JP3690774B2 - Maraging steel strip - Google Patents

Maraging steel strip Download PDF

Info

Publication number
JP3690774B2
JP3690774B2 JP12003798A JP12003798A JP3690774B2 JP 3690774 B2 JP3690774 B2 JP 3690774B2 JP 12003798 A JP12003798 A JP 12003798A JP 12003798 A JP12003798 A JP 12003798A JP 3690774 B2 JP3690774 B2 JP 3690774B2
Authority
JP
Japan
Prior art keywords
inclusions
maraging steel
steel strip
dmax
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12003798A
Other languages
Japanese (ja)
Other versions
JPH11293407A (en
Inventor
丈博 大野
誠 石原
節夫 三嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP12003798A priority Critical patent/JP3690774B2/en
Publication of JPH11293407A publication Critical patent/JPH11293407A/en
Application granted granted Critical
Publication of JP3690774B2 publication Critical patent/JP3690774B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明が属する技術分野】
本発明は、自動車のベルト式無段変速機のベルトなどに用いられるマルエージング鋼帯に関するものである。
【0002】
【従来の技術】
無段変速機用のベルトはいわゆるスチールベルトとして知られ、圧延で1mm以下の厚さの薄板に成形されて使用される。このスチールベルトには極めて高い疲労強度と靭性が要求されるために、マルエージング鋼が多く使用されてきた。
ところで、マルエージング鋼のような高強度鋼の場合、介在物の存在が疲労強度に大きく影響を及ぼす。すなわち、大きな介在物が疲労破壊の起点となることがよく知られている。
マルエージング鋼にはTiが必須元素として含まれているために、不可避的に存在するCおよび/あるいはガス成分であるNと結合して比較的大きなTiC,TiNあるいはTi(C,N)のTi系介在物が形成されやすい。
そのため、従来は介在物を低減して疲労強度を改善するため、介在物の原点となるガス成分や炭素量を低減する方策が採用されてきた。
【0003】
【発明が解決しようとする課題】
近年、スチールベルトに要求される疲労強度レベルはますます高くなり、また品質の安定性も要求されている。
一方、このような要求に加えてコストの低減の要求も極めて厳しいものがある。
したがって、実験室レベルにおいて得られる高清浄度のマルエージング鋼では、量産するには高価になりすぎ現実的ではない。
本発明の目的は、介在物の存在を有る程度容認した上で、疲労強度特性の優れたマルエージング鋼帯を提供することである。
【0004】
【課題を解決するための手段】
本発明者は、マルエージング鋼に含有されるTiとCおよび/またはNとが結合したTi系介在物は、通常立方体形状となるため、化合物の角部がノッチ効果を持ち、無段変速機用のスチールベルトの如き、圧縮応力と引張応力が絶えず変化して不可される部材にとって、疲労の起点になりやすいことを見いだした。
そして、本発明者は、鋭意検討の結果、疲労強度に悪影響を及ぼす立方体形状の介在物の形態を、ノッチ効果の少ない球形に近づけることが可能であることを見いだし、本発明に到達した。
【0005】
即ち本発明は、Tiを含有し、質量%でCを0.004%以下、Nを5〜9ppm含有するマルエージング鋼帯であって、凝固速度を調整することにより、組織断面で観察されるTi系介在物のDmaxが8μm以下であり、かつ存在するDmax8〜2μmのTi系介在物は、Dmin/Dmaxが0.75以上としたことを特徴とするマルエージング鋼帯である。
Dmax=組織断面で観察されるTi系介在物に外接する円の直径。
Dmin=組織断面で観察されるTi系介在物に内接する円の直径。
【0006】
【発明の実施の形態】
本発明の最大の特徴の一つは、マルエージング鋼帯の疲労強度低下の一因とする立方体形状のTi系介在物を、疲労強度の低下の要因になりにくい球状の介在物に制御したことである。
本発明においては、Dmaxが8μmを超えるほど大きな介在物が存在すると、疲労強度の絶対値が低下しすぎても鋼帯として好ましくないため、Dmaxを8μm以下と規定した。
一方Dmaxが2μm以上のTi系介在物が全くない組織においては、介在物は微細すぎて介在物の形状の疲労強度への依存性が不明瞭となり、介在物の形態を制御する必要性が少ないこと、不純物の制御に多大コストがかかることを理由として本発明の範囲外とする。
【0007】
本発明においては、Ti系介在物が球状であり疲労強度の向上が認められる範囲として、Dmax8〜2μmの介在物は Dmin/Dmaxが0.75以上であると規定した。
マルエージング鋼帯のもっとも主要な介在物であるTiC,TiNあるいはTi(C,N)のTi系介在物の大きさ、形状をコントロールする具体的な手段としては、例えばN,C量を有る程度以下に制限することおよび溶解、鋳造によりインゴットを作製する際の凝固速度を速くすることが有効である。
【0008】
たとえば、N,C量であるが、N量が多いと溶鋼中でTi系介在物が形成される温度(晶出温度)が高くなり、溶鋼中あるいは凝固中にTi系介在物が成長し大きな立方体形状を形成する。これを防ぐにはN量を9ppm以下に抑えることが必要である
さらにC量が多いと晶出温度はN量が多くなった時ほどには大きくは変わらないが、若干高くなるため、Ti系介在物が大きくなると共に、その量も多くなり、疲労強度を低下させる原因になる。従ってCは0.004%以下にする必要がある。
【0009】
また、凝固速度であるが、本発明者らの検討では凝固速度が非常に速い場合はN量が20ppm程度と高くても大きなTi系介在物は形成されない。これは高温でTi系介在物が形成されても凝固速度が速いためにそれが大きく成長しないためと思われる。N量の低減はコスト増になるため、N量を5ppm以上として凝固速度を調整して介在物の形態を制御することが必要である
実際の製造条件では、N,C量および他の元素量との相互作用あるいはインゴットを製造する際のマス効果に起因する局所的な凝固速度の違いにより、組織は変化するため、本発明においては、製造条件の数値的な限定は行わない。
本発明の用途の一つである無段変速機用のベルトは、マルエージング鋼に窒化処理やNiメッキ処理当の表面処理を施して使用する場合が多い。本発明のマルエージング鋼帯も窒化処理等の後処理を行うベルトを当然含むものである。
【0010】
【実施例】
表1に示す組成の鋼を真空中で溶解、鋳造し10kgのインゴットを作製した。
ここで、凝固速度の影響を見るため、金型に鋳造したもの(凝固速度が速い)とロストワックス鋳型に鋳造したもの(凝固速度が遅い)および金型と断熱材で巻いて保温したもの(凝固速度は前二者の中間)を用意した。
これらを1280℃×20時間のソーキングを行い次いで、熱間鍛造と熱間圧延により、20mm×70mmの板状にした後、820℃×1hの固溶化処理を行なった。
その後、冷間圧延により、板厚0.5mmに仕上げ、次いで820℃×1hの固溶化処理と480℃×5hの時効処理を行った。
【0011】
【表1】

Figure 0003690774
【0012】
得られたマルエージング鋼帯から、ベルトにかかる繰り返し曲げを想定した疲労強度を求めるため、100mm×9.6mmの短冊状に10サンプル切り出し、曲げ角度10度、支点間距離50mm、回転数1000cpmで板バネ疲労試験を行なった時の10の7乗回の疲労強度を求めた。結果を表2に示す。
また、得られたマルエージング鋼帯の金属組織を800倍で観察した。
図1〜図4に表1に対応する試料Noで得られたマルエージング鋼帯で観察された介在物のうち、比較的大きい介在物の代表例を示す。図示するのはいずれもTi系の介在物である。
また表2にDmaxの最大値、ならびにDmaxが2〜8μmの介在物のDmin/Dmaxの最小値を示す。
【0013】
【表2】
Figure 0003690774
【0014】
本発明のマルエージング鋼帯である試料1、2の、介在物の大きさDmaxの最大値はいずれも5μm以下であり、板バネ疲労試験による10の7乗回の疲労強度は大きな立方体形状の介在物を有する比較例4より10%以上高い。本発明の試料の内、介在物が比較的大きい試料No.2においても介在物は矩形ではなく、同様の大きさで矩形の介在物を有する比較例No.5と比較すると疲労強度が高められたことがわかる。
一方、断面矩形の大きな介在物が存在する比較例の試料No.4は、本発明の試料1、2に比べて明らかに板バネ疲労試験による疲労強度が劣化していることがわかる。
【0015】
【発明の効果】
本発明によれば、マルエージング鋼の疲労強度を大幅に改善することができ、より高性能の無段変速機用のベルトの実用化にとって欠くことのできない技術となる。
【図面の簡単な説明】
【図1】本発明のマルエージング鋼帯の金属ミクロ組織における介在物を示す写真である。
【図2】本発明のマルエージング鋼帯の金属ミクロ組織における介在物の別の例を示す写真である。
【図3】本発明のマルエージング鋼帯の金属ミクロ組織における介在物の別の例を示す写真である。
【図4】比較例のマルエージング鋼帯の金属ミクロ組織における介在物を示す写真である。
【図5】比較例のマルエージング鋼帯の金属ミクロ組織における介在物を示す写真である。[0001]
[Technical field to which the invention belongs]
The present invention relates to a maraging steel strip used for a belt of a belt type continuously variable transmission of an automobile.
[0002]
[Prior art]
A belt for a continuously variable transmission is known as a so-called steel belt, and is formed by rolling into a thin plate having a thickness of 1 mm or less. Since this steel belt is required to have extremely high fatigue strength and toughness, many maraging steels have been used.
By the way, in the case of high strength steel such as maraging steel, the presence of inclusions greatly affects the fatigue strength. That is, it is well known that large inclusions are the starting point for fatigue failure.
Since maraging steel contains Ti as an essential element, it is inevitably present in combination with C and / or N which is a gas component and relatively large TiC, TiN or Ti (C, N) Ti. System inclusions are easily formed.
Therefore, conventionally, in order to improve the fatigue strength by reducing inclusions, measures have been adopted to reduce the gas component and carbon content that are the origin of inclusions.
[0003]
[Problems to be solved by the invention]
In recent years, the level of fatigue strength required for steel belts has been increasing, and quality stability has also been required.
On the other hand, in addition to such demands, there are some severe demands for cost reduction.
Therefore, the high cleanness maraging steel obtained at the laboratory level becomes too expensive for mass production and is not practical.
An object of the present invention is to provide a maraging steel strip having excellent fatigue strength characteristics while allowing the presence of inclusions to some extent.
[0004]
[Means for Solving the Problems]
The present inventor has found that a Ti-based inclusion in which Ti and C and / or N contained in maraging steel are usually in a cubic shape, so that a corner portion of the compound has a notch effect, and a continuously variable transmission. It has been found that a member such as a steel belt for which the compressive stress and the tensile stress are constantly changed and cannot be used easily becomes a starting point of fatigue.
As a result of intensive studies, the present inventor has found that it is possible to bring the form of a cubic-shaped inclusion that adversely affects fatigue strength closer to a spherical shape with less notch effect, and has reached the present invention.
[0005]
That is, the present invention is a maraging steel strip that contains Ti, contains C by 0.004% or less, and contains N in an amount of 5 to 9 ppm by mass%, and is observed in the cross section of the structure by adjusting the solidification rate. Ti-based inclusions having Dmax of 8 μm or less and Ti-containing inclusions having Dmax of 8 to 2 μm are maraging steel strips having a Dmin / Dmax of 0.75 or more .
Dmax = diameter of a circle circumscribing the Ti-based inclusions observed in the cross section of the structure.
Dmin = the diameter of a circle inscribed in the Ti-based inclusions observed in the cross section of the structure.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
One of the greatest features of the present invention is that the cubic Ti-based inclusion that contributes to the decrease in fatigue strength of the maraging steel strip is controlled to a spherical inclusion that is unlikely to cause a decrease in fatigue strength. It is.
In the present invention, if there are inclusions that are so large that Dmax exceeds 8 μm, even if the absolute value of fatigue strength decreases too much, it is not preferable as a steel strip, so Dmax is defined as 8 μm or less.
On the other hand, in a structure having no Ti-based inclusions having a Dmax of 2 μm or more, the inclusions are too fine and the dependency of the shape of the inclusions on the fatigue strength becomes unclear, and there is little need to control the form of the inclusion In other words, it is out of the scope of the present invention because the control of impurities is very expensive.
[0007]
In the present invention, as a range in which the Ti-based inclusions are spherical and an improvement in fatigue strength is recognized, the inclusions having Dmax of 8 to 2 μm are defined as having Dmin / Dmax of 0.75 or more.
Specific means for controlling the size and shape of Ti-based inclusions of TiC, TiN, or Ti (C, N), which are the most major inclusions in the maraging steel strip, are, for example, N and C amounts. It is effective to limit to the following, and to increase the solidification rate when producing an ingot by melting and casting.
[0008]
For example, the amount of N and C is high, but if the amount of N is large, the temperature (crystallization temperature) at which Ti-based inclusions are formed in the molten steel increases, and Ti-based inclusions grow during the molten steel or during solidification. Form a cubic shape. In order to prevent this, it is necessary to suppress the N content to 9 ppm or less.
In addition, when the amount of C is large, the crystallization temperature does not change as much as when the amount of N is large, but because it becomes slightly higher, the Ti inclusions become larger and the amount also increases, reducing the fatigue strength. Cause it. Therefore, C must be 0.004% or less.
[0009]
Further, regarding the solidification rate, according to the study by the present inventors, when the solidification rate is very fast, a large Ti-based inclusion is not formed even if the N amount is as high as about 20 ppm. This seems to be because even if Ti-based inclusions are formed at a high temperature, the solidification rate is fast, so that they do not grow greatly. Since the reduction of the N amount increases the cost, it is necessary to control the form of inclusions by adjusting the solidification rate by setting the N amount to 5 ppm or more.
In actual production conditions, the structure changes due to the difference in the local solidification rate due to the interaction with the amounts of N, C and other elements or the mass effect when producing an ingot. No numerical limitation of manufacturing conditions is performed.
A belt for a continuously variable transmission, which is one of the applications of the present invention, is often used by subjecting maraging steel to a surface treatment such as nitriding treatment or Ni plating treatment. The maraging steel strip of the present invention naturally includes a belt for performing post-treatment such as nitriding.
[0010]
【Example】
Steel having the composition shown in Table 1 was melted and cast in a vacuum to produce a 10 kg ingot.
Here, in order to see the influence of the solidification rate, what was cast in a mold (high solidification rate), cast in a lost wax mold (low solidification rate), and what was kept warm by wrapping with a mold and heat insulating material ( The coagulation rate was prepared between the former two).
These were soaked at 1280 ° C. for 20 hours, then formed into a 20 mm × 70 mm plate by hot forging and hot rolling, and then subjected to a solid solution treatment at 820 ° C. × 1 h.
Thereafter, the sheet was finished by cold rolling to a thickness of 0.5 mm, and then subjected to a solution treatment at 820 ° C. × 1 h and an aging treatment at 480 ° C. × 5 h.
[0011]
[Table 1]
Figure 0003690774
[0012]
In order to obtain fatigue strength assuming repeated bending applied to the belt from the obtained maraging steel strip, 10 samples were cut into strips of 100 mm × 9.6 mm, the bending angle was 10 degrees, the distance between fulcrums was 50 mm, and the rotation speed was 1000 cpm. The fatigue strength of 10 7 times when the leaf spring fatigue test was performed was determined. The results are shown in Table 2.
Moreover, the metal structure of the obtained maraging steel strip was observed at 800 times.
1 to 4 show representative examples of relatively large inclusions among the inclusions observed in the maraging steel strip obtained with the sample No. corresponding to Table 1. All shown are Ti-based inclusions.
Table 2 shows the maximum value of Dmax and the minimum value of Dmin / Dmax of inclusions having Dmax of 2 to 8 μm.
[0013]
[Table 2]
Figure 0003690774
[0014]
In Samples 1 and 2 which are maraging steel strips of the present invention, the maximum value of the inclusion size Dmax is 5 μm or less, and the fatigue strength at 10 7 in the leaf spring fatigue test is a large cubic shape. It is 10% or more higher than Comparative Example 4 having inclusions. Among the samples of the present invention, sample No. In Example 2, the inclusions are not rectangular, but are comparative examples having the same size and rectangular inclusions. Compared with 5, it can be seen that the fatigue strength was increased.
On the other hand, in the comparative sample No. 4 shows that the fatigue strength by the leaf spring fatigue test is clearly deteriorated as compared with Samples 1 and 2 of the present invention.
[0015]
【The invention's effect】
According to the present invention, the fatigue strength of maraging steel can be greatly improved, which is an indispensable technique for the practical application of a belt for a higher performance continuously variable transmission.
[Brief description of the drawings]
FIG. 1 is a photograph showing inclusions in a metal microstructure of a maraging steel strip of the present invention.
FIG. 2 is a photograph showing another example of inclusions in the metal microstructure of the maraging steel strip of the present invention.
FIG. 3 is a photograph showing another example of inclusions in the metal microstructure of the maraging steel strip of the present invention.
FIG. 4 is a photograph showing inclusions in a metal microstructure of a maraging steel strip of a comparative example.
FIG. 5 is a photograph showing inclusions in a metal microstructure of a maraging steel strip of a comparative example.

Claims (1)

Tiを含有し、質量%でCを0.004%以下、Nを5〜9ppm含有するマルエージング鋼帯であって、凝固速度を調整することにより、組織断面で観察されるTi系介在物のDmaxが8μm以下であり、かつ存在するDmax8〜2μmのTi系介在物は、Dmin/Dmaxが0.75以上としたことを特徴とするマルエージング鋼帯。A maraging steel strip containing Ti and containing 0.004% or less C and N in an amount of 5 to 9 ppm by mass, and by adjusting the solidification rate, A maraging steel strip having a Dmax of 8 μm or less and an existing Ti-based inclusion having a Dmax of 8 to 2 μm having a Dmin / Dmax of 0.75 or more.
Dmax=組織断面で観察されるTi系介在物に外接する円の直径。  Dmax = diameter of a circle circumscribing the Ti-based inclusions observed in the cross section of the structure.
Dmin=組織断面で観察されるTi系介在物に内接する円の直径。  Dmin = the diameter of a circle inscribed in the Ti-based inclusions observed in the cross section of the structure.
JP12003798A 1998-04-14 1998-04-14 Maraging steel strip Expired - Fee Related JP3690774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12003798A JP3690774B2 (en) 1998-04-14 1998-04-14 Maraging steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12003798A JP3690774B2 (en) 1998-04-14 1998-04-14 Maraging steel strip

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003155289A Division JP2004003028A (en) 2003-05-30 2003-05-30 Maraging steel strip for steel belt

Publications (2)

Publication Number Publication Date
JPH11293407A JPH11293407A (en) 1999-10-26
JP3690774B2 true JP3690774B2 (en) 2005-08-31

Family

ID=14776351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12003798A Expired - Fee Related JP3690774B2 (en) 1998-04-14 1998-04-14 Maraging steel strip

Country Status (1)

Country Link
JP (1) JP3690774B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023088582A1 (en) 2021-11-18 2023-05-25 Robert Bosch Gmbh Metal ring for a drive belt

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60043526D1 (en) 1999-03-19 2010-01-28 Honda Motor Co Ltd MARTENSITAUSHÄRTENDER STEEL WITH OUTSTANDING TEMPERING CHARACTERISTICS AND METHOD FOR THE PRODUCTION THEREOF
EP1243812B1 (en) 2001-03-19 2005-06-29 Van Doorne's Transmissie B.V. Metal push belt and material therefor
JP3884246B2 (en) 2001-08-08 2007-02-21 本田技研工業株式会社 CVT belt hoop manufacturing method
EP1826282B1 (en) 2002-11-19 2010-01-20 Hitachi Metals, Ltd. Method of producing a maraging steel
EP1679384B1 (en) * 2003-10-08 2010-12-22 Hitachi Metals, Ltd. Method for producing steel ingot
EP2832870A4 (en) * 2012-03-28 2015-11-25 Toyota Motor Co Ltd Method and device for manufacturing endless metal ring, and endless metal ring
EP3156151B1 (en) * 2014-06-10 2019-08-28 Hitachi Metals, Ltd. Production method of maraging steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023088582A1 (en) 2021-11-18 2023-05-25 Robert Bosch Gmbh Metal ring for a drive belt
NL2029820B1 (en) 2021-11-18 2023-06-13 Bosch Gmbh Robert Metal ring for a drive belt

Also Published As

Publication number Publication date
JPH11293407A (en) 1999-10-26

Similar Documents

Publication Publication Date Title
US7534314B2 (en) High carbon steel with superplasticity
JP3690774B2 (en) Maraging steel strip
JPH093610A (en) Thin aluminum diecast product excellent in dimensional accuracy and ductility and its production
EP2924134B1 (en) Ti-al-based heat-resistant member
JPH05247565A (en) Hardenable copper alloy
JP2004003028A (en) Maraging steel strip for steel belt
JP2000239780A (en) Spheroid al graphite cast iron and machine parts such as gear using the same
JPH0461057B2 (en)
KR950009168B1 (en) Making method of non-heat-treatment steel with hot forging
JPH0428837A (en) Continuous casting mold material made of high strength cu alloy having high cooling capacity and its manufacture
JPS63140067A (en) Piston ring material
JP2003221627A (en) Method for manufacturing high-cleanliness maraging steel
JP2589125B2 (en) Manufacturing method of shape memory alloy
JP2003221614A (en) Method for manufacturing maraging steel
JP2691713B2 (en) Method for producing Cr-Ni-based stainless steel having excellent hot workability
JPS6237357A (en) Manufacture of co base alloy plate material superior in wear resistance
JPH062095A (en) Manufacture of parts for automotive engine made of tial alloy
JPH04346616A (en) Manufacture of high toughness tool steel
JP4175823B2 (en) Manufacturing method of special steel for molds
KR20220007142A (en) Copper-beryllium alloy with high strength
CN115710656A (en) High-strength high-elasticity high-wear-resistance Cu-Ni-Sn alloy and preparation method thereof
JPH0711367A (en) Co alloy wire rod and its production
JPS63162813A (en) Manufacture of machine structural steel
JPH08176709A (en) Ti-al base alloy material excellent in wear resistance, manufacture thereof and method for hardening surface of such alloy
JPH02225639A (en) New chromium-nickel sintered body and its manufacture

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20030623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees