JP3690501B2 - 3D modeling method - Google Patents

3D modeling method Download PDF

Info

Publication number
JP3690501B2
JP3690501B2 JP2001050406A JP2001050406A JP3690501B2 JP 3690501 B2 JP3690501 B2 JP 3690501B2 JP 2001050406 A JP2001050406 A JP 2001050406A JP 2001050406 A JP2001050406 A JP 2001050406A JP 3690501 B2 JP3690501 B2 JP 3690501B2
Authority
JP
Japan
Prior art keywords
dimensional model
dimensional
processing
polygon reduction
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001050406A
Other languages
Japanese (ja)
Other versions
JP2002259945A (en
Inventor
博行 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001050406A priority Critical patent/JP3690501B2/en
Publication of JP2002259945A publication Critical patent/JP2002259945A/en
Application granted granted Critical
Publication of JP3690501B2 publication Critical patent/JP3690501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Image Processing (AREA)
  • Image Generation (AREA)
  • Image Analysis (AREA)

Description

【0001】
本発明は、被測定物の複数枚の断面像を用いて3次元モデルを構成する3次元モデル化方法に関するものである。
【0002】
【従来の技術】
従来のこの種の方法には、例えば、特開平11−328442号公報に記載のものがある。これは、被測定物の一定方向に沿って間隔を置いて得られた複数枚の断面像中の隣接する2枚の断面像の対向する各4画素の輝度値(密度)を頂点に与えた立方体ないし直方体を設定し、その各頂点の輝度値としきい値との比較結果に基づき三角形面を生成するマーチングキューブ法を用いた補間面形成処理により3次元モデルを構成する方法である。
【0003】
なお、マーチングキューブ法については、W.E.Lorensen及びH.E.Cline著「Marching Cubes:A High Resolution 3D Surface Reconstruction Algorithm」(1987;Computer Graphics 21(4);pp163-169)に詳述されている。
【0004】
このような3次元モデル化方法によれば、人手を介さず、コンピュータの演算処理のみで容易に3次元モデルを構成できる利点がある。
【0005】
【発明が解決しようとする課題】
しかしながら上記従来技術では、断面像が高解像度、多数枚になると、そのデータ量に比例して、得られる3次元モデルのデータ量も大きくなり、処理時間も増大する。このことは、マーチングキューブ法が1ボクセル(断面像の1画素)単位での処理であることから、特に顕著である。
【0006】
以下、これにつき説明する。いま、断面像がX線CT画像(以下、CT画像と略記する。)であり、1枚が縦横512×512画素の一般のCT画像を500枚使用して3次元モデルを得たとき、そのデータ量が250MBであったとする。
【0007】
これによると、1枚が縦横2048×2048画素の高解像度のCT画像を1000枚使用して3次元モデルを得たときには、その3次元モデルは、(2048/512)×(2048/512)×(1000/500)=32から、上記3次元モデルの32倍のデータ量となる。なお、各画素の濃度を表すデータ量は同じであるとする。
【0008】
すなわち、縦横2048×2048画素の高解像度のCT画像を1000枚使用して得られる3次元モデルは、250MB×32=8000MB、つまり8GBという多大なデータ量となる。このことは、処理時間の増大をも意味し、また、その後の取扱い、例えばこのような3次元モデルの蓄積記録やCAD、CAMあるいはCAE等による当該モデルの再利用や加工において、記録媒体の容量を圧迫したり、種々の演算に要する時間を増大させたりすることになった。
【0009】
そこで、得られた3次元モデルに対してポリゴン削減を行うことも考えられる。ポリゴン削減は、モデル形状を可能な限り維持しつつ、そのモデルを構成するポリゴンの数を削減する手法であり(GARLAND,M. and HECKBERT, P. S. Surface Simplification using Quadric Error Metrics. Proceedings of SIGGRAPH 97. In Computer Graphics Proceedings,Annual Conference Series, 1997, ACM SIGGRAPH, pp.209-216 等、参照)、データ量の縮減に役立つ。
【0010】
しかし、ポリゴン削減処理は、元モデルのデータ量の何倍もの、例えば4倍ものメモリを消費する。このため、8GBの3次元モデルに対してポリゴン削減処理をするには、メモリを32GB搭載した高価なコンピュータが必要となり、実用的でない。
【0011】
更に、現在のX線CT装置で出力可能の縦横4000×4000画素程度のCT画像にあっては、画素濃度を表すデータ量を2B(バイト)としたとき、4000×4000×2=32MBのデータ量となる。これを1000枚使用して得られる3次元モデルは、32MB×1000=32GBのデータ量となり、この3次元モデルに対してポリゴン削減処理をするには、32GB×4=128GBのメモリを消費する。したがって、このような規模のポリゴン削減処理を実現するには、現在のところ超大型コンピュータに限られ、現実には実現不可能となっていた。
【0012】
上述したように、1枚が縦横512×512画素の一般のCT画像を500枚使用して得られた3次元モデルでは、データ量が250MB程度であり、処理時間も短くて済む。しかし、得られる3次元モデルの計測精度等の向上のためには、使用するCT画像の高解像度化、多数枚化は必須である。
【0013】
このため従来から、高解像度、多数枚の断面像を用いて、換言すれば、処理対象の全断面像のデータ量が増えても、250MB程度の少ないデータ量の3次元モデルを得ることができ、またその処理も、小規模のコンピュータにより短時間で行える3次元モデル化方法の出現が要望されていた。
【0014】
本発明は、上記のような要望に鑑みなされたもので、使用する断面像のデータ量枚数の増大に拘わらず、取扱いに便利な、比較的少ないデータ量の、しかも使用する断面像の解像度を大きく損なうことのない3次元モデルを得ることができ、更に、その3次元モデルを得るための処理も、小型、低価格のコンピュータによって短時間で行うことのできる3次元モデル化方法を提供することを目的とする。
【0015】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の発明は、被測定物の一定方向に沿って間隔を置いて得られた複数枚の断面像を、その配列を変えることなく適宜枚数毎にグループ分けし、次に、各グループ毎にそのグループを構成する断面像群を用いて3次元モデル化処理を行い、得られた各グループ毎の3次元モデル部に対し、隣接する3次元モデル部との接合に係わる端面部分を除いて各別にポリゴン削減処理を行い、そのポリゴン削減処理後の3次元モデル部を、前記グループ分け前の配列及びポリゴン削減処理が除かれた前記端面部分の形状に従って合体させ単体の3次元モデルを得、この単体の3次元モデルに対して更にポリゴン削減処理を行うことを特徴とする。
【0016】
請求項2に記載の発明は、請求項1に記載の発明において、3次元モデル化処理に、マーチングキューブ法に基づく3次元モデル化処理を用いることを特徴とする。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づき説明する。
図1は、本発明による3次元モデル化方法の一実施形態の説明図で、実行内容の概略図を各ステップに付記して示すフローチャートである。
【0019】
この図に示すように、まずステップ101において、3次元モデル化の元となる任意の多数枚の断面像を準備する。この場合、多数枚の断面像は、被測定物の一定方向に沿って間隔を置いて得られた断面像である。
【0020】
ここでは、所定間隔を置いて得られた1000枚のCT画像を準備した。各CT画像は、縦横2048×2048画素で、各画素の濃度を表すデータ量が2バイト(全データ量8.3MB)である。
【0021】
ステップ102では、ステップ101で準備された1000枚のCT画像を、その配列を変えることなく適宜枚数毎にグループ分けする。各グループg1,g2,… gNには、以後の処理を行う場合に使用する処理手段(図示せず)により、少なくとも各グループ単位で処理可能な程度の枚数のCT画像が含まれる。グループ分けにおいて端数が生じた場合は、その端数のCT画像は、例えば最後のグループgNに割り当てる。
【0022】
ステップ103では、ステップ102でグループ分けされた断面像群を処理手段に送って3次元モデル化処理を行い、グループg1,g2,… gN毎の3次元モデル(3次元モデル部)m1,m2,… mNを得る。
【0023】
ここでは、グループ分けされた断面像群は処理手段にグループg1,g2,…gN毎に順次送られ、各グループ単位で3次元モデル化処理が行われる。この3次元モデル化処理は、並列処理機能を有する単一の処理手段による並列処理、あるいは複数の処理手段による並列処理によって行われ、処理の高速化が図られている。この場合、1つのグループを構成する断面像群について並列処理してもよく、あるいは複数のグループについて並列処理してもよい。
【0024】
いずれにしても、全処理対象データ(8.3MB×1000=8.3GB)につき、グループ分けして、ここでは1/Nに分けて処理するので、処理手段として、小型、低価格のコンピュータ、例えばパーソナルコンピュータやワークステーションを用いることが可能となる。
なお3次元モデル化処理は、複数の画素・断面像に対する逐次処理を基本としているので並列処理化は容易である。
【0025】
また3次元モデル化処理は、前掲マーチングキューブ法に基づいた、すなわちマーチングキューブ法による、又はこれを適用した3次元モデル化処理であることが望ましい。合体を前提とした部分毎の3次元モデル化が、以下に述べるように容易に行い得るからである。
【0026】
すなわち、3次元モデル化処理は、格子状に並んだ三次元空間(2枚の断面像の対向する各4画素で形成される直方体)上の輝度分布に基づいて、モデル面をなす多角形面を生成するアルゴリズムにより行われるが、上記多角形面は格子単位で生成される。また、マーチングキューブ法では、生成される多角形面である三角形面の頂点は必ず格子(格子状に並んだ三次元空間の各辺)上に並ぶ。このことから、マーチングキューブ法に基づいた3次元モデル化処理によれば、得られる3次元モデルは格子状に並んだ三次元空間の各辺に平行な線を境界にして容易に分割可能となる。
【0027】
したがってその逆の手法により、分割されている複数の3次元モデル(3次元モデル部)を容易に合体させることが可能となる。そこで、このステップ103では、マーチングキューブ法に基づいた3次元モデル化処理によって3次元モデル部m1,m2,… mNを得るようにした。
【0028】
なお、このように、合体を前提とした部分毎の3次元モデル化処理が容易であり、また、並列処理化も容易であることから、本実施形態においては、全処理プロセス中の最初の段階から小型、低価格のコンピュータにて容易に高速処理が可能となる。
【0029】
ステップ104では、得られた各グループg1,g2,… gN毎の3次元モデル部m1,m2,… mNに対し、各別に前掲ポリゴン削減処理(モデル形状を可能な限り維持しつつ、そのモデルを構成するポリゴンの数を削減する処理)を行う。
【0030】
このステップ104において、隣接する3次元モデル部との接合端面部分は、ポリゴン削減処理の対象から除かれる。
図2は隣接する3次元モデル部の接合端面部分相互を拡大して示す図で、図中21,22のメッシュを付して示す部分がポリゴン削減処理されていない上記接合端面部分(接合に係わる端面部分)である。
このように、3次元モデル部m1,m2,… mNの各接合端面部分21,22がポリゴン削減処理対象から除外されるのは、ポリゴン削減処理後の隣接する3次元モデル部相互の接合保証のためである。
【0031】
ステップ105では、ポリゴン削減処理後の3次元モデル部m1',m2',… mN'を、ステップ102におけるグループ分け前の配列及びポリゴン削減処理が除かれた上記端面部分の形状(端面形状)に従って合体させ単体の3次元モデルMを得る。
【0032】
上述したように、ステップ104におけるポリゴン削減処理において、隣接する3次元モデル部との接合端面部分21,22(図2参照)はポリゴン削減処理の対象から除かれている。すなわち、3次元モデル部m1',m2',… mN'の各接合端面部分21,22は、何ら処理されておらず、実モデル(ステップ103で得られた3次元モデル部m1,m2,… mNの端面形状)のままの状態となっており、ポリゴン削減処理後の隣接する3次元モデル部相互の接合保証がなされている。
したがって、隣接する3次元モデル部の接合端面部分21,22相互は円滑、適正に接合され、相互に不整合のない3次元モデル部m1',m2',… mN'の合体が行われる。
【0033】
ステップ106では、ステップ105で得られた単体の3次元モデル(合体直後の3次元モデル)Mに対して更にポリゴン削減処理を行う。
3次元モデル化の完了直前にポリゴン削減処理を再び行えば、上記端面部分21,22についてもポリゴン削減処理され、この端面部分21,22についても縮減されたデータ量の3次元モデル(モデル形状を可能な限り維持しつつ、そのモデルを構成するポリゴンの数が削減された3次元モデル)M'が得られる。つまり、本実施形態による3次元モデル化を完了する。
【0034】
具体的には、形状の複雑なところに小さなポリゴンを集中配置させた、換言すれば、高解像度CT画像の分解能を反映させた精度の高い3次元モデルM'を、取扱いに便利な比較的少ないデータ量、例えば一般のCT画像(250MB)程度のデータ量にて得ることができる。
【0035】
なお、3次元モデル化処理と同様、ポリゴン削減処理も並列処理化が容易であり、また、3次元モデル部m1',m2',… mN'の合体処理も容易に行える。したがって、本実施形態においては、全処理プロセス中の最初の段階から3次元モデル化処理までのみならず、最終段階に至るまで、小型、低価格のコンピュータにて容易に高速処理が可能である。
【0036】
なお上述実施形態では、断面像としてX線CT画像を例に採って説明したが、MRI画像等、その他の断面像(断層像)であってもよい。また、記憶装置に格納済の断面像であっても、あるいはX線CT装置等の各種断面像生成装置や通信回線からリアルタイムで送られてくる断面像であってもよい。
【0037】
また本発明は、断面像を処理対象としているので、断面像を与える被測定物の種類や大きさ等は限定されない。
【0038】
【発明の効果】
以上述べたように本発明では、被測定物の複数枚の断面像を用いて3次元モデルを構成するときに、上記複数枚の断面像を適宜枚数毎にグループ分けし、各グループの断面像群毎に3次元モデル化処理を行って各々3次元モデル部を得る。その後、各3次元モデル部についてポリゴン削減処理を行い、そのポリゴン削減処理後の3次元モデル部を、グループ分け前の配列及びポリゴン削減処理が除かれた上記端面部分の形状(端面形状)に従って合体させ単体の3次元モデルを得、この単体の3次元モデルに対して更にポリゴン削減処理を行うようにした。
【0039】
すなわち、処理に多大な時間を要する3次元モデル化処理を、グループ分けされた断面像群について各々行うようにしたので、使用する断面像のデータ量、枚数が増大しても、小規模(小型、低価格)のコンピュータによって短時間で行うことができる。またポリゴン削減処理も、部分的な3次元モデル(3次元モデル部)に対して行うので、3次元モデル化処理と同様に、小規模のコンピュータによって短時間で行うことができる。更に、これら3次元モデル化処理及びポリゴン削減処理は、並列処理化も容易であり、この点からも処理の高速化が図れる。このような効果は、処理対象の断面像の解像度や枚数が増大すればするほど顕著になる。
【0040】
3次元モデル化処理及びポリゴン削減処理以外のグループ分けや3次元モデル部合体に係わる処理は、3次元モデル化処理及びポリゴン削減処理に比べて著しく容易な処理である。したがって本発明によれば、3次元モデル化の全プロセスにわたって小規模のコンピュータにて容易に高速処理が可能になる。
【0041】
また、ポリゴン削減処理を行うことによれば、使用する断面像のデータ量、枚数の増大にも拘わらず、取扱いに便利な比較的少ないデータ量の、しかも使用する断面像の解像度を大きく損なうことのない3次元モデルを得ることができる。特に本発明では、初めに行うポリゴン削減処理については隣接する3次元モデル部との接合に係わる端面部分をその対象から除くことにより、ポリゴン削減処理後の隣接する3次元モデル部相互の接合保証をしているので、接合端面部分相互が円滑、適正に接合され、相互に不整合のない3次元モデル部の合体が可能となる。
【0042】
単体の3次元モデルに対して更にポリゴン削減処理を行うことによれば、さきにポリゴン削減処理の対象から除かれた端面部分についてもポリゴン削減処理され、その端面部分についても縮減されたデータ量の3次元モデル(モデル形状を可能な限り維持しつつ、そのモデルを構成するポリゴンの数が削減された3次元モデル)が得られる。つまり、本発明による3次元モデル化を完了する。
【0043】
また、各グループの断面像群毎の3次元モデル化処理に、マーチングキューブ法に基づく3次元モデル化処理を用いれば、これにより得られた3次元モデル部を容易に合体させることが可能となり、処理の更なる高速化が図れる。
【図面の簡単な説明】
【図1】本発明による3次元モデル化方法の一実施形態の説明図である。
【図2】隣接する3次元モデル部の接合端面部分相互を拡大して示す図である。
【符号の説明】
g1,g2,… gN CT画像グループ
m1,m2,… mN 3次元モデル部
m1',m2',… mN' ポリゴン削減処理後の3次元モデル部
M 単体(合体直後)の3次元モデル
M' ポリゴン削減処理後の3次元モデル
[0001]
The present invention relates to a three-dimensional modeling method for constructing a three-dimensional model using a plurality of cross-sectional images of an object to be measured.
[0002]
[Prior art]
A conventional method of this type is disclosed in, for example, Japanese Patent Application Laid-Open No. 11-328442. This gave the vertex the luminance value (density) of each of the four pixels facing each other in the two adjacent cross-sectional images in the plurality of cross-sectional images obtained at intervals along the constant direction of the object to be measured. In this method, a cube or a rectangular parallelepiped is set, and a three-dimensional model is formed by an interpolation surface forming process using a marching cube method for generating a triangular surface based on a comparison result between a luminance value of each vertex and a threshold value.
[0003]
The marching cube method is described in detail in “Marching Cubes: A High Resolution 3D Surface Reconstruction Algorithm” (1987; Computer Graphics 21 (4); pp163-169) by WELorensen and HECline.
[0004]
According to such a three-dimensional modeling method, there is an advantage that a three-dimensional model can be easily configured by only computer processing without human intervention.
[0005]
[Problems to be solved by the invention]
However, in the above-described prior art, when the number of cross-sectional images is high and the number is large, the data amount of the obtained three-dimensional model increases in proportion to the data amount, and the processing time also increases. This is particularly noticeable because the marching cube method is processing in units of one voxel (one pixel of a cross-sectional image).
[0006]
This will be described below. Now, when a cross-sectional image is an X-ray CT image (hereinafter abbreviated as a CT image), and a single three-dimensional model is obtained using 500 general CT images of 512 × 512 pixels. Assume that the data amount is 250 MB.
[0007]
According to this, when a three-dimensional model is obtained using 1000 high-resolution CT images of 2048 × 2048 pixels, the three-dimensional model is (2048/512) × (2048/512) × Since (1000/500) = 32, the data amount is 32 times that of the three-dimensional model. It is assumed that the data amount representing the density of each pixel is the same.
[0008]
That is, a three-dimensional model obtained by using 1000 high-resolution CT images of 2048 × 2048 pixels has a huge data amount of 250 MB × 32 = 8000 MB, that is, 8 GB. This also means an increase in processing time, and the capacity of the recording medium in subsequent handling, for example, storage and recording of such a three-dimensional model, reuse or processing of the model by CAD, CAM, CAE, etc. It has been necessary to increase the time required for various operations.
[0009]
Therefore, it is conceivable to perform polygon reduction on the obtained three-dimensional model. Polygon reduction is a technique that reduces the number of polygons that make up the model while maintaining the model shape as much as possible (GARLAND, M. and HECKBERT, PS Surface Simplification using Quadric Error Metrics. Proceedings of SIGGRAPH 97. In Computer Graphics Proceedings, Annual Conference Series, 1997, ACM SIGGRAPH, pp.209-216, etc.), useful for reducing the amount of data.
[0010]
However, the polygon reduction process consumes many times, for example, four times as much memory as the data amount of the original model. For this reason, in order to perform polygon reduction processing on an 8 GB three-dimensional model, an expensive computer having 32 GB of memory is required, which is not practical.
[0011]
Furthermore, in a CT image of about 4000 × 4000 pixels that can be output by the current X-ray CT apparatus, if the data amount representing the pixel density is 2B (bytes), 4000 × 4000 × 2 = 32 MB of data. Amount. A three-dimensional model obtained by using 1000 sheets has a data amount of 32 MB × 1000 = 32 GB. In order to perform polygon reduction processing on this three-dimensional model, 32 GB × 4 = 128 GB of memory is consumed. Therefore, in order to realize the polygon reduction processing of such a scale, it is currently limited to a very large computer, and cannot be realized in reality.
[0012]
As described above, a three-dimensional model obtained by using 500 general CT images each having vertical and horizontal 512 × 512 pixels has a data amount of about 250 MB and a short processing time. However, in order to improve the measurement accuracy and the like of the obtained three-dimensional model, it is essential to increase the resolution and the number of CT images to be used.
[0013]
For this reason, conventionally, a high-resolution, large number of cross-sectional images can be used, in other words, even if the data amount of all cross-sectional images to be processed increases, a three-dimensional model with a small data amount of about 250 MB can be obtained. In addition, there has been a demand for the appearance of a three-dimensional modeling method that can be performed in a short time by a small computer.
[0014]
The present invention has been made in view of the above-described demands, and is capable of handling a relatively small amount of data and a resolution of a sectional image to be used, which is convenient for handling, regardless of an increase in the number of sectional images to be used. To provide a three-dimensional modeling method that can obtain a three-dimensional model that does not greatly deteriorate, and that can perform a process for obtaining the three-dimensional model in a short time by a small, low-cost computer. With the goal.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, a plurality of cross-sectional images obtained at intervals along a certain direction of an object to be measured can be obtained for each appropriate number of sheets without changing the arrangement thereof. Next, each group is subjected to a three-dimensional modeling process using the group of cross-sectional images constituting the group, and the obtained three-dimensional model part is adjacent to the three-dimensional model part adjacent to each group. The polygon reduction processing is performed separately except for the end face portion related to the joining with the three-dimensional model portion after the polygon reduction processing is combined according to the arrangement before the grouping and the shape of the end face portion from which the polygon reduction processing is removed. Thus, a single three-dimensional model is obtained , and polygon reduction processing is further performed on the single three-dimensional model .
[0016]
The invention according to claim 2 is characterized in that, in the invention according to claim 1, a three-dimensional modeling process based on the marching cube method is used for the three-dimensional modeling process .
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory diagram of an embodiment of a three-dimensional modeling method according to the present invention, and is a flowchart in which a schematic diagram of execution contents is added to each step.
[0019]
As shown in this figure, first, in step 101, an arbitrary number of cross-sectional images that are the basis of the three-dimensional modeling are prepared. In this case, the multiple cross-sectional images are cross-sectional images obtained at intervals along a certain direction of the object to be measured.
[0020]
Here, 1000 CT images obtained at predetermined intervals were prepared. Each CT image is 2048 × 2048 pixels in length and width, and the data amount representing the density of each pixel is 2 bytes (total data amount 8.3 MB).
[0021]
In step 102, the 1000 CT images prepared in step 101 are grouped appropriately for each number without changing the arrangement. Each group g1, g2,..., GN includes at least a number of CT images that can be processed in units of groups by processing means (not shown) used in the subsequent processing. When a fraction occurs in grouping, the CT image of the fraction is assigned to the last group gN, for example.
[0022]
In step 103, the group of cross-sectional images grouped in step 102 is sent to the processing means to perform a three-dimensional modeling process, and a three-dimensional model (three-dimensional model portion) m1, m2, m2 for each group g1, g2,. ... get mN.
[0023]
Here, the grouped sectional image groups are sequentially sent to the processing means for each of the groups g1, g2,... GN, and a three-dimensional modeling process is performed for each group. This three-dimensional modeling process is performed by parallel processing by a single processing unit having a parallel processing function, or by parallel processing by a plurality of processing units, thereby speeding up the processing. In this case, the cross-sectional image group constituting one group may be processed in parallel, or a plurality of groups may be processed in parallel.
[0024]
In any case, all the data to be processed (8.3 MB × 1000 = 8.3 GB) is divided into groups, and in this case, the processing is divided into 1 / N. For example, a personal computer or a workstation can be used.
The three-dimensional modeling process is based on sequential processing for a plurality of pixels and cross-sectional images, so that parallel processing is easy.
[0025]
The three-dimensional modeling process is preferably a three-dimensional modeling process based on the marching cube method described above, that is, based on the marching cube method or to which this is applied. This is because three-dimensional modeling for each part on the premise of merging can be easily performed as described below.
[0026]
That is, the three-dimensional modeling process is a polygonal surface that forms a model surface based on a luminance distribution in a three-dimensional space (a rectangular parallelepiped formed by four opposing pixels of two cross-sectional images) arranged in a grid. The polygonal surface is generated in units of lattices. Further, in the marching cube method, the vertices of a triangular surface, which is a generated polygonal surface, are always arranged on a lattice (each side of a three-dimensional space arranged in a lattice shape). Therefore, according to the three-dimensional modeling process based on the marching cube method, the obtained three-dimensional model can be easily divided by using a line parallel to each side of the three-dimensional space arranged in a lattice as a boundary. .
[0027]
Therefore, by the reverse method, a plurality of divided three-dimensional models (three-dimensional model portions) can be easily combined. Therefore, in step 103, three-dimensional model parts m1, m2,... MN are obtained by three-dimensional modeling processing based on the marching cube method.
[0028]
As described above, since the three-dimensional modeling process for each part on the premise of merging is easy and parallel processing is also easy, in this embodiment, the first stage in the entire processing process Therefore, high-speed processing can be easily performed with a small and low-priced computer.
[0029]
In step 104, the obtained polygon reduction processing (for each model g1, g2,..., GN for each group g1, g2,. (Processing to reduce the number of polygons to be configured).
[0030]
In this step 104, the joint end face portion with the adjacent three-dimensional model part is excluded from the polygon reduction processing target.
Figure 2 is a view showing an enlarged joint end face portions mutually 3D model portion adjacent relates to a portion above the joint end face portions (bonding which is not a polygon reduction process shown denoted by the mesh drawing 21 End face portion) .
As described above, the joint end face portions 21 and 22 of the three-dimensional model portions m1, m2,..., MN are excluded from the polygon reduction processing target because of the guarantee of joining between the adjacent three-dimensional model portions after the polygon reduction processing. Because.
[0031]
In step 105, the three-dimensional model parts m1 ′, m2 ′,... MN ′ after the polygon reduction process are combined according to the arrangement before the grouping in step 102 and the shape of the end face part (end face shape) from which the polygon reduction process is removed. To obtain a single three-dimensional model M.
[0032]
As described above, in the polygon reduction processing in step 104, the joint end surface portions 21 and 22 (see FIG. 2) with the adjacent three-dimensional model portion are excluded from the polygon reduction processing targets. That is, the joint end surface portions 21 and 22 of the three-dimensional model portions m1 ′, m2 ′,... MN ′ are not processed at all, and the actual model (the three-dimensional model portions m1, m2,. mN end face shape), and the joining of adjacent three-dimensional model parts after the polygon reduction processing is guaranteed .
Therefore, the joining end surface portions 21 and 22 of the adjacent three-dimensional model parts are smoothly and appropriately joined, and the three-dimensional model parts m1 ′, m2 ′,.
[0033]
In step 106, polygon reduction processing is further performed on the single three-dimensional model (three-dimensional model immediately after combining) M obtained in step 105.
If the polygon reduction process is performed again immediately before the completion of the three-dimensional modeling, the end face parts 21 and 22 are also subjected to the polygon reduction process, and the end face parts 21 and 22 are also reduced in the three-dimensional model (model shape is reduced). While maintaining as much as possible, a three-dimensional model ( M ′ ) in which the number of polygons constituting the model is reduced is obtained. That is, the three-dimensional modeling according to the present embodiment is completed.
[0034]
Specifically, small polygons are concentrated and arranged in a complicated shape, in other words, a highly accurate three-dimensional model M ′ reflecting the resolution of a high-resolution CT image is relatively small and convenient for handling. It can be obtained with a data amount, for example, a data amount of about a general CT image (250 MB).
[0035]
Like the three-dimensional modeling process, the polygon reduction process can be easily performed in parallel, and the three-dimensional model parts m1 ′, m2 ′,... MN ′ can be easily combined. Therefore, in the present embodiment, high-speed processing can be easily performed with a small and low-cost computer not only from the first stage to the three-dimensional modeling process in the entire processing process but also to the final stage.
[0036]
In the above-described embodiment, an X-ray CT image is taken as an example of a cross-sectional image, but other cross-sectional images (tomographic images) such as an MRI image may be used. Further, it may be a cross-sectional image stored in a storage device, or may be a cross-sectional image sent in real time from various cross-sectional image generation apparatuses such as an X-ray CT apparatus or a communication line.
[0037]
In the present invention, since the cross-sectional image is a processing target, the type and size of the object to be measured that gives the cross-sectional image are not limited.
[0038]
【The invention's effect】
As described above, according to the present invention, when a three-dimensional model is configured using a plurality of cross-sectional images of the object to be measured, the plurality of cross-sectional images are appropriately grouped by number, and the cross-sectional images of each group are obtained. A three-dimensional modeling process is performed for each group to obtain a three-dimensional model portion. Thereafter, polygon reduction processing is performed on each three-dimensional model portion, and the three-dimensional model portion after the polygon reduction processing is combined according to the shape of the end face portion (end face shape) from which the arrangement before grouping and the polygon reduction processing are removed. Thus, a single three-dimensional model is obtained , and polygon reduction processing is further performed on the single three-dimensional model .
[0039]
That is, since the three-dimensional modeling process that requires a lot of processing time is performed for each of the grouped cross-sectional image groups, even if the amount of data and the number of cross-sectional images to be used increase, the small-scale (small size) , Low cost) can be done in a short time. In addition, since the polygon reduction process is also performed on a partial three-dimensional model (three-dimensional model part), it can be performed in a short time by a small computer as in the three-dimensional modeling process. Furthermore, these three-dimensional modeling processing and polygon reduction processing can be easily performed in parallel, and the processing speed can be increased from this point. Such an effect becomes more remarkable as the resolution and the number of cross-sectional images to be processed increase.
[0040]
Processing related to grouping and 3D model uniting other than 3D modeling processing and polygon reduction processing is significantly easier than 3D modeling processing and polygon reduction processing. Therefore, according to the present invention, high-speed processing can be easily performed with a small-scale computer over the entire process of three-dimensional modeling.
[0041]
Also, by performing polygon reduction processing, despite the increase in the amount of data and the number of cross-sectional images to be used, the resolution of the cross-sectional images to be used is relatively small and the amount of data that is convenient for handling is greatly impaired. It is possible to obtain a three-dimensional model without any. In particular, in the present invention, for the polygon reduction processing to be performed first, the end face portion related to the joint with the adjacent three-dimensional model portion is excluded from the object, thereby guaranteeing the joint between the adjacent three-dimensional model portions after the polygon reduction processing. As a result , the joining end face portions are joined smoothly and properly, and the three-dimensional model portions can be combined without any mismatch.
[0042]
By further performing polygon reduction processing on a single three-dimensional model, the polygonal reduction processing is performed on the end face portion that was previously excluded from the polygon reduction processing target, and the reduced data amount of the end face portion is also reduced. A three-dimensional model (a three-dimensional model in which the number of polygons constituting the model is reduced while maintaining the model shape as much as possible) is obtained. That is, the three-dimensional modeling according to the present invention is completed.
[0043]
Moreover, if the 3D modeling process based on the marching cube method is used for the 3D modeling process for each cross-sectional image group of each group, it becomes possible to easily combine the obtained 3D model parts, The processing can be further speeded up.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an embodiment of a three-dimensional modeling method according to the present invention.
FIG. 2 is an enlarged view showing joint end surface portions of adjacent three-dimensional model portions.
[Explanation of symbols]
gN CT image group m1, m2, ... mN 3D model part m1 ', m2', ... mN '3D model part M after polygon reduction processing Single 3D model M' polygon (immediately after coalescence) 3D model after reduction processing

Claims (2)

被測定物の一定方向に沿って間隔を置いて得られた複数枚の断面像を、その配列を変えることなく適宜枚数毎にグループ分けし、
次に、各グループ毎にそのグループを構成する断面像群を用いて3次元モデル化処理を行い、
得られた各グループ毎の3次元モデル部に対し、隣接する3次元モデル部との接合に係わる端面部分を除いて各別にポリゴン削減処理を行い、
そのポリゴン削減処理後の3次元モデル部を、前記グループ分け前の配列及びポリゴン削減処理が除かれた前記端面部分の形状に従って合体させ単体の3次元モデルを得
この単体の3次元モデルに対して更にポリゴン削減処理を行うことを特徴とする3次元モデル化方法。
A plurality of cross-sectional images obtained at intervals along a certain direction of the object to be measured are appropriately grouped for each number of sheets without changing the arrangement,
Next, for each group, a three-dimensional modeling process is performed using the group of cross-sectional images constituting the group,
The obtained 3D model part for each group is subjected to polygon reduction processing separately except for the end face part related to the joining with the adjacent 3D model part,
The three-dimensional model part after the polygon reduction processing is united according to the shape before the grouping and the shape of the end face part from which the polygon reduction processing has been removed to obtain a single three-dimensional model ,
A three-dimensional modeling method characterized by further performing polygon reduction processing on the single three-dimensional model .
3次元モデル化処理に、マーチングキューブ法に基づく3次元モデル化処理を用いることを特徴とする請求項1に記載の3次元モデル化方法。 The three-dimensional modeling method according to claim 1, wherein a three-dimensional modeling process based on a marching cube method is used for the three-dimensional modeling process.
JP2001050406A 2001-02-26 2001-02-26 3D modeling method Expired - Fee Related JP3690501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001050406A JP3690501B2 (en) 2001-02-26 2001-02-26 3D modeling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001050406A JP3690501B2 (en) 2001-02-26 2001-02-26 3D modeling method

Publications (2)

Publication Number Publication Date
JP2002259945A JP2002259945A (en) 2002-09-13
JP3690501B2 true JP3690501B2 (en) 2005-08-31

Family

ID=18911365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001050406A Expired - Fee Related JP3690501B2 (en) 2001-02-26 2001-02-26 3D modeling method

Country Status (1)

Country Link
JP (1) JP3690501B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3967626B2 (en) * 2002-04-30 2007-08-29 独立行政法人科学技術振興機構 Image data compression processing method and image processing apparatus
JP4211704B2 (en) * 2004-07-27 2009-01-21 トヨタ自動車株式会社 Cast hole measurement method
CN106738934B (en) * 2016-12-28 2021-03-05 海尔集团技术研发中心 3D printing model consumable consumption calculation method and system

Also Published As

Publication number Publication date
JP2002259945A (en) 2002-09-13

Similar Documents

Publication Publication Date Title
US6208347B1 (en) System and method for computer modeling of 3D objects and 2D images by mesh constructions that incorporate non-spatial data such as color or texture
JP3768923B2 (en) 3D computer modeling device
KR101186295B1 (en) Method and Apparatus for rendering 3D graphic object
US6791540B1 (en) Image processing apparatus
TWI330782B (en) Subdividing geometry images in graphics hardware
US8115767B2 (en) Computer graphics shadow volumes using hierarchical occlusion culling
US9626797B2 (en) Generating a consensus mesh from an input set of meshes
US8725466B2 (en) System and method for hybrid solid and surface modeling for computer-aided design environments
JP4913823B2 (en) A device to accelerate the processing of the extended primitive vertex cache
US6016153A (en) Method to convert non-manifold polyhedral surfaces into manifold surfaces
JP2002501639A (en) Adaptive mesh refinement method and apparatus
US20090153577A1 (en) Method and system for texturing of 3d model in 2d environment
JP2013507679A (en) Method and system capable of 3D printing of 3D object model
JP2002501640A (en) Adaptive mesh refinement method and apparatus
US8384715B2 (en) View-dependent rendering of parametric surfaces
JP3892016B2 (en) Image processing apparatus and image processing method
JP3265879B2 (en) 3D orthogonal grid data generator
JP5372241B2 (en) Image display device
JP3690501B2 (en) 3D modeling method
Dyken et al. Semi‐Uniform Adaptive Patch Tessellation
CN109155074B (en) System and method for seamlessly rendering points
US8274513B1 (en) System, method, and computer program product for obtaining a boundary attribute value from a polygon mesh, during voxelization
JP2655056B2 (en) Texture data generator
JP4292645B2 (en) Method and apparatus for synthesizing three-dimensional data
Rose et al. Interactive visualization of large finite element models.

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees