JP3691452B2 - Sewage treatment equipment - Google Patents

Sewage treatment equipment Download PDF

Info

Publication number
JP3691452B2
JP3691452B2 JP2002126602A JP2002126602A JP3691452B2 JP 3691452 B2 JP3691452 B2 JP 3691452B2 JP 2002126602 A JP2002126602 A JP 2002126602A JP 2002126602 A JP2002126602 A JP 2002126602A JP 3691452 B2 JP3691452 B2 JP 3691452B2
Authority
JP
Japan
Prior art keywords
water
sewage
aeration
mixed slurry
endless circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002126602A
Other languages
Japanese (ja)
Other versions
JP2003320391A (en
Inventor
雅明 小林
武 雪竹
Original Assignee
サーンエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サーンエンジニアリング株式会社 filed Critical サーンエンジニアリング株式会社
Priority to JP2002126602A priority Critical patent/JP3691452B2/en
Publication of JP2003320391A publication Critical patent/JP2003320391A/en
Application granted granted Critical
Publication of JP3691452B2 publication Critical patent/JP3691452B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Mixers Of The Rotary Stirring Type (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、オキシデーションディッチ法による汚水処理システム及びその運転方法に関するものである。
【0002】
【従来の技術】
レーストラック型の無終端循環水路からなるオキシデーションディッチ法において、有機物と同時に生物学的脱窒を行う運転方法として、▲1▼オキシデーションディッチ内を処理領域として好気領域と無酸素領域に分けるようにしたもの、及び▲2▼好気攪拌と無酸素攪拌を繰り返して好気運転時間帯と無酸素運転時間帯を繰り返すようにしたものが公知である。これら▲1▼▲2▼は、いずれも活性汚泥が有する硝化・脱窒機能を利用するものである。すなわち、活性汚泥中には好気性菌である硝化菌や通性嫌気性菌である脱菌が混在して生息しているが、硝化菌は好気状態においてアンモニア性窒素を硝化し(NH+2O→NO +HO)、脱菌は無酸素状態において硝酸性窒素を脱窒する(2NO +10H→N+4HO+2OH)機能を有するため、それぞれの菌に最適な状態を繰り返すことにより、アンモニア性窒素を最終的に窒素ガスとして脱する。なお、脱窒反応では水素源が必要となるが、生物学的脱窒法では、流入汚水中の有機物を利用することが一般的である。
【0003】
ところで、▲1▼として、溶存酸素計を用いて曝気用攪拌機と潜水型推進装置を制御してオキシデーションディッチ内を処理領域として好気領域と無酸素領域に分ける方法が提案されている(特許第2938375号参照)。また、▲2▼では、特開昭62−221498号公報に開示される如く、オキシデーションディッチ内のDO値(溶存酸素値)が設定値に達した時に曝気機を停止し、一定時間嫌気状態を保持した後、曝気機の運転を再開し、以下順次上記を繰り返して運転するオキシデーションディッチの運転制御方法が示されている。そのほか回転数制御可能な縦軸型曝気攪拌装置を用いたオキシデーションディッチ法では、高速運転と低速運転を繰り返す運転方法が採用されている。これは、高速運転時には好気運転時間帯として硝化を行い、低速運転時には主に槽内の攪拌を目的とした無酸素運転時間帯として脱を行うものである。
【0004】
【発明が解決しようとする課題】
オキシデーションディッチ内を処理領域として好気領域と無酸素領域に分ける方法は、溶存酸素計の維持管理など技術的に煩雑であり、さらに、近年処理場の小規模化が進むにつれ、1池当たりのオキシデーションディッチ槽が小型化しているため、よりいっそう好気・無酸素領域を同一池内に併存して形成させることが困難になっている。
【0005】
また、好気攪拌と無酸素攪拌を繰り返して好気運転時間帯と無酸素運転時間帯を交互に繰り返す方法である特開昭62−221498号では、曝気用攪拌機がもっている酸素供給能力と循環流形成機能の内、曝気用攪拌機を停止することによってDO(溶存酸素)の補給を中断し無酸素状態にすることはできても、それと同時にオキシデーションディッチ内の循環流を形成する機能も中断するため、活性汚泥が循環水路底部への沈殿を起こしてしまう。すなわち、この方法では活性汚泥と汚水の均一な混合が妨害される。
【0006】
さらに回転数制御可能な縦軸型曝気攪拌装置を用いたオキシデーションディッチ法では、低速運転時において主に槽内の無酸素攪拌を目的として脱を行う運転方法であるが、低速運転時でもある程度の溶存酸素が溶け込むため、脱窒の効率が低下するという問題点がある。
【0007】
また、一般に流入汚水量は、夜間は少なく、昼間に増大する傾向にあり、この傾向は、四季を通じてほぼ一定している。したがって、縦軸型曝気攪拌装置と水中プロペラ装置を画一的に均等の時間でタイマによる交互運転をした場合、夜間においては、過曝気になり、昼間においては溶存酸素不足いう結果になり硝化・脱窒が進行しない。
【0008】
また、オキシデーションディッチ内を無酸素領域(計算式は下記に示す。一般に全領域の30〜50%)と好気領域(同50〜70%)とに分けた運転方法では、必ずしも両領域を完全には分離できず、特に流入下水量(Q)の変動などにより、無酸素領域(VDN)に好気領域から溶存酸素が進入し結果的に脱窒効果が低下するという問題点がある。
【0009】
脱窒領域(無酸素)容量(VDN)の計算式
DN=(n・C・Q×10)/(24×KDN・C
Q:流入下水量(m/日)
:硝化されたケルダール窒素(mg/L)
DN:脱窒速度(mg−N/g−MLSS・時)
:ディッチ内のMLSS(g/m
n:消化率(0<n≦1)
【0010】
本発明は、このような問題を生じることなく、汚水処理を効率よく効果的に行い得る汚水処理装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
請求項1の発明は、汚水と活性汚泥との混合スラリ水を循環させる無終端循環水路と、当該水路内の所定量の混合スラリ水を定速回転により循環流動させると共に曝気攪拌させる曝気攪拌装置と、前記水路内の混合スラリ水中に水没させた定速回転をするプロペラにより所定量の混合スラリ水を循環流動させる水中プロペラ装置と、曝気攪拌装置と水中プロペラ装置とを交互に発停制御する制御装置とを具備し、曝気攪拌装置により混合スラリ水の循環流動と曝気攪拌が行われる好気運転と、水中プロペラ装置により混合スラリ水の循環流動のみが行われる無酸素運転とを交互に繰り返すことにより、無終端循環水路の全域を好気状態と無酸素状態とに交互に保持する構成とした汚水処理装置において、前記水中プロペラ装置を、そのプロペラの上端が混合スラリ水の水面に対して少なくとも50cmの深さとなるように位置させると共に、前記制御装置を、無終端循環水路への流入汚水量を検出する流量計のみに基づいて、好気運転中の前記無終端循環水路内の代表的場所に於ける溶存酸素値が1−2ppmとなり且つ無酸素運転中の溶存酸素値が0−0.5ppmになるように予め求めた無終端循環水路への流入汚水量とこれに最適な曝気攪拌装置及び水中プロペラ装置の各運転時間との相関関係データから、前記曝気攪拌装置及び水中プロペラ装置の各運転時間を見出して両装置を所定の24時間を単位パターンとするタイムサイクルパターンに従って交互に発停制御する制御器から構成し、更に、前記曝気撹拌装置及び水中プロペラ装置の交互発停制御における1サイクルの各装置の運転時間を、流入汚水量が多いときには曝気攪拌装置の運転時間を2〜3時間及び水中プロペラ装置の運転時間を1〜2時間に、また、流入汚水量が少ないときには曝気攪拌装置2の運転時間を1〜2時間及び水中プロペラ装置の運転時間を3〜4時間とすると共に、無終端循環水路内の混合スラリ水を常時0.25m/sec以上の平均流動速度で循環流動させるようにしたことを発明の基本構成とするものである。
また、請求項2の発明は、汚水と活性汚泥との混合スラリ水を循環させる無終端循環水路と、当該水路内の所定量の混合スラリ水を定速回転により循環流動させると共に曝気攪拌させる曝気攪拌装置と、前記水路内の混合スラリ水中に水没させた定速回転をするプロペラにより所定量の混合スラリ水を循環流動させる水中プロペラ装置と、曝気攪拌装置と水中プロペラ装置とを交互に発停制御する制御装置とを具備し、曝気攪拌装置により混合スラリ水の循環流動と曝気攪拌が行われる好気運転と、水中プロペラ装置により混合スラリ水の循環流動のみが行われる無酸素運転とを交互に繰り返すことにより、無終端循環水路の全域を好気状態と無酸素状態とに交互に保持する構成とした汚水処理装置において、前記水中プロペラ装置を、そのプロペラの上端が混合スラリ水の水面に対して少なくとも50cmの深さとなるように位置させると共に、前記制御装置を、無終端循環水路への流入汚水量を検出する流量計のみに基づいて、前記無終端循環水路への複数の流入汚水量の範囲毎に設けられ、当該各流入汚水量の範囲毎に好気運転中の前記無終端循環水路内の代表的場所に於ける溶存酸素値が1−2ppmとなり且つ無酸素運転中の溶存酸素値が0−0.5ppmになるように予め求めた最適な曝気撹拌装置及び水中プロペラ装置の運転時間の24時間を単位パターンとするタイムサイクルパターンを夫々設定すると共に、当該設定したタイムサイクルパターンに従って曝気撹拌装置及び水中プロペラ装置の交互発停を行うタイマーと、前記流量計の汚水流入量の検出値に基づいて流入汚水量に対応したタイムサイクルパターンに設定したタイマーを作動させる制御器とから構成し、更に前記曝気撹拌装置及び水中プロペラ装置の交互発停制御における1サイクルの各装置の運転時間を流入汚水量が多い範囲のときには曝気攪拌装置の運転時間を2〜3時間及び水中プロペラ装置の運転時間を1〜2時間に、また、流入汚水量が少ない範囲のときには曝気攪拌装置の運転時間を1〜2時間及び水中プロペラ装置の運転時間を3〜4時間とすると共に、無終端循環水路内の混合スラリ水を常時0.25m/sec以上の平均流動速度で循環流動させるようにしたことを特徴とする汚水処理装置。
【0012】
かかる汚水処理システムにあっては、制御装置が、無終端循環水路への流入汚水量に応じて予め設定されたタイムサイクルパターンで曝気攪拌装置及び水中プロペラ装置を発停させるタイマで構成されていることが好ましい。また、タイムサイクルパターンが24時間を単位パターンとするものであり、単位パターンが、曝気攪拌装置の運転時間を無終端循環水路への流入汚水量が少ない時間帯において過曝気状態とならず且つ当該流入汚水量が多い時間帯において溶存酸素不足状態とならないように設定したものであることが好ましい。
【0013】
また、リアルタイムで運転制御を行うためには、制御装置を、無終端循環水路への流入汚水量を検出する流量計(電磁式流量計,超音波式流量計等)と、流量計による検出値に基づいて曝気攪拌装置及び水中プロペラ装置を交互に発停制御する制御器と、を具備して、制御器による曝気攪拌装置及び水中プロペラ装置の発停制御が、予め求めた無終端循環水路への流入汚水量とこれに最適する曝気攪拌装置及び水中プロペラ装置の運転時間との相関関係データに基づいて、行われるように構成しておくことが好ましい。また、制御装置は、無終端循環水路への流入汚水量を検出する流量計と、曝気攪拌装置及び水中プロペラ装置の発停を行い且つ流入汚水量に適した当該両装置の運転時間を設定する複数のタイマと、流量計による検出値に基づいて当該検出値に応じたタイマを選択し且つ作動させる制御器と、を具備するものとしておくことも可能である。
【0014】
また、水中プロペラ装置は、そのプロペラが無終端循環水路内における混合スラリ水の水面に対して少なくとも50cmの深さに位置されるように、配設されたものであることが好ましい。また、水中プロペラ装置は、曝気攪拌装置の停止期間中において、混合スラリ水を曝気することなく且つ当該混合スラリ水中の汚泥を沈降させない流速で循環流動させるべく、プロペラを低速回転させるものであることが好ましい。具体的には、水中プロペラ装置が、プロペラを20〜500rpmで回転させることにより、混合スラリ水を0.25m/sec以上の流速で循環流動させるものであることが好ましい。
【0015】
また、曝気攪拌装置は、鉛直線回りで回転する曝気攪拌翼を有する縦軸型のものであり、水中プロペラ装置が、そのプロペラを無終端循環水路の直線部分であって当該曝気攪拌翼の下流側部分に位置させたものであることが好ましい。また、無終端循環水路には、通常、曝気攪拌装置及び水中プロペラ装置が1台づつ設けられるが、処理水量の多い大型の装置では、各々複数台を設ける場合もある。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態を図1〜図6に基づいて説明する。
【0018】
図1〜図3は本発明の第1の実施の形態を示すもので、この実施の形態における本発明に係る汚水処理システム(以下「第1汚水処理システム」という)S1は、オキシデーションディッチ槽1と、オキシデーションディッチ槽1に配設された1台の曝気攪拌装置2及び1台の水中プロペラ装置3と、両装置2,3を交互に発停制御する制御装置4とを具備する。なお、以下の説明においては、便宜上、前後とは図1、図2及び図4〜図6における左右をいい、左右とは図1及び図4〜図6における上下をいうものとする。
【0019】
オキシデーションディッチ槽1は、図1及び図2に示す如く、水平面形状が前後方向に長尺な長円形状をなし、左右中央部に前後方向に延びる隔壁10により無終端循環水路11を形成したものである。オキシデーションディッチ槽1の周壁適所には、無終端循環水路11に開口する流入出口12,13が設けられている。流入口12には、汚水供給源(図示せず)から導かれた給水ライン14が接続されていて、被処理水である汚水5aが流入口12から無終端循環水路11に供給されるようになっている。流出口13には、沈殿分離槽等の後処理系(図示せず)へと導かれた排水ライン15が接続されていて、後述する活性汚泥5bを利用したオキシデーションディッチ法により処理された処理水5が流出口13から排出(溢流)されるようになっている。なお、流入出口12,13は、流入口12から無終端循環水路11に流入された汚水5aがそのまま流出口13へとショートパスしないことを条件として、無終端循環水路11における任意個所に設けておくことができる。また、オキシデーションディッチ槽1には、処理水5と共に排出された活性汚泥を回収する活性汚泥返戻ライン(図示せず)が接続されている。
【0020】
曝気攪拌装置2は、図1及び図2に示す如く、無終端循環水路11の前端部位に配置された縦軸型のエアレータであり、隔壁10の前端近傍位において曝気攪拌翼20,21を一定方向(図1の矢印方向)に回転させることにより、無終端循環水路11において汚水5aと活性汚泥5bとの混合スラリ水5Aを循環流動させると共に曝気攪拌するように構成されている。曝気攪拌翼は、鉛直回転軸22の下端部に放射状に取り付けられた縦羽根20…と各隣接縦羽根20,20間に傾斜状に取り付けられた横羽根21…とからなり、鉛直回転軸22を減速機(変速機)付の駆動モータ(図示せず)により回転駆動させると、混合スラリ水5Aを攪拌しつつ吸引,揚水して曝気させると共に、旋回流を形成して混合スラリ水5Aを無終端循環水路11内において循環流動させるものである。なお、曝気攪拌装置2が設けられない無終端循環水路11の後端部位には、円弧状の整流壁16が設けられている。
【0021】
水中プロペラ装置3は、図1及び図2に示す如く、無終端循環水路11の直線部分の適所(例えば、前後方向中央部位)において混合スラリ水5Aに水没させた状態で配置されたプロペラ30を具備するものであり、曝気攪拌装置2の停止期間中において、混合スラリ水5Aを曝気することなく且つ混合スラリ水5A中の汚泥を沈降させない流速で循環流動させるべく、プロペラ30を低速回転させるように構成されている。この例では、水中プロペラ装置3は、プロペラを20〜500rpmで回転させることにより、混合スラリ水5Aを0.25m/sec以上の流速で循環流動させるように構成されている。また、プロペラ30の鉛直方向位置は、混合スラリ水5Aの水面からの深さ(混合スラリ水5Aの水面からプラペラ30の上端部までの深さ)Dが50cm以上となるように設定されている。
【0022】
制御装置4は、図1に示す如く、タイマ40により、曝気攪拌装置2と水中プロペラ装置3とを、無終端循環水路11への流入汚水量に応じて予め設定されたタイムサイクルパターンで交互に発停制御するものである。タイムサイクルパターンは24時間を単位パターンとするものであり、単位パターンは、曝気攪拌装置2の運転時間を無終端循環水路11への流入汚水量が少ない時間帯(以下「少量時間帯」という)において過曝気状態とならず且つ当該流入汚水量が多い時間帯(以下「多量時間帯」という)において溶存酸素不足状態とならないように設定されている。一般に、夜間は少量時間帯であり、日中は多量時間帯である。このような流入汚水量の変動パターンは、1年を通じて殆ど変わることがない。したがって、単位パターンを、少量時間帯では曝気攪拌装置2の運転時間を短く且つ曝気攪拌装置2の運転間隔(水中プロペラ装置3の運転時間)を長くすると共に、多量時間帯では曝気攪拌装置2の運転時間を長く且つ曝気攪拌装置2の運転間隔(水中プロペラ装置3の運転時間)を短くするように設定して、この単位パターンに従ってタイマ40による両装置2,3を発停させることにより、流入汚水量に応じて硝化処理及び脱窒素処理を効果的に行い得る。仮に、両装置2,3を一定のタイムサイクルで交互に発停させるようにすると、つまり少量時間帯及び多量時間帯の何れにおいても曝気攪拌装置2の運転時間が同じであるとすると、少量時間帯においては曝気攪拌装置2による曝気が過剰となって、混合スラリ水5Aが過曝気状態となり、逆に、多量時間帯においては曝気攪拌装置2による曝気が不足して、混合スラリ水5Aが溶存酸素不足状態となり、何れの場合にも、良好な汚水処理(好気性菌による硝化処理及び嫌気性菌による脱窒処理)が行われない。しかし、両装置2,3の発停を上記の如く設定した単位パターンが繰り返されるタイムサイクルパターンで行うようにすれば、少量時間帯及び多量時間帯の何れにおいても、無終端循環水路11の全域が適正な好気状態又は無酸素状態に保持されて、良好なオキシデーションディッチ法による汚水処理が行われる。ところで、曝気攪拌装置2の運転時間T及び水中プロペラ装置3の運転時間tは、一般には、少量時間帯においてT=1〜3時間,t=2〜4時間に設定され、多量時間帯においてT=2〜4時間,t=1〜3時間に設定されるが、その一例を図3に示す。すなわち、図3は0時から24時までの24時間における両装置2,3の発停サイクルのパターン(単位パターン)を示したものである。なお、単位パターンは、少量時間帯及び多量時間帯の何れにおいても、無終端循環水路11の代表的場所におけるDO値(溶存酸素値)が、曝気攪拌装置2の運転(好気運転)中においては1〜2ppmとなり、水中プロペラ装置3の運転(無酸素運転)期間中においては0〜0.5ppmとなるように、設定しておくことが好ましい。
【0023】
以上のように構成された第1汚水処理システムS1によれば、タイマ40により曝気攪拌装置2と水中プロペラ装置3とが予め設定したタイムサイクルパターンに従って交互に発停されることにより、汚水処理を効率よく効果的に行うことができる。
【0024】
すなわち、曝気攪拌装置2が駆動される好気運転においては、無終端循環水路11内において汚水5aと活性汚泥5bとの混合スラリ水5Aが循環流動されると共に曝気攪拌が行われて、無終端循環水路11の全域が好気状態に保持され、好気性菌により汚水5a中の有機性物質が分解されると共に汚水5aに含まれていたアンモニア性窒素(NH −N)が硝化菌により硝酸性窒素(NOx−N)へと硝化される。このとき、好気運転時間が流入汚水量に応じて設定された時間となっていることから、無終端循環水路11は適正な好気状態に保持されて、上記好気処理が効果的に行われる。
【0025】
そして、タイマ40により設定された時間が経過すると、曝気攪拌装置2が停止される共に水中プロペラ装置3が駆動され、無酸素運転が開始される。
【0026】
この無酸素運転においては、好気運転時に生成された硝酸性窒素(NOx−N)が脱窒菌により還元されて窒素ガスとなり、大気中へと放出される。すなわち、嫌気性菌による脱窒処理が行われる。
【0027】
このとき、プロペラ30が完全に水没した状態で低速回転することから、水中プロペラ装置3による曝気(空気の巻き込み)は行われず、無終端循環水路11の全域が適正な無酸素状態に保持される。また、混合スラリ水5Aが循環流動されることから、活性汚泥5bの沈降が防止されて、汚水9aと活性汚泥9bとが均一に混合される。また、プロペラ30が低速回転されるため、汚泥フロックが破砕されず、活性汚泥9bの生物学的浄化能力(具体的には、有機物酸化能力、硝化能力、脱窒能力など)が損なわれない。したがって、上記嫌気処理が効果的に行われ、好気運転による好気処理と相俟って、汚水9aが良好に処理される。なお、処理された汚水(処理水)9は、流出口13から排水ライン15に排出される。
【0028】
ところで、近年、汚水処理場の小規模化に伴って1池当たりのオキシデーションディッチ槽が小型化する傾向にあるが、このような小型のオキシデーションディッチ槽においては、冒頭で述べた如く、無終端循環水路内に好気領域と無酸素領域とを同一池内に併存して形成しておく方式を採用することが困難であり、かかる方式による汚水処理を効果的に行い得ない。しかし、第1汚水処理システムS1にあっては、無終端循環水路11の全域を好気領域及び無酸素領域とすることから、オキシデーションディッチ槽1が小型である場合にも、汚水処理を効果的に行うことができる。無酸素運転時間帯で起動する水中プロペラ装置は、水深50cm以下に水没させて運転するため空気の巻き込みが無く槽内を容易に無酸素状態に保持できる。また、低速回転(20〜500rpm)で運転するため、さらに、水中プロペラ装置は汚泥が沈降しない槽内流速0.25m/sec以上となるように運転するため、槽内全域にわたり、流入汚水と汚泥が攪拌混合され、前述効果と相まって脱窒効果を高めることができる。
【0029】
なお、本発明は上記した実施の形態に限定されず、本発明の基本原理を逸脱しない範囲において、適宜に改良,変更することができる。
【0030】
すなわち、図4は第2の実施の形態を示したもので、この実施の形態における本発明に係る汚水処理システム(以下「第2汚水処理システム」という)S2では、無終端循環水路11の前後両端部位に前記した縦軸型の曝気攪拌装置2,2が設けられている。第2汚水処理システムS2は、2台の曝気攪拌装置2,2が設けられている点及び両曝気攪拌装置2,2のタイマ40による発停制御が同期して行われる点を除いて、第1汚水処理システムS1と同一構成をなすものであり、第1汚水処理システムS1と同様に効果的な汚水処理を行うことができる。なお、オキシデーションディッチ槽1が小型のものである場合には、第1汚水処理システムS1における如く、一般に1台の曝気攪拌装置2で充分であるが、オキシデーションディッチ槽1が大型のものである場合や能力の低い曝気攪拌装置2を使用する場合等には、必要に応じて、2台又は3台以上の曝気攪拌装置2を設けておくことができる。また、同様の理由から、水中プロペラ装置3も、必要に応じて、複数台設けておくことが可能である。
【0031】
また、第1及び第2汚水処理システムS1,S2においては、経験的に把握される(又は予測される)流入汚水量に応じて予め設定したタイムサイクルパターン(単位パターン)に従ってタイマ40による曝気攪拌装置2及び水中プロペラ装置3の発停制御を行うようにしたが、流入汚水量をリアルタイムで検出して、その検出値に基づいて両装置2,3の発停及び駆動時間(運転時間)を制御するようにすることも可能である。
【0032】
すなわち、図5は第3の実施の形態を示したもので、この実施の形態における本発明に係る汚水処理システム(以下「第3汚水処理システム」という)S3では、曝気攪拌装置2及び水中プロペラ装置3の発停及び駆動時間を流入汚水量に応じてリアルタイムで制御するように構成されている。
【0033】
第3汚水処理システムS3においては、図5に示す如く、制御装置4が、給水ライン14の適所に設けられて、無終端循環水路11への流入汚水量をリアルタイムで検出する流量計41と、流量計41による検出値(流入汚水量)に基づいて曝気攪拌装置2及び水中プロペラ装置3を交互に発停制御する制御器42と、を具備し、両装置2,3の発停制御が予め求めた流入汚水量と運転時間との相関関係データに基づいて行われるように構成されている。すなわち、流入汚水量とこれに最適する曝気攪拌装置2及び水中プロペラ装置3の運転時間との相関関係データを予め求めておき、制御器42により、流量計41による検出値と上記データとを比較して、検出値に応じた両装置2,3の運転時間及びインタバルを当該データから見出して、当該データ通りに両装置2,3の運転時間及びインタバルをリアルタイムで制御するのである。したがって、第3汚水処理システムS3によれば、実際の流入汚水量の変動に即応して、好気運転と無酸素運転とをリアルタイムで制御することができ、流入汚水量に応じて最適する状態で汚水処理を行うことができる。なお、第3汚水処理システムS3は、制御装置4の構成を除いて、第1汚水処理システムS1と同一構成をなすものであり、第1汚水処理システムS1と同等以上に効果的な汚水処理を行うことができる。
【0034】
また、図6は第4の実施の形態を示したもので、この実施の形態における本発明に係る汚水処理システム(以下「第4汚水処理システム」という)S4では、第3汚水処理システムS3と同様に、曝気攪拌装置2及び水中プロペラ装置3の発停及び駆動時間を流入汚水量に応じてリアルタイムで制御するように構成されている。
【0035】
すなわち、第4汚水処理システムS4においては、図5に示す如く、制御装置4が、給水ライン14の適所に設けられて、無終端循環水路11への流入汚水量をリアルタイムで検出する流量計41と、曝気攪拌装置2及び水中プロペラ装置3の発停を行い且つ流入汚水量に適した当該両装置2,3の運転時間を設定する複数(図5の例では4個)のタイマ44a,44b,44c,44dと、流量計41による検出値に基づいて当該検出値に応じたタイマ44a、44b、44c又は44dを選択し且つ作動させる制御器43と、を具備する。
【0036】
予め流入汚水量の変動幅を想定して、これをその変動幅を複数(この例では4つ)の範囲(以下「タイマ選定範囲」という)に区分する。各タイマ44a,44b,44c,44dは、4つのタイマ選定範囲の1つに含まれる流入汚水量に最適する運転サイクルで両装置2,3を発停制御するように構成される。制御器43は、流量計41により検出された流入汚水量が含まれるタイマ選定範囲を見出して、当該タイマ選定範囲に対応するタイマ44a、44b、44c又は44dを選定し且つこれを作動させるように構成されている。
【0037】
したがって、第4汚水処理システムS4にあっては、制御器43により、流量計41による検出値(流入汚水量)に対応したタイマ、例えばタイマ44aが選択されて、当該タイマ44aが作動される。そして、両装置2,3がタイマ44aにより第1汚水処理システムS1と同様に発停制御される。その結果、両装置2,3がリアルタイムで検出された流入汚水量に最適するように運転される。
【0038】
【実施例】
実施例として、第2汚水処理システムS2を使用して、2ヶ月間に亘って汚水処理を行った。ここに、流入汚水9aは下水であり、ディッチ容量は1400m/池であり、各曝気攪拌装置2の駆動源として15kw(好気運転時に60Hzで運転)の電動機を使用し、水中プロペラ装置3の駆動源として3kw(無酸素運転時に50Hzで運転)の電動機を使用した。また、タイマ40による曝気攪拌装置2,2及び水中プロペラ装置3の運転は、図3に示した単位パターンによるタイムサイクルパターンで行った。
【0039】
そして、運転開始から2ヶ月間における適当な間隔で選定した4日(A,B,C,D)において、流入汚水及び処理水のBOD(mg/L)及びT−N(mg/L)を測定した。その結果は、表1に示す通りであった。
【0040】
また、比較例として、図7に示す第5汚水処理システムS5を使用して、実施例と同一条件で汚水処理を行った。第5汚水処理システムS5は、水中プロペラ装置3及び制御装置4を有しない点を除いて、第2汚水処理システムS2と同一構成をなすものである。両曝気攪拌装置2,2の運転は、実施例と同一のサイクル(図3)で行った。但し、実施例の水中プロペラ装置3が運転される時間帯においては、両曝気攪拌装置2,2を低速運転(20Hz)することにより無酸素運転した。なお、好気運転については、実施例と同一の時間帯及び運転条件(60Hz)で行った。
【0041】
そして、実施例と同日(A,B,C,D)において、流入汚水及び処理水のBOD(mg/L)及びT−N(mg/L)を測定した。その結果は、表1に示す通りであった。なお、流入汚水は実施例と同一条件(性状,流入汚水量)であることから、流入汚水のBOD,T−Nは、当然に、実施例と同一である。
【0042】
表1から明らかなように、実施例における処理水のT−N値及びBOD値の値は、比較例のものに比して、低く且つ安定しており、本発明による汚水処理が効果的に行われることが確認された。
【0043】
また、運転期間(2ケ月間)における消費電力を測定したところ、わずか2ケ月間であるにも拘らず、実施例では比較例に比して約11%低減されていた。このことから、本発明によれば大幅な省エネルギー化が実現されることが理解される。
【0044】
【表1】

Figure 0003691452
【0045】
【発明の効果】
以上の説明から容易に理解されるように、本発明によれば、冒頭で述べた問題を生じることなく、汚水処理を効率よく効果的に行い得て、処理水質を向上させることができる。また、システムの消費動力を大幅に低減し得て、省エネルギ化を図ることができる。
【図面の簡単な説明】
【図1】第1汚水処理システムを示す平面図である。
【図2】図1のII−II線に沿う縦断正面図である。
【図3】第1汚水処理システムにおける曝気攪拌装置(及び水中プロペラ装置)の発停制御例を示す運転パターン(単位パターン)図である。
【図4】第2汚水処理システムを示す図1相当の平面図である。
【図5】第3汚水処理システムを示す図1相当の平面図である。
【図6】第4汚水処理システムを示す図1相当の平面図である。
【図7】比較例として使用した第5汚水処理システムを示す図1相当の平面図である。
【符号の説明】
1…オキシデーションディッチ槽、2…曝気攪拌装置、3…水中プロペラ装置、4…制御装置、5…処理水、5A…混合スラリ水、5a…汚水、5b…活性汚泥、11…無終端循環水路、20,21…曝気攪拌翼、30…プロペラ、40…タイマ、41…流量計、42,43…制御器、44a,44b,44c,44d…タイマ、D…深さ、S1,S2,S3,S4…汚水処理システム。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sewage treatment system using an oxidation ditch method and an operation method thereof.
[0002]
[Prior art]
In the oxidation ditch method consisting of a racetrack-type endless circulation channel, as an operating method for biological denitrification simultaneously with organic matter, (1) the inside of the oxidation ditch is treatedGoodThere are known ones that are divided into an air region and an oxygen-free region, and (2) one that repeats aerobic stirring and oxygen-free stirring to repeat an aerobic operation time zone and an oxygen-free operation time zone. These (1) and (2) all utilize the nitrification / denitrification function of activated sludge. In other words, activated sludge contains aerobic nitrifying bacteria and facultative anaerobic bacteria.NitroAlthough bacteria live in a mixture, nitrifying bacteria nitrify ammonia nitrogen (NH3+ 2O2→ NO3 +H ++ H2O)NitroThe fungus denitrifies nitrate nitrogen in anoxic conditions (2NO3 + 10H → N2+ 4H2O + 2OH) Ammonia nitrogen is finally removed as nitrogen gas by repeating the optimal condition for each fungus.NitroTo do. Note that a hydrogen source is required for the denitrification reaction, but in the biological denitrification method, it is common to use organic matter in the influent sewage.
[0003]
By the way, as (1), the aeration stirrer and the submersible type propulsion device are controlled using a dissolved oxygen meter to set the inside of the oxidation ditch as a processing area.GoodA method of dividing the gas region into the oxygen-free region has been proposed (see Japanese Patent No. 2938375). In (2), as disclosed in JP-A-62-221498, when the DO value (dissolved oxygen value) in the oxidation ditch reaches a set value, the aerator is stopped and the anaerobic state is maintained for a certain period of time. The operation control method of the oxidation ditch is shown in which the operation of the aerator is resumed after maintaining the above, and the above operation is sequentially repeated thereafter. In addition, in the oxidation ditch method using a vertical axis aeration stirrer capable of controlling the rotational speed, an operation method in which high speed operation and low speed operation are repeated is adopted. This is because nitrification is performed during the aerobic operation time zone during high-speed operation, and the oxygen-free operation time zone is mainly used for stirring in the tank during low-speed operation.NitroIs to do.
[0004]
[Problems to be solved by the invention]
The treatment area is inside the oxidation ditchGoodThe method of dividing the gas region into the oxygen-free region is technically cumbersome, such as maintaining a dissolved oxygen meter, and the oxidation ditch tank per pond has become smaller as the treatment plant has become smaller in recent years. For this reason, it is difficult to form a more aerobic / anoxic region in the same pond.
[0005]
Japanese Patent Laid-Open No. 62-212498, which repeats aerobic stirring and oxygen-free stirring and alternately repeats the aerobic operation time zone and the oxygen-free operation time zone, discloses the oxygen supply capacity and circulation of the aeration stirrer. Among the flow forming functions, by stopping the aeration stirrer, the supply of DO (dissolved oxygen) can be interrupted to make it anoxic, but at the same time, the function of forming a circulating flow in the oxidation ditch is also interrupted. Therefore, the activated sludge causes precipitation to the bottom of the circulating water channel. That is, this method prevents uniform mixing of activated sludge and sewage.
[0006]
Furthermore, in the oxidation ditch method using a vertical axis aeration stirrer that can control the number of revolutions, it is removed mainly for oxygen-free stirring in the tank during low-speed operation.NitroHowever, since a certain amount of dissolved oxygen dissolves even during low-speed operation, there is a problem that the efficiency of denitrification decreases.
[0007]
In general, the amount of inflow sewage is small at night and tends to increase during the day, and this tendency is almost constant throughout the four seasons. Therefore, if the vertical axis aeration stirrer and the underwater propeller unit are operated alternately by a timer with a uniform time, over-aeration occurs at night, resulting in a lack of dissolved oxygen during the day. Denitrification does not proceed.
[0008]
Further, in the operation method in which the inside of the oxidation ditch is divided into the anoxic region (calculation formula is shown below. Generally, 30 to 50% of the entire region) and the aerobic region (50 to 70% of the whole region), both regions are not necessarily provided. Incomplete separation, especially inflowsewageThe oxygen-free region (VDN) Has a problem that dissolved oxygen enters from the aerobic region, resulting in a decrease in denitrification effect.
[0009]
Denitrification area (anoxic) capacity (VDN)
VDN= (N · CN・ Q × 103) / (24 × KDN・ CM)
Q: Inflow sewage volume (m3/Day)
CN: Nitrified Kjeldahl nitrogen (mg / L)
KDN: Denitrification rate (mg-N / g-MLSS · hour)
CM: MLSS in the ditch (g / m3)
n: digestibility (0 <n ≦ 1)
[0010]
  The present invention can efficiently and effectively perform sewage treatment without causing such problems.Sewage treatment equipmentThe purpose is to provide.
[0011]
[Means for Solving the Problems]
  The invention of claim 1An endless circulation channel for circulating the mixed slurry water of sewage and activated sludge;A predetermined amount of the mixed slurry in the water channel is circulated and fluidized by constant speed rotation and aerated and stirred, and a propeller that rotates at a constant speed submerged in the mixed slurry water in the water channel. An aerobic device that includes an underwater propeller device that circulates and flows water, and a control device that alternately controls on and off of the aeration stirrer and the underwater propeller device. A configuration in which the entire region of the endless circulation channel is alternately held in an aerobic state and an anoxic state by alternately repeating the operation and the anaerobic operation in which only the circulating flow of the mixed slurry water is performed by the underwater propeller device. In the sewage treatment apparatus, the underwater propeller apparatus is positioned so that the upper end of the propeller is at least 50 cm deep with respect to the water surface of the mixed slurry water. Rutotomoni, the control device, the endless circulation canalsFlow ofBased on only the flow meter for detecting the amount of sewage, the dissolved oxygen value at a typical location in the endless circulation channel during aerobic operation is 1-2 ppm, and the dissolved oxygen value during anaerobic operation is 0. To endless circulation channel determined in advance to be -0.5ppmFlow ofFrom the correlation data between the amount of contaminated water and the operation time of the aeration stirrer and the submersible propeller device optimal for this, the respective operation times of the aeration stirrer and the submersible propeller device are found, and both units are determined in units of a predetermined 24 hours. It comprises a controller for alternately starting and stopping according to a time cycle pattern to be a pattern, and further, operating time of each device in one cycle in the alternately starting and stopping control of the aeration stirrer and the underwater propeller device.The flowWhen the amount of contaminated water is large, the operation time of the aeration stirrer is 2-3 hours, the operation time of the underwater propeller device is 1-2 hours,The flowWhen the amount of contaminated water is small, the operation time of the aeration stirrer 2 is 1 to 2 hours, the operation time of the underwater propeller device is 3 to 4 hours, and the mixed slurry water in the endless circulation channel is always 0.25 m / sec. The basic structure of the present invention is to circulate and flow at the above average flow velocity.
  The invention of claim 2An endless circulation channel for circulating the mixed slurry water of sewage and activated sludge;A predetermined amount of the mixed slurry in the water channel is circulated and fluidized by constant speed rotation and aerated and stirred, and a propeller that rotates at a constant speed submerged in the mixed slurry water in the water channel. An aerobic device that includes an underwater propeller device that circulates and flows water, and a control device that alternately controls on and off of the aeration stirrer and the underwater propeller device. A configuration in which the entire region of the endless circulation channel is alternately held in an aerobic state and an anoxic state by alternately repeating the operation and the anaerobic operation in which only the circulating flow of the mixed slurry water is performed by the underwater propeller device. In the sewage treatment apparatus, the underwater propeller apparatus is positioned so that the upper end of the propeller is at least 50 cm deep with respect to the water surface of the mixed slurry water. Rutotomoni, the control device, the endless circulation canalsFlow ofFlow meter to detect the amount of sewageOnly based onPlural to the endless circulation channelFlow ofProvided for each range of incoming sewage, and dissolved oxygen value at a typical location in the endless circulation channel during aerobic operation for each range of influent sewage is 1-2 ppm, and during anaerobic operation Set the time cycle pattern with the unit pattern of 24 hours of the operation time of the optimum aeration stirrer and the underwater propeller device determined in advance so that the dissolved oxygen value becomes 0-0.5 ppm, and the set time A timer for alternately starting and stopping an aeration stirrer and an underwater propeller device according to a cycle pattern, and the flow meterDirtyBased on detected value of water inflowFlowAnd a controller for operating a timer set to a time cycle pattern corresponding to the amount of incoming sewage, and further operating time of each device in one cycle in the alternate start / stop control of the aeration stirrer and the underwater propeller deviceFlowWhen the amount of incoming sewage is large, the operation time of the aeration stirrer is 2-3 hours, the operation time of the underwater propeller device is 1-2 hours,The flowWhen the amount of incoming sewage is small, the operation time of the aeration stirrer is 1 to 2 hours, the operation time of the underwater propeller device is 3 to 4 hours, and the mixed slurry water in the endless circulation channel is always 0.25 m / A sewage treatment apparatus characterized by circulating and flowing at an average flow rate of sec or more.
[0012]
In such a sewage treatment system, the control device is configured by a timer that starts and stops the aeration stirrer and the underwater propeller device in a time cycle pattern set in advance according to the amount of sewage flowing into the endless circulation channel. It is preferable. In addition, the time cycle pattern has a unit pattern of 24 hours, and the unit pattern does not result in an over-aeration state in a time zone in which the amount of sewage flowing into the endless circulation channel is small during the operation time of the aeration stirrer. It is preferably set so as not to be in a state of insufficient dissolved oxygen in a time zone in which the amount of inflow sewage is large.
[0013]
In addition, in order to perform operation control in real time, the control device uses a flow meter (electromagnetic flow meter, ultrasonic flow meter, etc.) that detects the amount of sewage flowing into the endless circulation channel, and a detected value by the flow meter. A controller for alternately starting and stopping the aeration stirrer and the underwater propeller device based on the control, and the start and stop control of the aeration stirrer and the underwater propeller device by the controller is performed to the endless circulation channel obtained in advance. It is preferable to perform the process based on correlation data between the amount of inflowing sewage and the operation time of the aeration stirrer and the submersible propeller device optimized for this. In addition, the control device starts and stops the flow meter for detecting the amount of sewage flowing into the endless circulation channel, the aeration stirrer and the underwater propeller device, and sets the operation time of both devices suitable for the amount of sewage flowing in. It is also possible to include a plurality of timers and a controller that selects and operates a timer corresponding to the detected value based on the detected value by the flow meter.
[0014]
The underwater propeller device is preferably arranged so that the propeller is positioned at a depth of at least 50 cm with respect to the water surface of the mixed slurry water in the endless circulation channel. Further, the underwater propeller device rotates the propeller at a low speed so that the mixed slurry water is not aerated and the sludge in the mixed slurry water is circulated and flowed at a flow rate that does not cause sedimentation during the stop period of the aeration stirrer. Is preferred. Specifically, it is preferable that the underwater propeller device circulates and flows the mixed slurry water at a flow rate of 0.25 m / sec or more by rotating the propeller at 20 to 500 rpm.
[0015]
The aeration stirrer is of a vertical axis having an aeration stirrer that rotates around a vertical line, and the submersible propeller device is a straight portion of the endless circulation channel downstream of the aeration stirrer blade. It is preferable that it is located in the side part. In addition, an endless circulation channel is usually provided with one aeration stirrer and one underwater propeller device, but a large device with a large amount of treated water may have a plurality of units.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
[0018]
1 to 3 show a first embodiment of the present invention, and a sewage treatment system (hereinafter referred to as "first sewage treatment system") S1 according to the present invention in this embodiment is an oxidation ditch tank. 1, one aeration and stirring device 2 and one underwater propeller device 3 disposed in the oxidation ditch tank 1, and a control device 4 that alternately controls the start and stop of both devices 2 and 3. In the following description, for the sake of convenience, front and rear refer to the left and right in FIGS. 1, 2, and 4 to 6, and left and right refer to the upper and lower in FIGS. 1 and 4 to 6.
[0019]
As shown in FIGS. 1 and 2, the oxidation ditch tank 1 has an oval shape whose horizontal plane is long in the front-rear direction, and an endless circulation water channel 11 is formed by a partition wall 10 extending in the front-rear direction at the left and right central portions. Is. At appropriate locations on the peripheral wall of the oxidation ditch tank 1, inlet / outlet ports 12 and 13 that open to the endless circulation channel 11 are provided. A water supply line 14 led from a sewage supply source (not shown) is connected to the inflow port 12 so that the sewage 5a to be treated is supplied from the inflow port 12 to the endless circulation channel 11. It has become. A drainage line 15 led to a post-treatment system (not shown) such as a sedimentation separation tank is connected to the outflow port 13, and a treatment processed by an oxidation ditch method using activated sludge 5 b described later. The water 5 is discharged from the outlet 13 (overflow). The inflow / outflow ports 12 and 13 are provided at arbitrary locations in the endless circulation channel 11 on condition that the sewage 5a flowing into the endless circulation channel 11 from the inflow port 12 does not short-pass to the outflow port 13 as it is. I can leave. The oxidation ditch tank 1 is connected to an activated sludge return line (not shown) for collecting the activated sludge discharged together with the treated water 5.
[0020]
As shown in FIGS. 1 and 2, the aeration and stirring device 2 is a vertical axis aerator disposed at the front end portion of the endless circulation channel 11, and the aeration and stirring blades 20 and 21 are fixed in the vicinity of the front end of the partition wall 10. By rotating in the direction (the arrow direction in FIG. 1), the slurry water 5A of the sewage 5a and the activated sludge 5b is circulated in the endless circulation channel 11 and aerated and stirred. The aeration stirring blade includes vertical blades 20 attached radially to the lower end of the vertical rotating shaft 22 and horizontal blades 21 attached in an inclined manner between the adjacent vertical blades 20, 20. Is rotated and driven by a drive motor (not shown) with a speed reducer (transmission), the mixed slurry water 5A is aspirated while being stirred, pumped and aerated, and a swirl flow is formed to mix the mixed slurry water 5A. Circulating and flowing in the endless circulation channel 11. An arc-shaped rectifying wall 16 is provided at the rear end portion of the endless circulation water channel 11 where the aeration and stirring device 2 is not provided.
[0021]
As shown in FIGS. 1 and 2, the underwater propeller device 3 includes a propeller 30 disposed in a state where the propeller 30 is submerged in the mixed slurry water 5A at an appropriate position (for example, the central portion in the front-rear direction) of the straight end portion of the endless circulation channel 11. The propeller 30 is rotated at a low speed so that the mixed slurry water 5A is not aerated and the sludge in the mixed slurry water 5A is circulated and flowed at a flow rate that does not cause sedimentation during the stop period of the aeration and agitation device 2. It is configured. In this example, the underwater propeller device 3 is configured to circulate and flow the mixed slurry water 5A at a flow rate of 0.25 m / sec or more by rotating the propeller at 20 to 500 rpm. The vertical position of the propeller 30 is set so that the depth D from the water surface of the mixed slurry water 5A (the depth from the water surface of the mixed slurry water 5A to the upper end of the propeller 30) D is 50 cm or more. .
[0022]
As shown in FIG. 1, the control device 4 causes the aeration stirrer 2 and the submersible propeller device 3 to alternate with a timer 40 in a time cycle pattern set in advance according to the amount of sewage flowing into the endless circulation channel 11. Start / stop control. The time cycle pattern has a unit pattern of 24 hours, and the unit pattern is a time period in which the amount of sewage flowing into the endless circulation channel 11 is small (hereinafter referred to as “small amount time period”). Is set so as not to be in a state in which dissolved oxygen is deficient in a time zone in which the amount of inflowing sewage is large (hereinafter referred to as “a large amount of time zone”). Generally, nighttime is a small time zone, and daytime is a heavy time zone. Such a fluctuation pattern of the inflow sewage amount hardly changes throughout the year. Therefore, in the unit pattern, the operation time of the aeration stirrer 2 is shortened and the operation interval of the aeration stirrer 2 (operation time of the underwater propeller device 3) is lengthened in the small time zone, and the aeration stirrer 2 is operated in the large time zone. By setting the operation time longer and the operation interval of the aeration stirrer 2 (the operation time of the underwater propeller device 3) shorter, both devices 2 and 3 are started and stopped by the timer 40 according to this unit pattern. Nitrification and denitrification can be effectively performed according to the amount of sewage. If the two devices 2 and 3 are alternately started and stopped at a constant time cycle, that is, if the operating time of the aeration and stirring device 2 is the same in both the small time zone and the large time zone, a small time is required. In the zone, the aeration by the aeration stirrer 2 becomes excessive and the mixed slurry water 5A becomes over-aerated. Conversely, in the large amount of time zone, the aeration by the aeration stirrer 2 is insufficient and the mixed slurry water 5A is dissolved. Oxygen deficiency occurs, and in any case, good sewage treatment (nitrification treatment with aerobic bacteria and denitrification treatment with anaerobic bacteria) is not performed. However, if the start and stop of both devices 2 and 3 are performed in a time cycle pattern in which the unit pattern set as described above is repeated, the entire region of the endless circulation channel 11 can be obtained in both the small time zone and the large time zone. Is maintained in a proper aerobic state or oxygen-free state, and sewage treatment is performed by a good oxidation ditch method. By the way, the operation time T of the aeration stirrer 2 and the operation time t of the underwater propeller device 3 are generally set to T = 1 to 3 hours and t = 2 to 4 hours in the small time zone, and T in the large time zone. = 2 to 4 hours and t = 1 to 3 hours, an example is shown in FIG. That is, FIG. 3 shows a pattern (unit pattern) of start / stop cycles of both apparatuses 2 and 3 in 24 hours from 0:00 to 24:00. It should be noted that the unit pattern has a DO value (dissolved oxygen value) at a representative location of the endless circulation channel 11 during the operation of the aeration stirrer 2 (aerobic operation) in both the small time zone and the large time zone. Is preferably set to be 1 to 2 ppm, and to be 0 to 0.5 ppm during the operation (anoxic operation) of the underwater propeller device 3.
[0023]
According to the first sewage treatment system S1 configured as described above, the aeration stirrer 2 and the underwater propeller device 3 are alternately started and stopped according to a preset time cycle pattern by the timer 40, so that the sewage treatment is performed. It can be done efficiently and effectively.
[0024]
That is, in the aerobic operation in which the aeration and agitation device 2 is driven, the mixed slurry water 5A of the sewage 5a and the activated sludge 5b is circulated in the endless circulation channel 11 and aerated and agitated. The entire circulation channel 11 is maintained in an aerobic state, and organic substances in the sewage 5a are decomposed by aerobic bacteria, and ammonia nitrogen (NH) contained in the sewage 5a.4 +-N) is nitrate nitrogen (NOx) by nitrifying bacteria-N) to be nitrified. At this time, since the aerobic operation time is a time set according to the inflow sewage amount, the endless circulation water channel 11 is maintained in an appropriate aerobic state, and the aerobic treatment is effectively performed. Is called.
[0025]
When the time set by the timer 40 elapses, the aeration and stirring device 2 is stopped and the underwater propeller device 3 is driven to start the oxygen-free operation.
[0026]
In this oxygen-free operation, nitrate nitrogen (NOx) generated during aerobic operation-N) is reduced by denitrifying bacteria into nitrogen gas and released into the atmosphere. That is, the denitrification process by anaerobic bacteria is performed.
[0027]
At this time, since the propeller 30 rotates at a low speed in a completely submerged state, aeration (intake of air) by the underwater propeller device 3 is not performed, and the entire region of the endless circulation water channel 11 is maintained in an appropriate oxygen-free state. . Further, since the mixed slurry water 5A is circulated and flowed, the settling of the activated sludge 5b is prevented, and the sewage 9a and the activated sludge 9b are uniformly mixed. In addition, since the propeller 30 is rotated at a low speed, the sludge floc is not crushed, and the biological purification ability (specifically, the organic matter oxidation ability, nitrification ability, denitrification ability, etc.) of the activated sludge 9b is not impaired. Therefore, the anaerobic treatment is effectively performed, and the sewage 9a is treated well in combination with the aerobic treatment by the aerobic operation. The treated sewage (treated water) 9 is discharged from the outlet 13 to the drain line 15.
[0028]
By the way, in recent years, the oxidation ditch tank per pond tends to be miniaturized as the sewage treatment plant is downsized. However, in such a small oxidation ditch tank, as described at the beginning, there is nothing. It is difficult to adopt a method in which an aerobic region and an oxygen-free region coexist in the same pond in the terminal circulation channel, and sewage treatment by such a method cannot be effectively performed. However, in the first sewage treatment system S1, since the entire endless circulation channel 11 is an aerobic region and an anoxic region, the sewage treatment is effective even when the oxidation ditch tank 1 is small. Can be done automatically. The underwater propeller device that is activated in the anoxic operation time zone is operated by being submerged at a depth of 50 cm or less, so that there is no air entrainment and the tank can be easily maintained in an anoxic state. In addition, since the operation is performed at a low speed (20 to 500 rpm), and the underwater propeller device is operated so that the in-tank flow rate is 0.25 m / sec or more at which the sludge does not settle, the inflow sewage and sludge are spread over the entire area of the tank. Are mixed with stirring, and the denitrification effect can be enhanced in combination with the aforementioned effects.
[0029]
It should be noted that the present invention is not limited to the above-described embodiment, and can be appropriately improved and changed without departing from the basic principle of the present invention.
[0030]
That is, FIG. 4 shows the second embodiment. In the sewage treatment system (hereinafter referred to as “second sewage treatment system”) S2 according to the present embodiment in this embodiment, before and after the endless circulation channel 11 The vertical axis aeration and stirring devices 2 and 2 are provided at both end portions. The second sewage treatment system S2 is the second sewage treatment system S2 except that the two aeration stirrers 2 and 2 are provided and the start / stop control by the timer 40 of both aeration stirrers 2 and 2 is performed in synchronization. The sewage treatment system S1 has the same configuration, and an effective sewage treatment can be performed in the same manner as the first sewage treatment system S1. In addition, when the oxidation ditch tank 1 is small, generally one aeration stirrer 2 is sufficient as in the first sewage treatment system S1, but the oxidation ditch tank 1 is large. In some cases or when using a low-capacity aeration stirrer 2, two or three or more aeration stirrers 2 can be provided as necessary. For the same reason, a plurality of underwater propeller devices 3 can be provided as necessary.
[0031]
In the first and second sewage treatment systems S1 and S2, aeration and agitation by the timer 40 according to a time cycle pattern (unit pattern) set in advance according to the amount of inflow sewage that is empirically grasped (or predicted). Although the start / stop control of the device 2 and the underwater propeller device 3 is performed, the inflow sewage amount is detected in real time, and the start / stop and driving time (operation time) of both the devices 2 and 3 are determined based on the detected value. It is also possible to control.
[0032]
That is, FIG. 5 shows a third embodiment. In the sewage treatment system (hereinafter referred to as “third sewage treatment system”) S3 according to the present invention in this embodiment, the aeration agitator 2 and the underwater propeller are used. The start / stop and driving time of the device 3 are controlled in real time according to the amount of inflow sewage.
[0033]
In the third sewage treatment system S3, as shown in FIG. 5, the control device 4 is provided at an appropriate place in the water supply line 14 to detect the amount of sewage flowing into the endless circulation channel 11 in real time, A controller 42 for alternately starting and stopping the aeration stirrer 2 and the underwater propeller device 3 based on the detection value (inflow sewage amount) by the flow meter 41, and the start and stop control of both the devices 2 and 3 is performed in advance. It is comprised based on the correlation data of the calculated | required inflow sewage amount and operation time. That is, correlation data between the inflow sewage amount and the operation time of the aeration stirrer 2 and the underwater propeller device 3 that are optimal for this is obtained in advance, and the controller 42 compares the detected value by the flow meter 41 with the above data. Then, the operation time and interval of both devices 2 and 3 according to the detected value are found from the data, and the operation time and interval of both devices 2 and 3 are controlled in real time according to the data. Therefore, according to the third sewage treatment system S3, it is possible to control the aerobic operation and the anoxic operation in real time in response to the fluctuation of the actual inflow sewage amount, and the optimum state according to the inflow sewage amount. The sewage treatment can be performed with The third sewage treatment system S3 has the same configuration as the first sewage treatment system S1 except for the configuration of the control device 4, and performs sewage treatment that is more effective than the first sewage treatment system S1. It can be carried out.
[0034]
FIG. 6 shows a fourth embodiment. In the sewage treatment system (hereinafter referred to as “fourth sewage treatment system”) S4 according to the present invention in this embodiment, the third sewage treatment system S3 and Similarly, it is configured to control the start / stop and drive time of the aeration and agitation device 2 and the underwater propeller device 3 in real time according to the amount of inflow sewage.
[0035]
That is, in the fourth sewage treatment system S4, as shown in FIG. 5, the control device 4 is provided at an appropriate position in the water supply line 14 and detects the amount of sewage flowing into the endless circulation channel 11 in real time. And a plurality of (four in the example of FIG. 5) timers 44a and 44b that start and stop the aeration and agitation device 2 and the underwater propeller device 3 and set the operating time of the devices 2 and 3 suitable for the amount of inflow sewage. , 44c, 44d, and a controller 43 that selects and operates the timer 44a, 44b, 44c or 44d corresponding to the detected value based on the detected value by the flow meter 41.
[0036]
A fluctuation range of the inflow sewage amount is assumed in advance, and the fluctuation range is divided into a plurality of ranges (four in this example) (hereinafter referred to as “timer selection range”). Each of the timers 44a, 44b, 44c, and 44d is configured to start and stop both devices 2 and 3 in an operation cycle that is optimal for the amount of inflow sewage included in one of the four timer selection ranges. The controller 43 finds a timer selection range including the inflow sewage amount detected by the flow meter 41, selects the timer 44a, 44b, 44c or 44d corresponding to the timer selection range and activates it. It is configured.
[0037]
Accordingly, in the fourth sewage treatment system S4, the controller 43 selects a timer corresponding to the detected value (inflow sewage amount) by the flow meter 41, for example, the timer 44a, and activates the timer 44a. Both devices 2 and 3 are controlled to start and stop by the timer 44a in the same manner as the first wastewater treatment system S1. As a result, both devices 2 and 3 are operated so as to be optimal for the amount of inflow sewage detected in real time.
[0038]
【Example】
As an example, sewage treatment was performed for 2 months using the second sewage treatment system S2. Here, the inflow sewage 9a is sewage, and the ditch capacity is 1400 m.3/ 15 kW as a drive source for each aeration stirrer 2(During aerobic driving60HzDriving)3 kW as a drive source for the underwater propeller device 3(During anaerobic operation50HzDriving)The electric motor of was used. Further, the operations of the aeration and agitation devices 2 and 2 and the underwater propeller device 3 by the timer 40 were performed in a time cycle pattern based on the unit pattern shown in FIG.
[0039]
And in 4 days (A, B, C, D) selected at appropriate intervals in the two months from the start of operation, BOD (mg / L) and TN (mg / L) of influent wastewater and treated water It was measured. The results were as shown in Table 1.
[0040]
Further, as a comparative example, sewage treatment was performed under the same conditions as in the example using the fifth sewage treatment system S5 shown in FIG. The fifth sewage treatment system S5 has the same configuration as the second sewage treatment system S2, except that the underwater propeller device 3 and the control device 4 are not provided. The operation of both aeration agitators 2 and 2 was performed in the same cycle as in the example (FIG. 3). However, in the time zone in which the underwater propeller device 3 of the example was operated, the aeration and agitation devices 2 and 2 were operated at low speed (20 Hz) for oxygen-free operation. The aerobic operation was performed in the same time zone and operating conditions (60 Hz) as in the example.
[0041]
And on the same day (A, B, C, D) as an example, BOD (mg / L) and TN (mg / L) of influent wastewater and treated water were measured. The results were as shown in Table 1. In addition, since inflow sewage is the same conditions (property, inflow sewage amount) as an Example, naturally BOD and TN of inflow sewage are the same as an Example.
[0042]
As apparent from Table 1, the TN value and BOD value of treated water in the examples are lower and more stable than those of the comparative examples, and the sewage treatment according to the present invention is effective. It was confirmed that this was done.
[0043]
Further, when the power consumption during the operation period (2 months) was measured, it was reduced by about 11% in the example as compared with the comparative example in spite of being only 2 months. From this, it is understood that significant energy saving is realized according to the present invention.
[0044]
[Table 1]
Figure 0003691452
[0045]
【The invention's effect】
As can be easily understood from the above description, according to the present invention, it is possible to efficiently and effectively perform sewage treatment without causing the problems described at the beginning, thereby improving the quality of treated water. Further, the power consumption of the system can be greatly reduced, and energy saving can be achieved.
[Brief description of the drawings]
FIG. 1 is a plan view showing a first wastewater treatment system.
FIG. 2 is a longitudinal front view taken along the line II-II in FIG.
FIG. 3 is an operation pattern (unit pattern) diagram showing an on / off control example of the aeration and agitation device (and the underwater propeller device) in the first sewage treatment system.
FIG. 4 is a plan view corresponding to FIG. 1 showing a second sewage treatment system.
FIG. 5 is a plan view corresponding to FIG. 1 and showing a third sewage treatment system.
FIG. 6 is a plan view corresponding to FIG. 1 and showing a fourth sewage treatment system.
FIG. 7 is a plan view corresponding to FIG. 1 and showing a fifth sewage treatment system used as a comparative example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Oxidation ditch tank, 2 ... Aeration stirring apparatus, 3 ... Underwater propeller apparatus, 4 ... Control apparatus, 5 ... Treated water, 5A ... Mixed slurry water, 5a ... Waste water, 5b ... Activated sludge, 11 ... Endless circulation channel , 20, 21 ... aeration stirrer, 30 ... propeller, 40 ... timer, 41 ... flow meter, 42, 43 ... controller, 44a, 44b, 44c, 44d ... timer, D ... depth, S1, S2, S3 S4: Sewage treatment system.

Claims (2)

汚水と活性汚泥との混合スラリ水を循環させる無終端循環水路と、当該水路内の所定量の混合スラリ水を定速回転により循環流動させると共に曝気攪拌させる曝気攪拌装置と、前記水路内の混合スラリ水中に水没させた定速回転をするプロペラにより所定量の混合スラリ水を循環流動させる水中プロペラ装置と、曝気攪拌装置と水中プロペラ装置とを交互に発停制御する制御装置とを具備し、曝気攪拌装置により混合スラリ水の循環流動と曝気攪拌が行われる好気運転と、水中プロペラ装置により混合スラリ水の循環流動のみが行われる無酸素運転とを交互に繰り返すことにより、無終端循環水路の全域を好気状態と無酸素状態とに交互に保持する構成とした汚水処理装置において、前記水中プロペラ装置を、そのプロペラの上端が混合スラリ水の水面に対して少なくとも50cmの深さとなるように位置させると共に、前記制御装置を、無終端循環水路への流入汚水量を検出する流量計のみに基づいて、好気運転中の前記無終端循環水路内の代表的場所に於ける溶存酸素値が1−2ppmとなり且つ無酸素運転中の溶存酸素値が0−0.5ppmになるように予め求めた無終端循環水路への流入汚水量とこれに最適な曝気攪拌装置及び水中プロペラ装置の各運転時間との相関関係データから、前記曝気攪拌装置及び水中プロペラ装置の各運転時間を見出して両装置を所定の24時間を単位パターンとするタイムサイクルパターンに従って交互に発停制御する制御器から構成し、更に、前記曝気撹拌装置及び水中プロペラ装置の交互発停制御における1サイクルの各装置の運転時間を、流入汚水量が多いときには曝気攪拌装置の運転時間を2〜3時間及び水中プロペラ装置の運転時間を1〜2時間に、また、流入汚水量が少ないときには曝気攪拌装置2の運転時間を1〜2時間及び水中プロペラ装置の運転時間を3〜4時間とすると共に、無終端循環水路内の混合スラリ水を常時0.25m/sec以上の平均流動速度で循環流動させるようにしたことを特徴とする汚水処理装置。 An endless circulation channel for circulating the mixed slurry water of sewage and activated sludge, an aeration stirrer for circulating and flowing a predetermined amount of the mixed slurry water in the channel by constant speed rotation, and mixing in the channel An underwater propeller device that circulates and flows a predetermined amount of mixed slurry water by a propeller that rotates at a constant speed submerged in slurry water, and a control device that alternately controls the aeration and agitation device and the underwater propeller device. By repeating an aerobic operation in which the mixed slurry water is circulated and aerated and agitated by an aeration stirrer and an oxygen-free operation in which only the mixed slurry water is circulated by an underwater propeller device, an endless circulation channel is obtained. In the sewage treatment apparatus configured to alternately hold the entire area in an aerobic state and an anaerobic state, the upper end of the propeller has a mixing slurry at the upper end of the propeller. Together is positioned such that the depth of at least 50cm against the water surface of the water, the control device, based on only the flow meter for detecting the inflow sewage amount to endless circulation canals, Mu said in aerobic operation inflow sewage into endless circulation canals in dissolved oxygen values representative location of the terminating circulation water channel dissolved oxygen value of 1-2ppm next and anoxic operation previously determined to be 0-0.5ppm From the correlation data between the amount and the operation time of the optimum aeration stirrer and underwater propeller device, the respective operation times of the aeration stirrer and underwater propeller device are found, and both devices have a unit pattern of a predetermined 24 hours. And a controller for alternately starting and stopping according to a time cycle pattern to be performed, and further, operating time of each device in one cycle in the alternately starting and stopping control of the aeration stirrer and the underwater propeller device The operating time of 2-3 hours and water propeller device operating time of the aeration stirring device when incoming sewage quantity flow is often in 1-2 hours, also, the operating time of the aeration stirring device 2 when incoming sewage quantity flow is small 1 to 2 hours and the operation time of the underwater propeller device are set to 3 to 4 hours, and the mixed slurry water in the endless circulation channel is constantly circulated at an average flow rate of 0.25 m / sec or more. A featured sewage treatment device. 汚水と活性汚泥との混合スラリ水を循環させる無終端循環水路と、当該水路内の所定量の混合スラリ水を定速回転により循環流動させると共に曝気攪拌させる曝気攪拌装置と、前記水路内の混合スラリ水中に水没させた定速回転をするプロペラにより所定量の混合スラリ水を循環流動させる水中プロペラ装置と、曝気攪拌装置と水中プロペラ装置とを交互に発停制御する制御装置とを具備し、曝気攪拌装置により混合スラリ水の循環流動と曝気攪拌が行われる好気運転と、水中プロペラ装置により混合スラリ水の循環流動のみが行われる無酸素運転とを交互に繰り返すことにより、無終端循環水路の全域を好気状態と無酸素状態とに交互に保持する構成とした汚水処理装置において、前記水中プロペラ装置を、そのプロペラの上端が混合スラリ水の水面に対して少なくとも50cmの深さとなるように位置させると共に、前記制御装置を、無終端循環水路への流入汚水量を検出する流量計のみに基づいて、前記無終端循環水路への複数の流入汚水量の範囲毎に設けられ、当該各流入汚水量の範囲毎に好気運転中の前記無終端循環水路内の代表的場所に於ける溶存酸素値が1−2ppmとなり且つ無酸素運転中の溶存酸素値が0−0.5ppmになるように予め求めた最適な曝気撹拌装置及び水中プロペラ装置の運転時間の24時間を単位パターンとするタイムサイクルパターンを夫々設定すると共に、当該設定したタイムサイクルパターンに従って曝気撹拌装置及び水中プロペラ装置の交互発停を行うタイマーと、前記流量計の汚水流入量の検出値に基づいて流入汚水量に対応したタイムサイクルパターンに設定したタイマーを作動させる制御器とから構成し、更に前記曝気撹拌装置及び水中プロペラ装置の交互発停制御における1サイクルの各装置の運転時間を流入汚水量が多い範囲のときには曝気攪拌装置の運転時間を2〜3時間及び水中プロペラ装置の運転時間を1〜2時間に、また、流入汚水量が少ない範囲のときには曝気攪拌装置の運転時間を1〜2時間及び水中プロペラ装置の運転時間を3〜4時間とすると共に、無終端循環水路内の混合スラリ水を常時0.25m/sec以上の平均流動速度で循環流動させるようにしたことを特徴とする汚水処理装置。 An endless circulation channel for circulating the mixed slurry water of sewage and activated sludge, an aeration stirrer for circulating and flowing a predetermined amount of the mixed slurry water in the channel by constant speed rotation, and mixing in the channel An underwater propeller device that circulates and flows a predetermined amount of mixed slurry water by a propeller that rotates at a constant speed submerged in slurry water, and a control device that alternately controls the aeration and agitation device and the underwater propeller device. By repeating an aerobic operation in which the mixed slurry water is circulated and aerated and agitated by an aeration stirrer and an oxygen-free operation in which only the mixed slurry water is circulated by an underwater propeller device, an endless circulation channel is obtained. In the sewage treatment apparatus configured to alternately hold the entire area in an aerobic state and an anaerobic state, the upper end of the propeller has a mixing slurry at the upper end of the propeller. Together is positioned such that the depth of at least 50cm against the water surface of the water, the control device, based on only the flow meter for detecting the inflow sewage amount to endless circulation canals, said the endless circulation canals It provided for each range of a plurality of inflow sewage amount, in dissolved oxygen values representative location of the endless circulation canals during aerobic operation for each range of each of the inflow sewage amount 1-2ppm next and Mu A time cycle pattern having a unit pattern of 24 hours of the operation time of the optimum aeration and stirring device and the underwater propeller device determined in advance so that the dissolved oxygen value during oxygen operation is 0 to 0.5 ppm is set. a timer for performing the alternate start-stop of aeration stirrer and water propeller device according to the time cycle pattern set, corresponding to the incoming wastewater volume flow based on the detected value of the dirty water inflow of the flow meter It consists of a controller for operating the timer set to Im cycle pattern, when more of the incoming sewage amount is large range flow the operating time of the apparatus 1 cycle in alternating start-stop control of the aeration stirrer and water propeller device the operating time of the operating time of the aerating stirrer for 2-3 hours and water propeller device 1-2 hours, also 1-2 hours operating time of the aeration stirring device when the range incoming sewage quantity flow is small and the water propeller The sewage treatment apparatus is characterized in that the operation time of the apparatus is 3 to 4 hours, and the mixed slurry water in the endless circulation channel is circulated and flowed at an average flow rate of 0.25 m / sec or more.
JP2002126602A 2002-04-26 2002-04-26 Sewage treatment equipment Expired - Lifetime JP3691452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002126602A JP3691452B2 (en) 2002-04-26 2002-04-26 Sewage treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002126602A JP3691452B2 (en) 2002-04-26 2002-04-26 Sewage treatment equipment

Publications (2)

Publication Number Publication Date
JP2003320391A JP2003320391A (en) 2003-11-11
JP3691452B2 true JP3691452B2 (en) 2005-09-07

Family

ID=29540963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002126602A Expired - Lifetime JP3691452B2 (en) 2002-04-26 2002-04-26 Sewage treatment equipment

Country Status (1)

Country Link
JP (1) JP3691452B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4837266B2 (en) * 2004-08-02 2011-12-14 住友重機械エンバイロメント株式会社 Operation method of oxidation ditch
JP4837267B2 (en) * 2004-08-02 2011-12-14 住友重機械エンバイロメント株式会社 Oxidation ditch operation control method and oxidation ditch operation control apparatus
JP2006289277A (en) * 2005-04-12 2006-10-26 Tsukishima Kikai Co Ltd Nitrate forming nitrification/denitrification method, method for nitrifying/denitrifying ammonia nitrogen-containing liquid and nitrate forming nitrification/denitrification equipment
JP4968876B2 (en) * 2005-09-28 2012-07-04 月島機械株式会社 Treatment method and treatment equipment for treated water
JP7190397B2 (en) * 2019-06-21 2022-12-15 株式会社Nttファシリティーズ sewage treatment equipment
CN114307819A (en) * 2022-03-04 2022-04-12 山东永创材料科技有限公司 Effluent treatment plant is used in resin production and processing

Also Published As

Publication number Publication date
JP2003320391A (en) 2003-11-11

Similar Documents

Publication Publication Date Title
US5266200A (en) Sequence continuous reaction in complete mix activated sludge systems
US9181107B2 (en) Dissolved air flotation and equalization reactor wastewater treatment tank
JP3771870B2 (en) Sewage treatment system by oxidation ditch method
KR20170101664A (en) Advanced treatment Apparatus effectively removes the nutrients in sewage/waste water
JP3691452B2 (en) Sewage treatment equipment
KR100527172B1 (en) A method and apparatus for nitrogenous waste water of nitrogen and sewage
CN1137058C (en) Biological treating appts. for tannery waste water and for reduction of its sludge
CN201777962U (en) Oxidation ditch system for processing sewage
JP2004321908A (en) Sewage treatment apparatus and sewage treatment method
RU2114794C1 (en) Method and plant for biological treatment of waste waters
CN110526397B (en) (AO) 2 Integrated multistage sedimentation circulating reactor
JP3621026B2 (en) Sewage treatment apparatus and treatment method
JP2946589B2 (en) Sewage treatment method and apparatus
CN201240970Y (en) Integrated circulation biological reaction waste water treating device
JPH09253687A (en) Anaerobic and aerobic treatment apparatus for waste water
JPH0615288A (en) Sewage treatment apparatus and method therefor
JP2587726B2 (en) Sewage treatment method
JP3430749B2 (en) Sludge accumulation prevention method in oxidation ditch method
JP2668467B2 (en) Sewage treatment method
JPH01293192A (en) Method of operating aeration device
JP3408699B2 (en) Sewage treatment equipment using immersion type membrane separation equipment
JPH04193399A (en) Operating method of aeration stirrer of single tank type anaerobic and aerobic activated sludge method
JPH0738992B2 (en) Oxidation ditch
JP2002320994A (en) Method for operating oxidation ditch
JP3634403B2 (en) Denitrification and dephosphorization methods in oxidation ditch

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040628

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040913

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050406

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3691452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term