノズル管および液滴噴霧ノズルの配置の間隔が均等、かつ各液滴噴霧ノズルから噴霧される液滴量が均等量であるために、速度分布の大きなところでは吸気に含まれる液滴の重量密度が小さく、かつ、速度分布の小さなところでは吸気に含まれる液滴の重量密度が大きくなるので、圧縮機に供給された吸気が均等に冷却できず、圧縮機所要動力の低減効果が小さいということである。
【0006】
本発明はこれに鑑みなされたもので、その目的とするところは、圧縮機の吸い込み側の構成がいかなる構成であっても、吸い込み空気に均一に液滴を含ませて吸い込み空気を充分均一に冷却することができ、ガスタービンプラントの出力の向上を達成することができるこの種のガスタービンプラントを提供することにある。
【0007】
【課題を解決するための手段】
すなわち本発明は、圧縮機の気体吸い込み側に設けられた吸気室と、この吸気室の内部に配置され、圧縮機の吸い込み気体に液滴を噴霧する液滴噴霧装置とを備え、前記圧縮機の吸い込み気体に液滴を混合し冷却するようにしたガスタービンプラントにおいて、前記液滴噴霧装置が、前記吸気室内の吸気流路にほぼ垂直な断面内に張り巡らされた液滴噴霧ノズル管と、この液滴噴霧ノズル管に所定の間隔をおいて設けられた複数の液滴噴霧ノズルとを備え、前記液滴噴霧ノズルの配置分布を、吸気室の断面内で気体流速の速い箇所では密に、かつ気体流速の遅い箇所では粗となるようにし所期の目的を達成するようにしたものである。
【0008】
また本発明は、燃焼用気体を圧縮する圧縮機と、この圧縮機の気体吸い込み側に設けられた吸気室と、この吸気室の内部に配置され、圧縮機の吸い込み気体に液滴を噴霧する液滴噴霧装置とを備え、前記圧縮機の吸い込み気体に液滴を混合し冷却するようにしたガスタービンプラントにおいて、前記液滴噴霧装置が、前記吸気室内の吸気流路にほぼ垂直な断面内に張り巡らされた液滴噴霧ノズル管と、この液滴噴霧ノズル管に所定の間隔をおいて設けられた複数の液滴噴霧ノズルとを備え、前記液滴噴霧ノズルの噴霧する液滴量を、吸気室の断面内で気体流速の速い箇所では増大させ、かつ気体流速の遅い箇所では減少させるようにしたものである。
【0009】
また、この場合、前記液滴噴霧ノズルを有する液滴噴霧ノズル管を、吸い込み気体の流通方向に所定の間隔をおいて複数段配置するようにしたものである。
【0010】
また、本発明は、圧縮機の気体吸い込み側に設けられた吸気室と、この吸気室の内部に配置され、圧縮機の吸い込み気体に液滴を噴霧する液滴噴霧装置とを備え、前記圧縮機の吸い込み気体に液滴を混合し冷却するようにしたガスタービンプラントにおいて、前記液滴噴霧装置が、夫々噴霧ノズル数の異なる液滴噴霧ノズル管を吸い込み気体の流通方向に複数段配置したノズル管群を備え、前記ノズル管群のノズル管を、ノズル管群から吸い込み気体に噴霧される液滴量が、吸気室の断面内で気体流速の速い部分では多く、かつ気体流速の遅い部分では少なくなるように配置したものである。
【0011】
また、圧縮機の気体吸い込み側に設けられた吸気室と、この吸気室の内部に配置され、圧縮機の吸い込み気体に液滴を噴霧する液滴噴霧装置とを備え、前記圧縮機の吸い込み気体に液滴を混合し冷却するようにしたガスタービンプラントにおいて、前記液滴噴霧装置が、夫々噴霧量の異なる噴霧ノズルを有する液滴噴霧ノズル管を、吸い込み気体の流通方向に複数段配置したノズル管群を備え、前記ノズル管群のノズル管を、ノズル管群から吸い込み気体に噴霧される液滴量が、吸気室の断面内で気体流速の速い部分では多く、かつ気体流速の遅い部分では少なくなるように配置したものである。
【0012】
また、この場合、前記噴霧装置から吸い込み気体中に噴霧される総液滴量を、ガスタービンの出力に対応するように制御するようにしたものである。
【0013】
すなわちこのように形成されたガスタービンプラントであると、液滴噴霧装置が、吸気流路に張り巡らされた液滴噴霧ノズル管、およびこの液滴噴霧ノズル管に設けられた液滴噴霧ノズルを備え、前記液滴噴霧ノズルを、吸気室の断面内で気体流速の速い箇所では密に配置し、かつ気体流速の遅い箇所では粗となるように配置したので、吸気室断面内における流速の速い部分に噴霧される液滴量は、流速の遅い部分に噴霧される液滴量に比して大きくなり、液滴噴霧装置下流での吸い込み気体に含まれる液滴個数密度は流路形状(吸気室の構造、形状)に関係なく均一化され、したがって、圧縮機の吸い込み側の構成がいかなる構成であっても、吸い込み空気に均一に液滴を含ませて吸い込み空気を充分均一に冷却することができ、ガスタービンプラントの出力の向上を達成することができるのである。
【0014】
【発明の実施の形態】
以下図示した実施例に基づいて本発明を詳細に説明する。図1にはそのガスタービンプラントの概略系統および液滴噴霧装置の要部が示されている。ガスタービンプラントは、気体を圧縮して吐出する圧縮機1、この圧縮機により圧縮された気体が供給される燃焼器5、この燃焼器にて生成された燃焼ガスにより駆動されるタービン2、そのタービン軸に連結されている発電機3、この発電機により生じた電気を送電する送電端4を備えている。なお、ガスタービンからの排気7は、スタック8から大気中に排出される。
【0015】
以下の説明で、特に注釈がなければ、上記と同じ名称のものは同じ番号が付されている。また以下では、圧縮機1に供給する気体が空気、圧縮機1に供給する空気に噴霧する液滴が水である場合に限定して説明するが、圧縮機1に供給する気体は、特に空気でなくても良く、例えば、化学合成などで生成された酸素を含む気体でもよい。また、噴霧する液滴も特に水でなくともよく、例えば、アルコールなどの揮発性液体であってもよい。
【0016】
圧縮機1の吸気側には、圧縮機1に供給される吸い込み空気(吸気)6を取り込む吸気室12が連結されており、さらに、この吸気室12の上流側には、ルーバ11が配置されている。なお、ルーバ11の圧縮機側(後流側)直後には、空気フィルタが配置されているのが普通であるが、ここではその記載は省略してある。また、この図ではルーバ11が吸気室12の上流側に配置された形態を記載したが、空気フィルタが吸気室の途中にある場合には、吸気室12は、その空気フィルタより下流側の圧縮機入口までの吸気流路を示す。
【0017】
吸気室12の内部には、微細液滴を噴出する噴霧装置,例えば、液滴噴霧ノズル管51および液滴噴霧ノズル52が配置される。噴出される液滴の Sautor 平均粒子径(S.M.D)は、例えば10μm程度である。
【0018】
液滴噴霧ノズル52には給水手段20が接続されている。液滴噴霧ノズル52が、このような微粒化手段を備えている場合には給水手段20のみが接続されていればよいが、液滴噴霧ノズル52に微粒化手段がない場合には微粒化手段を備えてもよい。例えば、液滴噴霧ノズル52に圧縮空気を供給することで液滴噴霧ノズル52から噴出される液滴を微粒化する給気手段30を備える。
【0019】
給気手段30は、流量を調節する調節弁31、圧縮された空気を供給する加圧空気供給手段32を有する。この加圧空気供給手段32としては、例えば、外気を取り込んで圧縮した空気を供給する加圧器33を備える。また、加圧空気供給手段32として圧縮機1の中間段から加圧空気を抽気して調節弁31へ供給する経路を備えてもよい。
【0020】
給水手段20は、流量を調節する調節弁21、給水ポンプ22、給水タンク23、給水タンク23に給水する給水装置24を有する。調節弁21、31は噴霧制御装置40によって、その開度が制御される。
【0021】
噴霧制御装置40としては、例えば、発電機3の出力に基づく信号と負荷指令信号Pd41とが加算部を経て、調節弁21、31等の開度信号やその他の指令を出力する関数発生器42、関数発生器42と調節弁21、31とが電気的につながっている信号ケーブル43を有する。
【0022】
液滴噴霧ノズル52から噴霧する液滴量は、噴霧制御装置40によって制御される。例えば、発電機3の出力が低下した場合には、発電機3の出力を増大させるために調節弁21、31の開度が大きくなるように、また、発電機3の出力が増大した場合には、発電機3の出力を減少させるために調節弁21、31の開度が小さくなるように、発電機3の出力基づく信号と負荷指令信号Pd41を受け取った関数発生器42から調節弁21、31へ信号を送るようにする。
【0023】
吸気6は、ルーバ11を通過して吸気室12に至る。給水タンク23の水は所定の開度の調節弁21を通り、給水手段20を経て液滴噴霧ノズル52から微細液滴が噴出する。微細液滴を噴出するのに給気手段30からの給気が必要な場合には、併せて調節弁31を所定の開度にして給気し、噴霧液滴の粒径を調整する。吸気6は液滴を含んで噴霧流を形成し、一部蒸発して吸気を冷却したのち圧縮機1に流入する。吸気6に含まれる液滴は、圧縮機1の内部で気化し、圧縮空気を冷却する。
【0024】
圧縮機1内で実質的に気化したのち、圧縮空気は燃焼器5で燃料7と混合し、高温高圧のガスとなってタービン2に流入して仕事をし、機械エネルギーが生成される。発電機3で機械エネルギーは電気エネルギーに変換され、送電端4に供給される。仕事を終えた排ガス7は、スタック8から放出される。
【0025】
圧縮機1内では、空気は断熱圧縮される。断熱圧縮により空気温度は上昇するが、空気に含まれた液滴の気化により圧縮機1内の空気温度は低下する。圧縮機の動力は圧縮機出入口の空気のエンタルピの差に等しく、空気エンタルピは空気温度に比例するので、圧縮機出口の空気温度の低下は圧縮機所要動力の低減をもたらす。
【0026】
圧縮機内部空気の冷却によってタービン出力は増減しないので、タービン出力から圧縮機動力を差し引いたガスタービン正味出力は水噴霧により増加する。また、圧縮機出口温度の低下は、ガスタービン効率の上昇をもたらす。この効果は吸気の単位体積あたりに含まれる水滴の個数または液滴量が場所によらず均一である時に最大となる。
【0027】
液滴噴霧によるガスタービンの増出力効果について、図2を用いて説明する。図2の実線(a)は、吸気に含まれる液滴個数が噴霧装置下流の吸気室内で場所によらず均一である場合の噴霧液滴量に対するガスタービン増出力を表わし、破線(b)は、吸気に含まれる液滴個数が噴霧装置下流の吸気室内で不均一である場合の噴霧液滴量に対するガスタービン増出力を表わす。
【0028】
液滴噴霧によるガスタービンの増出力は、▲1▼圧縮機入口までの吸気室内での吸気の冷却に起因するもの、▲2▼圧縮機内での吸気の冷却に起因するもの、に分けられる。
【0029】
噴霧水は吸気室内で湿り飽和空気になるまで気化できるので、噴霧水量が少ない時には、吸気に含まれる液滴密度が均一・不均一を問わず圧縮機に到達される前に蒸発され、ガスタービン増出力の差はほとんど生じない。この時、ガスタービン出力は噴霧水量に比例して増加する。
【0030】
噴霧液滴量をさらに多くしていくと、均一蒸発の場合には吸気室内で気化できる液滴が、不均一蒸発では吸気室内で気化できなくなる。噴霧水量r1%(対空気比)は、不均一蒸発の場合に吸気室内で蒸発できる最大値を表わす。噴霧水量r2%(対空気比)は、均一蒸発の場合に吸気室内で蒸発できる最大値を表わし、この時、圧縮機入口に供給される吸気の全てが湿り飽和空気となっている。
【0031】
圧縮機内での吸気冷却によるガスタービンの増出力効果は、吸気室内での吸気冷却によるガスタービンの増出力効果に比べて小さい。また、単位液滴量の気化によるガスタービン増出力効果は均一蒸発と不均一蒸発の間に有意な差はない。その結果、噴霧水量(対空気比)がr3(>r1、r2)%の時、均一蒸発の場合にガスタービン増出力がA%であるとすると、不均一蒸発の場合にはA´%となり、Δ=A−A´%が、液滴噴霧方法の差によるガスタービン出力増加の差となる。r1およびr2は空気の温度および湿度によってその値が異なるが、r1とr2の関係(r2>r1)は常に成り立つ。噴霧水量(対空気比)が1%の時、均一蒸発ではガスタービン増出力は約10%となる。
【0032】
また、大気温度30℃、相対湿度50%の空気が湿り飽和空気になるまで噴霧水が気化したとすると、空気温度は23℃まで低下する。均一蒸発の場合には、ほぼ湿り飽和空気になるまで噴霧水を気化できるので、上記大気条件(大気温度30℃、相対湿度50%)下では、約7℃の空気温度低下を達成することができる。
【0033】
実際的には、噴霧された液滴は約1秒以内で圧縮機へと供給される。液滴の平均粒径が約10μmであれば、液滴が噴霧されると速やかに吸気の気流に乗ってその一部が気化しながら圧縮機へと到達し、液滴の拡散はほとんどなされない。
【0034】
よって、不均一蒸発の場合には最大で、取り込む吸気温度(外気温度)とその吸気の大気条件下での湿り飽和蒸気に達した時の温度との差だけ生じる。
【0035】
均一蒸発の場合には、圧縮機入口付近での吸気室に対して垂直な断面内での吸気温度の差が、例えば、1℃以内となっている。すなわち、液滴噴霧による吸気冷却効果は、圧縮機入口付近で、均一蒸発の方が不均一蒸発よりも吸気の平均温度が低くなっている。
【0036】
吸気室12内の吸気6は、吸気室壁面の粘性により、吸気室12断面内で速度分布が生じており、吸気室12断面内を通過する吸気6の重量流量は断面内中央部で大きく、壁面付近部で小さい。この分布に応じて、液滴噴霧ノズル管51および液滴噴霧ノズル52とから成る液滴噴霧装置は、隣接する液滴噴霧ノズル52が吸気6の吸気室12断面内の速度分布に応じて中央付近は密、吸気室壁面付近は疎に配置されている。すなわち、流速の速い箇所では密に、流速の遅い箇所では粗に配置されているのである。
【0037】
各液滴噴霧ノズル52から噴出する液滴量が均一であれば、吸気室12断面内中心部に噴霧された液滴量は、吸気室12断面内壁面部に噴霧された液滴量に比して大きくなり、液滴噴霧装置下流の吸気6に含まれる液滴個数密度は場所によらず均一化される。
【0038】
すなわち、管(吸気室)内を通過する流体の一般的な流速分布が図3に示されているように、管12aが直線の場合には、流体は管壁から抵抗を受けるため、流速は図3(a)のように管内中心部が最も速くなり、管が途中で曲がっている場合には、コーナー部を過ぎた直後では、流速が最も大きいところは図3(b)のように曲率中心から離れたところにシフトし、管内を流れる気体は一般的に、管内断面内でその流速が異なる。
【0039】
したがって、従来は、吸気室12aが直線の場合で噴霧する液滴の重量流量が吸気室12aの断面内で均一の時、液滴噴霧装置の下流にて吸気室12aの垂直断面内を通過する吸気6の重量流量は、吸気6の流速の速いところが大きく、吸気6の流速の遅いところが小さくなるので、吸気6に含まれる液滴の重量密度は、吸気6の流速の速いところで小さく、吸気6の流速の遅いところで大きくなる。
【0040】
そこで、吸気6の流速の大きいところに対しては、噴霧する液滴の重量流量を多く、吸気6の流速の小さいところに対しては、噴霧する液滴の重量流量を少なくすることで吸気6に含まれる液滴の重量密度を均一化させることができるのである。これにより、吸気と圧縮機内部の空気を均一かつ有効に冷却できるので、▲1▼圧縮機の空気吸込重量流量が増し、▲2▼圧縮機動力低減効果を促進することができるのである。
【0041】
このように、液滴噴霧ノズル52の空間的な配置の不均一化は、吸気6に含まれる液滴個数密度を均一化することができる。ここでいう液滴噴霧ノズル52の空間的な配置の変化あるいは不均一化は、例えば、隣接する液滴噴霧ノズル52の間隔が±5%以上異なる場合をいう。
【0042】
液滴噴霧ノズル管51および液滴噴霧ノズル52の位置は、例えば、コンピュータシミュレーションによって得られた吸気室12断面内の吸気の流速分布をもとに、吸気に含まれる液滴の重量流量が均一となるように定める。
【0043】
吸気6に含まれる液滴個数密度の均一化は、各液滴噴霧ノズル52からの噴出流量の不均一化によっても可能である。ここでいう各液滴噴霧ノズル52からの噴出流量の変化あるいは不均一化は、例えば、各液滴噴霧ノズル52からの噴出流量が±5%以上異なる場合をいう。
【0044】
隣接する液滴噴霧ノズル52の間隔を均一として噴霧流量を変化させることで吸気6に含まれる液滴の重量密度が均一となるようにするためには、噴霧流量は、例えば図5に示したように、液滴噴霧ノズル管51に流速計44を設置し、流速に比例して調節弁21,31の開度を大きくするように液滴噴霧ノズル52から噴出する液滴量を制御することもできるが、詳細は実施例2で説明する。
【0045】
図1には、液滴噴霧ノズル管51が吸気室内で直線となっているものが示されているが、液滴量は吸気6の吸気室断面内での速度分布に応じて変化させているので、液滴噴霧ノズル管51の形状は直線でなくともよい。例えば図4に示した、1つの直線状配管に幾つかの正方形状配管を組み合わせたような液滴噴霧ノズル管であってもよい。
【0046】
外気の空気の状態を変化させる装置が液滴噴霧装置の上流側にあってもよい。例えば、除湿器あるいは空気冷却器が液滴噴霧装置の上流側にあってもよい。空気冷却器を液滴噴霧装置の上流側に設置した時の詳細は、実施例5で説明する。
【0047】
噴霧された液滴は気流に乗ってその一部は吸気室12内で気化され、残りは圧縮機1に流入するが、圧縮機1内ではこの液滴は流線に沿って翼間を通過する。圧縮機1によって圧縮機1内の吸気6が断熱圧縮されると、圧縮機1内の吸気6は加熱されるが、この熱で圧縮機1内の吸気6に含まれた液滴は表面から気化しながら粒径を減少しつつ後段翼側へ移動する。この過程で、気化に必要な気化潜熱は、圧縮機内の空気によって賄われるため、圧縮機内の空気温度は液滴を噴霧しない場合と比して低下する。
【0048】
液滴は粒径が大きいと、圧縮機1内の翼や圧縮機1のケーシングに衝突し、翼の損傷やケーシングの変形などをもたらす。また、圧縮機1内の翼または圧縮機1のケーシングに付着した液滴が気化すると、液滴は付着したメタルから熱を得て気化することになるので、圧縮機1内の吸気6の減温効果が小さくなる。したがって、これらを防止するためには液滴の粒径は小さい方が好ましい。
【0049】
噴霧液滴には粒径に分布が生じている。圧縮機1内の翼や圧縮機1のケーシングに衝突しないようにするためには、液滴の粒径は Sautor 平均粒径(S.M.D)で30μm以下にすることが好ましい。液滴噴霧ノズルから噴出される液滴には粒度の分布があり、液滴の最大粒径は計測が容易ではないので、実用上は前述の Sautor 平均粒径(S.M.D)で測定したものを適用する。なお、粒径は小さい方が好ましいが、小さい粒径の液滴を作る液滴噴霧ノズルは高度な製作技術を要するので、技術的に小さくできる下限までが、前記粒径の適用範囲の下限となる。例えば、前記粒径、最大粒径、あるいは平均粒径それぞれが1μmを下限とする。また、液滴の微粒化にはエネルギーを要することが多いため、係る微粒液滴を製造するためのエネルギーを考慮して前記下限を定めてもよい。
【0050】
給水手段20および液滴の微粒化手段としての給気手段30を備えた液滴噴霧ノズル52の液滴量制御方法の一例が示されている。
【0051】
液滴の微粒化手段としては液滴噴霧ノズル52に圧縮された空気を供給する加圧空気供給手段32を用いる。
【0052】
給水手段20によって供給された水が所望の開度の調節弁21を経て液滴噴霧ノズル52から所望の粒径の微粒液滴にするために、ある流量の圧縮空気が必要であれば、噴霧制御装置40からの信号により、噴霧する液滴量を増大するように調節弁21の開度が大きくなった時、前記噴霧制御装置40から調節弁31への信号は、噴霧する液滴の粒径(S.M.D)が所望の粒径となるまで開度を大きくするように送られる。また、所望の粒径の液滴を噴霧している時に、液滴量が減少するように調節弁21の開度が小さくなった時には逆に、前記噴霧制御装置40から調節弁31への信号は、噴霧する液滴の粒径(S.M.D)が所望の粒径となるまで開度を小さくするように送られる。
【0053】
圧縮機1内に流入した液滴を含んだ吸気6はごく短時間のうちにその出口に達するが、液滴噴霧装置を通過した後の吸気6に含まれる液滴の重量密度は均一化されているので、圧縮機1の中で吸気6は、吸気6に含まれた液滴の気化によってまんべんなく冷却される。
【0054】
本発明の第2の実施例を、図5のガスタービンプラントの系統図を用いて説明する。この実施例は、前記第1の実施例に対して、液滴噴霧装置における液滴噴霧ノズル管51の配置形式、および液滴噴霧ノズル52の配置形式のほかに流速計44の設置が相違する。
【0055】
具体的には、図5に示したように、矩形配管を幾つか組み合わせた液滴噴霧ノズル管51において、隣接する液滴噴霧ノズル52は不均等間隔に配置する。また、吸気室12内に流速計44を配置する。流速計44は、例えば、吸気室断面中心部、壁面付近部および中心部と壁面付近部の中間部の液滴噴霧ノズル管51に設置する。
【0056】
流速計44からの信号は流速信号45a、45b、45cとして噴霧制御装置40へ送られ、流速信号45aによって調節弁21aおよび31a、流速信号45bによって調節弁21bおよび31b、流速信号45cによって調節弁21cおよび31cの開度を制御する。
【0057】
各液滴噴霧ノズルからの噴出流量を、吸気の速度が大きいところは噴出流量を多く、吸気の速度が小さいところは噴出流量を少なくして、液滴噴霧装置の下流を流下する圧縮機1に供給される吸気6に含まれる液滴の重量密度が均一となるように噴霧制御装置40で各液滴噴霧ノズルから噴出される液滴量を制御する。
【0058】
本設備により、吸気6に含まれる液滴の重量密度を均一化できるので、実施例1と同様の効果を得ることができる。
【0059】
本発明の第3の実施例を、図7のガスタービンプラントの系統図を用いて説明する。前記第1の実施例または第2の実施例に対して、配置された液滴噴霧ノズル管51および液滴噴霧ノズル52が、吸気の流通方向の複数の断面にあることが主な相違点である。
【0060】
具体的には、図7に示されているように、1つの断面内では各液滴噴霧ノズルから噴出される噴霧量は均等であるが、液滴噴霧ノズルの間隔を不均等に配置したものを複数の断面に配置した液滴噴霧装置である。吸気室12にある液滴噴霧装置の下流の吸気室12断面内を通過する液滴量が、全体として、吸気室12断面内中央部が多く、吸気室12断面内壁面付近部が少なくなるように液滴噴霧ノズル52を配置する。
【0061】
これにより、吸気6に含まれる液滴の重量密度を均一化できるので、実施例1と同様の効果を得ることができる。
【0062】
液滴噴霧ノズル管51および液滴噴霧ノズル52を吸気室12の複数の垂直断面に配置することの利点は、液滴噴霧ノズル管52の製作の容易さ、および噴霧する液滴量制御の容易さにある。
【0063】
また、吸気6の速度に応じて噴霧する液滴量を変化させるため、1つの断面内での液滴噴霧ノズルの間隔は均等で各液滴噴霧ノズルから噴出される噴霧量を均等に配置したものを複数の断面に配置してもよい。具体的には、図6または図8に示されているように、1つの断面内での液滴噴霧ノズルの間隔および各液滴噴霧ノズルから噴出される噴霧量を均等に配置したものを複数の断面に配置する。
【0064】
また、図9に示されているように、吸気室12が曲がっている場合に対しても、図3(b)に示した吸気6の速度分布に対応して液滴噴霧ノズル52の間隔を不均等にしてもよい。
【0065】
これらによっても、吸気6に含まれる液滴の重量密度を均一化できるので、実施例1と同様の効果を得ることができる。
【0066】
本発明の第4の実施例を、図1のガスタービンプラントの系統図を用いて説明する。前記第1の実施例または前記第2の実施例または前記第3の実施例に対して、液滴噴霧量がガスタービン出力に応じて変化させていることが主な相違点である。具体的には、タービン2からの出力を信号として関数発生器42へ送り、タービン2からの出力を関数とした関数発生器42が、流量を調節する調節弁21、31へ信号ケーブル43を通じてその開度を調節する。
【0067】
ベースロード運転時において、調節弁21、31が所定の開度で所望の量および粒径の液滴が液滴噴霧ノズル52より噴出されているとすると、出力が減少して、その減少分を回復するためにタービン2の出力信号を受け取った関数発生器42は、調節弁21の開度が大きくなるように信号ケーブル43を介して調節弁21へ信号を送る。
【0068】
所定の量の水が調節弁21を通過して液滴噴霧ノズル52に導かれるとともに、噴出される液滴が所望の粒径となるように関数発生器42で演算し、調節弁31へ開度信号は信号ケーブル43を通じて調節弁31へ送られる。
【0069】
逆に、出力増大時、その増大分を減少させるためにタービン2の出力信号を受け取った関数発生器42は、調節弁21の開度が小さくなるように信号ケーブル43を介して調節弁21へ信号を送られる。
【0070】
所定の量の水が調節弁21を通過して液滴噴霧ノズル52に導かれるとともに、噴出される液滴が所望の粒径となるように関数発生器42で演算し、調節弁31へ開度信号は信号ケーブル43を通じて調節弁31へ送られる。調節弁31の開度はその制御方法の簡単化のため、出力の増減にかかわらず一定の開度としてもよい。
【0071】
ただし、液滴の粒径が大きくなると前述のように圧縮機内翼の損傷およびケーシングの変形をもたらすため、調節弁31の開度の下限は、調節弁21の開度信号が最大時に所望の粒径の液滴となるように設定する。
【0072】
液滴噴霧量の噴霧制御装置40による制御は、ガスタービン出力だけでなく吸気6の温度または湿度などの吸気条件によって行なってもよい。この場合、例えば、吸気6の温度および湿度の実測値が関数発生器42へ送られ、調節弁21の開度を調節する開度信号が、ガスタービン出力および吸気温度および吸気湿度の関数として関数発生器42にて演算されるようにする。得られた結果は信号ケーブル43を通じて調節弁21へ送られる。このとき調節弁31の開度は所望の粒径の液滴が得られるようにその開度が調節される。
【0073】
本発明の第5の実施例を、図1のガスタービンプラントの系統図を用いて説明する。前記第1の実施例に対して、液滴噴霧による加湿冷却のほかに吸気冷却設備60を備えていることが主な相違点である。吸気冷却設備60は、例えば、空気冷却器61、外部冷熱源62、空気冷却器61に外部冷熱源62を供給する外部冷媒供給ポンプ63を備える。外部冷熱源62は空気冷却器61に接続され、外部冷媒供給ポンプ63により供給された冷熱媒体を介して吸気6を冷却する。空気冷却器61は、例えば、ルーバ11の背面に配置されるが、ルーバ11の前面に配置されてもよい。
【0074】
吸気6は、ルーバ11を通過して吸気室12に至る。さらに、吸気6は、空気冷却器61を通過することにより冷却される。給水タンク23の水は所定の開度の調節弁21を通り、給水手段20を経て液滴噴霧ノズル52から微細液滴が噴出する。微細液滴を噴出するのに給気手段30からの給気が必要な場合には、併せて調節弁31を所定の開度にして給気し、噴霧液滴の粒径を調整する。吸気6は液滴を含んで噴霧流を形成し、一部蒸発して吸気を冷却したのち圧縮機1に流入する。吸気6に含まれる液滴は、圧縮機1の内部で気化し、圧縮空気を冷却する。
【0075】
圧縮機1内で実質的に気化したのち、圧縮空気は燃焼器5で燃料7と混合し、高温高圧のガスとなってタービン2に流入して仕事をし、機械エネルギーが生成される。発電機3で機械エネルギーは電気エネルギーに変換され、送電端4に供給される。仕事を終えた排ガス7は、スタック8から放出される。
【0076】
本設備では、実施例1で得られるガスタービンの出力向上およびガスタービンの熱効率向上の効果に加えて、空気冷却器61による吸気の冷却で吸気6の重量流量が増し、さらなるガスタービンの出力増加を達成することができる。また、液滴噴霧を少なくしながらもガスタービン出力を増加させることもできるので、本実施例では、夏期に渇水が予想される地域あるいは液滴コストが大きい地域への適用に有効である。
【0077】
以上説明してきたようにこのように形成されたガスタービンプラントであると、ガスタービンプラントおよびコンバインドサイクルプラントにおいて、吸気口から取り込み圧縮機に供給する吸気に吸気の流速に応じた液滴量を噴霧するので、圧縮機の吸い込み側の構成がいかなる構成であっても、吸気に均一に液滴を含ませることができ、吸気に含まれた液滴によって吸気をまんべんなく冷却し、ガスタービンプラントおよびコンバインドサイクルプラントの出力および熱効率の向上を達成することができるのである。
【0078】
【発明の効果】
以上説明してきたように本発明によれば、圧縮機の吸い込み側の構成が、いかなる構成であっても、吸い込み空気に均一に液滴を含ませて吸い込み空気を充分均一に冷却することができ、ガスタービンプラントの出力の向上を図ることができる。
【図面の簡単な説明】
【図1】本発明のガスタービンプラントの一実施例を示す概略系統図である。
【図2】噴霧水量とガスタービン出力増加率の関係を示す図である。
【図3】管内での流体の速度分布を示す図である。
【図4】本発明のガスタービンプラントの他の実施例を示す概略系統図である。
【図5】本発明のガスタービンプラントの他の実施例を示す概略系統図である。
【図6】本発明のガスタービンプラントの他の実施例を示す概略系統図である。
【図7】本発明のガスタービンプラントの他の実施例を示す概略系統図である。
【図8】本発明のガスタービンプラントの他の実施例を示す概略系統図である。
【図9】本発明のガスタービンプラントの他の実施例を示す概略系統図である。
【符号の説明】
1…圧縮機、2…タービン、3…発電機、4…送電端、5…燃焼器、6…吸気、7…燃料、8…排気、9…スタック、10…吸気口、11…ルーバ、12…吸気室、20…給水手段、21…調節弁、22…給水ポンプ、23…給水タンク、24…給水供給装置、30…給気手段、31…調節弁、32…加圧空気供給手段、33…加圧器、40…噴霧制御装置、41…要求負荷信号、42…関数発生器、43…信号ケーブル、44…流速計、45…流速信号、51…液滴噴霧ノズル管、52…液滴噴霧ノズル、60…吸気冷却設備、61…空気冷却器、62…外部冷却源、63…外部冷媒供給ポンプ。
Claims (6)
- 燃焼用気体を圧縮する圧縮機と、該圧縮機の気体吸い込み側に設けられた吸気室と、該吸気室の内部に配置され、圧縮機の吸い込み気体に液滴を噴霧する液滴噴霧装置とを備え、前記圧縮機の吸い込み気体に液滴を混合し冷却するようにしたガスタービンプラントにおいて、
前記液滴噴霧装置が、前記吸気室内の吸気流路にほぼ垂直な断面内に張り巡らされた液滴噴霧ノズル管と、該液滴噴霧ノズル管に所定の間隔をおいて設けられた複数の液滴噴霧ノズルとを備え、前記液滴噴霧ノズルの配置分布を、吸気室の断面内で気体流速の速い箇所では密に、かつ気体流速の遅い箇所では粗となるようにしたことを特徴とするガスタービンプラント。 - 燃焼用気体を圧縮する圧縮機と、該圧縮機の気体吸い込み側に設けられた吸気室と、該吸気室の内部に配置され、圧縮機の吸い込み気体に液滴を噴霧する液滴噴霧装置とを備え、前記圧縮機の吸い込み気体に液滴を混合し冷却するようにしたガスタービンプラントにおいて、
前記液滴噴霧装置が、前記吸気室内の吸気流路にほぼ垂直な断面内に張り巡らされた液滴噴霧ノズル管と、該液滴噴霧ノズル管に所定の間隔をおいて設けられた複数の液滴噴霧ノズルとを備え、前記液滴噴霧ノズルの噴霧する液滴量を、吸気室の断面内で気体流速の速い箇所では増大させ、かつ気体流速の遅い箇所では減少させるようにしたことを特徴とするガスタービンプラント。 - 前記液滴噴霧ノズルを有する液滴噴霧ノズル管が、吸い込み気体の流通方向に所定の間隔をおいて複数段配置されたものである請求項1または2記載のガスタービンプラント。
- 燃焼用気体を圧縮する圧縮機と、該圧縮機の気体吸い込み側に設けられた吸気室と、該吸気室の内部に配置され、圧縮機の吸い込み気体に液滴を噴霧する液滴噴霧装置とを備え、前記圧縮機の吸い込み気体に液滴を混合し冷却するようにしたガスタービンプラントにおいて、
前記液滴噴霧装置が、夫々噴霧ノズル数の異なる液滴噴霧ノズル管を吸い込み気体の流通方向に複数段配置したノズル管群を備え、前記ノズル管群のノズル管を、ノズル管群から吸い込み気体に噴霧される液滴量が、吸気室の断面内で気体流速の速い部分では多く、かつ気体流速の遅い部分では少なくなるように配置したことを特徴とするガスタービンプラント。 - 燃焼用気体を圧縮する圧縮機と、該圧縮機の気体吸い込み側に設けられた吸気室と、該吸気室の内部に配置され、圧縮機の吸い込み気体に液滴を噴霧する液滴噴霧装置とを備え、前記圧縮機の吸い込み気体に液滴を混合し冷却するようにしたガスタービンプラントにおいて、
前記液滴噴霧装置が、夫々噴霧量の異なる噴霧ノズルを有する液滴噴霧ノズル管を、吸い込み気体の流通方向に複数段配置したノズル管群を備え、前記ノズル管群のノズル管を、ノズル管群から吸い込み気体に噴霧される液滴量が、吸気室の断面内で気体流速の速い部分では多く、かつ気体流速の遅い部分では少なくなるように配置したことを特徴とするガスタービンプラント。 - 前記液滴噴霧装置が、噴霧装置から吸い込み気体中に噴霧される総液滴量を、ガスタービンの出力に対応するように制御する制御装置を備えたものである請求項1乃至5いずれかに記載のガスタービンプラント。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000048928A JP3691711B2 (ja) | 2000-02-21 | 2000-02-21 | ガスタービンプラント |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000048928A JP3691711B2 (ja) | 2000-02-21 | 2000-02-21 | ガスタービンプラント |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001234755A JP2001234755A (ja) | 2001-08-31 |
JP3691711B2 true JP3691711B2 (ja) | 2005-09-07 |
Family
ID=18570939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000048928A Expired - Fee Related JP3691711B2 (ja) | 2000-02-21 | 2000-02-21 | ガスタービンプラント |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3691711B2 (ja) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2382848A (en) * | 2001-12-06 | 2003-06-11 | Alstom | Gas turbine wet compression |
DE10256193A1 (de) * | 2002-12-02 | 2004-06-09 | Alstom Technology Ltd | Verfahren zur Steuerung der Flüssigkeitseinspritzung in einen Zuströmkanal einer Kraft- oder Arbeitsmaschine |
WO2009096028A1 (ja) * | 2008-01-31 | 2009-08-06 | Hitachi, Ltd. | プラント用動力供給システム、その運転方法及び改造方法 |
JP4563489B1 (ja) * | 2009-04-16 | 2010-10-13 | 東北電力株式会社 | ガスタービン吸気塔にミスト噴霧ノズルを最適に配置する最適配置方法 |
US8365530B2 (en) * | 2009-06-03 | 2013-02-05 | General Electric Company | System for conditioning the airflow entering a turbomachine |
US20100326083A1 (en) * | 2009-06-26 | 2010-12-30 | Robert Bland | Spray system, power augmentation system for engine containing spray system and method of humidifying air |
JP5384300B2 (ja) * | 2009-11-12 | 2014-01-08 | 三菱重工業株式会社 | ガスタービン用吸気冷却装置、ガスタービンプラント、既設ガスタービンプラントの再構築方法、及び、ガスタービンの吸気冷却方法 |
US8465573B2 (en) * | 2011-10-05 | 2013-06-18 | General Electric Company | System and method for conditioning air flow to a gas turbine |
JP5917243B2 (ja) * | 2012-04-06 | 2016-05-11 | 三菱日立パワーシステムズ株式会社 | ガスタービン改造方法及び改造を施したガスタービン |
US10047672B2 (en) * | 2012-09-10 | 2018-08-14 | General Electric Company | Gas turbine wet compression system using electrohydrodynamic (EHD) atomization |
JP6180145B2 (ja) | 2013-03-26 | 2017-08-16 | 三菱日立パワーシステムズ株式会社 | 吸気冷却装置 |
JP5717817B2 (ja) * | 2013-10-02 | 2015-05-13 | 三菱重工業株式会社 | ガスタービン用吸気冷却装置、ガスタービンプラント、既設ガスタービンプラントの再構築方法、及び、ガスタービンの吸気冷却方法 |
JP2015090090A (ja) * | 2013-11-05 | 2015-05-11 | 三菱日立パワーシステムズ株式会社 | 吸気噴霧装置およびガスタービン設備 |
CN112173137B (zh) * | 2020-09-25 | 2022-09-30 | 中国直升机设计研究所 | 一种直升机降温进气道 |
-
2000
- 2000-02-21 JP JP2000048928A patent/JP3691711B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001234755A (ja) | 2001-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3691711B2 (ja) | ガスタービンプラント | |
EP1062415B1 (en) | Apparatus for water injection in a turbine | |
US6470668B2 (en) | Methods and apparatus for water injection in a turbine engine | |
JP2877098B2 (ja) | ガスタービン,コンバインドサイクルプラント及び圧縮機 | |
JP2005511947A5 (ja) | ||
US20100326083A1 (en) | Spray system, power augmentation system for engine containing spray system and method of humidifying air | |
EP2610465B1 (en) | Solar gas turbine system | |
JP3502239B2 (ja) | ガスタービンプラント | |
JPH1113486A (ja) | ガスタービン | |
JP3937640B2 (ja) | ガスタービン,コンバインドサイクルプラント及び圧縮機 | |
JP2002322916A (ja) | ガスタービン吸気冷却装置 | |
JP3567090B2 (ja) | ガスタービン,コンバインドサイクルプラント及び圧縮機 | |
JPH10246127A (ja) | ガスタービン,コンバインドサイクルプラント及び圧縮機 | |
JP4254508B2 (ja) | ガスタービンシステム | |
JP4167989B2 (ja) | ガスタービン設備及びガスタービン用加湿設備 | |
JP2010053690A (ja) | 吸気に水を噴霧する圧縮機を有する設備 | |
JP2020084763A (ja) | 吸気冷却方法 | |
MXPA00002893A (en) | Methods and apparatus for water injection in a turbine engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050520 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050614 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050616 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3691711 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080624 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090624 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090624 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100624 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100624 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110624 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110624 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120624 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120624 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130624 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |