JP2002259945A - Three dimensional modeling method - Google Patents

Three dimensional modeling method

Info

Publication number
JP2002259945A
JP2002259945A JP2001050406A JP2001050406A JP2002259945A JP 2002259945 A JP2002259945 A JP 2002259945A JP 2001050406 A JP2001050406 A JP 2001050406A JP 2001050406 A JP2001050406 A JP 2001050406A JP 2002259945 A JP2002259945 A JP 2002259945A
Authority
JP
Japan
Prior art keywords
dimensional model
dimensional
cross
dimensional modeling
sectional images
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001050406A
Other languages
Japanese (ja)
Other versions
JP3690501B2 (en
Inventor
Hiroyuki Ishii
博行 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001050406A priority Critical patent/JP3690501B2/en
Publication of JP2002259945A publication Critical patent/JP2002259945A/en
Application granted granted Critical
Publication of JP3690501B2 publication Critical patent/JP3690501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Image Processing (AREA)
  • Image Generation (AREA)
  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a three dimensional model with favorable resolution from small data volume even when data volume and the number of cross-sectional images increase, and provide a process of providing the three dimensional model in a short time by a small and inexpensive computer. SOLUTION: When composing the three dimensional model by a plurality of cross-sectional images of a measured object, the plurality of cross-sectional images are divided into groups per suitable numbers, a three dimensional modeling process is carried out per each group, and three dimensional model parts m1, m2, etc., mN are respectively acquired. Then, a polygon reducing process is carried out in each three dimensional model part, and a single three dimensional model M is acquired by coalescing them. Since joint end face portions between adjacent three dimensional model parts are excluded from the polygon reducing process and they are not deformed, coalescence is smooth.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】本発明は、被測定物の複数枚の断面像を用
いて3次元モデルを構成する3次元モデル化方法に関す
るものである。
The present invention relates to a three-dimensional modeling method for constructing a three-dimensional model using a plurality of cross-sectional images of an object to be measured.

【0002】[0002]

【従来の技術】従来のこの種の方法には、例えば、特開
平11−328442号公報に記載のものがある。これ
は、被測定物の一定方向に沿って間隔を置いて得られた
複数枚の断面像中の隣接する2枚の断面像の対向する各
4画素の輝度値(密度)を頂点に与えた立方体ないし直
方体を設定し、その各頂点の輝度値としきい値との比較
結果に基づき三角形面を生成するマーチングキューブ法
を用いた補間面形成処理により3次元モデルを構成する
方法である。
2. Description of the Related Art A conventional method of this kind is disclosed, for example, in Japanese Patent Application Laid-Open No. H11-328442. This gives the brightness value (density) of each of four opposing pixels of two adjacent cross-sectional images in a plurality of cross-sectional images obtained at intervals along a certain direction of the DUT to the apex. This is a method of setting a cube or a rectangular parallelepiped, and constructing a three-dimensional model by an interpolation surface forming process using a marching cube method for generating a triangular surface based on a comparison result between the luminance value of each vertex and a threshold value.

【0003】なお、マーチングキューブ法については、
W.E.Lorensen及びH.E.Cline著「Marching Cubes:A Hig
h Resolution 3D Surface Reconstruction Algorithm」
(1987;Computer Graphics 21(4);pp163-169)に詳述
されている。
[0003] The marching cube method,
"Marching Cubes: A Hig" by WELorensen and HECline
h Resolution 3D Surface Reconstruction Algorithm ''
(1987; Computer Graphics 21 (4); pp163-169).

【0004】このような3次元モデル化方法によれば、
人手を介さず、コンピュータの演算処理のみで容易に3
次元モデルを構成できる利点がある。
According to such a three-dimensional modeling method,
Easy and simple operation only by computer processing without human intervention
There is an advantage that a dimensional model can be configured.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記従来
技術では、断面像が高解像度、多数枚になると、そのデ
ータ量に比例して、得られる3次元モデルのデータ量も
大きくなり、処理時間も増大する。このことは、マーチ
ングキューブ法が1ボクセル(断面像の1画素)単位で
の処理であることから、特に顕著である。
However, in the above-mentioned prior art, when the number of cross-sectional images is high, the number of obtained three-dimensional models becomes large and the processing time increases in proportion to the data amount. I do. This is particularly remarkable because the marching cube method is a processing in units of one voxel (one pixel of a cross-sectional image).

【0006】以下、これにつき説明する。いま、断面像
がX線CT画像(以下、CT画像と略記する。)であ
り、1枚が縦横512×512画素の一般のCT画像を
500枚使用して3次元モデルを得たとき、そのデータ
量が250MBであったとする。
Hereinafter, this will be described. Now, when a cross-sectional image is an X-ray CT image (hereinafter, abbreviated as a CT image) and one image is obtained by using 500 general CT images of 512 × 512 pixels in length and width, a three-dimensional model is obtained. It is assumed that the data amount is 250 MB.

【0007】これによると、1枚が縦横2048×20
48画素の高解像度のCT画像を1000枚使用して3
次元モデルを得たときには、その3次元モデルは、(2
048/512)×(2048/512)×(1000
/500)=32から、上記3次元モデルの32倍のデ
ータ量となる。なお、各画素の濃度を表すデータ量は同
じであるとする。
According to this, one sheet is 2048 × 20
Using 1000 high-resolution 48-pixel CT images, 3
When a three-dimensional model is obtained, the three-dimensional model is (2
048/512) × (2048/512) × (1000
/ 500) = 32, the data amount is 32 times that of the three-dimensional model. It is assumed that the data amount representing the density of each pixel is the same.

【0008】すなわち、縦横2048×2048画素の
高解像度のCT画像を1000枚使用して得られる3次
元モデルは、250MB×32=8000MB、つまり
8GBという多大なデータ量となる。このことは、処理
時間の増大をも意味し、また、その後の取扱い、例えば
このような3次元モデルの蓄積記録やCAD、CAMあ
るいはCAE等による当該モデルの再利用や加工におい
て、記録媒体の容量を圧迫したり、種々の演算に要する
時間を増大させたりすることになった。
That is, a three-dimensional model obtained by using 1000 high-resolution CT images of 2048 × 2048 pixels vertically and horizontally has a large data amount of 250 MB × 32 = 8000 MB, that is, 8 GB. This means an increase in the processing time, and in subsequent handling, for example, storage and recording of such a three-dimensional model, and reuse or processing of the model by CAD, CAM, CAE, or the like, the capacity of the recording medium. Or the time required for various calculations is increased.

【0009】そこで、得られた3次元モデルに対してポ
リゴン削減を行うことも考えられる。ポリゴン削減は、
モデル形状を可能な限り維持しつつ、そのモデルを構成
するポリゴンの数を削減する手法であり(GARLAND,M. a
nd HECKBERT, P. S. SurfaceSimplification using Qua
dric Error Metrics. Proceedings of SIGGRAPH 97.In
Computer Graphics Proceedings,Annual Conference Se
ries, 1997, ACM SIGGRAPH, pp.209-216 等、参照)、
データ量の縮減に役立つ。
Therefore, it is conceivable to perform polygon reduction on the obtained three-dimensional model. Polygon reduction is
This is a method to reduce the number of polygons that make up the model while maintaining the model shape as much as possible (GARLAND, M. a
nd HECKBERT, PS SurfaceSimplification using Qua
dric Error Metrics. Proceedings of SIGGRAPH 97.In
Computer Graphics Proceedings, Annual Conference Se
ries, 1997, ACM SIGGRAPH, pp.209-216 etc.),
Useful for reducing data volume.

【0010】しかし、ポリゴン削減処理は、元モデルの
データ量の何倍もの、例えば4倍ものメモリを消費す
る。このため、8GBの3次元モデルに対してポリゴン
削減処理をするには、メモリを32GB搭載した高価な
コンピュータが必要となり、実用的でない。
However, the polygon reduction process consumes many times, for example, four times as much memory as the data amount of the original model. For this reason, an expensive computer equipped with 32 GB of memory is required to perform polygon reduction processing on an 8 GB three-dimensional model, which is not practical.

【0011】更に、現在のX線CT装置で出力可能の縦
横4000×4000画素程度のCT画像にあっては、
画素濃度を表すデータ量を2B(バイト)としたとき、
4000×4000×2=32MBのデータ量となる。
これを1000枚使用して得られる3次元モデルは、3
2MB×1000=32GBのデータ量となり、この3
次元モデルに対してポリゴン削減処理をするには、32
GB×4=128GBのメモリを消費する。したがっ
て、このような規模のポリゴン削減処理を実現するに
は、現在のところ超大型コンピュータに限られ、現実に
は実現不可能となっていた。
Further, in a CT image of about 4000 × 4000 pixels which can be output by a current X-ray CT apparatus,
When the data amount representing the pixel density is 2B (byte),
The data amount is 4000 × 4000 × 2 = 32 MB.
The three-dimensional model obtained by using 1000 of these is 3
The data amount becomes 2 MB × 1000 = 32 GB.
To perform polygon reduction processing on a two-dimensional model, 32
GB × 4 = 128 GB of memory is consumed. Therefore, realizing polygon reduction processing of such a scale is limited to a very large computer at present, and has not been practically feasible.

【0012】上述したように、1枚が縦横512×51
2画素の一般のCT画像を500枚使用して得られた3
次元モデルでは、データ量が250MB程度であり、処
理時間も短くて済む。しかし、得られる3次元モデルの
計測精度等の向上のためには、使用するCT画像の高解
像度化、多数枚化は必須である。
As described above, one sheet is 512.times.51
3 obtained by using 500 general CT images of 2 pixels
In the dimensional model, the data amount is about 250 MB, and the processing time is short. However, in order to improve the measurement accuracy and the like of the obtained three-dimensional model, it is necessary to increase the resolution and the number of CT images used.

【0013】このため従来から、高解像度、多数枚の断
面像を用いて、換言すれば、処理対象の全断面像のデー
タ量が増えても、250MB程度の少ないデータ量の3
次元モデルを得ることができ、またその処理も、小規模
のコンピュータにより短時間で行える3次元モデル化方
法の出現が要望されていた。
For this reason, conventionally, even if the data amount of all cross-sectional images to be processed is increased by using a high-resolution, large number of cross-sectional images, in other words, a small data amount of about 250 MB
There has been a demand for the appearance of a three-dimensional modeling method that can obtain a three-dimensional model and can also process the same in a short time with a small computer.

【0014】本発明は、上記のような要望に鑑みなされ
たもので、使用する断面像のデータ量枚数の増大に拘わ
らず、取扱いに便利な、比較的少ないデータ量の、しか
も使用する断面像の解像度を大きく損なうことのない3
次元モデルを得ることができ、更に、その3次元モデル
を得るための処理も、小型、低価格のコンピュータによ
って短時間で行うことのできる3次元モデル化方法を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned demands, and has a relatively small data amount and is easy to handle, despite the increase in the number of cross-sectional image data used. 3 which does not greatly reduce the resolution of
It is an object of the present invention to provide a three-dimensional modeling method that can obtain a three-dimensional model and can also perform a process for obtaining the three-dimensional model in a short time by a small and inexpensive computer.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載の発明は、被測定物の一定方向に沿
って間隔を置いて得られた複数枚の断面像を、その配列
を変えることなく適宜枚数毎にグループ分けし、次に、
各グループ毎にそのグループを構成する断面像群を用い
て3次元モデル化処理を行い、得られた各グループ毎の
3次元モデル部に対し、隣接する3次元モデル部との接
合に係わる端面部分を除いて各別にポリゴン削減処理を
行い、そのポリゴン削減処理後の3次元モデル部を、前
記グループ分け前の配列に従って合体させ、単体の3次
元モデルを得ることを特徴とする。
In order to achieve the above object, according to the first aspect of the present invention, a plurality of cross-sectional images obtained at intervals along a certain direction of an object to be measured are obtained. Grouping by the number of sheets appropriately without changing the arrangement,
For each group, a three-dimensional modeling process is performed using a group of cross-sectional images constituting the group, and the obtained three-dimensional model part for each group is subjected to an end face portion related to joining with an adjacent three-dimensional model part. , Except that the three-dimensional model sections after the polygon reduction processing are united according to the arrangement before the grouping to obtain a single three-dimensional model.

【0016】請求項2に記載の発明は、請求項1に記載
の発明において、単体の3次元モデルに対して更にポリ
ゴン削減処理を行うことを特徴とする。
According to a second aspect of the present invention, in the first aspect, a polygon reduction process is further performed on a single three-dimensional model.

【0017】請求項3に記載の発明は、請求項1又は2
に記載の発明において、3次元モデル化処理に、マーチ
ングキューブ法に基づく3次元モデル化処理を用いるこ
とを特徴とする。
According to a third aspect of the present invention, there is provided the first or second aspect.
In the invention described in (1), a three-dimensional modeling process based on a marching cube method is used for the three-dimensional modeling process.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づき説明する。図1は、本発明による3次元モデル
化方法の一実施形態の説明図で、実行内容の概略図を各
ステップに付記して示すフローチャートである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory diagram of one embodiment of a three-dimensional modeling method according to the present invention, and is a flowchart showing a schematic diagram of execution contents with each step added thereto.

【0019】この図に示すように、まずステップ101
において、3次元モデル化の元となる任意の多数枚の断
面像を準備する。この場合、多数枚の断面像は、被測定
物の一定方向に沿って間隔を置いて得られた断面像であ
る。
As shown in FIG.
In, an arbitrary number of cross-sectional images serving as a basis for three-dimensional modeling are prepared. In this case, the multiple cross-sectional images are cross-sectional images obtained at intervals along a certain direction of the DUT.

【0020】ここでは、所定間隔を置いて得られた10
00枚のCT画像を準備した。各CT画像は、縦横20
48×2048画素で、各画素の濃度を表すデータ量が
2バイト(全データ量8.3MB)である。
Here, 10 obtained at a predetermined interval are obtained.
00 CT images were prepared. Each CT image has a length and width of 20
It is 48 × 2048 pixels, and the data amount representing the density of each pixel is 2 bytes (the total data amount is 8.3 MB).

【0021】ステップ102では、ステップ101で準
備された1000枚のCT画像を、その配列を変えるこ
となく適宜枚数毎にグループ分けする。各グループg
1,g2,… gNには、以後の処理を行う場合に使用
する処理手段(図示せず)により、少なくとも各グルー
プ単位で処理可能な程度の枚数のCT画像が含まれる。
グループ分けにおいて端数が生じた場合は、その端数の
CT画像は、例えば最後のグループgNに割り当てる。
In step 102, the 1000 CT images prepared in step 101 are appropriately grouped into groups without changing the arrangement. Each group g
1, g2,... GN include at least as many CT images as can be processed in each group by a processing unit (not shown) used when performing subsequent processing.
If a fraction occurs in the grouping, the fractional CT image is assigned to, for example, the last group gN.

【0022】ステップ103では、ステップ102でグ
ループ分けされた断面像群を処理手段に送って3次元モ
デル化処理を行い、グループg1,g2,… gN毎の
3次元モデル(3次元モデル部)m1,m2,… mN
を得る。
In step 103, the group of sectional images grouped in step 102 is sent to the processing means to perform a three-dimensional modeling process, and a three-dimensional model (three-dimensional model part) m1 for each of the groups g1, g2,. , M2, ... mN
Get.

【0023】ここでは、グループ分けされた断面像群は
処理手段にグループg1,g2,…gN毎に順次送ら
れ、各グループ単位で3次元モデル化処理が行われる。
この3次元モデル化処理は、並列処理機能を有する単一
の処理手段による並列処理、あるいは複数の処理手段に
よる並列処理によって行われ、処理の高速化が図られて
いる。この場合、1つのグループを構成する断面像群に
ついて並列処理してもよく、あるいは複数のグループに
ついて並列処理してもよい。
Here, the group of cross-sectional images is sequentially sent to the processing means for each of the groups g1, g2,... GN, and a three-dimensional modeling process is performed for each group.
The three-dimensional modeling process is performed by parallel processing by a single processing unit having a parallel processing function, or by parallel processing by a plurality of processing units, and the processing speed is increased. In this case, parallel processing may be performed on a group of cross-sectional images forming one group, or parallel processing may be performed on a plurality of groups.

【0024】いずれにしても、全処理対象データ(8.
3MB×1000=8.3GB)につき、グループ分け
して、ここでは1/Nに分けて処理するので、処理手段
として、小型、低価格のコンピュータ、例えばパーソナ
ルコンピュータやワークステーションを用いることが可
能となる。なお3次元モデル化処理は、複数の画素・断
面像に対する逐次処理を基本としているので並列処理化
は容易である。
In any case, all data to be processed (8.
(3 MB × 1000 = 8.3 GB), the data is divided into groups and processed in 1 / N here. Therefore, it is possible to use a small and inexpensive computer such as a personal computer or a workstation as the processing means. Become. Note that the three-dimensional modeling process is based on a sequential process for a plurality of pixels and cross-sectional images, so that parallel processing is easy.

【0025】また3次元モデル化処理は、前掲マーチン
グキューブ法に基づいた、すなわちマーチングキューブ
法による、又はこれを適用した3次元モデル化処理であ
ることが望ましい。合体を前提とした部分毎の3次元モ
デル化が、以下に述べるように容易に行い得るからであ
る。
The three-dimensional modeling process is preferably a three-dimensional modeling process based on the marching cube method described above, that is, by the marching cube method or by applying the same. This is because three-dimensional modeling for each part on the premise of merging can be easily performed as described below.

【0026】すなわち、3次元モデル化処理は、格子状
に並んだ三次元空間(2枚の断面像の対向する各4画素
で形成される直方体)上の輝度分布に基づいて、モデル
面をなす多角形面を生成するアルゴリズムにより行われ
るが、上記多角形面は格子単位で生成される。また、マ
ーチングキューブ法では、生成される多角形面である三
角形面の頂点は必ず格子(格子状に並んだ三次元空間の
各辺)上に並ぶ。このことから、マーチングキューブ法
に基づいた3次元モデル化処理によれば、得られる3次
元モデルは格子状に並んだ三次元空間の各辺に平行な線
を境界にして容易に分割可能となる。
That is, the three-dimensional modeling process forms a model surface based on a luminance distribution in a three-dimensional space (a rectangular parallelepiped formed by four opposing pixels of two cross-sectional images) arranged in a grid. This is performed by an algorithm for generating a polygonal surface, and the polygonal surface is generated on a grid basis. In the marching cube method, vertices of a generated triangular surface, which is a polygonal surface, are always arranged on a lattice (each side of a three-dimensional space arranged in a lattice). From this, according to the three-dimensional modeling process based on the marching cube method, the obtained three-dimensional model can be easily divided with a line parallel to each side of the three-dimensional space arranged in a lattice as a boundary. .

【0027】したがってその逆の手法により、分割され
ている複数の3次元モデル(3次元モデル部)を容易に
合体させることが可能となる。そこで、このステップ1
03では、マーチングキューブ法に基づいた3次元モデ
ル化処理によって3次元モデル部m1,m2,… mN
を得るようにした。
Therefore, by the reverse method, a plurality of divided three-dimensional models (three-dimensional model parts) can be easily combined. Therefore, this step 1
03, three-dimensional model parts m1, m2,... MN by three-dimensional modeling processing based on the marching cube method.
I tried to get.

【0028】なお、このように、合体を前提とした部分
毎の3次元モデル化処理が容易であり、また、並列処理
化も容易であることから、本実施形態においては、全処
理プロセス中の最初の段階から小型、低価格のコンピュ
ータにて容易に高速処理が可能となる。
As described above, since the three-dimensional modeling process for each part on the premise of uniting is easy and the parallel processing is easy, in the present embodiment, all the processes in the entire process are performed. From the beginning, high-speed processing can be easily performed with a small-sized, low-cost computer.

【0029】ステップ104では、得られた各グループ
g1,g2,… gN毎の3次元モデル部m1,m2,
… mNに対し、各別に前掲ポリゴン削減処理(モデル
形状を可能な限り維持しつつ、そのモデルを構成するポ
リゴンの数を削減する処理)を行う。
In step 104, the three-dimensional model parts m1, m2,... For each of the obtained groups g1, g2,.
... For each mN, the above-mentioned polygon reduction processing (processing for reducing the number of polygons constituting the model while maintaining the model shape as much as possible) is performed.

【0030】このステップ104において、隣接する3
次元モデル部との接合端面部分は、ポリゴン削減処理の
対象から除かれる。図2は隣接する3次元モデル部の接
合端面部分相互を拡大して示す図で、図中21,22の
メッシュを付して示す部分がポリゴン削減処理されてい
ない接合端面部分である。このように、3次元モデル部
m1,m2,… mNの各接合端面部分21,22がポ
リゴン削減処理対象から除外されるのは、ポリゴン削減
処理後の隣接する3次元モデル部相互の接合保証のため
である。
In this step 104, the adjacent 3
The end face of the joint with the dimensional model part is excluded from the target of the polygon reduction processing. FIG. 2 is an enlarged view of the joint end face portions of the adjacent three-dimensional model portions. In FIG. 2, portions indicated by meshes 21 and 22 are joint end face portions that have not been subjected to polygon reduction processing. The reason why the joint end face portions 21 and 22 of the three-dimensional model parts m1, m2,... MN are excluded from the polygon reduction processing target is that the joint assurance between adjacent three-dimensional model parts after the polygon reduction processing is ensured. That's why.

【0031】ステップ105では、ポリゴン削減処理後
の3次元モデル部m1',m2',…mN'を、ステップ
102におけるグループ分け前の配列に従って合体さ
せ、単体の3次元モデルMを得る。
In step 105, the three-dimensional model parts m1 ', m2',... MN 'after the polygon reduction processing are combined in accordance with the arrangement before grouping in step 102 to obtain a single three-dimensional model M.

【0032】上述したように、ステップ104における
ポリゴン削減処理において、隣接する3次元モデル部と
の接合端面部分21,22(図2参照)はポリゴン削減
処理の対象から除かれている。すなわち、3次元モデル
部m1',m2',… mN'の各接合端面部分21,22
は、何ら処理されておらず、実モデル(ステップ103
で得られた3次元モデル部m1,m2,… mNの端面
形状)のままの状態となっている。したがって、隣接す
る3次元モデル部の接合端面部分21,22相互は円
滑、適正に接合され、相互に不整合のない3次元モデル
部m1',m2',… mN'の合体が行われる。
As described above, in the polygon reduction processing in step 104, the joint end face portions 21 and 22 (see FIG. 2) with the adjacent three-dimensional model are excluded from the polygon reduction processing. That is, the joining end face portions 21, 22 of the three-dimensional model parts m1 ', m2',.
Is not processed at all, and the real model (step 103
, The end face shapes of the three-dimensional model parts m1, m2,..., MN) obtained as described above. Therefore, the joining end face portions 21 and 22 of the adjacent three-dimensional model portions are smoothly and appropriately joined to each other, and the three-dimensional model portions m1 ′, m2 ′,.

【0033】ステップ106では、ステップ105で得
られた単体の3次元モデル(合体直後の3次元モデル)
Mに対して更にポリゴン削減処理を行う。3次元モデル
化の完了直前にポリゴン削減処理を再び行えば、ステッ
プ105で得られた単体の3次元モデルMの形状を極力
損なうことなく、所望のデータ量、特に縮減されたデー
タ量の3次元モデルM'が得られる。
In step 106, the simple three-dimensional model obtained in step 105 (the three-dimensional model immediately after merging)
Further, polygon reduction processing is performed on M. If the polygon reduction processing is performed again immediately before the completion of the three-dimensional modeling, the desired data amount, particularly the reduced three-dimensional data amount, can be obtained without impairing the shape of the single 3D model M obtained in step 105 as much as possible. A model M 'is obtained.

【0034】具体的には、形状の複雑なところに小さな
ポリゴンを集中配置させた、換言すれば、高解像度CT
画像の分解能を反映させた精度の高い3次元モデルM'
を、取扱いに便利な比較的少ないデータ量、例えば一般
のCT画像(250MB)程度のデータ量にて得ること
ができる。
More specifically, small polygons are concentrated and arranged in a complicated shape, in other words, high-resolution CT
Highly accurate three-dimensional model M 'reflecting image resolution
Can be obtained with a relatively small amount of data convenient for handling, for example, a data amount of about a general CT image (250 MB).

【0035】なお、3次元モデル化処理と同様、ポリゴ
ン削減処理も並列処理化が容易であり、また、3次元モ
デル部m1',m2',… mN'の合体処理も容易に行え
る。したがって、本実施形態においては、全処理プロセ
ス中の最初の段階から3次元モデル化処理までのみなら
ず、最終段階に至るまで、小型、低価格のコンピュータ
にて容易に高速処理が可能である。
Similar to the three-dimensional modeling process, the polygon reduction process can be easily parallelized, and the three-dimensional model portions m1 ', m2',... MN 'can be easily combined. Therefore, in this embodiment, high-speed processing can be easily performed by a small-sized and low-cost computer not only from the initial stage in the entire processing process to the three-dimensional modeling process but also to the final stage.

【0036】なお上述実施形態では、断面像としてX線
CT画像を例に採って説明したが、MRI画像等、その
他の断面像(断層像)であってもよい。また、記憶装置
に格納済の断面像であっても、あるいはX線CT装置等
の各種断面像生成装置や通信回線からリアルタイムで送
られてくる断面像であってもよい。
In the above-described embodiment, an X-ray CT image has been described as an example of a cross-sectional image. However, another cross-sectional image (tomographic image) such as an MRI image may be used. Further, the image may be a cross-sectional image stored in a storage device, or a cross-sectional image transmitted in real time from a various cross-sectional image generating device such as an X-ray CT device or a communication line.

【0037】また本発明は、断面像を処理対象としてい
るので、断面像を与える被測定物の種類や大きさ等は限
定されない。
In the present invention, since a cross-sectional image is to be processed, the type, size, and the like of the object to be measured that provide the cross-sectional image are not limited.

【0038】[0038]

【発明の効果】以上述べたように本発明では、被測定物
の複数枚の断面像を用いて3次元モデルを構成するとき
に、上記複数枚の断面像を適宜枚数毎にグループ分け
し、各グループの断面像群毎に3次元モデル化処理を行
って各々3次元モデル部を得る。その後、各3次元モデ
ル部についてポリゴン削減処理を行い、そのポリゴン削
減処理後の3次元モデル部を、グループ分け前の配列に
従って合体させ、単体の3次元モデルを得るようにし
た。
As described above, according to the present invention, when constructing a three-dimensional model using a plurality of cross-sectional images of an object to be measured, the plurality of cross-sectional images are appropriately grouped into groups, A three-dimensional modeling process is performed for each group of cross-sectional images to obtain a three-dimensional model part. Thereafter, polygon reduction processing is performed on each of the three-dimensional model parts, and the three-dimensional model parts after the polygon reduction processing are united according to the arrangement before grouping to obtain a single three-dimensional model.

【0039】すなわち、処理に多大な時間を要する3次
元モデル化処理を、グループ分けされた断面像群につい
て各々行うようにしたので、使用する断面像のデータ
量、枚数が増大しても、小規模(小型、低価格)のコン
ピュータによって短時間で行うことができる。またポリ
ゴン削減処理も、部分的な3次元モデル(3次元モデル
部)に対して行うので、3次元モデル化処理と同様に、
小規模のコンピュータによって短時間で行うことができ
る。更に、これら3次元モデル化処理及びポリゴン削減
処理は、並列処理化も容易であり、この点からも処理の
高速化が図れる。このような効果は、処理対象の断面像
の解像度や枚数が増大すればするほど顕著になる。
That is, the three-dimensional modeling process requiring a long time is performed for each of the group of grouped cross-sectional images. It can be performed in a short time by a computer of small scale (small size, low price). Also, since the polygon reduction processing is performed on a partial three-dimensional model (three-dimensional model part), similar to the three-dimensional modeling processing,
It can be done in a short time with a small computer. Furthermore, the three-dimensional modeling process and the polygon reduction process can be easily performed in parallel, and the speed of the process can be increased from this point as well. Such an effect becomes more remarkable as the resolution and the number of cross-sectional images to be processed increase.

【0040】3次元モデル化処理及びポリゴン削減処理
以外のグループ分けや3次元モデル部合体に係わる処理
は、3次元モデル化処理及びポリゴン削減処理に比べて
著しく容易な処理である。したがって本発明によれば、
3次元モデル化の全プロセスにわたって小規模のコンピ
ュータにて容易に高速処理が可能になる。
Processing related to grouping and merging of three-dimensional models other than the three-dimensional modeling processing and the polygon reduction processing is significantly easier than the three-dimensional modeling processing and the polygon reduction processing. Therefore, according to the present invention,
High-speed processing can be easily performed on a small-scale computer throughout the three-dimensional modeling process.

【0041】また、ポリゴン削減処理を行うことによれ
ば、使用する断面像のデータ量、枚数の増大にも拘わら
ず、取扱いに便利な比較的少ないデータ量の、しかも使
用する断面像の解像度を大きく損なうことのない3次元
モデルを得ることができる。特に本発明では、隣接する
3次元モデル部との接合に係わる端面部分を除いてポリ
ゴン削減処理を行うので、接合端面部分相互が円滑、適
正に接合され、相互に不整合のない3次元モデル部の合
体が可能となる。
Further, according to the polygon reduction processing, despite the increase in the data amount and the number of cross-sectional images to be used, a relatively small amount of data which is convenient for handling and the resolution of the cross-sectional image to be used are improved. A three-dimensional model without significant damage can be obtained. In particular, in the present invention, since the polygon reduction processing is performed except for the end face portion related to the joining with the adjacent three-dimensional model portion, the joining end face portions are smoothly and appropriately joined to each other, and the three-dimensional model portion without mutual inconsistency. Can be combined.

【0042】単体の3次元モデルに対して更にポリゴン
削減処理を行うことによれば、単体の3次元モデルの形
状を極力損なうことなく、縮減されたデータ量、すなわ
ち、取扱いに便利な比較的少ないデータ量の3次元モデ
ルが得られる。
By further performing polygon reduction processing on a single three-dimensional model, the reduced amount of data, that is, a relatively small amount of data that is convenient for handling, is maintained without losing the shape of the single three-dimensional model as much as possible. A three-dimensional model of the data volume is obtained.

【0043】また、各グループの断面像群毎の3次元モ
デル化処理に、マーチングキューブ法に基づく3次元モ
デル化処理を用いれば、これにより得られた3次元モデ
ル部を容易に合体させることが可能となり、処理の更な
る高速化が図れる。
If the three-dimensional modeling process based on the marching cube method is used for the three-dimensional modeling process for each cross-sectional image group of each group, the obtained three-dimensional model portions can be easily combined. This makes it possible to further speed up the processing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による3次元モデル化方法の一実施形態
の説明図である。
FIG. 1 is an explanatory diagram of one embodiment of a three-dimensional modeling method according to the present invention.

【図2】隣接する3次元モデル部の接合端面部分相互を
拡大して示す図である。
FIG. 2 is an enlarged view showing joint end face portions of adjacent three-dimensional model parts.

【符号の説明】[Explanation of symbols]

g1,g2,… gN CT画像グループ m1,m2,… mN 3次元モデル部 m1',m2',… mN' ポリゴン削減処理後の3次元
モデル部 M 単体(合体直後)の3次元モデル M' ポリゴン削減処理後の3次元モデル
g1, g2,... gN CT image group m1, m2,... mN 3D model section m1 ′, m2 ′,... mN ′ 3D model section after polygon reduction processing M 3D model M alone (immediately after merging) polygon 3D model after reduction processing

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被測定物の一定方向に沿って間隔を置い
て得られた複数枚の断面像を、その配列を変えることな
く適宜枚数毎にグループ分けし、 次に、各グループ毎にそのグループを構成する断面像群
を用いて3次元モデル化処理を行い、 得られた各グループ毎の3次元モデル部に対し、隣接す
る3次元モデル部との接合に係わる端面部分を除いて各
別にポリゴン削減処理を行い、 そのポリゴン削減処理後の3次元モデル部を、前記グル
ープ分け前の配列に従って合体させ、単体の3次元モデ
ルを得ることを特徴とする3次元モデル化方法。
1. A plurality of cross-sectional images obtained at intervals along a certain direction of an object to be measured are divided into groups as appropriate without changing the arrangement thereof. A three-dimensional modeling process is performed using the group of cross-sectional images constituting the group, and the obtained three-dimensional model part for each group is separately processed except for an end face part related to joining with an adjacent three-dimensional model part. A three-dimensional modeling method, comprising: performing a polygon reduction process; and combining the three-dimensional model portions after the polygon reduction process according to the arrangement before the grouping to obtain a single three-dimensional model.
【請求項2】 単体の3次元モデルに対して更にポリゴ
ン削減処理を行うことを特徴とする請求項1に記載の3
次元モデル化方法。
2. The three-dimensional model according to claim 1, wherein a polygon reduction process is further performed on a single three-dimensional model.
Dimension modeling method.
【請求項3】 3次元モデル化処理に、マーチングキュ
ーブ法に基づく3次元モデル化処理を用いることを特徴
とする請求項1又は2に記載の3次元モデル化方法。
3. The three-dimensional modeling method according to claim 1, wherein a three-dimensional modeling process based on a marching cube method is used for the three-dimensional modeling process.
JP2001050406A 2001-02-26 2001-02-26 3D modeling method Expired - Fee Related JP3690501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001050406A JP3690501B2 (en) 2001-02-26 2001-02-26 3D modeling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001050406A JP3690501B2 (en) 2001-02-26 2001-02-26 3D modeling method

Publications (2)

Publication Number Publication Date
JP2002259945A true JP2002259945A (en) 2002-09-13
JP3690501B2 JP3690501B2 (en) 2005-08-31

Family

ID=18911365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001050406A Expired - Fee Related JP3690501B2 (en) 2001-02-26 2001-02-26 3D modeling method

Country Status (1)

Country Link
JP (1) JP3690501B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003323637A (en) * 2002-04-30 2003-11-14 Japan Science & Technology Corp Image data compressing method and image processor
JP2006038625A (en) * 2004-07-27 2006-02-09 Toyota Motor Corp Blow hole measuring method
CN106738934A (en) * 2016-12-28 2017-05-31 海尔集团技术研发中心 A kind of 3D printing model consumptive material computational methods and system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003323637A (en) * 2002-04-30 2003-11-14 Japan Science & Technology Corp Image data compressing method and image processor
JP2006038625A (en) * 2004-07-27 2006-02-09 Toyota Motor Corp Blow hole measuring method
CN106738934A (en) * 2016-12-28 2017-05-31 海尔集团技术研发中心 A kind of 3D printing model consumptive material computational methods and system
CN106738934B (en) * 2016-12-28 2021-03-05 海尔集团技术研发中心 3D printing model consumable consumption calculation method and system

Also Published As

Publication number Publication date
JP3690501B2 (en) 2005-08-31

Similar Documents

Publication Publication Date Title
JP3768923B2 (en) 3D computer modeling device
Guthe et al. GPU-based trimming and tessellation of NURBS and T-Spline surfaces
US6208347B1 (en) System and method for computer modeling of 3D objects and 2D images by mesh constructions that incorporate non-spatial data such as color or texture
KR101186295B1 (en) Method and Apparatus for rendering 3D graphic object
TWI330782B (en) Subdividing geometry images in graphics hardware
US7924278B2 (en) Real-time GPU rendering of piecewise algebraic surfaces
JP4913823B2 (en) A device to accelerate the processing of the extended primitive vertex cache
US8217939B1 (en) Method and system for calculating visually improved edge voxel normals when converting polygon data to voxel data
US20060290695A1 (en) System and method to obtain surface structures of multi-dimensional objects, and to represent those surface structures for animation, transmission and display
US6016153A (en) Method to convert non-manifold polyhedral surfaces into manifold surfaces
US7280106B2 (en) Apparatus and method for generating texture maps for use in 3D computer graphics
GB2388507A (en) Interface between a parametric modelling unit and polygon based rendering system
US20110128285A1 (en) Parallel triangle tessellation
US8149237B2 (en) Information processing apparatus and program
US20030151604A1 (en) Volume rendering with contouring texture hulls
Panozzo et al. Automatic construction of quad-based subdivision surfaces using fitmaps
JP3892016B2 (en) Image processing apparatus and image processing method
JP3265879B2 (en) 3D orthogonal grid data generator
JP3690501B2 (en) 3D modeling method
US20210308936A1 (en) Three-dimensional printing of texture images
US8274513B1 (en) System, method, and computer program product for obtaining a boundary attribute value from a polygon mesh, during voxelization
Li et al. Accelerating volume rendering with texture hulls
JP3979162B2 (en) Image processing apparatus and method
JP2655056B2 (en) Texture data generator
Rose et al. Interactive visualization of large finite element models.

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees