JP3688331B2 - Method for producing tempered glass - Google Patents

Method for producing tempered glass Download PDF

Info

Publication number
JP3688331B2
JP3688331B2 JP03693095A JP3693095A JP3688331B2 JP 3688331 B2 JP3688331 B2 JP 3688331B2 JP 03693095 A JP03693095 A JP 03693095A JP 3693095 A JP3693095 A JP 3693095A JP 3688331 B2 JP3688331 B2 JP 3688331B2
Authority
JP
Japan
Prior art keywords
glass
cooling
strengthening
air
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03693095A
Other languages
Japanese (ja)
Other versions
JPH08231236A (en
Inventor
培秀 梶井
和久 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP03693095A priority Critical patent/JP3688331B2/en
Publication of JPH08231236A publication Critical patent/JPH08231236A/en
Application granted granted Critical
Publication of JP3688331B2 publication Critical patent/JP3688331B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/044Tempering or quenching glass products using gas for flat or bent glass sheets being in a horizontal position

Description

【0001】
【産業上の利用分野】
本発明は、物理強化とよばれる方法による強化ガラスの製造方法に関する。
【0002】
【従来の技術】
従来、ガラスが所望の強化度に達するまで一定の冷却能で強化を行うことが知られている。
また、物理強化による強化ガラスの製造方法としては、成形後に型内で風冷強化を行う工法(例えば、特公昭62−40928号公報や特公昭63−492号公報など)や、成形後に別に設ける風冷強化部へ搬送し風冷強化を行う工法(例えば、特公昭59−19890号公報や特開昭62−270429号公報など)などのバッチ式の工法が知られている。
【0003】
【発明が解決しようとする課題】
従来の技術で述べた工法では、一定の高い冷却能で強化しているので、表面層が粘性流動を起こさなくなった温度域でのガラス表面層と中心部(内部)の温度差が大きくなり、それによる大きな熱応力が発生して冷却割れが発生し易いという問題点を有していた。
【0004】
また、これらの工法では、一定の場所(風冷強化部)にガラスを滞在させて強化を行うため、所望の強化度が達成されるまで次のガラスを強化することが出来ないので、一枚当りの成形完了時間(強化を含む)が強化にかかる時間により決定され、それ以上の成形サイクル短縮が図れないという問題点を有していた。
更に、成形サイクルを短縮するために、一定の高い冷却能で強化しているので、冷却割れが発生し易いという問題点を有していた。
【0005】
本発明は、従来の技術が有するこのような問題点に鑑みてなされたものであり、その目的とするところは、強化中の冷却割れを減少することが出来、また成形サイクルを短縮することが出来る強化ガラスの製造方法を提供しようとするものである。
【0006】
【課題を解決するための手段】
上記課題を解決すべく請求項1の強化ガラスの製造方法は、軟化点近くまで加熱されたガラスを第1強化工程において強化し、強化中のガラス温度が徐冷点を下回る前に、ガラスを第1強化工程から第2強化工程へ搬入し、搬入したガラスを第2強化工程において再強化する強化ガラスの製造方法において、前記第1強化工程でガラスを強化するために、ガラスに向けて風冷用ジェットを吐出可能な上型及び下型と、ガラス周辺部の成形および風冷中のガラスを支持するためのリングモールドとから成る成形部を備え、前記第2強化工程でガラスを再強化するために、ガラスに空気ジェットを吹き付ける風冷ノズルボックスを備え、第1強化工程の強化と第2強化工程の再強化とが互いに影響しないように成形部と風冷ノズルボックスとを隔てるシャッタを備えた強化ガラスの製造装置を用いて、前記成形部において前記軟化点近くまで加熱されたガラスを冷却し、冷却したガラスに応力が発生する前に、ガラスを前記風冷ノズルボックスに搬入し、応力が発生する前のガラスを風冷ノズルボックスにおいて冷却能を小さくして再度冷却することで、前記軟化点近くまで加熱されたガラスを、ガラスに応力が発生する前の状態において、2段階に分けて冷却することを特徴とする。
【0007】
【作用】
請求項1の強化ガラスの製造方法によれば、強化中に表面層が粘性流動を起こさなくなった温度域に達した時に、冷却能を減少させることにより、表面層と中心部に発生する熱応力を減少させ、割れを減少させる。
【0008】
また、請求項1の強化ガラスの製造方法によれば、所望の強化度が達成される前に強化を止めて第1強化工程から再度強化を行って所望の強化度を得る第2強化工程にガラスが搬出されるので、第1強化工程にガラスが滞在する時間が短縮される。
【0009】
【実施例】
以下に本発明の実施例を添付図面に基づいて説明する。ここで、図1は請求項1の強化ガラスの製造方法におけるガラス板の冷却状態と応力の発生状態を示すグラフ、図2は請求項1の強化ガラスの製造方法の一実施例に係る工程説明図、図3は同じくガラス板の冷却状態と応力の発生状態を示すグラフである。
【0010】
ガラス板の物理強化は、軟化点近くまで加熱されたガラス板を急冷することにより、表面に圧縮応力層を形成することで可能になる。理想的な強化におけるガラス板の冷却状態と応力の発生状態を、図4に示す。先ず、図4(a)に示すように、軟化点付近の温度TOまで加熱されたガラス板を風冷すると、ガラス表面の方が内部より温度降下が速く、表面に引張応力が発生し、中心部に圧縮応力が発生する。
【0011】
しかし、軟化点付近の温度TOのガラス板では、この応力は、図4(c)に示すように、短時間で緩和され、図4(b)に示すように、表面温度TS1と中心部温度TM1の温度差△T1(=TM1−TS1) が存在するにも拘らず応力が発生していない状態になる。
【0012】
さらに冷却が進むと、ガラス板は応力が発生しない状態で徐冷点まで温度降下し、最後に室温になって温度差△T1=0になった時、高温時△T1maxに起因する熱応力を緩和した分だけ符号が変わってガラス板の表面に圧縮応力、図4(c)に示すように、中心部に引張応力が発生する。
【0013】
請求項1の強化ガラスの製造方法におけるガラス板の冷却状態と応力の発生状態を、図1に示す。
【0014】
従来の一定の高い冷却能で冷却した場合には、図1(a)〜(c)に示すように、ガラス表面の過冷却により表面温度TS1と中心部温度TM1で高い温度差△T1max(=TM1−TS1)が生じ、ガラス表面に引張応力、ガラス中心部に圧縮応力が発生しガラス板に割れが発生しやすくなる。
【0015】
一方、請求項1の強化ガラスの製造方法では、図1(a)に示すように、軟化点付近の温度TOまで加熱されたガラス板を、従来と同様に高い冷却能で強化を行う。そして、表面層が粘性流動を起こさなくなった温度域に達した時に、冷却能を小さくすることによって、図1(b)に示すように、表面温度TS2と中心部温度TM2の温度差△T2が、適正な温度差△T2max(=TM2−TS2)になるよう冷却能を調節する。
【0016】
このように従来の工法において冷却能を減少させることにより、表面層と中心部に発生する熱応力を減少させ、割れを減少させている。
【0017】
請求項1の強化ガラスの製造方法で実施する強化ガラスの製造工程は、例えば図2に示すように、第1強化工程と第2強化工程による2段階冷却によって構成されている。
【0018】
第1強化工程は、風冷用ジェットが吐出可能な上型1と下型2、ガラス周辺部の成形および風冷中のガラス5を支持するためのリングモールド10から成る成形部3を備え、第2強化工程は、一群のノズル4からガラス板5の両面に垂直に空気ジェットを吹き付ける風冷ノズルボックス6から成っている。なお、7はガラス板5を加熱する加熱炉、8はガラス板5を矢印方向に搬送する搬送ローラ、9は第1強化工程と第2強化工程が互いに影響しないよう隔てるシャッタである。風冷ノズルボックス6は、ノズル4とガラス5の最適な距離が保たれるように可動式である。
【0019】
第1強化工程では、加熱炉7で軟化点近くまで加熱されたガラス板5を成形部3でプレス成形した後に、そのまま下型2にガラス板5を載置して冷却し、上型1と下型2が開き、リングモールド10上でガラス5を上型1と下型2から吐出する空気ジェットで冷却し、所望の強化度が達成される前に強化を止め、ガラス温度が徐冷点を下回る前にガラス板5を次工程である第2強化工程に搬送する。
【0020】
次いで、第2強化工程では、ノズル4からガラス板5の両面に垂直に空気ジェットを吹き付け、第1強化工程に引続きガラス板5に対し再度強化を行って所望の強化度を得るようにしている。
【0021】
強化工程を2分割したことにより、所望の強化度を得るために同一場所(この例では成形部3)にガラス板5を滞在させる時間が短くなり、強化ガラス製造ラインのタクト短縮に貢献出来る。
【0022】
また、強化工程を2分割することにより、強化の進行に合せて冷却能を変化させることが容易になる。これによって、冷却時のガラス表面層と中心部の温度差が急激に増大することを調整し、表面層と中心部に発生する熱応力が不必要に大きくなることを防ぎ割れを減少させる。
【0023】
請求項1の強化ガラスの製造方法におけるガラス板5の冷却状態と応力の発生状態を図4に示した従来の工法で冷却した場合と比較して、図3に示す。
【0024】
請求項1の強化ガラスの製造方法では、第1強化工程でガラス板5の冷却を行うものの、ガラス温度が徐冷点に達する前にガラス板5の冷却を中断し(区間A)、更にガラス板5を成形部3から風冷ノズル6まで搬送する(区間B)。
次いで、第2強化工程でガラス温度が徐冷点まで下降する前に再度冷却を行い(区間C)、所望の強化度を達成する(区間D)。
【0025】
従来の一定の高い冷却能で冷却した場合、図3(a)〜(c)に示すように、区間A〜区間Cではガラス表面の過冷却により表面温度TS1と中心部温度TM1で高い温度差△T1max(=TM1−TS1)が生じ、ガラス表面に引張応力、ガラス中心部に圧縮応力が発生しガラス板に割れが発生しやすくなる。
【0026】
一方、請求項1の強化ガラスの製造方法による2段階冷却では、図3(a)に示すように、第1強化工程の区間Aにおいて、従来と同じ高い冷却能で第1段階の冷却を行う。この時、ガラス板5の温度が徐冷点を下回らないようにする。更に、区間Bにおけるガラス板5の搬送中において、ガラス板5の内部の熱量の移動により、ガラス板5の中心部温度TM2が下降し、ガラス板5の表面温度TS2が上昇する。
【0027】
次いで、第2強化工程の区間Cにおいて、冷却能を小さくして再度冷却を行うことによって、図3(b)に示すように、表面温度TS2と中心部温度TM2の温度差△T2が、適正な温度差△T2max(=TM2−TS2)になるよう冷却能を調節する。
【0028】
ここまでの区間A〜区間Cでは、ガラス温度TM2,TS2は徐冷点を下回っていないので、ガラス板5に応力は発生していない。区間D以降で、図3(c)に示すように、ガラス温度が徐冷点を下回るので熱応力が発生する。すると、ガラス板5に所望の強化度が得られる。
【0029】
【発明の効果】
以上説明したように本発明によれば、以下に記載する効果を奏する。
請求項1の強化ガラスの製造方法においては、強化中の冷却能を変化させることにより、表面層が粘性流動を起こさなくなった温度域で必要以上に大きな熱応力が発生するのが抑えられ、冷却時の割れの発生を防止出来る。
【0030】
請求項1の強化ガラスの製造方法においては、所望の強化度が達成される前に強化を止めて第1強化工程からガラスを搬出するので、次のガラスの強化を従来より短い時間間隔で出来、サイクルの短縮が図れる。
【図面の簡単な説明】
【図1】 請求項1の強化ガラスの製造方法におけるガラス板の冷却状態と応力の発生状態を示すグラフ
【図2】 請求項1の強化ガラスの製造方法の一実施例に係る工程説明図
【図3】 請求項1の強化ガラスの製造方法におけるガラス板の冷却状態と応力の発生状態を示すグラフ
【図4】理想的なガラス板の冷却状態と応力の発生状態を示すグラフ
【符号の説明】
1…上型、2…下型、3…成形部、5…ガラス板、6…風冷ノズル、7…加熱炉、8…搬送ローラ、9…シャッタ、10…リングモールド、TS1,TS2…ガラス板の表面温度、TM1,TM2…ガラス板の中心部温度。
[0001]
[Industrial application fields]
The present invention relates to a method for producing tempered glass by a method called physical strengthening.
[0002]
[Prior art]
Conventionally, it is known that the glass is tempered with a constant cooling ability until the glass reaches a desired degree of tempering.
In addition, as a method for producing tempered glass by physical strengthening, a method of performing air-cooling strengthening in a mold after molding (for example, Japanese Patent Publication No. 62-40928 and Japanese Patent Publication No. 63-492), or a method of providing separately after molding. There are known batch-type construction methods such as a construction method (for example, Japanese Patent Publication No. 59-19890 and Japanese Patent Publication No. Sho 62-270429) that is conveyed to the air-cooling strengthening section and performs the air-cooling strengthening.
[0003]
[Problems to be solved by the invention]
In the construction method described in the conventional technology, the temperature difference between the glass surface layer and the central part (inside) increases in the temperature range where the surface layer no longer causes viscous flow because it is reinforced with a constant high cooling capacity. As a result, a large thermal stress is generated, and a cooling crack is likely to occur.
[0004]
In these methods, the glass is kept in a certain place (wind-cooled tempered part) and tempered, so the next glass cannot be tempered until the desired degree of tempering is achieved. The hit molding completion time (including strengthening) is determined by the time required for strengthening, and the molding cycle cannot be further shortened.
In addition, in order to shorten the molding cycle, it has been reinforced with a constant high cooling capacity, so that it has a problem that cooling cracks are likely to occur.
[0005]
The present invention has been made in view of such problems of the prior art, and the object of the present invention is to reduce cooling cracks during strengthening and shorten the molding cycle. An object of the present invention is to provide a method for producing a tempered glass.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the method for producing tempered glass according to claim 1 is to strengthen glass heated to near the softening point in the first tempering step, and before the glass temperature during tempering falls below the annealing point, In the method for producing tempered glass, which is carried from the first tempering step to the second tempering step and the tempered glass is tempered again in the second tempering step, in order to strengthen the glass in the first tempering step, Equipped with a molding part consisting of an upper mold and a lower mold capable of discharging a cooling jet, and a ring mold for supporting the glass during molding and air cooling of the glass periphery, and the glass is tempered in the second tempering step. Therefore, an air-cooled nozzle box that blows an air jet on the glass is provided, and the molding part and the air-cooled nozzle box are separated from each other so that the strengthening in the first strengthening process and the re-strengthening in the second strengthening process do not affect each other. That by using the apparatus for manufacturing a tempered glass having a shutter, a glass which has been heated to near the softening point in the molding section is cooled, before the stress is generated in the cooling glass, the glass to the air cooling nozzle box Carrying in and reducing the cooling ability of the glass before the stress is generated in the air-cooled nozzle box to cool again, the glass heated to near the softening point, in a state before the stress is generated in the glass, and wherein the benzalkonium be cooled in two stages.
[0007]
[Action]
According to the method for producing tempered glass according to claim 1, thermal stress generated in the surface layer and the central portion by reducing the cooling capacity when the surface layer reaches a temperature range in which viscous flow does not occur during tempering. To reduce cracks.
[0008]
Moreover, according to the manufacturing method of the tempered glass of Claim 1, before the desired tempering degree is achieved, the tempering is stopped and the second tempering step is performed again from the first tempering step to obtain the desired tempering step. Since the glass is carried out, the time for the glass to stay in the first strengthening step is shortened.
[0009]
【Example】
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, step according to an embodiment of the method for producing a glass of FIG. 1 according graph indicate the status of the cooling conditions and the stress of the glass plate in the method for producing a tempered glass of claim 1, 2 according to claim 1 described FIG. 3 and FIG. 3 are graphs showing the cooling state of the glass plate and the state of stress generation.
[0010]
The physical strengthening of the glass plate can be achieved by forming a compressive stress layer on the surface by rapidly cooling the glass plate heated to near the softening point. FIG. 4 shows the cooling state of the glass plate and the state of stress generation in ideal strengthening. First, as shown in FIG. 4 (a), when a glass plate heated to a temperature T0 near the softening point is air-cooled, the temperature drop on the glass surface is faster than the inside, and tensile stress is generated on the surface. Compressive stress is generated in the part.
[0011]
However, in a glass plate having a temperature T0 near the softening point, this stress is relaxed in a short time as shown in FIG. 4C, and as shown in FIG. 4B, the surface temperature TS1 and the center temperature. Although there is a temperature difference ΔT1 (= TM1−TS1) of TM1, no stress is generated.
[0012]
As the cooling progresses further, the glass plate drops to the annealing point in a state where no stress is generated. Finally, when the temperature reaches room temperature and the temperature difference ΔT1 = 0, the thermal stress caused by ΔT1max at high temperature is applied. The sign is changed by the amount of relaxation, and compressive stress is generated on the surface of the glass plate, and tensile stress is generated in the center as shown in FIG.
[0013]
The cooling state of the glass plate and the state of stress generation in the method for producing tempered glass according to claim 1 are shown in FIG.
[0014]
In the case of cooling with the conventional constant high cooling capacity, as shown in FIGS. 1A to 1C, a high temperature difference ΔT1max (=) between the surface temperature TS1 and the center temperature TM1 due to overcooling of the glass surface. TM1-TS1) occurs, tensile stress is generated on the glass surface, and compressive stress is generated in the center of the glass, and the glass plate is easily cracked.
[0015]
On the other hand, in the manufacturing method of the tempered glass of Claim 1, as shown to Fig.1 (a), the glass plate heated to the temperature TO of softening point vicinity is strengthened with the high cooling ability similarly to the past. When the temperature reaches the temperature range where the surface layer no longer causes viscous flow, the temperature difference ΔT2 between the surface temperature TS2 and the center temperature TM2 is reduced as shown in FIG. Then, the cooling capacity is adjusted so that an appropriate temperature difference ΔT2max (= TM2−TS2) is obtained.
[0016]
Thus, by reducing the cooling capacity in the conventional construction method, the thermal stress generated in the surface layer and the central portion is reduced, and cracks are reduced.
[0017]
The tempered glass manufacturing process carried out by the tempered glass manufacturing method of claim 1 is configured by two-stage cooling by a first tempering process and a second tempering process, for example, as shown in FIG.
[0018]
The first strengthening step includes an upper mold 1 and a lower mold 2 from which air-cooling jets can be discharged, a molding part 3 including a ring mold 10 for supporting glass 5 during molding and molding of a glass peripheral part, The second strengthening step includes an air-cooled nozzle box 6 that blows an air jet perpendicularly to both surfaces of the glass plate 5 from a group of nozzles 4. In addition, 7 is a heating furnace for heating the glass plate 5, 8 is a transport roller for transporting the glass plate 5 in the direction of the arrow, and 9 is a shutter that separates the first strengthening step and the second strengthening step so as not to affect each other. The air cooling nozzle box 6 is movable so that the optimum distance between the nozzle 4 and the glass 5 is maintained.
[0019]
In the first strengthening step, the glass plate 5 heated to near the softening point in the heating furnace 7 is press-molded by the molding unit 3, and then the glass plate 5 is placed on the lower mold 2 and cooled as it is. The lower mold 2 is opened, the glass 5 is cooled on the ring mold 10 by an air jet discharged from the upper mold 1 and the lower mold 2, and the strengthening is stopped before the desired degree of strengthening is achieved, and the glass temperature is gradually cooled. The glass plate 5 is conveyed to the 2nd reinforcement | strengthening process which is a next process before it falls below.
[0020]
Next, in the second strengthening step, an air jet is blown perpendicularly to both surfaces of the glass plate 5 from the nozzle 4, and the glass plate 5 is tempered again following the first strengthening step to obtain a desired degree of strengthening. .
[0021]
By dividing the tempering process into two parts, the time for the glass plate 5 to stay in the same place (in this example, the molding part 3) in order to obtain a desired degree of tempering is shortened, which can contribute to shortening the tact time of the tempered glass production line.
[0022]
Further, by dividing the strengthening step into two, it becomes easy to change the cooling capacity in accordance with the progress of strengthening. As a result, the temperature difference between the glass surface layer and the central portion during cooling is adjusted to increase rapidly, and the thermal stress generated in the surface layer and the central portion is prevented from becoming unnecessarily large and cracks are reduced.
[0023]
As compared with the case of cooling the occurrence of the cooling conditions and the stress of the glass plate 5 in the manufacture how the tempered glass of claim 1 in the conventional method shown in FIG. 4, shown in Figure 3.
[0024]
The manufacturing how the glass of claim 1, though to cool the glass plate 5 in the first strengthening process, interrupting the cooling of the glass plate 5 before the glass temperature reaches the annealing point (zone A), Furthermore, the glass plate 5 is conveyed from the shaping | molding part 3 to the air-cooling nozzle 6 (section B).
Next, cooling is performed again before the glass temperature falls to the annealing point in the second strengthening step (section C), and a desired degree of strengthening is achieved (section D).
[0025]
When cooled with a conventional constant high cooling capacity, as shown in FIGS. 3A to 3C, in section A to section C, a high temperature difference between the surface temperature TS1 and the center temperature TM1 due to overcooling of the glass surface. ΔT1max (= TM1−TS1) is generated, and tensile stress is generated on the glass surface and compressive stress is generated on the glass center portion, and the glass plate is easily cracked.
[0026]
On the other hand, in the two-stage cooling by manufacturing how the glass of claim 1, as shown in FIG. 3 (a), in the interval A of the first strengthening process, cooling of the same high first stage cooling capacity with the conventional I do. At this time, the temperature of the glass plate 5 is made not to fall below the annealing point. Further, during the conveyance of the glass plate 5 in the section B, due to the movement of the amount of heat inside the glass plate 5, the center temperature TM2 of the glass plate 5 decreases and the surface temperature TS2 of the glass plate 5 increases.
[0027]
Next, in section C of the second strengthening step, by reducing the cooling capacity and performing cooling again, as shown in FIG. 3B, the temperature difference ΔT2 between the surface temperature TS2 and the center temperature TM2 is appropriate. The cooling capacity is adjusted so as to obtain a temperature difference ΔT2max (= TM2−TS2).
[0028]
In the section A to section C so far, the glass temperatures TM2 and TS2 are not below the annealing point, so that no stress is generated on the glass plate 5. After section D, as shown in FIG. 3C, the glass temperature falls below the annealing point, so that thermal stress is generated. Then, a desired strengthening degree is obtained for the glass plate 5.
[0029]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained.
In the method for producing tempered glass according to claim 1, by changing the cooling ability during tempering, it is possible to suppress generation of an unnecessarily large thermal stress in a temperature range in which the surface layer no longer causes viscous flow. The occurrence of cracks at the time can be prevented.
[0030]
In the method for producing tempered glass according to the first aspect, the tempering is stopped before the desired degree of tempering is achieved, and the glass is carried out from the first tempering step. Cycles can be shortened.
[Brief description of the drawings]
[1] process explanatory diagram according to an embodiment of the manufacturing method of the tempered glass of the graph Figure 2 according to claim 1 indicate the status of the cooling conditions and the stress of the glass plate in the method for producing a tempered glass of claim 1 [ FIG. 3 is a graph showing a cooling state of a glass plate and a stress generation state in the method for producing tempered glass according to claim 1. FIG. 4 is a graph showing an ideal cooling state of the glass plate and a stress generation state. ]
DESCRIPTION OF SYMBOLS 1 ... Upper mold | type, 2 ... Lower mold | type, 3 ... Molding part, 5 ... Glass plate, 6 ... Air cooling nozzle, 7 ... Heating furnace, 8 ... Conveyance roller, 9 ... Shutter, 10 ... Ring mold, TS1, TS2 ... Glass Surface temperature of the plate, TM1, TM2 ... center temperature of the glass plate.

Claims (1)

軟化点近くまで加熱されたガラスを第1強化工程において強化し、強化中のガラス温度が徐冷点を下回る前に、ガラスを第1強化工程から第2強化工程へ搬入し、搬入したガラスを第2強化工程において再強化する強化ガラスの製造方法において、
前記第1強化工程でガラスを強化するために、ガラスに向けて風冷用ジェットを吐出可能な上型及び下型と、ガラス周辺部の成形および風冷中のガラスを支持するためのリングモールドとから成る成形部を備え、
前記第2強化工程でガラスを再強化するために、ガラスに空気ジェットを吹き付ける風冷ノズルボックスを備え、
第1強化工程の強化と第2強化工程の再強化とが互いに影響しないように成形部と風冷ノズルボックスとを隔てるシャッタを備えた強化ガラスの製造装置を用いて
前記成形部において前記軟化点近くまで加熱されたガラスを冷却し、冷却したガラスに応力が発生する前に、ガラスを前記風冷ノズルボックスに搬入し、応力が発生する前のガラスを風冷ノズルボックスにおいて冷却能を小さくして再度冷却することで、
前記軟化点近くまで加熱されたガラスを、ガラスに応力が発生する前の状態において、2段階に分けて冷却することを特徴とする強化ガラスの製造方法
The glass heated to near the softening point is tempered in the first tempering step, and before the glass temperature during tempering falls below the annealing point, the glass is carried from the first tempering step to the second tempering step. In the method for producing tempered glass to be tempered again in the second tempering step,
In order to strengthen the glass in the first strengthening step, an upper mold and a lower mold capable of discharging an air-cooling jet toward the glass, and a ring mold for supporting the glass being molded and air-cooled at the periphery of the glass A molding part consisting of
In order to re-strengthen the glass in the second tempering step, an air-cooled nozzle box for blowing an air jet on the glass is provided.
Using a tempered glass manufacturing apparatus provided with a shutter that separates the molded part and the air-cooled nozzle box so that the strengthening of the first strengthening step and the re-strengthening of the second strengthening step do not affect each other,
The glass heated to near the softening point in the molding part is cooled, and before the stress is generated in the cooled glass, the glass is carried into the air-cooling nozzle box, and the glass before the stress is generated is cooled by the air-cooling nozzle. By reducing the cooling capacity in the box and cooling again,
The glass is heated to near the softening point, in a state before the stress in the glass occurs, the manufacturing method of the tempered glass, wherein the benzalkonium be cooled in two stages.
JP03693095A 1995-02-24 1995-02-24 Method for producing tempered glass Expired - Fee Related JP3688331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03693095A JP3688331B2 (en) 1995-02-24 1995-02-24 Method for producing tempered glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03693095A JP3688331B2 (en) 1995-02-24 1995-02-24 Method for producing tempered glass

Publications (2)

Publication Number Publication Date
JPH08231236A JPH08231236A (en) 1996-09-10
JP3688331B2 true JP3688331B2 (en) 2005-08-24

Family

ID=12483483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03693095A Expired - Fee Related JP3688331B2 (en) 1995-02-24 1995-02-24 Method for producing tempered glass

Country Status (1)

Country Link
JP (1) JP3688331B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009048103A1 (en) 2007-10-09 2009-04-16 Nec Corporation Image rotation method, rotation program, recording medium, and rotation device
CN102863146A (en) * 2011-07-06 2013-01-09 常州亚玛顿股份有限公司 Physical toughened glass, solar cell panel and manufacture methods of physical toughened glass and solar cell panel
CN103058507A (en) * 2011-10-18 2013-04-24 浙江福隆鼎玻璃科技有限公司 Manufacturing method of fireproof glass

Also Published As

Publication number Publication date
JPH08231236A (en) 1996-09-10

Similar Documents

Publication Publication Date Title
RU2325334C2 (en) System and method of simultaneous heating and cooling of glass in order to receive tempered glass
JP5347185B2 (en) Method and apparatus for quenching formed glass sheets
US6701750B2 (en) Method and apparatus for molding a glass product
US20060121281A1 (en) Thermally tempered glass, and method and apparatus for manufacturing the glass
CN107586013A (en) A kind of thin tempering glass production method
GB2365862A (en) Method and apparatus for making a curved glass-ceramic panel by bending a glass panel to be ceramicized
JPH10194766A (en) Production of panel glass for cathode ray tube
JP4027266B2 (en) Method for slowly cooling glass article, method for heating glass article, method for producing glass molded article, and heat treatment apparatus
JP3688331B2 (en) Method for producing tempered glass
JP2000327355A (en) Ring for supporting glass plate
JP3541415B2 (en) Glass sheet bending method and bending apparatus
CN207062140U (en) A kind of safety glass quenching air grid
CN107352780B (en) Glass processing device and processing method
JP2711000B2 (en) Sheet glass bending method
JP2975167B2 (en) Glass optical element molding method
JP2000007353A (en) Finishing mold device for bottle making machine and production of bottle using the device
CN214193037U (en) A forced air cooling tempering system for 2mm glass
JP2000233934A (en) Method for press-forming glass product and device therefor
JPH10338533A (en) Production of bent and tempered glass sheet and apparatus for production therefor
JPH06211531A (en) Production of gravity-bent curved tempered glass using bent die
JP3162178B2 (en) Method for molding optical glass element
JP4030799B2 (en) Optical element molding method
JPH03183628A (en) Device for bending and quenching sheet glass
JP2000103627A (en) Production of precision glass element and device for producing the same
JPH05279752A (en) Method for continuously annealing strip and apparatus therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050608

LAPS Cancellation because of no payment of annual fees