JP3690786B2 - X-ray tomography system - Google Patents

X-ray tomography system Download PDF

Info

Publication number
JP3690786B2
JP3690786B2 JP33703299A JP33703299A JP3690786B2 JP 3690786 B2 JP3690786 B2 JP 3690786B2 JP 33703299 A JP33703299 A JP 33703299A JP 33703299 A JP33703299 A JP 33703299A JP 3690786 B2 JP3690786 B2 JP 3690786B2
Authority
JP
Japan
Prior art keywords
ray
image
axis
rotation axis
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33703299A
Other languages
Japanese (ja)
Other versions
JP2001153817A (en
Inventor
哲昭 深町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP33703299A priority Critical patent/JP3690786B2/en
Publication of JP2001153817A publication Critical patent/JP2001153817A/en
Application granted granted Critical
Publication of JP3690786B2 publication Critical patent/JP3690786B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は被破壊検査の分野で定着しているX線検査装置に関するもので、X線撮像装置による断層撮像方法とその装置に関するものである。特に、電気・電子機器に用いる多層プリント基板の欠陥解析、バンプ接合部の欠陥解析等に有効なX線断層撮像装置の自動調整機能に関するものである。
【0002】
【従来の技術】
このようなX線断層撮像装置は、例えば特開平5−312735号公報にも記載されているように公知の技術である。この技術、すなわち、X線ラミノグラフィーではX線の光軸と回転テーブルの回転中心軸の交点を含む受光面に平行な面が断層像として得られる。このため、X線の光軸と回転テーブルの回転中心軸を機械的に一致させる必要がある。従来この調整方法は、回転テーブルの回転軸位置を電動で移動する平面2軸のステージ機構を手動操作で動かしながら、断層像をTVモニタ等で目視により観察しながら調整を行う必要があった。この調整は、画像の拡大率を調整するZ軸(X線の光軸に平行な移動軸)を移動停止する位置毎に行なう必要がある。このZ軸はステップ的に移動するものである。装置の立上げ時に数十個所の調整を行なっていた。
【0003】
【発明が解決しようとする課題】
本発明は断層画像から、X線の光軸と回転軸の回転中心の一致度を判断する基準と方法を確立して、X線の光軸と回転軸の回転中心を一致させる調整の簡素化と調整者による人的な不安定要素を排除することを目的とするものである。
【0004】
【作用】
本発明の作用について説明すると、予め定めたチャートの断層像を電子計算機に取込み、その断層像を画像処理しその面積または2点間の距離が最小または指定値に近づくように、回転テーブル回転軸の位置を移動する平面2軸ステージを制御用計算機からの制御で移動し、この処理を繰返すことによりX線の光軸と回転ステージの回転軸が一致するように制御すると、X線の光軸と回転軸の回転中心を一致させる調整の簡素化と調整者による人的なバラツキ等、不安定要素を排除することが出来装置が安定した性能を維持できる様になる。
【0005】
【発明の実施の形態】
以下この発明の一実施例を図1より説明する。図1は、ラミノグラフィ方式によるX線断層画像撮像装置の概略の構成をモデル化して示したもので、1はX線を発生させるためのX線管であり、2にX線が発生するX線発生点を、3にX線が円錐状に照射されることを模擬的に示す。また、4には撮像面の中心位置とX線発生点を結ぶX線の光軸を示す。5は試料テーブルであり、回転機構と、幾何学拡大を行うためのX線の光軸4に沿った移動機構、断層面を変える為の回転面に垂直方向の移動機構(図示せず)及び試料の撮像位置を変えるための回転面に平行方向の移動機構(図示せず)を持つ。6はテーブル回転軸で、回転機構の回転中心線を示す。7は断層面で、光軸4とテーブル回転軸6の交点を含む撮像面に平行な平面である。8は、回転テーブル、9は光軸調整ステージ、10が撮像面で、X線蛍光物質であり、X線のエネルギーの強弱を可視光に変換する機能を有する。11が蛍光倍増管で、光の強さを増幅する。12がプリズム回転軸で像回転プリズムの回転中心を示し、13が、像回転プリズムである。14が蓄積カメラであり試料テーブルの回転機構とこの画像回転プリズム、蓄積カメラの作用によりX線断層画像を得ることが出来る。15が映像信号、16が制御用計算機で、画像取込機能及び画像処理機能、ステージ機構の制御機能を有する。なお、このようなX線ラミノグラフに関する基本的な説明は前述の特開平に詳しく説明されているのここでの原理説明は省略する。
【0006】
試料テーブル5に調整のための図2に示すようなチャート20を取付ける。このチャート20は、表面に銅箔等により四角形を形成し、裏面には同じく銅箔等により、前記表面パタン21の中心で交差するような線状の裏面パターン22を設けている。チャート20の全体の材質は、通常検査するプリント基板等の資料と同じものが望ましい。このようなチャート20回転テーブルと像回転プリズムを回転させ断層画像を得る。次に、この動作を図3のフローチャートに示す手順に従って説明する。
【0007】
チャート20の画像は通常の検査の時と同じように、その断層画像が制御用計算機16に取込まれる(画像処理込みステップ31)。このときの画像が画像36で、光軸と回転軸が一致していない場合には、周辺が薄くぼけたような画面となる。次に予め指定した閾値に従って2値化処理32を行い検出領域の面積を算出する(面積計算処理33)。このときの2値化画像が37である。361は閾値を示す境界線である。X線の光軸4とテーブル回転軸6の位置がズレているときにはラミノグラフィの原理から、その面積が実像の面積に比較して大きくなる。例えば、図2で示す表面パターン21の四角形パターン面を断層面7として調整する場合、実像に対し四方に影が広がり面積が大きく写る。この面積は光軸調整ステージ9の移動方向に関係なく、X線の光軸4とテーブル回転軸6の位置がズレ方向の場合に大きくなり、一致する方向のとき小さくなり一致した時に最小になる。38が光軸と回転軸がずれが大きいときの画面であり、40はその二値化画像。39は光軸と回転軸がずれが小さいときの画面で、41はその二値化画像である。制御用計算機16は求めた面積を記憶し、光軸調整ステージ9をX方向プラス側に一定量動(光軸調整ステージX/Y軸移動ステップ34)し、2回目の画像を取込み(ステップ35)、二値化処理321の後、再び面積(面積計算処理ステップ331)を求める。次に、判定ステップ42にて求めた面積を前回の値と比較し面積が大きくなっていれば(判定N)、光軸調整ステージX/Y軸移動ステップ34にて、ステージ9をX方向マイナス側移動する。このような動作を光軸調整ステージ9を移動ながら繰返す。ステージ9のX線方向での移動による面積の変化が最小値を示したところで次にY方向で同様の処理を繰返す。Y方向での移動による面積変化が最小値を示したら、1回のステージ9の移動量を前回より小さくしてX方向の調整を行い、次に、同じくY方向についてもこの処理を繰返し、実像値に近い面積が求められるまでこの処理を繰返す。更に、この処理は、拡大率毎にZ軸ステージ(図示せず)の停止位置毎に行われる。このように、本発明によれば全ての調整処理工程を自動で制御することができる。また、調整結果を記録することも可能である。更に調整結果に人的なバラツキが生じないことは言うまでもない。
【0008】
なお、以上実施例ではチャート20のパターンとして四角形の表面パターン21と線状の裏面パターン22を用いたが、このような形状に限らずともよいことは言うまでもない。つまり、本発明は予め定めたチャートの断層像を電子計算機に取込み、その断層像を画像処理しその面積または2点間の距離が最小または指定値に近づくように、回転テーブル回転軸の位置を移動する平面2軸ステージを制御用計算機からの制御で移動し、この処理を繰返すことによりX線の光軸と回転ステージの回転軸が一致するように制御すればよい。
【0009】
【発明の効果】
本発明によればX線の光軸と回転軸の回転中心を一致させる調整の簡素化と調整者による人的な不安定要素を排除することが出来装置が安定した性能を維持できる様になる。
【図面の簡単な説明】
【図1】本発明が、対象とするX線断層撮像装置の概略構成を示す。
【図2】本発明に利用する、光軸の位置合せチャートの構造図を示す。
【図3】本発明の実施例に示す自動調整の手順。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an X-ray inspection apparatus that has been established in the field of destructive inspection, and relates to a tomographic imaging method and apparatus using an X-ray imaging apparatus. In particular, the present invention relates to an automatic adjustment function of an X-ray tomographic imaging apparatus that is effective for defect analysis of multilayer printed circuit boards used in electrical and electronic equipment, defect analysis of bump joints, and the like.
[0002]
[Prior art]
Such an X-ray tomographic imaging apparatus is a known technique as described in, for example, JP-A-5-31735. In this technique, that is, X-ray laminography, a plane parallel to the light receiving surface including the intersection of the optical axis of the X-ray and the rotation center axis of the rotary table is obtained as a tomographic image. For this reason, it is necessary to mechanically match the optical axis of the X-ray with the rotation center axis of the rotary table. Conventionally, this adjustment method has required adjustment while visually observing a tomographic image on a TV monitor or the like while manually moving a planar biaxial stage mechanism that electrically moves the rotational axis position of the rotary table. This adjustment needs to be performed for each position where movement of the Z axis (moving axis parallel to the optical axis of the X-ray) for adjusting the magnification of the image is stopped. The Z axis moves stepwise. Dozens of adjustments were made when the equipment was started up.
[0003]
[Problems to be solved by the invention]
The present invention establishes a reference and a method for determining the degree of coincidence between the X-ray optical axis and the rotation center of the rotation axis from the tomographic image, and simplifies the adjustment to match the X-ray optical axis and the rotation center of the rotation axis. The purpose is to eliminate human instability by the coordinator.
[0004]
[Action]
The operation of the present invention will be described. A tomogram of a predetermined chart is taken into an electronic computer, the tomogram is subjected to image processing, and the rotary table rotation axis is adjusted so that the area or the distance between two points approaches a minimum or specified value. When the plane two-axis stage that moves the position of the X-ray is moved by the control from the control computer and the process is repeated so that the X-ray optical axis and the rotation axis of the rotary stage coincide with each other, the X-ray optical axis Instability factors such as simplification of adjustment to match the rotation center of the rotation axis and human variation by the adjuster can be eliminated, and the apparatus can maintain stable performance.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below with reference to FIG. FIG. 1 shows a schematic configuration of an X-ray tomographic imaging apparatus based on a laminography, in which 1 is an X-ray tube for generating X-rays, and 2 is an X-ray generating X-rays. The generation point is shown in FIG. 3 by simulating that X-rays are irradiated conically. Reference numeral 4 denotes an X-ray optical axis connecting the center position of the imaging surface and the X-ray generation point. Reference numeral 5 denotes a sample table, a rotating mechanism, a moving mechanism along the optical axis 4 of the X-ray for enlarging the geometry, a moving mechanism (not shown) perpendicular to the rotating surface for changing the tomographic plane, and A moving mechanism (not shown) in the parallel direction is provided on the rotating surface for changing the imaging position of the sample. Reference numeral 6 denotes a table rotation axis, which indicates the rotation center line of the rotation mechanism. Reference numeral 7 denotes a tomographic plane, which is a plane parallel to the imaging plane including the intersection of the optical axis 4 and the table rotation axis 6. 8 is a rotary table, 9 is an optical axis adjustment stage, 10 is an imaging surface, and is an X-ray fluorescent material, and has a function of converting the intensity of X-ray energy into visible light. Reference numeral 11 denotes a fluorescence multiplier that amplifies the light intensity. Reference numeral 12 denotes the rotation axis of the image rotation prism, and reference numeral 13 denotes the image rotation prism. Reference numeral 14 denotes an accumulation camera, which can obtain an X-ray tomographic image by the action of the rotation mechanism of the sample table, the image rotation prism, and the accumulation camera. Reference numeral 15 denotes a video signal, 16 denotes a control computer, which has an image capturing function, an image processing function, and a stage mechanism control function. A basic description of such an X-ray laminograph has been described in detail in the above-mentioned Japanese Patent Laid-Open Publication No. JP-A-Hei.
[0006]
A chart 20 as shown in FIG. 2 is attached to the sample table 5 for adjustment. This chart 20 is formed with a rectangular back surface pattern 22 formed on the front surface with a copper foil or the like, and on the back surface with a linear back surface pattern 22 that intersects at the center of the front surface pattern 21 with the same copper foil or the like. The overall material of the chart 20 is preferably the same as that of materials such as a printed circuit board to be normally inspected. A tomographic image is obtained by rotating the chart 20 rotating table and the image rotating prism. Next, this operation will be described according to the procedure shown in the flowchart of FIG.
[0007]
The tomographic image of the image of the chart 20 is taken into the control computer 16 in the same manner as in normal examination (image processing step 31). If the image at this time is the image 36 and the optical axis does not coincide with the rotation axis, the screen appears as if the periphery is thinly blurred. Next, binarization processing 32 is performed in accordance with a threshold value specified in advance to calculate the area of the detection region (area calculation processing 33). The binarized image at this time is 37. Reference numeral 361 denotes a boundary line indicating a threshold value. When the positions of the X-ray optical axis 4 and the table rotation axis 6 are misaligned, the area becomes larger than the real image area due to the principle of laminography. For example, when the square pattern surface of the surface pattern 21 shown in FIG. 2 is adjusted as the tomographic plane 7, a shadow spreads in all directions on the real image and a large area appears. This area becomes large when the positions of the X-ray optical axis 4 and the table rotation axis 6 are in the shift direction, and becomes small when they coincide with each other and becomes minimum when they coincide with each other regardless of the moving direction of the optical axis adjustment stage 9. . Reference numeral 38 denotes a screen when the deviation between the optical axis and the rotation axis is large, and reference numeral 40 denotes the binarized image. Reference numeral 39 denotes a screen when the deviation between the optical axis and the rotation axis is small, and reference numeral 41 denotes the binarized image. The control computer 16 stores the obtained area, moves the optical axis adjustment stage 9 by a fixed amount in the X direction plus side (optical axis adjustment stage X / Y axis movement step 34), and captures the second image (step 35). ) After binarization processing 321, the area (area calculation processing step 331) is obtained again. Next, if the area obtained in the determination step 42 is larger than the previous value (determination N), the stage 9 is moved in the X direction minus in the optical axis adjustment stage X / Y axis movement step 34. Move sideways. Such an operation is repeated while moving the optical axis adjustment stage 9. When the change in area due to the movement of the stage 9 in the X-ray direction shows a minimum value, the same processing is repeated in the Y direction. If the area change due to movement in the Y direction shows a minimum value, the amount of movement of one stage 9 is made smaller than the previous time to adjust in the X direction, and then this process is repeated in the Y direction to obtain a real image. This process is repeated until an area close to the value is obtained. Further, this process is performed for each stop position of the Z-axis stage (not shown) for each enlargement ratio. As described above, according to the present invention, all adjustment processing steps can be automatically controlled. It is also possible to record the adjustment result. Furthermore, it goes without saying that there is no human variation in the adjustment results.
[0008]
In the above embodiment, the rectangular front surface pattern 21 and the linear back surface pattern 22 are used as the pattern of the chart 20, but it goes without saying that the shape is not limited to this. In other words, the present invention captures a tomographic image of a predetermined chart in an electronic computer, processes the tomographic image, and sets the position of the rotary table rotation axis so that the area or the distance between two points approaches a minimum or specified value. The moving planar two-axis stage is moved under the control of the control computer, and this process is repeated so that the X-ray optical axis and the rotation axis of the rotary stage coincide with each other.
[0009]
【The invention's effect】
According to the present invention, it is possible to simplify the adjustment for matching the optical axis of the X-ray and the rotation center of the rotary shaft and to eliminate human unstable elements by the adjuster, and to maintain stable performance of the apparatus. .
[Brief description of the drawings]
FIG. 1 shows a schematic configuration of a target X-ray tomographic imaging apparatus according to the present invention.
FIG. 2 is a structural diagram of an optical axis alignment chart used in the present invention.
FIG. 3 is a procedure of automatic adjustment shown in the embodiment of the present invention.

Claims (3)

X線源から発生するX線の光軸に対して傾斜した第1の回転軸と、
該第1の回転軸に固定された撮像対象となる対象物を回転させる第1の回転手段と、
前記第1の回転軸に平行に配置された第2の回転軸と、
前記第1の回転手段によって回転する前記対象物を透過したX線像を、前記第1の回転軸と前記X線の光軸との交点を含む断層面に平行で、かつ前記X線の光軸と前記第2の回転軸との交点を含む平面を撮像面とする光学像に変換する手段と、
変換された該光学像を前記第2の回転軸で回転させる第2の回転手段と、
該第2の回転手段によって回転された光学像を映像情報となる電気信号に変換する手段とからなるX線検出系を使用して、かつ、この映像情報となる電気信号を電子計算機に取込み処理する機能を持つ装置において、
前記第1の回転手段は、前記第1の回転軸を前記X線の光軸方向にステップ的に移動停止する手段と、前記第1の回転軸を前記X線の光軸と一致させるために移動する手段を持ち、
該移動手段は、前記第1の回転軸に調整のための対象物を固定し、前記調整のための対象物を撮像した断層画像から得られる情報により、前記移動停止手段によって前記第1の回転軸を前記X線の光軸方向にステップ的に移動停止する位置毎に、前記第1の回転軸を前記X線の光軸に一致させるように調整することを特徴とするX線断層撮像装置。
A first rotation axis inclined with respect to the optical axis of the X-ray generated from the X-ray source;
First rotating means for rotating an object to be imaged fixed to the first rotating shaft;
A second rotating shaft disposed parallel to the first rotating shaft;
An X-ray image transmitted through the object rotated by the first rotating means is parallel to a tomographic plane including an intersection of the first rotation axis and the optical axis of the X-ray, and the X-ray light Means for converting an optical image having a plane including an intersection of an axis and the second rotation axis as an imaging surface;
Second rotating means for rotating the converted optical image about the second rotating shaft;
Using an X-ray detection system comprising a means for converting the optical image rotated by the second rotating means into an electrical signal as video information, and taking in the electronic signal as the video information into an electronic computer In the device with the function to
The first rotating means includes means for stopping the first rotating shaft in a stepwise manner in the optical axis direction of the X-ray, and for making the first rotating shaft coincide with the optical axis of the X-ray. Have the means to move,
The moving means fixes an object for adjustment to the first rotation axis, and the first rotation is performed by the movement stopping means based on information obtained from a tomographic image obtained by imaging the object for adjustment. An X-ray tomographic imaging apparatus, wherein the first rotation axis is adjusted to coincide with the optical axis of the X-ray at each position where the axis is moved stepwise in the X-ray optical axis direction. .
請求項1記載のX線断層撮像装置において、前記撮像した断層画像から得られる情報は、前記断層画像を2値化し、その2値画像に基づいて前記調整のための対象物上のパターンを検出し、該検出されるパターンの面積であり、該面積が最小または指定値に近づくように、前記第1の回転軸を調整することを特徴とするX線断層撮像装置。  The X-ray tomographic imaging apparatus according to claim 1, wherein the information obtained from the captured tomographic image binarizes the tomographic image and detects a pattern on the object for adjustment based on the binary image. Then, the X-ray tomographic imaging apparatus is characterized in that the first rotation axis is adjusted so that the detected area is an area of the detected pattern and the area approaches a minimum value or a specified value. X線源から発生するX線の光軸に対して傾斜した第1の回転軸に固定された撮像対象となる対象物を第1の回転手段によって回転し、The object to be imaged fixed to the first rotation axis inclined with respect to the optical axis of the X-ray generated from the X-ray source is rotated by the first rotation means,
前記対象物を透過したX線像を、前記第1の回転軸に平行に配置された第2の回転軸と前記X線の光軸との交点を含む平面を撮像面とする光学像に変換し、  An X-ray image transmitted through the object is converted into an optical image having a plane including an intersection of a second rotation axis arranged in parallel to the first rotation axis and the optical axis of the X-ray as an imaging surface. And
該光学像を前記第2の回転軸で回転させ、  Rotating the optical image around the second rotation axis;
該回転させた光学像を電気信号に変換し、  Converting the rotated optical image into an electrical signal;
該電気信号を断層画像として電子計算機で取込み、画像処理し、  The electrical signal is captured by a computer as a tomographic image, image processed,
前記第1の回転軸に、調整のための対象物を固定し、  An object for adjustment is fixed to the first rotating shaft,
該調整のための対象物を撮像した断層画像から得られる情報により、断層画像の画像の拡大率を調整するZ軸ステージの停止位置毎に、前記第1の回転軸と前記X線の光軸とを一致させるように調整することを特徴とするX線断層撮影装置のX線断層撮影方法。  The first rotation axis and the optical axis of the X-ray for each stop position of the Z-axis stage that adjusts the enlargement ratio of the tomographic image based on information obtained from the tomographic image obtained by imaging the object for adjustment. And an X-ray tomography method for an X-ray tomography apparatus, wherein the X-ray tomography apparatus is adjusted so as to match.
JP33703299A 1999-11-29 1999-11-29 X-ray tomography system Expired - Fee Related JP3690786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33703299A JP3690786B2 (en) 1999-11-29 1999-11-29 X-ray tomography system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33703299A JP3690786B2 (en) 1999-11-29 1999-11-29 X-ray tomography system

Publications (2)

Publication Number Publication Date
JP2001153817A JP2001153817A (en) 2001-06-08
JP3690786B2 true JP3690786B2 (en) 2005-08-31

Family

ID=18304815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33703299A Expired - Fee Related JP3690786B2 (en) 1999-11-29 1999-11-29 X-ray tomography system

Country Status (1)

Country Link
JP (1) JP3690786B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3823150B2 (en) * 2002-03-06 2006-09-20 独立行政法人産業技術総合研究所 Inclined 3D X-ray CT
JP4178399B2 (en) * 2003-09-25 2008-11-12 株式会社島津製作所 X-ray CT system
JP4420186B2 (en) * 2003-09-29 2010-02-24 株式会社島津製作所 X-ray CT system
DE102021116258A1 (en) 2021-06-23 2022-12-29 Helmut Fischer GmbH Institut für Elektronik und Messtechnik Measurement object, method and device for operating an X-ray source

Also Published As

Publication number Publication date
JP2001153817A (en) 2001-06-08

Similar Documents

Publication Publication Date Title
JPH02138855A (en) Inspecting method of soldered part by x-ray transmission image, apparatus therefor and packaging structure of electronic component on circuit board
JP2007017304A (en) X-ray inspection system and x-ray inspection method
JP4386812B2 (en) X-ray inspection equipment
US20060274883A1 (en) X-ray inspection system having on-axis and off-axis sensors
JP4610590B2 (en) X-ray inspection apparatus, X-ray inspection method, and X-ray inspection program
JP4580266B2 (en) X-ray inspection apparatus, X-ray inspection method, and X-ray inspection program
JP2000230911A (en) Apparatus and method for picking up tomographic image
JP2000266701A (en) Fluorescent x-ray analyzer
JP3690786B2 (en) X-ray tomography system
JP2004108990A (en) Laminograph with filtering
JPH0658731A (en) Pattern inspecting apparatus
JPH11211677A (en) X-ray transmission-type inside judgment apparatus
JP3657768B2 (en) X-ray transmission inspection equipment
JPH0861941A (en) Radiation inspecting device
JPH0855887A (en) Laminograph
JP4155866B2 (en) X-ray tomography system
JPH0692944B2 (en) X-ray tomography system
JPH01265145A (en) X-ray inspection device
JP2000356606A (en) Fluoroscopic examination device
JPH02216408A (en) Substrate inspection device
JPH05251535A (en) Bump inspecting apparatus
WO2024117099A1 (en) Inspection device
KR0171690B1 (en) Tomographical inspection apparatus and method
JP2006177760A (en) X-ray inspection device, x-ray inspection method, and x-ray inspection program
JP2853854B2 (en) Inspection device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees