JP3691027B2 - How to treat geothermal water - Google Patents

How to treat geothermal water Download PDF

Info

Publication number
JP3691027B2
JP3691027B2 JP2002130768A JP2002130768A JP3691027B2 JP 3691027 B2 JP3691027 B2 JP 3691027B2 JP 2002130768 A JP2002130768 A JP 2002130768A JP 2002130768 A JP2002130768 A JP 2002130768A JP 3691027 B2 JP3691027 B2 JP 3691027B2
Authority
JP
Japan
Prior art keywords
geothermal water
arsenic
adsorbent
treatment
treating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002130768A
Other languages
Japanese (ja)
Other versions
JP2003320370A (en
Inventor
秀彦 岡田
敦 中平
晋 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2002130768A priority Critical patent/JP3691027B2/en
Publication of JP2003320370A publication Critical patent/JP2003320370A/en
Application granted granted Critical
Publication of JP3691027B2 publication Critical patent/JP3691027B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Description

【0001】
【発明の属する技術分野】
本発明は、地下から取出される高温の地熱水(地下熱水)に含有されるシリカ及びヒ素を除去する地熱水の処理方法に関する。
【0002】
【従来の技術】
近年、所謂地熱発電等で地熱水の利用技術が注目されてきている。地熱水は、シリカ(酸化珪素:SiO2 )を含有することから、地熱発電システム等において、長年使用するとパイプ等にシリカが堆積してきて支障を生じることがある。
特に、地熱水を還元井から再び地下に戻すシステムでは、このシリカが堆積すると、還元井を掘り直さなければならないことになって、この費用は膨大なことから、シリカを取り除くことは重要な課題となっている。
また、地熱水は、ヒ素等の有害物質を含有することから、廃水処理や廃水を有効利用する際に、これらの有害物質を除去する必要もある。
一般に、地熱水において、ヒ素は、亜砒酸として存在する3価のヒ素や砒酸として存在する5価のヒ素として溶解している。
【0003】
従来、上記のシリカを地熱水から除去するには、生石灰を混ぜ沈殿させる方法がある。この際にヒ素も吸着し、沈殿させることができる。
また、シリカを吸着しやすい高分子凝集剤を使って集め、除去する方法も知られている。
【0004】
【発明が解決しようとする課題】
ところで、上記の従来の地熱水の処理方法では、地熱水は、100℃以上の高温状態で流通することが多く、生石灰及び高分子凝集剤ともに高温では用いにくいとともに、生石灰及び高分子凝集剤ともに水に大量に混ぜる必要があるため、取扱が煩雑になっていて、シリカ及びヒ素の除去効率に劣るという問題があった。更に、高分子凝集剤の場合、価格が高価であり、シリカ及びヒ素の除去コストが高くなってしまうという問題もある。
本発明は、この問題点に鑑みてなされたもので、地熱水が高温状態でも地熱水からシリカ及びヒ素を容易に除去できるようにするとともに、除去コストも抑制できるようにしてシリカ及びヒ素の除去効率の向上を図った地熱水の処理方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
このような課題を解決するための本発明の地熱水の処理方法は、地下から取出されシリカ及びヒ素を含む地熱水からシリカ及びヒ素を除去する地熱水の処理方法において、上記地熱水をハイドロキシアパタイトを含む吸着材に接触させて該地熱水中のシリカ及びヒ素を吸着処理する構成としている。
一般に、地熱水において、ヒ素は、亜砒酸として存在する3価のヒ素や砒酸として存在する5価のヒ素として溶解しており、これらのヒ素が吸着される。
この場合、上記ハイドロキシアパタイト(あるいは水酸アパタイトともいう)は、無機成分で、その構造式が、Ca10(PO46 (OH)2 であるものが有効である。
ハイドロキシアパタイトとしては、合成ハイドロキシアパタイト等があり、高分子凝集剤に比較して安価であり、高温にも容易に対応できる。
【0006】
これにより、ハイドロキシアパタイトを含んだ吸着材に地熱水が接触すると、シリカ及びヒ素が効率よく吸着される。即ち、ハイドロキシアパタイトの構造中の(PO43-基には、(SiO44-あるいは(AsO43-がイオン交換によって交換可能であり、このイオン交換によりシリカ及びヒ素が吸着されていく。
更に、Siを構造中に一部固溶したハイドロキシアパタイトは、Asのイオンとの交換能が向上し、より一層Asの除去に有利になる。
【0007】
そして、必要に応じ、上記吸着材を、ハイドロキシアパタイトを90質量%以上含む粉状,粒状または塊状の多孔質体で構成している。
多孔質体の作り方としては、成形体を焼成する方法や高分子(天然,合成)などを練りこんで焼成する方法などがある。
これにより、吸着材は多孔質体なので、地熱水との接触効率が良く、そのため、より一層シリカ及びヒ素の吸着効率が向上させられる。
【0008】
また、必要に応じ、上記地熱水を吸着材に接触させる際、温度が100℃〜300℃の水熱条件下で行なう構成としている。
このような高温の条件では、ハイドロキシアパタイト構造中の(PO43-基に対する(SiO44-あるいは(AsO43-のイオン交換による交換能が向上し、また、水熱条件でSiを固溶させると、よりAsの除去に有利に働き、より一層シリカ及びヒ素の吸着効率が向上させられる。
【0009】
更に、必要に応じ、上記地熱水を吸着材に接触させる際、圧力が0.2〜30MPaの条件下で行なう構成としている。これによっても、ハイドロキシアパタイト構造中の(PO43-基に対する(SiO44-あるいは(AsO43-のイオン交換による交換能が向上し、また、Siの固溶がAsの除去に有利に働き、より一層シリカ及びヒ素の吸着効率が向上させられる。
【0010】
そして、必要に応じ、上記地熱水が流れるパイプの経路上に、上記吸着材を収容したカラムを設け、該カラムに地熱水を通過させて吸着処理する構成としている。地熱水の流通ライン上で高温,高圧で吸着処理できるので、それだけ、処理効率が向上させられる。
また、必要に応じ、上記地熱水を容器に溜め、該容器に上記吸着材を投入して吸着処理する構成としている。大量に処理でき、それだけ、処理効率が向上させられる。
【0011】
更に、必要に応じ、使用後の吸着材からヒ素を回収する構成としている。この場合、上記吸着材を酸で溶解し、ヒ素を濃縮して分離することが有効である。有害物質を取り出すので、吸着材の処理が容易になる。
【0012】
また、上記吸着処理後の地熱水から、更にヒ素を除去するための二次処理を行なう構成としている。二次処理を行なうので、より一層ヒ素が除去され、地熱水を無害化することができる。
この場合、上記二次処理は、水酸化鉄共沈手段,磁気分離手段,沈殿処理手段,膜フィルターによる濾過手段,砂濾過による濾過手段の1もしくは2以上の手段を用いて行なうことが有効である。
【0013】
ここで、水酸化鉄共沈手段とは、地熱水に第2鉄イオンを添加し中和して水酸化鉄を生成し、それにヒ素を共沈させ、この水酸化鉄を砂濾過等で除去する方法である。
また、磁気分離手段とは、例えば上記の水酸化鉄共沈手段等によりヒ素を磁性沈殿物とし、磁選機を用いて磁気分離する。これにより、磁性沈殿物が吸着除去されて行く。磁性沈殿物を取り除くことで、ヒ素濃度の極めて低い地熱水が流出してくる。
【0014】
【発明の実施の形態】
以下、添付図面に基づいて本発明の実施の形態に係る地熱水の処理方法について説明する。
実施の形態に係る地熱水の処理方法は、例えば、地熱発電システムで用いられる。地熱発電システムでは、生産井から発生する蒸気と地熱水を蒸気分離器で分離し、分離した蒸気をタービンに導入して発電機を駆動する。一方、分離された地熱水は、還元井から地下に戻す。地熱水は、地下から取出されシリカ及びヒ素を含む。
【0015】
そして、実施の形態に係る地熱水の処理方法は、地熱水を還元井に戻す手前で実施され、地熱水からシリカ及びヒ素を除去する。
図1には、この地熱水の処理方法を実現するための、装置を示している。これは、地熱水が流れるパイプの経路上に、吸着材Kを収容したカラム1を設け、このカラム1に地熱水を通過させて吸着処理するものである。
カラム1には、地熱水に接触して地熱水中のシリカ及びヒ素を吸着処理するハイドロキシアパタイトを含む吸着材Kが収容されている。
【0016】
吸着材Kのハイドロキシアパタイトは、その構造式が、Ca10(PO46 (OH)2 である。また、吸着材Kは、ハイドロキシアパタイトを90質量%以上含む粉状,粒状または塊状(数mmから数cm)の多孔質体で構成されている。更に、地熱水を吸着材Kに接触させる際、温度が100℃〜300℃、圧力が0.2〜30MPaの水熱条件下で行なわれる。
【0017】
従って、地熱水がカラム1を通過すると、地熱水が吸着材Kに接触し、この過程で、シリカ及びヒ素が効率よく吸着される。この際、ハイドロキシアパタイトの構造中の(PO43-基には、(SiO44-あるいは(AsO43-がイオン交換によって交換可能であり、このイオン交換によりシリカ及びヒ素が吸着されていく。更に、Siを構造中に一部固溶したハイドロキシアパタイトは、Asのイオンとの交換能が向上し、より一層Asの除去に有利になる。
【0018】
この場合、吸着材Kは多孔質体なので、地熱水との接触効率が良く、そのため、より一層シリカ及びヒ素の吸着効率が向上させられる。
また、高温,高圧の条件なので、ハイドロキシアパタイト構造中の(PO43-基に対する(SiO44-あるいは(AsO43-のイオン交換による交換能が向上し、また、水熱条件でSiを固溶させると、よりAsの除去に有利に働き、より一層シリカ及びヒ素の吸着効率が向上させられる。
【0019】
また、地熱水を還元井に戻す手前においては、上記の吸着処理後の地熱水から、更にヒ素を除去するための二次処理が行なわれる。この二次処理は、水酸化鉄共沈手段を用いて行なわれる。水酸化鉄共沈手段では、地熱水に第2鉄イオンを添加し中和して水酸化鉄を生成し、それにヒ素を共沈させ、この水酸化鉄を膜フィルターによる濾過手段等で除去する。二次処理を行なうので、より一層ヒ素が除去され、地熱水を無害化することができる。
これにより、地熱水は、シリカが析出する濃度以下まで除去されてから地下に還元されるので、パイプ等にシリカが堆積する事態が抑止され、そのため、シリカに起因して還元井を掘り直す等の無駄がなくなる。
【0020】
更に、この地熱発電システムでは、必要に応じ、使用後の吸着材からヒ素を回収する。この場合、例えば、吸着材を酸で溶解し、周知の手段でヒ素を濃縮して分離する。有害物質を取り出すので、吸着材の処理が容易になる。
【0021】
尚、上記実施の形態において、カラム1に地熱水を通過させて吸着処理したが、必ずしもこれに限定されるものではなく、ハイドロキシアパタイトの多孔質体を網状の容器に入れて、それを高温・高圧の容器に投入して吸着処理しても良く、適宜変更して差支えない。
また、吸着処理後の地熱水から、更にヒ素を除去するための二次処理において、水酸化鉄共沈手段のみならず、磁気分離手段,沈殿処理手段,膜フィルターによる濾過手段,砂濾過による濾過手段等、他の手段を用いて良いことは勿論である。
【0022】
【実験例】
次に、本発明の実験例について説明する。
(実験例1〜実験例3)
図2に示すように、地熱水として、図2の表図にある成分のものを採取し、これをステンレスの容器に500mg入れ、各種吸着材を投入し、150℃に保ち約90時間放置した。比較のために脱イオン水の成分も挙げた。
【0023】
吸着材は、以下のようなものを用いた。
実験例1:牛の骨を原材料とするハイドロキシアパタイト(500mg)
実験例2:合成ハイドロキシアパタイト(500mg)
実験例3:SiO2 の入った合成ハイドロキシアパタイト(500mg)
【0024】
上記条件で放置後の地熱水の成分を分析した。結果を図2に示す。
例えば牛の骨から作ったハイドロキシアパタイトではシリカを308ppmから14.5ppmに、ヒ素を3.65ppmから0.48ppmにすることが出来た。
この結果から、ヒ素は、アパタイト構造の(PO43-サイトにイオン交換可能であり吸着材として利用できることが示された。またSiO2 を含むハイドロキシアパタイトではさらにヒ素の交換能が高くなっていることから、(PO4) 3- サイトに(SiO44-が置換することで電荷の中性を保つため、アパタイト構造中に構造欠陥を生じ、それによりさらにヒ素の交換能が向上可能である。
【0025】
(実験例4〜実験例5)
図2に示すように、地熱水として、図2の表図にある成分のものを採取し、これをガラス製のビーカーに100cc入れ、各種吸着材を投入し、150℃に保ち約90時間放置した。比較のために脱イオン水の成分も挙げた。
【0026】
吸着材は、以下のようなものを用いた。
実験例4:合成ハイドロキシアパタイト(500mg)
実験例5:SiO2 の入った合成ハイドロキシアパタイト(500mg)
【0027】
上記条件で放置後の地熱水の成分を分析した。結果を図2に示す。
この結果から、上記と同様のことが言える。
【0028】
【発明の効果】
以上説明したように、本発明の地熱水の処理方法によれば、地熱水をハイドロキシアパタイトを含む吸着材に接触させて地熱水中のシリカ及びヒ素を吸着処理するので、地熱水が高温状態でも地熱水からシリカ及びヒ素を容易に除去できるようになるとともに、除去コストも抑制できるようになり、そのため、シリカ及びヒ素の除去効率を大幅に向上させることができる。
この場合、ハイドロキシアパタイトの構造式が、Ca10(PO46 (OH)2 である場合には、ハイドロキシアパタイトの構造中の(PO43-基には、(SiO44-あるいは(AsO43-がイオン交換によって交換可能になるとともに、Siを構造中に一部固溶したハイドロキシアパタイトは、Asのイオンとの交換能を向上させることができ、より一層Asの除去を有利にすることができる。
【0029】
また、吸着材を、ハイドロキシアパタイトを90質量%以上含む粉状,粒状または塊状の多孔質体で構成した場合には、地熱水との接触効率を良くして、より一層シリカ及びヒ素の吸着効率を向上させることができる。
更に、地熱水を吸着材に接触させる際、温度が100℃〜300℃の水熱条件下で行なう構成とした場合、及び/または圧力が0.2〜30MPaの条件下で行なう構成とした場合は、ハイドロキシアパタイト構造中の(PO43-基に対する(SiO44-あるいは(AsO43-のイオン交換による交換能を向上させることができ、また、Siの固溶をAsの除去に有利に働かせることができ、より一層シリカ及びヒ素の吸着効率を向上させることができる。
【0030】
そして、地熱水が流れるパイプの経路上に、吸着材を収容したカラムを設け、カラムに地熱水を通過させて吸着処理する構成とした場合には、地熱水の流通ライン上で高温,高圧で吸着処理できるので、それだけ、処理効率を向上させることができる。
また、地熱水を容器に溜め、容器に吸着材を投入して吸着処理する構成とした場合には、大量に処理でき、それだけ、処理効率を向上させることができる。
【0031】
更に、使用後の吸着材からヒ素を回収する構成とした場合には、有害物質を取り出すので、吸着材の処理を容易にすることができる。
この際、吸着材を酸で溶解し、ヒ素を濃縮して分離する場合には、周知の手段で容易に行なうことができる。
また、吸着処理後の地熱水から、更にヒ素を除去するための二次処理を行なう構成とした場合には、二次処理を行なうので、より一層ヒ素を除去することができ、地熱水を無害化することができる。
この場合、上記二次処理は、水酸化鉄共沈手段,磁気分離手段,沈殿処理手段,膜フィルターによる濾過手段,砂濾過による濾過手段の1もしくは2以上の手段を用いて行なえば、確実に二次処理できる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る地熱水の処理方法を実現するための装置の一例を示す図である。
【図2】本発明の実験例の結果を示す表図である。
【符号の説明】
K 吸着材
1 カラム
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating geothermal water that removes silica and arsenic contained in high-temperature geothermal water (ground hot water) taken out from underground.
[0002]
[Prior art]
In recent years, the use of geothermal water has attracted attention in so-called geothermal power generation and the like. Since geothermal water contains silica (silicon oxide: SiO 2 ), when used for many years in a geothermal power generation system or the like, silica may accumulate on pipes or the like, causing trouble.
In particular, in a system that returns geothermal water from the reduction well back to the ground, once this silica is deposited, the reduction well must be re-digged, and this cost is enormous, so it is important to remove the silica. It has become a challenge.
In addition, since geothermal water contains harmful substances such as arsenic, it is necessary to remove these harmful substances when wastewater treatment or wastewater is used effectively.
Generally, in geothermal water, arsenic is dissolved as trivalent arsenic existing as arsenous acid or pentavalent arsenic existing as arsenic acid.
[0003]
Conventionally, in order to remove the silica from geothermal water, there is a method in which quick lime is mixed and precipitated. At this time, arsenic can also be adsorbed and precipitated.
A method of collecting and removing silica using a polymer flocculant that easily adsorbs silica is also known.
[0004]
[Problems to be solved by the invention]
By the way, in the above conventional geothermal water treatment methods, geothermal water often circulates in a high temperature state of 100 ° C. or higher, and both quick lime and polymer flocculant are difficult to use at high temperatures, and quick lime and polymer agglomeration. Since it is necessary to mix a large amount of the agent with water, there is a problem that handling is complicated and the removal efficiency of silica and arsenic is inferior. Furthermore, in the case of a polymer flocculant, there is a problem that the price is expensive and the removal cost of silica and arsenic is increased.
The present invention has been made in view of this problem, and enables silica and arsenic to be easily removed from geothermal water even when the geothermal water is in a high temperature state, and the removal cost can be suppressed. It aims at providing the processing method of the geothermal water which aimed at the improvement of the removal efficiency of water.
[0005]
[Means for Solving the Problems]
The geothermal water treatment method of the present invention for solving such problems is a geothermal water treatment method for removing silica and arsenic from geothermal water taken out underground and containing silica and arsenic. It is configured such that silica and arsenic in the geothermal water are adsorbed by contacting water with an adsorbent containing hydroxyapatite.
Generally, in geothermal water, arsenic is dissolved as trivalent arsenic existing as arsenous acid or pentavalent arsenic existing as arsenic acid, and these arsenic is adsorbed.
In this case, it is effective that the hydroxyapatite (also referred to as hydroxyapatite) is an inorganic component whose structural formula is Ca 10 (PO 4 ) 6 (OH) 2 .
Examples of hydroxyapatite include synthetic hydroxyapatite, which is less expensive than a polymer flocculant and can easily cope with high temperatures.
[0006]
Thereby, when geothermal water contacts the adsorbent containing hydroxyapatite, silica and arsenic are efficiently adsorbed. That is, (SiO 4 ) 4- or (AsO 4 ) 3- can be exchanged by ion exchange in the (PO 4 ) 3- group in the hydroxyapatite structure, and silica and arsenic are adsorbed by this ion exchange. To go.
Furthermore, hydroxyapatite in which Si is partly dissolved in the structure has an improved exchange capacity with As ions, and is more advantageous for removing As.
[0007]
And the said adsorbent is comprised with the powdery, granular or lump-shaped porous body which contains 90 mass% or more of hydroxyapatite as needed.
As a method for producing a porous body, there are a method of firing a molded body, a method of kneading a polymer (natural, synthetic) and the like and firing.
Thereby, since the adsorbent is a porous body, the contact efficiency with geothermal water is good, and therefore the adsorption efficiency of silica and arsenic is further improved.
[0008]
Moreover, when making the said geothermal water contact an adsorbent as needed, it is set as the structure performed on the hydrothermal conditions whose temperature is 100 to 300 degreeC.
Under such high-temperature conditions, the exchange capacity of (SiO 4 ) 4- or (AsO 4 ) 3- for (PO 4 ) 3- groups in the hydroxyapatite structure is improved, and under hydrothermal conditions. When Si is dissolved, it is more advantageous in removing As, and the adsorption efficiency of silica and arsenic is further improved.
[0009]
Furthermore, when making the said geothermal water contact an adsorbent as needed, it is set as the structure performed on the conditions whose pressure is 0.2-30 Mpa. This also improves the exchange capacity by ion exchange of (SiO 4 ) 4- or (AsO 4 ) 3- for the (PO 4 ) 3- group in the hydroxyapatite structure, and the solid solution of Si removes As. And the adsorption efficiency of silica and arsenic is further improved.
[0010]
If necessary, a column containing the adsorbent is provided on the pipe path through which the geothermal water flows, and the geothermal water is passed through the column for adsorption treatment. Since adsorption treatment can be performed at high temperature and high pressure on the geothermal water distribution line, the treatment efficiency can be improved accordingly.
Further, if necessary, the geothermal water is stored in a container, and the adsorbent is put into the container for adsorption treatment. A large amount can be processed, and the processing efficiency is improved accordingly.
[0011]
Furthermore, it is set as the structure which collect | recovers arsenic from the used adsorbent as needed. In this case, it is effective to dissolve the adsorbent with an acid and concentrate and separate arsenic. Since harmful substances are extracted, the adsorbent can be easily treated.
[0012]
Moreover, it is set as the structure which performs the secondary process for further removing arsenic from the geothermal water after the said adsorption process. Since the secondary treatment is performed, arsenic is further removed and the geothermal water can be rendered harmless.
In this case, it is effective to perform the secondary treatment using one or more means of iron hydroxide coprecipitation means, magnetic separation means, precipitation treatment means, filtration means using a membrane filter, and filtration means using sand filtration. is there.
[0013]
Here, iron hydroxide coprecipitation means means adding ferric ions to geothermal water to neutralize to produce iron hydroxide, co-precipitating arsenic into it, and removing the iron hydroxide by sand filtration or the like. It is a method of removing.
The magnetic separation means is, for example, magnetic separation using arsenic as a magnetic precipitate by the iron hydroxide coprecipitation means described above. As a result, the magnetic precipitate is adsorbed and removed. By removing the magnetic deposit, geothermal water with a very low arsenic concentration flows out.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a method for treating geothermal water according to an embodiment of the present invention will be described with reference to the accompanying drawings.
The geothermal water treatment method according to the embodiment is used in, for example, a geothermal power generation system. In a geothermal power generation system, steam generated from a production well and geothermal water are separated by a steam separator, and the separated steam is introduced into a turbine to drive a generator. On the other hand, the separated geothermal water is returned to the underground from the reduction well. Geothermal water is extracted from underground and contains silica and arsenic.
[0015]
And the processing method of the geothermal water which concerns on embodiment is implemented before returning geothermal water to a reduction well, and removes a silica and arsenic from geothermal water.
In FIG. 1, the apparatus for implement | achieving this processing method of geothermal water is shown. In this method, a column 1 containing an adsorbent K is provided on a pipe path through which geothermal water flows, and the geothermal water is passed through the column 1 for adsorption treatment.
The column 1 accommodates an adsorbent K containing hydroxyapatite that comes into contact with geothermal water and adsorbs silica and arsenic in the geothermal water.
[0016]
The structural formula of the hydroxyapatite of the adsorbent K is Ca 10 (PO 4 ) 6 (OH) 2 . Further, the adsorbent K is composed of a powdery, granular, or massive (several mm to several cm) porous body containing 90% by mass or more of hydroxyapatite. Further, when the geothermal water is brought into contact with the adsorbent K, it is performed under hydrothermal conditions of a temperature of 100 ° C. to 300 ° C. and a pressure of 0.2 to 30 MPa.
[0017]
Accordingly, when the geothermal water passes through the column 1, the geothermal water comes into contact with the adsorbent K, and silica and arsenic are efficiently adsorbed in this process. At this time, (SiO 4 ) 4− or (AsO 4 ) 3− can be exchanged by ion exchange to (PO 4 ) 3− group in the hydroxyapatite structure, and silica and arsenic are adsorbed by this ion exchange. It will be done. Furthermore, hydroxyapatite in which Si is partly dissolved in the structure has an improved exchange capacity with As ions, and is more advantageous for removing As.
[0018]
In this case, since the adsorbent K is a porous body, the contact efficiency with geothermal water is good, and therefore the adsorption efficiency of silica and arsenic is further improved.
In addition, because of the high temperature and high pressure conditions, the exchange capacity by ion exchange of (SiO 4 ) 4- or (AsO 4 ) 3- for (PO 4 ) 3- groups in the hydroxyapatite structure is improved, and hydrothermal conditions If Si is dissolved in the solution, it is more advantageous for removing As, and the adsorption efficiency of silica and arsenic is further improved.
[0019]
In addition, before the geothermal water is returned to the reduction well, a secondary treatment for further removing arsenic is performed from the geothermal water after the adsorption treatment. This secondary treatment is performed using iron hydroxide coprecipitation means. In the iron hydroxide coprecipitation means, ferric ions are added to the geothermal water to neutralize it to produce iron hydroxide, and arsenic is coprecipitated, and this iron hydroxide is removed by means of filtration using a membrane filter. To do. Since the secondary treatment is performed, arsenic is further removed and the geothermal water can be rendered harmless.
As a result, since the geothermal water is reduced to the underground after being removed to a concentration below which silica is deposited, the situation where silica is deposited on pipes and the like is suppressed, so that the reduction well is dug due to the silica. Eliminate waste.
[0020]
Furthermore, in this geothermal power generation system, arsenic is recovered from the adsorbent after use as necessary. In this case, for example, the adsorbent is dissolved with an acid, and arsenic is concentrated and separated by a known means. Since harmful substances are extracted, the adsorbent can be easily treated.
[0021]
In the above embodiment, geothermal water was passed through the column 1 for adsorption treatment. However, the present invention is not necessarily limited to this, and a porous body of hydroxyapatite is placed in a net-like container and heated at a high temperature. -It may be put into a high-pressure vessel and adsorbed, or it can be changed appropriately.
Moreover, in the secondary treatment for further removing arsenic from the geothermal water after adsorption treatment, not only iron hydroxide coprecipitation means, but also magnetic separation means, precipitation treatment means, filtration means by membrane filter, sand filtration Of course, other means such as filtration means may be used.
[0022]
[Experimental example]
Next, experimental examples of the present invention will be described.
(Experimental Example 1 to Experimental Example 3)
As shown in FIG. 2, as the geothermal water, the components shown in the table of FIG. 2 are collected, 500 mg of this is put into a stainless steel container, various adsorbents are charged, kept at 150 ° C., and left for about 90 hours. did. A component of deionized water was also included for comparison.
[0023]
The following adsorbents were used.
Experimental Example 1: Hydroxyapatite (500 mg) made from bovine bone
Experimental Example 2: Synthetic hydroxyapatite (500 mg)
Experimental Example 3: Synthetic hydroxyapatite (500 mg) containing SiO 2
[0024]
The components of geothermal water after being left under the above conditions were analyzed. The results are shown in FIG.
For example, hydroxyapatite made from bovine bone was able to reduce silica from 308 ppm to 14.5 ppm and arsenic from 3.65 ppm to 0.48 ppm.
From this result, it was shown that arsenic can be ion-exchanged to the (PO 4 ) 3- site having an apatite structure and can be used as an adsorbent. Since hydroxyapatite containing SiO 2 has higher arsenic exchange capacity, (PO 4 ) 3- site is replaced with (SiO 4 ) 4- to maintain the neutrality of the charge. Structural defects are generated in the arsenic, thereby further improving the ability to exchange arsenic.
[0025]
(Experimental Example 4 to Experimental Example 5)
As shown in FIG. 2, as the geothermal water, the components shown in the table of FIG. 2 are collected, and 100 cc of this is put into a glass beaker, and various adsorbents are added and kept at 150 ° C. for about 90 hours. I left it alone. A component of deionized water was also included for comparison.
[0026]
The following adsorbents were used.
Experimental Example 4: Synthetic hydroxyapatite (500 mg)
Experimental Example 5: Synthetic hydroxyapatite (500 mg) containing SiO 2
[0027]
The components of geothermal water after being left under the above conditions were analyzed. The results are shown in FIG.
From this result, the same can be said.
[0028]
【The invention's effect】
As described above, according to the geothermal water treatment method of the present invention, the geothermal water is brought into contact with the adsorbent containing hydroxyapatite to adsorb the silica and arsenic in the geothermal water. Silica and arsenic can be easily removed from geothermal water even in a state, and the removal cost can be suppressed. Therefore, the removal efficiency of silica and arsenic can be greatly improved.
In this case, when the hydroxyapatite structural formula is Ca 10 (PO 4 ) 6 (OH) 2 , the (PO 4 ) 3- group in the hydroxyapatite structure includes (SiO 4 ) 4- or (AsO 4 ) 3− can be exchanged by ion exchange, and hydroxyapatite, in which Si is partly dissolved in the structure, can improve the exchange capacity of As with ions, further removing As. Can be advantageous.
[0029]
In addition, when the adsorbent is composed of a powdery, granular or massive porous body containing hydroxyapatite in an amount of 90% by mass or more, the contact efficiency with geothermal water is improved and the adsorption of silica and arsenic is further improved. Efficiency can be improved.
Further, when the geothermal water is brought into contact with the adsorbent, the temperature is set to 100 ° C. to 300 ° C. under hydrothermal conditions and / or the pressure is set to 0.2 to 30 MPa. In this case, the exchange ability of (SiO 4 ) 4- or (AsO 4 ) 3− with respect to (PO 4 ) 3− group in the hydroxyapatite structure can be improved, and the solid solution of Si can be improved. It is possible to work favorably for the removal of silica and to further improve the adsorption efficiency of silica and arsenic.
[0030]
When a column containing the adsorbent is provided on the pipe path through which the geothermal water flows, and the geothermal water is passed through the column to perform the adsorption treatment, a high temperature is generated on the geothermal water distribution line. Since the adsorption treatment can be performed at a high pressure, the treatment efficiency can be improved accordingly.
Moreover, when it is set as the structure which accumulates geothermal water in a container and puts an adsorbent into a container and carries out adsorption processing, it can process in large quantities and can improve processing efficiency that much.
[0031]
Furthermore, when the arsenic is recovered from the adsorbent after use, since harmful substances are taken out, the adsorbent can be easily treated.
At this time, when the adsorbent is dissolved with an acid and arsenic is concentrated and separated, it can be easily performed by a known means.
Further, when the secondary treatment for removing arsenic is further performed from the geothermal water after the adsorption treatment, the secondary treatment is performed, so that arsenic can be further removed. Can be detoxified.
In this case, if the secondary treatment is carried out using one or more means of iron hydroxide coprecipitation means, magnetic separation means, precipitation treatment means, filtration means by membrane filter, and filtration means by sand filtration, it is ensured. Secondary processing is possible.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of an apparatus for realizing a geothermal water treatment method according to an embodiment of the present invention.
FIG. 2 is a table showing the results of an experimental example of the present invention.
[Explanation of symbols]
K adsorbent 1 column

Claims (11)

地下から取出されシリカ及びヒ素を含む地熱水からシリカ及びヒ素を除去する地熱水の処理方法において、
上記地熱水をハイドロキシアパタイトを含む吸着材に接触させて該地熱水中のシリカ及びヒ素を吸着処理することを特徴とする地熱水の処理方法。
In a geothermal water treatment method for removing silica and arsenic from geothermal water extracted from underground and containing silica and arsenic,
A method for treating geothermal water, comprising bringing the geothermal water into contact with an adsorbent containing hydroxyapatite to adsorb silica and arsenic in the geothermal water.
上記ハイドロキシアパタイトは、その構造式が、Ca10(PO46 (OH)2 であることを特徴とする請求項1記載の地熱水の処理方法。The hydroxyapatite, the structural formula, Ca 10 (PO 4) 6 (OH) processing method geothermal water according to claim 1, characterized in that the 2. 上記吸着材を、ハイドロキシアパタイトを90質量%以上含む粉状,粒状または塊状の多孔質体で構成したことを特徴とする請求項2記載の地熱水の処理方法。3. The method for treating geothermal water according to claim 2, wherein the adsorbent is composed of a powdery, granular or massive porous body containing 90% by mass or more of hydroxyapatite. 上記地熱水を吸着材に接触させる際、温度が100℃〜300℃の水熱条件下で行なうことを特徴とする請求項1,2または3記載の地熱水の処理方法。The method for treating geothermal water according to claim 1, 2 or 3, wherein the geothermal water is brought into contact with the adsorbent under hydrothermal conditions of a temperature of 100 ° C to 300 ° C. 上記地熱水を吸着材に接触させる際、圧力が0.2〜30MPaの条件下で行なうことを特徴とする請求項1,2,3または4記載の地熱水の処理方法。The method for treating geothermal water according to claim 1, 2, 3 or 4, wherein when the geothermal water is brought into contact with the adsorbent, the pressure is 0.2 to 30 MPa. 上記地熱水が流れるパイプの経路上に、上記吸着材を収容したカラムを設け、該カラムに地熱水を通過させて吸着処理することを特徴とする請求項1,2,3,4または5記載の地熱水の処理方法。A column containing the adsorbent is provided on a path of a pipe through which the geothermal water flows, and the geothermal water is passed through the column for adsorption treatment. 5. The method for treating geothermal water according to 5. 上記地熱水を容器に溜め、該容器に上記吸着材を投入して吸着処理することを特徴とする請求項1,2,3,4または5記載の地熱水の処理方法。6. The method for treating geothermal water according to claim 1, wherein the geothermal water is stored in a container, and the adsorbent is put into the container for adsorption treatment. 使用後の吸着材からヒ素を回収することを特徴とする請求項1,2,3,4,5,6または7記載の地熱水の処理方法。The method for treating geothermal water according to claim 1, 2, 3, 4, 5, 6 or 7, wherein arsenic is recovered from the adsorbent after use. 上記吸着材を酸で溶解し、ヒ素を濃縮して分離することを特徴とする請求項8記載の地熱水の処理方法。The method for treating geothermal water according to claim 8, wherein the adsorbent is dissolved with an acid, and arsenic is concentrated and separated. 上記吸着処理後の地熱水から、更にヒ素を除去するための二次処理を行なうことを特徴とする請求項1,2,3,4,5,6,7,8または9記載の地熱水の処理方法。The geothermal heat according to claim 1, 2, 3, 4, 5, 6, 7, 8 or 9, wherein a secondary treatment for further removing arsenic is performed from the geothermal water after the adsorption treatment. Water treatment method. 上記二次処理は、水酸化鉄共沈手段,磁気分離手段,沈殿処理手段,膜フィルターによる濾過手段,砂濾過による濾過手段の1もしくは2以上の手段を用いて行なうことを特徴とする請求項10記載の地熱水の処理方法。The secondary treatment is performed using one or more means of iron hydroxide coprecipitation means, magnetic separation means, precipitation treatment means, filtration means using a membrane filter, and filtration means using sand filtration. The method for treating geothermal water according to 10.
JP2002130768A 2002-05-02 2002-05-02 How to treat geothermal water Expired - Lifetime JP3691027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002130768A JP3691027B2 (en) 2002-05-02 2002-05-02 How to treat geothermal water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002130768A JP3691027B2 (en) 2002-05-02 2002-05-02 How to treat geothermal water

Publications (2)

Publication Number Publication Date
JP2003320370A JP2003320370A (en) 2003-11-11
JP3691027B2 true JP3691027B2 (en) 2005-08-31

Family

ID=29543701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002130768A Expired - Lifetime JP3691027B2 (en) 2002-05-02 2002-05-02 How to treat geothermal water

Country Status (1)

Country Link
JP (1) JP3691027B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10773970B2 (en) 2009-04-24 2020-09-15 Terralithium Llc Preparation of lithium carbonate from lithium chloride containing brines
US10829676B2 (en) 2009-04-24 2020-11-10 Terralithium Llc Treated geothermal brine compositions with reduced concentration of silica, iron and lithium
US10935006B2 (en) 2009-06-24 2021-03-02 Terralithium Llc Process for producing geothermal power, selective removal of silica and iron from brines, and improved injectivity of treated brines
US11174532B1 (en) 2018-03-09 2021-11-16 Terralithium Llc Processes for producing lithium compounds using reverse osmosis
US11235282B2 (en) 2018-03-09 2022-02-01 Terralithium Llc Processes for producing lithium compounds using forward osmosis

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005349349A (en) * 2004-06-14 2005-12-22 Kankyo Soken Kk Material for disposing of heavy metal
US8377165B2 (en) * 2011-01-28 2013-02-19 Shale And Sands Oil Recovery Llc Recovery of elements from hydrothermal products
JP7167419B2 (en) * 2017-08-04 2022-11-09 株式会社大林組 Method for rendering arsenic-containing mud water harmless

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10773970B2 (en) 2009-04-24 2020-09-15 Terralithium Llc Preparation of lithium carbonate from lithium chloride containing brines
US10829676B2 (en) 2009-04-24 2020-11-10 Terralithium Llc Treated geothermal brine compositions with reduced concentration of silica, iron and lithium
US11466191B2 (en) 2009-04-24 2022-10-11 Terralithium Llc Treated geothermal brine compositions with reduced concentration of silica, iron and lithium
US11649170B2 (en) 2009-04-24 2023-05-16 Terralithium Llc Preparation of lithium carbonate from lithium chloride containing brines
US10935006B2 (en) 2009-06-24 2021-03-02 Terralithium Llc Process for producing geothermal power, selective removal of silica and iron from brines, and improved injectivity of treated brines
US11828272B2 (en) 2009-06-24 2023-11-28 Terralithium Llc Process for producing geothermal power, selective removal of silica and iron from brines, and improved injectivity of treated brines
US11174532B1 (en) 2018-03-09 2021-11-16 Terralithium Llc Processes for producing lithium compounds using reverse osmosis
US11235282B2 (en) 2018-03-09 2022-02-01 Terralithium Llc Processes for producing lithium compounds using forward osmosis

Also Published As

Publication number Publication date
JP2003320370A (en) 2003-11-11

Similar Documents

Publication Publication Date Title
JP2019089702A (en) Generation of phosphate compound from material containing one of phosphorus, iron and aluminum
JP4428582B1 (en) Method and apparatus for producing acid and alkali from leachate
JP3691027B2 (en) How to treat geothermal water
JP2014228502A (en) Radioactive cesium-contaminated object treatment method
JP5046853B2 (en) Treatment agent and treatment method for contaminated water containing heavy metals
CN102816933A (en) Treatment process method of chrome slag
US9108865B2 (en) Method for treating boron-containing water
CN112605118A (en) Method for treating extract after persulfate remediation of organic contaminated soil
JP4543481B2 (en) Method for treating water containing boron and fluorine
CN115490365A (en) Method for comprehensively treating alkaline uranium-containing fluorine-containing wastewater through uranium conversion
JPH01130783A (en) Treatment of alkaline waste liquid of fluorinated product containing metal ion and oil
JP6738268B2 (en) Water treatment method and water treatment system
JP2018153798A (en) Wastewater treatment method
JP3709156B2 (en) Treatment method for fluorine-containing wastewater
CA2973460C (en) Chromium-containing water treatment method
JPH06130188A (en) Processing method for radioactive waste liquid
JP2001232372A (en) Treatment process for water containing boron
JP2005254159A (en) Waste water treatment system and waste gas treatment system using the same
CN205710269U (en) A kind of power plant desulfurization advanced waste treatment apparatus
CN218755198U (en) Filtrate defluorination and thallium removal system in lepidolite treatment process
JP2005034742A (en) Method for treating spent carbon and usage of the carbon
CN103495379A (en) Method for preparing zeolite supported iron oxide
JP3967398B2 (en) Treatment method for fluorine-containing wastewater
JP2737610B2 (en) Treatment of flue gas desulfurization wastewater
JP7256061B2 (en) Method for treating hard-to-filter substances

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5