JP3689901B2 - Biochip reader - Google Patents

Biochip reader Download PDF

Info

Publication number
JP3689901B2
JP3689901B2 JP14939999A JP14939999A JP3689901B2 JP 3689901 B2 JP3689901 B2 JP 3689901B2 JP 14939999 A JP14939999 A JP 14939999A JP 14939999 A JP14939999 A JP 14939999A JP 3689901 B2 JP3689901 B2 JP 3689901B2
Authority
JP
Japan
Prior art keywords
sample
light receiver
biochip
light
biochip reader
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14939999A
Other languages
Japanese (ja)
Other versions
JP2000338035A (en
Inventor
健雄 田名網
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP14939999A priority Critical patent/JP3689901B2/en
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to EP08160013A priority patent/EP1983331B1/en
Priority to DE60044923T priority patent/DE60044923D1/en
Priority to EP00109722A priority patent/EP1055925B1/en
Priority to DE1055925T priority patent/DE1055925T1/en
Publication of JP2000338035A publication Critical patent/JP2000338035A/en
Priority to US10/769,017 priority patent/US20040182710A1/en
Priority to US10/768,632 priority patent/US20040184960A1/en
Application granted granted Critical
Publication of JP3689901B2 publication Critical patent/JP3689901B2/en
Priority to US12/550,001 priority patent/US8264680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、DNAや蛋白質の試料に蛍光物質を標識してこれをレーザ光等で励起して蛍光を発生させ、その蛍光の波長を読取る読取装置に関し、特に小型化、低価格化、高精度化のための改善に関するものである。
【0002】
【従来の技術】
従来より、DNAや蛋白質に蛍光物質を標識しレーザ光を照射してその蛍光物質を励起し、これにより発生した蛍光を読取り、DNAや蛋白質を検出し解析する技術がある。また、この場合、バイオチップ上に蛍光物質が標識されたDNAや蛋白質をアレイ状にスポットしたバイオチップが利用される。
【0003】
バイオチップの読取りは次のようにして行われる。レーザ光を例えば横軸方向に振って照射しアレイ状の各スポットの蛍光物質を励起させ、発光した蛍光を例えば光ファイバーで集光し、これを光学フィルタを介して受光器で受光し、目的の波長を抽出する。このようにして1ライン(スポット列)の読取り動作が終わると、バイオチップを縦軸方向に駆動し、上記と同様の操作を行う。この操作を繰り返してバイオチップ全体を読取る。
【0004】
【発明が解決しようとする課題】
しかしながら、このような従来の読取装置には次のような課題があった。
1)バイオチップはスポットが多く、外形寸法が大きい。アレイ数も多い。
2)蛍光の波長を光学フィルタで分離するため、多色ではスペクトラムが各色素の濃度により混合して分離し難い。
3)自己蛍光や背景光等が混合するため定量性が悪化し、精度が悪い。
4)蛍光色に応じて光学フィルタ、受光器を切替える場合、その切替え操作に時間がかかる。
5)光学フィルタ、受光器を切替える代わりに、これらを複数個用意し同時に受光させると高速となるが、高価になるという欠点がある。
6)走査型共焦点顕微鏡を用いると、部品点数が多いため、高価で大型であり、また測定に時間がかかる。
【0005】
本発明の目的は、上記の課題を解決するもので、一挙に、小型化、低価格化、高精度化を図ることのできるバイオチップ読取装置を実現することにある。
【0006】
【課題を解決するための手段】
このような目的を達成するために、本発明では、
基板上で互いに所定の間隔だけ離れた位置に2次元状に配置された複数の試料に対してそれぞれに同時に測定光を照射し、1つの2次元の受光器で試料からの蛍光を同時に測定するバイオチップ読取装置であって、
前記試料に応じた画像における試料像間の空き領域に、対象となる試料の複数の分光情報を配置する手段を備えると共に、
分光対象領域を制限するための開口部が各試料の位置と一致するかまたは各試料の一部と一致するように構成されたことを特徴とする。
【0007】
このような構成によれば、受光器の画像の試料間に試料の分光情報が出力でき、同時多波長測定が容易に実現できる。また、多波長情報をコンパクトに得ることもできる。
また、開口部を各試料の位置と一致または各試料の一部と一致させるため、ノイズの少ない情報を容易に得ることができる。
【0014】
【発明の実施の形態】
以下図面を用いて本発明を詳しく説明する。図1は本発明の読取装置の一実施例を示す構成図である。
図において、1はレーザ光を発生する光源、2は光源からの光を平行光にするレンズ、3はダイクロイックミラー、4は対物レンズ、5は試料、6は回折格子、7はレンズ、8は受光器である。
【0015】
光源1から発生した光(励起光)はレンズ2により平行光となり、ダイクロイックミラー3で反射し、対物レンズ4を介して集光し試料5面を照射する。この照射光により試料は蛍光(励起光とは波長が異なる)を発し、その蛍光は再び対物レンズ4に逆戻りしダイクロイックミラー3に入射する。
【0016】
ダイクロイックミラー3を透過した試料からの蛍光は回折格子6で回折する。その回折角は波長に対応する。回折格子6で回折した光はレンズ7を介して受光器8上に集光する。受光器8は例えばカメラ等が使用される。
【0017】
バイオチップに、例えば図2に示すように4個の試料S1,S2,S3,S4のスポットが配置されている場合、受光器8には図3のように各試料ごとに空間的にずれた位置に波長λ1〜λnの分光画像(スペクトラム)が得られる。この分光画像は分光情報であるが、白黒カメラで十分その分光情報を測定することができる。この場合、図からも明らかなように各スポットの隙間が巧みに利用されている。
【0018】
上記実施例ではスポットがアレイ状に点在するバイオチップを対象としているが、本発明はこれに限らずライン状に配置された電気泳動パターンの蛍光パターンも対象にすることができる。その場合は、図4に示すような像が得られる。すなわち、各レーンの泳動パターン(縦軸方向)について空間的に横軸方向にずれた位置にλ1〜λnの分光画像が生じる。
【0019】
図5は本発明の他の実施例を示す構成図である。図5は直角に2枚の回折光子を配置した例である。このような構成によれば、図6に示すように2次元のスペクトラムが得られる。例えば、横軸方向(X軸方向)を100nm刻み、縦軸方向(Y軸方向)を10nm刻みとすれば、ダイナミックレンジが広く、かつ高精度の計測が可能となる。
【0020】
図7は回折格子の代わりにダイクロイックミラーを使用した場合の実施例である。これは光学フィルタと光学的シフト手段の組み合わせである。図示のように、透過波長の異なるダイクロイックミラー31,32,33(光学フィルタ)を光軸上に積み重ねる。この場合、ダイクロイックミラーを反射する光が、丁度回折格子で回折するのと同様な角度で反射するように、各ダイクロイックミラーの角度を設定しておく(光学的シフト手段に相当する)。
【0021】
図8は回折格子やダイクロイックミラーに代えて、サバール方式やマイケルソン型の非可動型のフーリエ分光手段81を用いた例である。この場合、受光器に得られる画像は、スペクトラムそのものではなく、干渉縞像である。したがって、この干渉縞像を計算手段(図示せず)によりフーリエ変換処理することによりスペクトラムが得られる。
【0022】
なお、測定には通常の蛍光顕微鏡やカメラだけでなく、共焦点や2光子方式の顕微鏡を用いると、更に高分解能となる。また、共焦点のスライス効果により個々の試料の厚みがばらついている場合でも常に一定の体積の試料を測定出来るため、定量性も向上する。
なお、この場合、共焦点顕微鏡は非走査型でもよい。
【0023】
また、図9に示すように本来の蛍光とわずかに波長が異なる自己蛍光等は、使用される試薬の特性が既知であるため、容易に除去することができる。必要なら信号スペクトルを回帰法により分離してもよい。このようにすれば、高精度、高感度化を容易に実現することができる。
【0024】
また、分光では、スリット等の遮光手段で測定領域を制限する必要がある。そのため、例えば図10に示すように、開口部Aを試料S1のある領域と一致させるか、または試料の一部と一致させることにより、面積を最も有効に使うことができる。
【0025】
これは、試料のふち部の乱れによるエラーを除去するためにも有効である。なお、開口部の形状は丸型だけでなく矩形などでもよい。
【0026】
また、図10に示すような開口部あるいは上記のような矩形型の開口部を非走査型共焦点顕微鏡のピンホールまたはスリットとして利用すると、安価かつ小型でありながら共焦点の高分解能とスライスによる定量性が得られる。
この場合、検出手段は図1に示すような分光方式に限らず、一般のフィルタ方式でもよい。
【0027】
【発明の効果】
以上説明したように本発明によれば次のような効果がある。
1)フィルタや受光器を切替えることなく多波長の蛍光を同時に測定でき、コンパクトな読取装置を実現することができる。かつまた、開口部を各試料の位置と一致または各試料の一部と一致させるため、ノイズの少ない情報を容易に得ることができる。
2)受光器上に表示されるスペクトラムの撮影は白黒カメラでよく、安価で済む。
3)受光器上に表示されるスペクトラムは、容易に2次元スペクトラムとすることもでき、高精度化が容易である。
【図面の簡単な説明】
【図1】本発明に係るバイオチップ読取装置の一実施例を示す構成図である。
【図2】バイオチップ上の試料の配列を説明するための図である。
【図3】受光器上に表示される分光情報を説明するための説明図である。
【図4】ラインアレイ状に配置された試料を測定した場合の分光情報を説明するための説明図である。
【図5】本発明の他の実施例を示す構成図である。
【図6】分光情報が2次元的に展開された場合の分光画像についての説明図である。
【図7】本発明の更に他の実施例を示す構成図である。
【図8】本発明の更に他の実施例を示す構成図である。
【図9】自己蛍光等の分布状態を示す説明図である。
【図10】試料と開口部の関係に係る説明図である。
【符号の説明】
1 光源
2 レンズ
3,31,32,33 ダイクロイックミラー
4 対物レンズ
5,S1,S2,S3,S4 試料
6,61 回折格子
7 レンズ
8 受光器
81 フーリエ分光手段
A 開口部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reading device that labels a fluorescent substance on a DNA or protein sample, excites it with a laser beam or the like to generate fluorescence, and reads the wavelength of the fluorescence. It is about the improvement for conversion.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there is a technique for labeling a fluorescent substance on DNA or protein, irradiating laser light to excite the fluorescent substance, reading the generated fluorescence, and detecting and analyzing DNA or protein. In this case, a biochip in which DNA or protein labeled with a fluorescent substance is spotted in an array on the biochip is used.
[0003]
The biochip is read as follows. For example, a laser beam is shaken and irradiated in the horizontal axis direction to excite the fluorescent material in each spot of the array, and the emitted fluorescence is collected by, for example, an optical fiber, and received by a light receiver through an optical filter. Extract the wavelength. When the reading operation for one line (spot row) is completed in this way, the biochip is driven in the vertical axis direction and the same operation as described above is performed. This operation is repeated to read the entire biochip.
[0004]
[Problems to be solved by the invention]
However, such a conventional reading apparatus has the following problems.
1) Biochip has many spots and large external dimensions. There are many arrays.
2) Since the wavelength of fluorescence is separated by an optical filter, it is difficult to separate the spectrum by mixing with the concentration of each dye in the case of multiple colors.
3) Since autofluorescence and background light are mixed, the quantitativeness is deteriorated and the accuracy is poor.
4) When the optical filter and the light receiver are switched according to the fluorescent color, the switching operation takes time.
5) Instead of switching between the optical filter and the light receiver, if a plurality of these are prepared and light is received simultaneously, the speed is increased, but there is a disadvantage that it is expensive.
6) When a scanning confocal microscope is used, the number of parts is large, so that the scanning confocal microscope is expensive and large in size and takes a long time for measurement.
[0005]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-described problems, and to provide a biochip reader that can be reduced in size, reduced in price, and improved in accuracy.
[0006]
[Means for Solving the Problems]
In order to achieve such an object, in the present invention,
A plurality of samples arranged two-dimensionally at positions spaced apart from each other by a predetermined distance on the substrate are simultaneously irradiated with measurement light, and fluorescence from the sample is simultaneously measured with one two-dimensional light receiver. A biochip reader,
With a means for arranging a plurality of spectral information of the target sample in the space between the sample images in the image corresponding to the sample ,
The opening for limiting the spectroscopic object region is configured to coincide with the position of each sample or a part of each sample .
[0007]
According to such a configuration, the spectral information of the sample can be output between the samples of the image of the light receiver, and simultaneous multi-wavelength measurement can be easily realized. In addition, multi-wavelength information can be obtained in a compact manner.
In addition, since the opening matches the position of each sample or a part of each sample, information with less noise can be easily obtained.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of a reading apparatus according to the present invention.
In the figure, 1 is a light source that generates laser light, 2 is a lens that collimates light from the light source, 3 is a dichroic mirror, 4 is an objective lens, 5 is a sample, 6 is a diffraction grating, 7 is a lens, and 8 is a lens. It is a light receiver.
[0015]
Light (excitation light) generated from the light source 1 is converted into parallel light by the lens 2, reflected by the dichroic mirror 3, condensed through the objective lens 4, and irradiated onto the surface of the sample 5. The sample emits fluorescence (having a wavelength different from that of the excitation light) by the irradiation light, and the fluorescence returns to the objective lens 4 again and enters the dichroic mirror 3.
[0016]
The fluorescence from the sample transmitted through the dichroic mirror 3 is diffracted by the diffraction grating 6. The diffraction angle corresponds to the wavelength. The light diffracted by the diffraction grating 6 is collected on the light receiver 8 through the lens 7. For example, a camera or the like is used as the light receiver 8.
[0017]
For example, when the spots of four samples S1, S2, S3, and S4 are arranged on the biochip as shown in FIG. 2, the light receiver 8 is spatially shifted for each sample as shown in FIG. A spectral image (spectrum) of wavelengths λ1 to λn is obtained at the position. Although this spectral image is spectral information, the spectral information can be measured sufficiently with a black and white camera. In this case, as clearly shown in the figure, the gaps between the spots are skillfully used.
[0018]
In the above embodiment, biochips with spots scattered in an array are targeted. However, the present invention is not limited to this, and fluorescent patterns of electrophoresis patterns arranged in a line can also be targeted. In that case, an image as shown in FIG. 4 is obtained. That is, spectral images of λ1 to λn are generated at positions spatially shifted in the horizontal axis direction with respect to the migration pattern (vertical axis direction) of each lane.
[0019]
FIG. 5 is a block diagram showing another embodiment of the present invention. FIG. 5 shows an example in which two diffracted photons are arranged at right angles. According to such a configuration, a two-dimensional spectrum is obtained as shown in FIG. For example, if the horizontal axis direction (X-axis direction) is incremented by 100 nm and the vertical axis direction (Y-axis direction) is incremented by 10 nm, measurement with a wide dynamic range and high accuracy becomes possible.
[0020]
FIG. 7 shows an embodiment in which a dichroic mirror is used instead of the diffraction grating. This is a combination of an optical filter and an optical shift means. As illustrated, dichroic mirrors 31, 32, and 33 (optical filters) having different transmission wavelengths are stacked on the optical axis. In this case, the angle of each dichroic mirror is set so that the light reflected from the dichroic mirror is reflected at the same angle as that diffracted by the diffraction grating (corresponding to the optical shift means).
[0021]
FIG. 8 shows an example in which a Savart type or Michelson type non-movable Fourier spectroscopic means 81 is used in place of the diffraction grating and the dichroic mirror. In this case, the image obtained by the light receiver is not a spectrum itself but an interference fringe image. Therefore, a spectrum can be obtained by subjecting this interference fringe image to Fourier transform processing by a calculation means (not shown).
[0022]
In addition, when using not only a normal fluorescence microscope and a camera but also a confocal or two-photon microscope, the resolution becomes higher. Further, even when the thickness of each sample varies due to the confocal slicing effect, it is possible to always measure a sample having a constant volume, so that quantitativeness is improved.
In this case, the confocal microscope may be a non-scanning type.
[0023]
In addition, as shown in FIG. 9, autofluorescence having a wavelength slightly different from the original fluorescence can be easily removed because the characteristics of the reagent used are known. If necessary, the signal spectrum may be separated by a regression method. In this way, high accuracy and high sensitivity can be easily realized.
[0024]
In spectroscopy, it is necessary to limit the measurement region with a light shielding means such as a slit. Therefore, for example, as shown in FIG. 10, the area can be used most effectively by matching the opening A with a certain region of the sample S1 or with a part of the sample.
[0025]
This is also effective for removing errors due to the disturbance of the edge of the sample. The shape of the opening may be not only a round shape but also a rectangle.
[0026]
Further, when an opening as shown in FIG. 10 or a rectangular opening as described above is used as a pinhole or slit of a non-scanning confocal microscope, it is inexpensive and small, but with high confocal resolution and slices. Quantitative properties can be obtained.
In this case, the detection means is not limited to the spectroscopic method as shown in FIG.
[0027]
【The invention's effect】
As described above, the present invention has the following effects.
1) It is possible to simultaneously measure multi-wavelength fluorescence without switching filters and light receivers, and a compact reader can be realized. In addition, since the opening matches the position of each sample or matches a part of each sample, information with less noise can be easily obtained.
2) The spectrum displayed on the light receiver can be captured with a black and white camera, and can be inexpensive.
3) The spectrum displayed on the light receiver can easily be a two-dimensional spectrum, and high accuracy is easy.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of a biochip reader according to the present invention.
FIG. 2 is a diagram for explaining the arrangement of samples on a biochip.
FIG. 3 is an explanatory diagram for explaining spectral information displayed on a light receiver;
FIG. 4 is an explanatory diagram for explaining spectral information when samples arranged in a line array are measured.
FIG. 5 is a block diagram showing another embodiment of the present invention.
FIG. 6 is an explanatory diagram of a spectral image when spectral information is developed two-dimensionally.
FIG. 7 is a block diagram showing still another embodiment of the present invention.
FIG. 8 is a block diagram showing still another embodiment of the present invention.
FIG. 9 is an explanatory diagram showing a distribution state of autofluorescence and the like.
FIG. 10 is an explanatory diagram relating to a relationship between a sample and an opening.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Light source 2 Lens 3, 31, 32, 33 Dichroic mirror 4 Objective lens 5, S1, S2, S3, S4 Sample 6, 61 Diffraction grating 7 Lens 8 Light receiver 81 Fourier spectroscopy means A Aperture

Claims (4)

基板上で互いに所定の間隔だけ離れた位置に2次元状に配置された複数の試料に対してそれぞれに同時に測定光を照射し、1つの2次元の受光器で試料からの蛍光を同時に測定するバイオチップ読取装置であって、
前記試料に応じた画像における試料像間の空き領域に、対象となる試料の複数の分光情報を配置する手段を備えると共に、
分光対象領域を制限するための開口部が各試料の位置と一致するかまたは各試料の一部と一致するように構成された
ことを特徴とするバイオチップ読取装置。
A plurality of samples arranged two-dimensionally at positions spaced apart from each other by a predetermined distance on the substrate are simultaneously irradiated with measurement light, and fluorescence from the sample is simultaneously measured with one two-dimensional light receiver. A biochip reader,
With a means for arranging a plurality of spectral information of the target sample in the space between the sample images in the image corresponding to the sample ,
A biochip reader characterized in that an opening for limiting a spectroscopic object region is configured to coincide with a position of each sample or a part of each sample .
前記手段は、前記試料と受光器の間に、回折格子、または光学フィルタと光学的シフト手段の組合せ、またはフーリエ分光手段を配置した構成であることを特徴とする請求項1に記載のバイオチップ読取装置。Said means, between said sample and the light receiver, grating or optical filter and the combination of the optical shift means, or Bio placing serial to claim 1, characterized in that the configuration of arranging the Fourier spectral means, Chip reader. 前記手段は、前記試料がスポットの場合、前記受光器上に分光情報を2次元的に展開するように構成されてなることを特徴とする請求項1に記載のバイオチップ読取装置。It said means when said sample spot, the light receiver on the spectral information two-dimensionally configured and becomes possible biochip reader of the mounting serial to claim 1, wherein to deploy. 前記手段は、走査型または非走査型の共焦点顕微鏡、あるいは2光子励起型顕微鏡を用いたことを特徴とする請求項1に記載のバイオチップ読取装置。It said means scanning or non-scanning confocal microscope, or two-photon excitation microscope the serial mounting of the biochip reader to claim 1, characterized by using.
JP14939999A 1999-05-28 1999-05-28 Biochip reader Expired - Fee Related JP3689901B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP14939999A JP3689901B2 (en) 1999-05-28 1999-05-28 Biochip reader
DE60044923T DE60044923D1 (en) 1999-05-28 2000-05-08 Biochip reader
EP00109722A EP1055925B1 (en) 1999-05-28 2000-05-08 Biochip reader
DE1055925T DE1055925T1 (en) 1999-05-28 2000-05-08 Biochip reader and electrophoresis system
EP08160013A EP1983331B1 (en) 1999-05-28 2000-05-08 Optical system for reading a biochip
US10/769,017 US20040182710A1 (en) 1999-05-28 2004-01-30 Biochip reader and electrophoresis system
US10/768,632 US20040184960A1 (en) 1999-05-28 2004-01-30 Biochip reader and electrophoresis system
US12/550,001 US8264680B2 (en) 1999-05-28 2009-08-28 Biochip reader and electrophoresis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14939999A JP3689901B2 (en) 1999-05-28 1999-05-28 Biochip reader

Publications (2)

Publication Number Publication Date
JP2000338035A JP2000338035A (en) 2000-12-08
JP3689901B2 true JP3689901B2 (en) 2005-08-31

Family

ID=15474292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14939999A Expired - Fee Related JP3689901B2 (en) 1999-05-28 1999-05-28 Biochip reader

Country Status (1)

Country Link
JP (1) JP3689901B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030037315A (en) * 2001-11-01 2003-05-14 (주)다이아칩 Method for analyzing image of biochip
JP4701739B2 (en) 2005-02-17 2011-06-15 パナソニック株式会社 Fluorescence measuring device
JP5645445B2 (en) * 2009-05-22 2014-12-24 キヤノン株式会社 Imaging apparatus and imaging method
JP5655437B2 (en) * 2009-09-14 2015-01-21 株式会社リコー Spectral characteristics acquisition device
CN109856059A (en) * 2019-03-08 2019-06-07 金华职业技术学院 A kind of electrochemistry Infrared Reflective Spectra experimental provision
CN117402721B (en) * 2023-11-03 2024-04-19 苏州思迈德生物科技有限公司 Detection device and detection method for multicolor fluorescence detection

Also Published As

Publication number Publication date
JP2000338035A (en) 2000-12-08

Similar Documents

Publication Publication Date Title
US6051835A (en) Spectral imaging apparatus and methodology
EP1055925B1 (en) Biochip reader
US5585639A (en) Optical scanning apparatus
US5863504A (en) Fluorescence imaging instrument utilizing fish
US7630073B2 (en) Methods and systems for simultaneous real-time monitoring of optical signals from multiple sources
DK2594981T3 (en) Methods and apparatus for confocal imaging
JP3438855B2 (en) Confocal device
EP1984712B1 (en) System for simultaneous real-time monitoring of optical signals from multiple sources
JP3551860B2 (en) DNA testing method and DNA testing device
US20060007439A1 (en) Multiple-label fluorescence imaging using excitation-emisssion matrices
EP3465157B1 (en) Systems and methods for 4-d hyperspectral imaging
US20090218527A1 (en) Confocal Microscopy with a Two-Dimensional Array of Light Emitting Diodes
US9442013B2 (en) Microscope spectrometer, optical axis shift correction device, spectroscope and microscope using same
US20050286048A1 (en) Light scanning type confocal microscope
US20030215791A1 (en) Method of and system for multiplexed analysis by spectral imaging
WO1999032877A1 (en) Detector having a transmission grating beam splitter for multi-wavelength sample analysis
US20100167413A1 (en) Methods and systems for analyzing fluorescent materials with reduced autofluorescence
JP2003515129A (en) Compact spectrofluorometer
AU1464699A (en) High throughput optical scanner
JP3689901B2 (en) Biochip reader
JP2001311690A (en) Biochip reader and electrophoretic apparatus
US7446867B2 (en) Method and apparatus for detection and analysis of biological materials through laser induced fluorescence
JP2002014043A (en) Multicolor analyzer for microscope, and multicolor analysis method using microscope
JP2003232733A (en) Method and device for fluorescent image detection and method and device for dna inspection
US20040160612A1 (en) Device and method for local resolution measurement of the thickeness of a layer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees