JP3688042B2 - Super water and oil repellent antifouling film and method for forming the same - Google Patents

Super water and oil repellent antifouling film and method for forming the same Download PDF

Info

Publication number
JP3688042B2
JP3688042B2 JP00998296A JP998296A JP3688042B2 JP 3688042 B2 JP3688042 B2 JP 3688042B2 JP 00998296 A JP00998296 A JP 00998296A JP 998296 A JP998296 A JP 998296A JP 3688042 B2 JP3688042 B2 JP 3688042B2
Authority
JP
Japan
Prior art keywords
film
water
repellent
petal
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00998296A
Other languages
Japanese (ja)
Other versions
JPH09202650A (en
Inventor
努 南
清治 忠永
博司 稲葉
章 湯浅
佳則 赤松
秀樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP00998296A priority Critical patent/JP3688042B2/en
Publication of JPH09202650A publication Critical patent/JPH09202650A/en
Application granted granted Critical
Publication of JP3688042B2 publication Critical patent/JP3688042B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/425Coatings comprising at least one inhomogeneous layer consisting of a porous layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超撥水性能を示すことはもとより、耐熱性や耐候性に優れた撥水撥油防汚性膜及びその形成法に関し、車輌用、船舶用、航空機用あるいは建築用等の内外ウインドウガラスやミラーガラスや装飾用ガラス、あるいは各種建築材や建装材など広く使用可能である有用な撥水撥油防汚性膜及びその形成法を提供するものである。
【0002】
【従来の技術】
最近、半導体分野ではもとより、ガラス基板でなる窓材をはじめ、金属やプラスチツク等の各種建築建装資材あるいは布地などの表面に撥水性を付与することが行われ、種々その性能を向上せしめるような提案、特に超撥水性を持たせる提案がなされている。
【0003】
例えば、特公平7-86146 号公報には、撥水撥油防汚性被膜及びその形成方法が記載されており、400nm 未満の凹凸が形成された基体の表面に、少なくともシロキサン結合を介してフッ素を含む化学吸着単分子膜が形成されており、表面に400nm 未満の凹凸を持つ撥水撥油防汚性被膜。ならびに基体表面に400nm 未満の凹凸が形成する工程と、一端にクロルシラン基(SiCln X3-n基、n=1,2,3 、X は官能基)を有し、他の一端にフッ素炭素基を有するクロロシラン系界面活性剤を溶かした非水系有機溶媒中に、前記基体を浸漬し、前記活性剤よりなる化学吸着単分子膜を基体表面に形成する工程を含む表面に400nm 未満の凹凸を持つ撥水撥油防汚性被膜の製造方法。
【0004】
なかでも、前記凹凸形状は、サンドブラスト、フッ酸を用いた化学エッチング法あるいは電解エッチング、サンドペ−パ−によるラビング法であることが記載されている。
【0005】
また例えば、特開平6-116430号公報には、撥水撥油性フイルムとその製造方法が記載されており、プラスチックフイルム上の少なくとも片面に微小な凹凸を形成した無機硬質膜、前記無機硬質膜上の微小な凹凸上にシロキサン結合を介して形成させたフッ素を含む化学吸着単分子膜とからなる撥水撥油性フイルム。ならびに、プラスチックフイルムの少なくとも片面に無機硬質膜を形成する工程と、前記無機硬質膜の表面を炭素およびフッ素を含むガス中でプラズマ放電処理を行い、微小な凹凸を形成する工程と、前記凹凸に形成した無機硬質膜表面を少なくとも酸素を含むガスでプラズマ放電処理を行い、凹凸表面を親水性にする工程と、凹凸に形成された無機硬質膜を表面上に形成した前記プラスチックフイルムをフッ化炭素基とクロロシリル基を含む化合物を、非水系の溶媒に溶解した溶液に浸漬し、前記無機硬質膜の凹凸表面にフッ素を含む化学吸着単分子膜をシロキサン結合を介して形成させる工程とからなる撥水撥油性フイルムの製造方法がが記載されている。
【0006】
なかでも、前記無機硬質膜の膜厚が0.02〜10μm であること、および微小な凹凸の粗さが0.01〜0.3 μm であることが記載されている。
また例えば、特開平7-197017号公報には、撥水表面を有する固体およびその生成方法が記載されており、表面の少なくとも一部に、大きい周期の凹凸構造が形成されその凹凸構造が前記周期より小さい周期の凹凸構造を含む多段凹凸構造を有し、その表面積増倍因子が5以上である撥水表面を有する固体。ならびに固体表面に、機械加工を施すことにより、電気めっき等の化学反応処理を施すことにより、結晶を析出させあるいは粒子を凝集させることによりそれぞれ撥水表面を有する固体を生成する方法を記載している。
【0007】
なかでも、前記多段凹凸構造は、固体表面に、切削加工や研削加工や電解加工を含む機械加工、レ−ザ加工含む電気的加工、電気分解や化学反応や拡散律速凝集を含む化学的加工、リソグラフイ−、プラズマ加工、真空蒸着などとその組合せた加工によって形成し、その周期が1mm以下10nm以上であることが記載されている。
【0008】
また例えば、特開平7-206475号公報には、撥水性層担持部材が記載されており、表面上に複数個の凹部および凸部を交互に繰り返し形成し、該表面を撥水性材料からなる撥水性膜により被覆した撥水性層担持部材において、上記撥水性膜により被覆された凹部または凸部のピッチが20μm から150 μm までの範囲にあり、該ピッチに対する凹部の深さまたは凸部の頂部を結ぶことによって得られる仮想表面の表面粗さが500 μm 以下であるように凹部および凸部を形成した撥水性層担持部材が記載されている。
【0009】
なかでも、凹部または凸部をフォトリソグラフィ−により四角錘状に形成したこと、ならびに凹部または凸部を交互に繰り返し形成することによってフレネルレンズにしたことが記載されている。
【0010】
さらに他に例えば、特開平6-122838号公報に記載のはっ水性塗料及びその塗装方法等、特開平6-345881号公報に記載の撥水性材料及びその製造方法等、特開平7-26168 号公報に記載の超撥水性塗料の製造方法等、特開平7-76797 号公報に記載の有機被膜及びその形成方法等、特開平4-283268号公報に記載の含フッ素化合物複合体等の塗料関連の提案がある。
【0011】
またさらに例えば、日本化学会誌、1992,(12),1511〜1514頁には、ゾル−ゲル法によるスポンジ状アルミナ薄膜の調製が記載されており、硝酸アルミニウム九水和物を用いてアルミナ薄膜を形成し、該アルミナ薄膜を熱水中で処理したのち、焼成することで表面構造がスポンジ状に変化し、100 〜200nm の細孔でかつ長さ50〜100nm 、幅5nm 前後の繊維状微粒子が連結した集合体から構成されたスポンジ状アルミナ薄膜が記載されている。
【0012】
【発明が解決しようとする課題】
前述したような例えば、特公平7-86146 号公報に記載の撥水撥油防汚性被膜及びその形成方法、特開平6-116430号公報に記載の撥水撥油性フイルムとその製造方法、特開平7-197017号公報に記載の撥水表面を有する固体およびその生成方法、ならびに特開平7-206475号公報に記載の撥水性層担持部材のいずれも、水滴に対する接触角が例えば約160 °程度のものが得られてはいるものの、例えば不透明、あるいはその凹凸形状を形成するために酸やフッ素によるエツチング、各種機械的加工、電気的加工、化学的加工、フォトリソグラフイ−、プラズマ加工など複雑な工程が必要であり、また薄膜に対しての処理が難しい課題がある。
【0013】
また例えば、前記スポンジ状アルミナ薄膜では、孔状空隙や表面凹凸のサイズが小さくかつその繊維状微粒子が連結した集合体から構成されたスポンジ状ではその形状特性が不充分であって、例えば下地層膜として必ずしも充分その性能を発揮し難い等の課題がある。
【0014】
そこで、本発明の主な課題としては、その特異な空隙とその特異な形状の集合体化にしかつ比表面積を高めるようより制御した透明アルミナ膜として、下地層膜としてよりその機能と性能を発揮しかつより実用化の実効をもたらすものとしたなかで、その上に撥水膜を被覆形成し、撥水膜の含浸性、担持性あるいは拘持性の性能を高めることを同時にもたらし、表層表面の特異な凹凸状を活かして相乗効果を発現せしめ、より優れた超撥水性膜をより安定した状態で得ることにある。
【0015】
【課題を解決するための手段】
本発明は、従来のかかる課題に鑑みてなしたものであって、基体上に、例えばガラス基板上に、撥水膜の含浸性、担持性あるいは拘持性の性能を高めることができる、その特異な空隙とその特異な形状の集合体化とするようより制御した微細でしっかりしかつ比表面積を高めた花弁状形状を呈する透明アルミナ膜を下地層膜として形成し、その上に、撥水膜を被覆するよう被膜することにより、撥水膜の含浸性、担持性あるいは拘持性の性能を高めると同時に、表層表面の特異な凹凸状を活かして相乗効果を発現せしめ、優れた超撥水性膜をもたらして格段にその性能を発揮することとなり、光学特性を損なうことなく、かつ硬さも向上し、耐熱性あるいは耐候性等が優れたものとなり、建築建装用もしくは自動車用等の窓材、各種膜付きガラス物品あるいは各種建築資材用等において有用な撥水撥油防汚性膜及びその形成法を提供するものである。
【0016】
すなわち、本発明は基体上に形成した花弁状透明アルミナ膜と、該花弁状透明アルミナ膜上に被覆した撥水膜とでなることを特徴とする撥水撥油防汚性膜。
ならびに、前記花弁状透明アルミナ膜が、アルミニウムアルコキシドと安定化剤から少なくともなる塗布液で被膜を乾燥し熱処理して成膜したアモルフアスアルミナ膜を、熱水処理し、乾燥、焼成したことでなる花弁状の透明アルミナ膜であることを特徴とする上述した撥水撥油防汚性膜。
【0017】
また、前記花弁状透明アルミナ膜が、該花弁状透明アルミナ膜の中心線平均粗さを面拡張した平均面粗さRa’値が17nm以上、かつ比表面積SRが1.5 以上であることを特徴とする上述した撥水撥油防汚性膜。
【0018】
さらに、前記撥水膜が、フッ素含有シラン化合物からなる塗布液を塗布し、加熱処理した被覆膜であることを特徴とする上述した撥水撥油防汚性膜。
さらにまた、前記フッ素含有シラン化合物が、フルオロカ−ボン基を有するフッ素含有シラン化合物であることを特徴とする上述した撥水撥油防汚性膜。
【0019】
さらにまた、前記基体が、透明ガラス基板であることを特徴とする上述した撥水撥油防汚性膜。
また、基体上に、アルミニウムアルコキシドと安定化剤から少なくともなる塗布液を塗布し、乾燥、焼成をしてアモルフアスアルミナ膜を成膜し、次いで該アモルフアスアルミナ膜に熱水処理をし、乾燥、焼成して花弁状透明アルミナ膜を形成した後、その上にフッ素含有シラン化合物からなる塗布液を塗布し、加熱処理して撥水膜を被覆形成したことを特徴とする撥水撥油防汚性膜の形成法。
【0020】
さらに、前記フッ素含有シラン化合物が、フルオロカ−ボン基を有するフッ素含有シラン化合物であることを特徴とする上述した撥水撥油防汚性膜の形成法。
さらにまた、前記基体が、透明ガラス基板であることを特徴とする上述した撥水撥油防汚性膜の形成法をそれぞれ提供するものである。
【0021】
【発明の実施の形態】
ここで、前記したように、基体上に形成した花弁状透明アルミナ膜と、該花弁状透明アルミナ膜上に被覆した撥水膜とでなる撥水撥油防汚性膜としたのは、その特異な空隙とその特異な形状の集合体化にしかつ比表面積を高めるようより制御した透明アルミナ膜として、下地層膜としてよりその機能と性能を発揮しかつより実用化の実効をもたらすものとしたなかで、その上に撥水膜を被覆形成し、撥水膜の含浸性、担持性あるいは拘持性の性能を高めることを同時にもたらし、表層表面の特異な凹凸状を活かして相乗効果を発現せしめ、より優れた超撥水性膜をより安定した状態で得ることにある。
【0022】
下地層膜としての花弁状透明アルミナ膜としては、アルミニウムアルコキシドと安定化剤から少なくともなる塗布液で被膜を、例えば約600 ℃以下で乾燥し熱処理して成膜したアモルフアスアルミナ膜を、熱水処理し、乾燥、焼成したことでなる花弁状の透明アルミナ膜であって、該花弁状透明アルミナ膜の中心線平均粗さを面拡張した平均面粗さRa’値が17nm以上、かつ比表面積SRが1.5以上である。
【0023】
前記アルミニウムアルコキシドとしては、例えばアルミニウムエトキシド、アルミニウムイソプロポキシド、アルミニウム-n- ブトキシド、アルミニウム-sec- ブトキシド、アルミニウム-tert-ブトキシド、アルミニウムアセチルアセトナ−トなどが挙げられる。
【0024】
また、前記安定化剤としては、例えばアセチルアセトンやアセト酢酸エチル等のβ- ジケトン類、モノエタノ−ルアミンやジエタノ−ルアミンやトリエタノ−ルアミン等のアルカノ−ルアミン類、さらに一般的な金属アルコキシドの安定化剤などが挙げられる。
【0025】
また、希釈溶媒としては、例えばメチルアルコ−ル、エチルアルコ−ル、プロピルアルコ−ル、ブチルアルコ−ル、さらに一般的なゾルゲル法において用いられる希釈溶媒などが挙げられる。
【0026】
また、前記アルミニウムアルコキシドと安定化剤から少なくともなる塗布液としては、アルミニウムアルコキシドが空気中の水分とすばやく反応ゲル化し白濁化するのに対し、これを防止する効果がある例えばβ- ジケトン類やアルカノ−ルアミン類等の安定化剤を例えばモル比で約1以上を加え、各種アルコ−ル等の希釈溶媒で塗布し易い濃度まで、例えばディッピング法による塗布では希釈アルコ−ルのアルミニウムアルコキシドの比はモル比で約10以上、好ましくは約20以上である等に希釈し、少量の水を触媒として加えることで塗布液とした。
【0027】
なお、好ましい混合割合としては、モル比で、例えばアルミニウムアルコキシド:希釈溶媒:安定化剤:水=1:10〜100 :0.5 〜2 :0 〜5 である。またなお、その各原料の添加混合する塗布液の調製については、例えば後述する実施例1のようにする。
【0028】
さらに、撥水膜用の撥水剤としては、例えばフルオロカ−ボン基を有するフッ素含有シラン化合物、具体的には、CF3(CH2)2Si(OCH3)3、CF3(CH2)2SiCl3、CF3(CF2)5(CH2)2Si(OCH3)3、CF3(CF2)5(CH2)2SiCl3、CF3(CF2)7(CH2)2Si(OCH3)3、CF3(CF2)7(CH2)2SiCl3、CF3(CF2)7(CH2)3SiCH3(OCH3)2 、CF3(CF2)7(CH2)2SiCH3Cl2 等であって、一般的にはCF3(CF2)a (CH2)2SiR b X c 〔R:アルキル基、X:アルコキシ基もしくはハロゲン原子など加水分解を受ける基、a:0 〜7 の整数、b:0 〜2 の整数、c:1 〜3 の整数、b+c=3 〕で表される化合物である。
【0029】
また例えば、フッ化ピッチ〔CFm 、m:1.1 〜1.6 。大阪ガス社製〕。あるいはフッ素樹脂、具体的にはポリテトラフルオロエチレン〔PTFE〕、テトラエチレン−ヘキサフルオロプロピレン共重合体〔PFEP〕、エチレン−テトラフルオロエチレン共重合体〔PETFE 〕、テトラフルオロエチレン−パ−フルオロアルキルビニルエ−テル共重合体〔PFA 〕、エチレン−クロロトリフルオロエチレン共重合体〔PECTFE〕、テトラフルオロエチレン−ヘキサフルオロプロピレン−パ−フルオロアルキルビニルエ−テル共重合体〔PEPE〕、ポリクロロトリフルオロエチレン〔PCTFE 〕、ポリビニリデンフルオライド〔PVdF〕、ポリフッ化ビニル〔PVF 〕等。ならびにフッ化グラファイトなどが挙げられる。
【0030】
また、膜付けする塗布法としては、例えばディッピング法、スピンコ−ト法、ノズルフロ−コ−ト法、スプレ−法、リバ−スコ−ト法、フレキソ法、印刷法、フロ−コ−ト法、ならびにこれらの併用等、既知の塗布手段が適宜採用し得るものである。なかでもディッピング法における引き上げ速度としては、必要な膜厚によって適宜選択すればよいことではあるが、浸漬後例えば約0.1 乃至3.0mm /秒程度の静かな均一速度で引き上げることが好ましい。
【0031】
またさらに、前記アモルフアスアルミナ膜を成膜する際における乾燥、焼成については、例えば約600 ℃程度以下、好ましくは約550 ℃程度以下で約5分間乃至60分間程度である。また、熱水処理後における乾燥、焼成については、例えば約100 ℃程度前後で約10分間前後の乾燥のみ、もしくは該乾燥に続いて焼成、例えば約300 ℃乃至500 ℃程度で約10分間前後の焼成をし、花弁状の透明アルミナ膜を形成し、より実用化し得て実効を有する花弁状透明アルミナ膜をうることができた。なお、該花弁状透明アルミナ膜の膜厚としては、約50nm以上400nm 以下程度が好ましいものである。また、撥水膜における乾燥、焼成については、例えば室温乃至約100 ℃程度前後で約10乃至 120分間程度前後の乾燥のみ、もしくは該乾燥に続いて焼成、例えば約200 ℃乃至450 ℃程度で約10分間前後の焼成である。
【0032】
また、前記アモルフアスアルミナ膜の熱水処理については、例えば50℃乃至100 ℃の熱水または約100 ℃程度にボイルされた熱水中に該アモルフアスアルミナ膜付きガラス基板を浸漬せしめて、該アモルフアスアルミナ膜の表層表面が解膠作用等を受けることで、後述する図1乃至図3に示すように、特異な微小な孔状の空隙をもって特異な花弁状のものがランダムに集合体化した表層表面を有するものと成り、所期のめざす特異な空隙と形状化をなしうることができ、例えば含浸性や担持性や拘持性等下地層膜として、その機能や性能をより充分に発揮する膜と成し得る花弁状透明アルミナ膜となる。また、該熱水処理の処理時間としては、約5分間乃至24時間前後が好ましいものである。
【0033】
またさらに、得られた花弁状透明アルミナ膜の評価法の一つとしては、走査型電子顕微鏡(SEM )による5.0 万倍で表層表面を上面視した写真観察、5.0 万倍の側断面視した写真観察、ならびにサイクリックコンタクトモ−ド原子力間顕微鏡(CC-AFM )による表層表面を斜視した写真観察ならびに該観察による該膜の中心線平均粗さRaを面拡張した平均面粗さRa’値と比表面積SRを求めて表示できるようにしたものである。〔実施例1を参照のこと〕。
【0034】
その結果、図1乃至図3に示すようになり、例えば空隙の大きさが約50nm乃至100nm 程度で花弁状物が約20nm乃至50nm程度となり、なかでも前記平均面粗さRa’値が約17nm程度以上、かつ比表面積SRが1.5程度 以上となることであり、好ましくはRa’値が約20nm程度以上、かつ比表面積SRが1.7 程度以上である。なお、該両者の値が極端に大きくなるとヘイズ等の問題が発現することは言うまでもない。
【0035】
またさらに、撥水膜における撥水性能の評価法の一つとしては、接触角計〔エルマ(株)製〕を用い、該膜の大気中(約25℃)での水滴(水滴量約1.7 μl )に対する接触角θ(°)を測定することで行った。その結果、接触角θは約140 °以上、好ましくは接触角θが約150 °以上170 °以下程度であり、超撥水性能を有するものであった。
【0036】
前述したとおり、本発明の撥水撥油防汚性膜及びその形成法によれば、基体上に形成した花弁状透明アルミナ膜と、該花弁状透明アルミナ膜上に被覆した撥水膜とでなることとしたことにより、撥水膜の含浸性、担持性あるいは拘持性の性能を高めることができる、その特異な空隙とその特異な形状の集合体化とするようより制御した微細でしっかりしかつ比表面積を高めた花弁状形状を呈する透明アルミナ膜を下地層膜としてでき、その上に撥水膜を被覆するよう被膜することで、高安全性で厄介な工程なく簡便に効率よく得られ、撥水膜の含浸性、担持性あるいは拘持性の性能を高めると同時に、表層表面の特異な凹凸状を活かして相乗効果を発現せしめ、優れた超撥水性膜をもたらして格段にその性能を発揮することとなり、光学特性を損なうことなく、かつ硬さも向上し、耐熱性あるいは耐候性等が優れたものとなり、建築建装用もしくは自動車用等の窓材、各種膜付きガラス物品あるいは各種建築資材用等において有用な撥水撥油防汚性膜及びその形成法を提供するものである。
【0037】
【実施例】
以下、実施例により本発明を具体的に説明する。ただし本発明は係る実施例に限定されるものではない。
【0038】
参考例 大きさ約100mm x100mm 、厚さ約2mmのクリア・フロートガラス基板を中性洗剤、水すすぎ、アルコールで順次洗浄し、乾燥した後、アセトンで払拭し被膜用ガラス基板とした。
【0039】
アルミニウム-sec- ブトキシド〔Al(O-sec-Bu)3 〕とイソプロピルアルコ−ル〔IPA 〕とを約30分間室温で攪拌し、アセト酢酸エチル〔EAcAc 〕を添加し約3時間室温で攪拌し、さらに水〔H2O 〕と〔IPA 〕を加え、モル比で、Al(O-sec-Bu)3 :IPA :EAcAc :H2O =1:20:1:2の割合とし、約1時間室温で攪拌しAl2O3 ゾルである下地層膜用塗布液を調製した。
【0040】
次いで、前記被膜用ガラス基板の片面をマスク材でマスキングし、該下地層膜用塗布液槽内にマスキング付き被膜用ガラス基板を浸漬した後、約1mm/秒のスピ−ドで引き上げ、マスク材を除去することで、所謂ディッピング法により前記被膜用ガラス基板の表面に塗布膜を形成した。
【0041】
続いて、乾燥後、約500 ℃で約10分間焼成する熱処理をし、透明アモルフアスアルミナ膜を得た。
次に、約100 ℃の熱水中に約0.5 乃至2時間程度浸漬する熱水処理をした後、約100 ℃で約10分間程度乾燥し、さらに約400 ℃で約10分間程度焼成し、特異な表層表面形状をした透明アルミナ薄膜付きガラス基板を得た。
【0042】
得られた該特異な表層表面形状をした透明アルミナ薄膜付きガラス基板の透明アルミナ薄膜について、下記の評価をした。
〔表層表面の観察〕
イ、走査型電子顕微鏡(SEM )〔日立製作所製 S-4500 、加速電圧5.0kV 、倍率5.0 万倍〕で観察した。その一部として上面視した表層表面の写真と側断面視した断面の写真で示す。
【0043】
ロ、走査型プロ−ブ顕微鏡のサイクリックコンタクトモ−ド原子間力顕微鏡( CC-AFM)〔セイコ−電子工業(株)製、SPI3700 、1.0 μm四方スキャン〕で観察した。該アルミナ薄膜の中心線平均粗さを面拡張した平均面粗さ Ra’値(nm)と比表面積SRで示す。
【0044】
すなわち、平均面粗さRa’値(nm)は、JIS B 0601で定義されている中心線平均粗さRaを、測定面に対し適用し三次元に拡張したもので、「基準面から指定面までの偏差の絶対値を平均した値」と表現し、次式で与えられる。
【0045】
【数1】

Figure 0003688042
【0046】
但し、Ra’:平均面粗さ値(nm)。S0:測定面が理想的にフッラトであるとした時の面積、|X R −X L |×|X T −X B |。 F(X 、Y ):測定点(X 、Y )における高さ、X は X座標、Y は Y座標。X R 〜X L :測定面の X座標の範囲。X T 〜X B :測定面の Y座標の範囲。Z0:測定面内の平均の高さ。
【0047】
また、比表面積(SR)は、SR=S /S0〔S0:測定面が理想的にフラットであるときの面積。S :実際の測定面の表面積。〕で求められる。
なお、実際の測定面の表面積は次のようにして求める。
【0048】
先ず、最も近接した3つのデ−タ点(A,B,C )より成る微小三角形に分割し、次いで各微小三角形の面積△S を、ベクトル積を用いて求める。
△S (△ABC )=|AB×AC|/2〔但し、ABおよびACは各辺の長さ〕となり、この△S の総和が求める表面積S になる。
【0049】
その結果、得られた透明アルミナ薄膜付きガラス基板における透明アルミナ膜の表層表面は、5.0 万倍で上面視した表層表面のSEM 写真を図1に示すように、また5.0 万倍の側断面視した断面のSEM 写真を図2に示すようになり、約50nm乃至100nm 程度の微細でかつ入り組んだ特異な孔状空隙を醸し出し、約20nm乃至50nm程度の微小な大きさでランダム状にかつ複雑に入り組んだ特異な花弁形状を呈して集合体化したものである花弁状透明アルミナ膜であった。
【0050】
さらに、前記花弁状透明アルミナ膜を斜視したCC-AFM写真は図3に示すようになり、前記平均面粗さRa’値(nm)は約26nm程度であり、比表面積(S R )は約1.8 程度であった。
【0051】
また膜厚としては約150nm 程度であったが、約50nm乃至400nm 程度の範囲で、クラック等の欠陥の発現もなく、花弁状透明アルミナ膜を得ることができた。
なお、得られた花弁状透明アルミナ膜付きガラス基板の花弁状透明アルミナ膜について、例えばその硬さ、耐熱性、耐候性、可視光透過率や可視光反射率等の光学特性などを評価したところ、例えば充分透視性に優れ、優れた反射低減性を示し、その硬さも向上したものとなり、耐熱性や耐候性もあるものであった。
【0052】
さらに次いで、フッ化ピッチ〔C6F6〕1gに対し1,1,2-トリクロロ-1,2,2- トリフルオロエタン〔Cl2FCCClF2、融点:-35℃、沸点:47.6 ℃〕66gを加え、室温で約24時間攪拌し、撥水膜用塗布液とした。
【0053】
前記花弁状透明アルミナ膜付きガラス基板の非膜面側をマスク材でマスキングし、該撥水膜用塗布液槽内の撥水膜用塗布液中に該花弁状透明アルミナ膜付きガラス基板を浸漬し、引き上げスピ−ド約1.96mm/秒で引き上げ、マスク材を取り剥がすことでなし、ディッピング法により前記花弁状透明アルミナ膜付きガラス基板の花弁状透明アルミナ薄膜上に被覆するように塗膜を形成した。
【0054】
次いで、該撥水膜を被覆した花弁状透明アルミナ膜付きガラス基板の撥水膜を乾燥し、撥水膜と花弁状透明アルミナ膜を2層に積層した積層膜付きガラス基板を得た。
【0055】
得られた積層膜付きガラス基板について、下記の試験を行った。
〔撥水性試験〕
該積層膜の大気中(約25℃)での水(水滴量約1.7 μl )に対する接触角θ(°)を、接触角計〔エルマ(株)製〕を用いて測定した。
【0056】
その結果は、接触角θが約140 °であり、高い接触角を比較的長時間保ち、所期の性能を有する撥水撥油防汚性膜であった。
実施例1
参考例と同様なガラス基板上に、先ず参考例と同様の花弁状透明アルミナ膜を成膜した後、撥水膜用塗布液としてフルオロアルキルシラン〔FAS 〕としてTSL8233 〔東芝シリコン(株)製。C8F17C2H4Si(OCH3)3〕を主成分とする塗布液を用い、花弁状透明アルミナ膜の上に被覆成膜した。なお、撥水膜用塗布液の混合割合としては、モル比で、C8F17C2H4Si(OCH3)3:メチルアルコ−ル〔MeOH〕:水〔H2O 〕:塩酸〔HCl 〕=1:10:3:0.0005前後とした。また約200 ℃乃至400 ℃前後で約10分間前後程度の熱処理をし、布で拭き整えた。
【0057】
得られた撥水膜と花弁状透明アルミナ膜を2層に積層した積層膜付きガラス基板について、実施例1と同様な試験を行った。
その結果は、接触角θが約165 °であり、高い接触角を比較的長時間保ち、所期の性能を有する撥水撥油防汚性膜であった。
【0058】
さらに、花弁状透明アルミナ膜を得るための熱水処理の処理時間による接触角θへの影響を確認したところ、処理時間10分間乃至120 分間の間で、接触角θが約165 °乃至167 °の範囲にあった。
【0059】
またさらに、前記FAS の熱処理温度による接触角θへの影響を確認したところ、熱処理温度400 ℃乃至450 ℃で、接触角θが約166 °乃至155 °の範囲にあった。
【0060】
比較例1
硝酸アルミニウム九水和物〔Al(NO3)3・9H2O〕に1,3-ブタンジオ−ル〔1,3-Butandiol 〕を加えて約90℃で約5時間攪拌し20wt%Al(NO3)3・9H2O溶液を塗布液として調製した。
【0061】
次いで、前記実施例1と同様の被膜用ガラス基板を、該塗布液槽内の塗布液中に浸漬した後、約0.4mm /秒の引き上げスピ−ドで引き上げるディッピング法によって被膜した。続いて約100 ℃で約2時間乾燥した後、約500 ℃で約5時間焼成した。
【0062】
次に、約100 ℃の熱水で約2時間の熱水処理をし、約100 ℃で約30分間の乾燥をした後、約400 ℃で約10分間焼成した。
得られたアルミナ薄膜付きガラス基板を実施例1と同様のSEM での写真ならびにCC-AFM による平均面粗さRa' 値(nm)と比表面積SRでもって評価した。
【0063】
その結果、3.5 万倍のSEM 写真である図4に示すようになり、約100nm 乃至200nm 程度の細孔を有し、約50nm乃至100nm の長さで約5nm程度の幅の繊維状粒子の集合体でなるスポンジ状の表面形状であった。
【0064】
さらに、前記CC-AFM 写真を図5に示すようになり、前記平均面粗さRa' 値(nm)は約15nm程度であり、比表面積(S R )は1.3 程度であった。
次いで、該スポンジ状透明アルミナ薄膜付きガラス基板のスポンジ状透明アルミナ膜の上に、実施例1と同様の撥水膜を被覆した。
【0065】
得られた撥水膜とスポンジ状透明アルミナ膜を2層に積層した積層膜付きガラス基板について、実施例1と同様な試験を行った。
その結果は、接触角θが約130 °乃至135 °程度であり、必ずしも所期の超撥水性能を有する撥水撥油防汚性膜とは到底言い難いものであった。
【0066】
【発明の効果】
以上前述したように、本発明の撥水撥油防汚性膜及びその形成法によれば、手軽に容易な膜形成手段ならびに熱水処理でもって被膜を安価に効率よく得られ、該被膜において制御した特異な形状の花弁状の集合体で成す、特異な孔状の空隙を醸し出して成る表層表面を有しかつ比表面積をより高めるアルミナ酸化物薄膜をうることができ、例えば撥水性薄膜など各種機能性薄膜の下地層膜として抜群の含浸性、担持性あるいは拘持性で埋め込み被覆せしめてその性能を充分発現することとなる等、格段にその性能を発揮して、光学特性を損なうことなく、超撥水性とすることができ、密着性、耐熱性、耐久性ならびに耐候性等に優れるものとなる等、建築建装用もしくは自動車用窓材をはじめ、各種ガラス物品、建材物品等において好適に採用できる、有用な撥水撥油防汚性膜及びその形成法を提供するものである。
【図面の簡単な説明】
【図1】実施例1において、本発明の下地層膜である花弁状透明アルミナ膜に対し、SEM によって5.0 万倍で上面視した表層表面の写真を示す図である。
【図2】実施例1において、本発明の下地層膜である花弁状透明アルミナ膜に対し、SEM によって5.0 万倍で側断面視した断面の写真を示す図である。
【図3】実施例1において、本発明の下地層膜である花弁状透明アルミナ膜に対し、CC-AFM によって斜視した表層表面の写真を示す図である。
【図4】比較例1において、従来の下地層膜であるスポンジ状透明アルミナ膜に対し、SEM によって3.5 万倍で上面視した表層表面の写真を示す図である。
【図5】比較例1において、従来の下地層膜であるスポンジ状透明アルミナ膜に対し、CC-AFM によって斜視した表層表面の写真を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water and oil repellent and antifouling film excellent in heat resistance and weather resistance as well as exhibiting super water repellency, and a method for forming the same. The present invention provides a useful water- and oil-repellent and antifouling film that can be widely used such as window glass, mirror glass, decorative glass, various building materials and building materials, and a method for forming the same.
[0002]
[Prior art]
Recently, not only in the field of semiconductors, but also on the surface of various building and construction materials such as glass and plastic, as well as window materials made of glass, it has been performed to improve the performance of various materials. Proposals, in particular, proposals to give super water repellency have been made.
[0003]
For example, Japanese Patent Publication No. 7-86146 discloses a water- and oil-repellent and antifouling film and a method for forming the same. The surface of a substrate on which irregularities of less than 400 nm are formed has a fluorine atom at least via a siloxane bond. A water- and oil-repellent and antifouling film with a surface of less than 400 nm that has a chemisorption monomolecular film containing And a process of forming irregularities of less than 400 nm on the surface of the substrate and a chlorosilane group (SiClnX3-nThe substrate is immersed in a non-aqueous organic solvent in which a chlorosilane-based surfactant having a group, n = 1,2,3, X is a functional group) and having a fluorocarbon group at the other end, A method for producing a water- and oil-repellent and antifouling coating film having a surface with an unevenness of less than 400 nm including a step of forming a chemisorbed monomolecular film comprising an activator on a substrate surface.
[0004]
In particular, it is described that the uneven shape is a chemical etching method using sandblasting or hydrofluoric acid, an electrolytic etching, or a rubbing method using a sand paper.
[0005]
Further, for example, JP-A-6-116430 describes a water- and oil-repellent film and a method for producing the same, an inorganic hard film having fine irregularities formed on at least one surface on a plastic film, A water- and oil-repellent film comprising a fluorine-containing chemisorbed monomolecular film formed on tiny irregularities of the film via a siloxane bond. And a step of forming an inorganic hard film on at least one side of the plastic film, a step of performing a plasma discharge treatment on the surface of the inorganic hard film in a gas containing carbon and fluorine to form minute unevenness, and the unevenness Plasma discharge treatment is performed on the formed inorganic hard film surface with a gas containing at least oxygen to make the uneven surface hydrophilic, and the plastic film on which the uneven inorganic hard film is formed on the surface is fluorocarbon. And a step of immersing a compound containing a group and a chlorosilyl group in a solution dissolved in a non-aqueous solvent to form a chemisorption monomolecular film containing fluorine on the uneven surface of the inorganic hard film through a siloxane bond. A method for producing a water / oil repellent film is described.
[0006]
In particular, it is described that the thickness of the inorganic hard film is 0.02 to 10 μm, and the roughness of minute irregularities is 0.01 to 0.3 μm.
Further, for example, Japanese Patent Application Laid-Open No. 7-97017 describes a solid having a water repellent surface and a method for producing the solid. A solid having a water-repellent surface having a multistage uneven structure including an uneven structure with a smaller period and having a surface area multiplication factor of 5 or more. And a method for producing a solid having a water-repellent surface by depositing crystals or aggregating particles by applying chemical reaction treatment such as electroplating to the solid surface by machining. Yes.
[0007]
Among them, the multi-step concavo-convex structure is formed on a solid surface by mechanical processing including cutting, grinding, and electrolytic processing, electrical processing including laser processing, chemical processing including electrolysis, chemical reaction, and diffusion-controlled aggregation. It is described that it is formed by a combination of lithography, plasma processing, vacuum deposition and the like, and the cycle is 1 mm or less and 10 nm or more.
[0008]
Further, for example, JP-A-7-206475 describes a water-repellent layer carrying member, in which a plurality of concave and convex portions are alternately formed on a surface, and the surface is made of a water-repellent material. In the water-repellent layer-carrying member coated with the water-based film, the pitch of the concave portions or convex portions covered with the water-repellent film is in the range of 20 μm to 150 μm, and the depth of the concave portion or the top of the convex portion with respect to the pitch is defined. A water repellent layer carrying member is described in which concave portions and convex portions are formed so that the surface roughness of the virtual surface obtained by tying is 500 μm or less.
[0009]
In particular, it is described that concave portions or convex portions are formed into a quadrangular pyramid shape by photolithography, and that concave portions or convex portions are alternately and repeatedly formed into a Fresnel lens.
[0010]
In addition, for example, a water-repellent paint described in JP-A-6-1222838 and a coating method thereof, a water-repellent material described in JP-A-6-345881, a manufacturing method thereof, and the like, JP-A-7-26168 Related to paints such as the manufacturing method of super water-repellent paints described in the publication, organic coatings described in JP-A-7-76797 and methods for forming the same, fluorine-containing compound composites described in JP-A-4-283268, etc. There are suggestions.
[0011]
Furthermore, for example, the Chemical Society of Japan, 1992, (12), pages 1511 to 1514 describes the preparation of a sponge-like alumina thin film by a sol-gel method. After forming and treating the alumina thin film in hot water, the surface structure is changed to a sponge shape by firing, and fibrous fine particles having pores of 100 to 200 nm, lengths of 50 to 100 nm and widths of about 5 nm are formed. A sponge-like alumina thin film composed of linked assemblies is described.
[0012]
[Problems to be solved by the invention]
For example, as described above, the water / oil repellent / antifouling coating film described in JP-B-7-86146 and a method for forming the same, the water / oil repellent film described in JP-A-6-116430, a method for manufacturing the film, and the like. Both of the solid having a water-repellent surface described in Kaihei 7-97017 and a method for producing the solid and the water-repellent layer-carrying member described in Japanese Patent Laid-Open No. 7-206475 have a contact angle with water droplets of, for example, about 160 °. Although it has been obtained, for example, it is complicated such as etching with acid or fluorine, various mechanical processing, electrical processing, chemical processing, photolithography, plasma processing to form an opaque or uneven shape And a difficult process is difficult for the thin film.
[0013]
Further, for example, the sponge-like alumina thin film has insufficient pore shape and surface unevenness, and the sponge-like structure composed of aggregates in which the fibrous fine particles are connected has insufficient shape characteristics. There is a problem that it is not always possible to sufficiently exhibit its performance as a film.
[0014]
Therefore, the main problem of the present invention is that it is a transparent alumina film that is more controlled to increase its specific surface area by assembling its unique voids and its unique shape, and exhibiting its function and performance more as an underlayer film. In addition, a water repellent film is formed on the surface of the surface layer, and the impregnation, supportability, or holding performance of the water repellent film is improved at the same time. It is to obtain a synergistic effect by making use of the unique uneven shape, and to obtain a more excellent super water-repellent film in a more stable state.
[0015]
[Means for Solving the Problems]
The present invention has been made in view of such conventional problems, and it is possible to improve the impregnating property, supporting property or holding property of the water-repellent film on the substrate, for example, on the glass substrate. A transparent alumina film showing a fine, firm and petal-like shape with a higher specific surface area, which is more controlled to form a unique void and its unique shape, is formed as an underlayer film, on which water repellent properties are formed. By coating the film so as to cover the film, the impregnating property, supporting property, or holding property of the water-repellent film is improved, and at the same time, a synergistic effect is expressed by utilizing the unique unevenness on the surface of the surface layer, and excellent super-repellent property is achieved. A water-based film will be exhibited and its performance will be demonstrated dramatically, without impairing optical properties, improved hardness, excellent heat resistance or weather resistance, etc. , Various filmed moths In scan the article or the like for various building materials and provides a useful oil-repellent antifouling film and its formation method.
[0016]
That is, the present invention comprises a water- and oil-repellent antifouling film comprising a petal-like transparent alumina film formed on a substrate and a water-repellent film coated on the petal-like transparent alumina film.
In addition, the petal-like transparent alumina film is obtained by subjecting an amorphous alumina film formed by drying and heat-treating a film with a coating solution comprising at least an aluminum alkoxide and a stabilizer to hydrothermal treatment, drying and firing. The water / oil repellent / antifouling film described above, which is a petal-like transparent alumina film.
[0017]
In addition, the petal-like transparent alumina film has an average surface roughness Ra ′ of 17 nm or more obtained by expanding the center line average roughness of the petal-like transparent alumina film, and has a specific surface area S.RThe above-mentioned water / oil repellent / antifouling film, characterized in that is 1.5 or more.
[0018]
Furthermore, the water / oil repellent / antifouling film described above, wherein the water repellent film is a coating film obtained by applying a coating solution comprising a fluorine-containing silane compound and heat-treating it.
Furthermore, the water- and oil-repellent antifouling film described above, wherein the fluorine-containing silane compound is a fluorine-containing silane compound having a fluorocarbon group.
[0019]
Furthermore, the water / oil repellent / antifouling film described above, wherein the substrate is a transparent glass substrate.
Also, a coating solution comprising at least an aluminum alkoxide and a stabilizer is applied onto the substrate, dried and baked to form an amorphous alumina film, and then the amorphous alumina film is treated with hot water and dried. The water-repellent and oil-repellent anti-reflective coating is characterized in that after the formation of a petal-like transparent alumina film by baking, a coating liquid comprising a fluorine-containing silane compound is applied thereon and heat-treated to form a water-repellent film. Dirty film formation method.
[0020]
Further, the above-mentioned method for forming a water- and oil-repellent and antifouling film, wherein the fluorine-containing silane compound is a fluorine-containing silane compound having a fluorocarbon group.
Furthermore, the present invention provides a method for forming the water / oil repellent / antifouling film described above, wherein the substrate is a transparent glass substrate.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Here, as described above, the water- and oil-repellent and antifouling film comprising the petal-like transparent alumina film formed on the substrate and the water-repellent film coated on the petal-like transparent alumina film is the As a transparent alumina film that is more controlled to increase the specific surface area by assembling unique voids and unique shapes, it will exhibit its functions and performance as an underlayer film, and will bring more practical use Among them, a water-repellent film is coated on it, and at the same time it improves the impregnation, supportability, or holding performance of the water-repellent film, and it produces a synergistic effect by taking advantage of the unique irregularities on the surface of the surface layer. It is to obtain a superior super water-repellent film in a more stable state.
[0022]
As the petal-like transparent alumina film as the underlayer film, an amorphous alumina film formed by drying and heat-treating at about 600 ° C. or less with a coating solution comprising at least an aluminum alkoxide and a stabilizer, A petal-like transparent alumina film obtained by processing, drying and firing, an average surface roughness Ra ′ value obtained by extending the center line average roughness of the petal-like transparent alumina film is 17 nm or more, and a specific surface area SRIs 1.5 or more.
[0023]
Examples of the aluminum alkoxide include aluminum ethoxide, aluminum isopropoxide, aluminum-n-butoxide, aluminum-sec-butoxide, aluminum-tert-butoxide, and aluminum acetylacetonate.
[0024]
Examples of the stabilizer include β-diketones such as acetylacetone and ethyl acetoacetate, alkanolamines such as monoethanolamine, diethanolamine and triethanolamine, and more general metal alkoxide stabilizers. Etc.
[0025]
Examples of the dilution solvent include methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, and a dilution solvent used in a general sol-gel method.
[0026]
The coating solution comprising at least the aluminum alkoxide and the stabilizer includes aluminum alkoxide that reacts quickly with moisture in the air and becomes white turbid, which is effective to prevent this, such as β-diketones and alkanoic acids. -Stabilizers such as ruamines are added at a molar ratio of about 1 or more, and the concentration of aluminum alkoxide in the diluted alcohol is such that, for example, by dipping, it is easy to apply with a diluting solvent such as various alcohols. The coating solution was prepared by diluting to a molar ratio of about 10 or more, preferably about 20 or more, and adding a small amount of water as a catalyst.
[0027]
A preferable mixing ratio is, for example, aluminum alkoxide: diluent solvent: stabilizer: water = 1: 10 to 100: 0.5 to 2: 0 to 5. In addition, about the preparation of the coating liquid which adds and mixes the each raw material, it carries out like Example 1 mentioned later, for example.
[0028]
Furthermore, as a water repellent agent for a water repellent film, for example, a fluorine-containing silane compound having a fluorocarbon group, specifically, CFThree(CH2)2Si (OCHThree)Three, CFThree(CH2)2SiClThree, CFThree(CF2)Five(CH2)2Si (OCHThree)Three, CFThree(CF2)Five(CH2)2SiClThree, CFThree(CF2)7(CH2)2Si (OCHThree)Three, CFThree(CF2)7(CH2)2SiClThree, CFThree(CF2)7(CH2)ThreeSiCHThree(OCHThree)2, CFThree(CF2)7(CH2)2SiCHThreeCl2In general, CFThree(CF2)a(CH2)2SiRbXc[R: alkyl group, X: alkoxy group or a group subject to hydrolysis such as a halogen atom, a: an integer from 0 to 7, b: an integer from 0 to 2, c: an integer from 1 to 3, b + c = 3] It is a compound represented by these.
[0029]
For example, fluoride pitch [CFm, M: 1.1-1.6. Osaka Gas Co., Ltd.]. Or fluororesin, specifically polytetrafluoroethylene [PTFE], tetraethylene-hexafluoropropylene copolymer [PFEP], ethylene-tetrafluoroethylene copolymer [PETFE], tetrafluoroethylene-perfluoroalkylvinyl Ether copolymer [PFA], ethylene-chlorotrifluoroethylene copolymer [PECTFE], tetrafluoroethylene-hexafluoropropylene-perfluoroalkylvinyl ether copolymer [PEPE], polychlorotrifluoro Ethylene [PCTFE], polyvinylidene fluoride [PVdF], polyvinyl fluoride [PVF] and the like. And graphite fluoride.
[0030]
Examples of the coating method for forming a film include a dipping method, a spin coating method, a nozzle flow coating method, a spray method, a river coating method, a flexo method, a printing method, a flow coating method, In addition, known coating means such as a combination thereof can be appropriately employed. In particular, the pulling speed in the dipping method may be appropriately selected depending on the required film thickness, but it is preferable to pull it up at a quiet uniform speed of, for example, about 0.1 to 3.0 mm / second after immersion.
[0031]
Furthermore, the drying and baking when forming the amorphous alumina film is, for example, about 600 ° C. or lower, preferably about 550 ° C. or lower, for about 5 to 60 minutes. As for drying and baking after the hydrothermal treatment, for example, drying only at about 100 ° C. for about 10 minutes, or subsequent to the drying, for example, baking at about 300 ° C. to 500 ° C. for about 10 minutes. By firing, a petal-like transparent alumina film was formed, and a petal-like transparent alumina film that could be put into practical use and had an effect could be obtained. The thickness of the petal-like transparent alumina film is preferably about 50 nm to 400 nm. In addition, for drying and baking in the water-repellent film, for example, only drying at about room temperature to about 100 ° C. for about 10 to about 120 minutes, or subsequent to the drying, for example, about 200 ° C. to 450 ° C. Firing for about 10 minutes.
[0032]
For the hot water treatment of the amorphous alumina film, for example, the glass substrate with the amorphous alumina film is immersed in hot water at 50 ° C. to 100 ° C. or hot water boiled to about 100 ° C. As the surface layer of the amorphous alumina film is subjected to peptization and the like, as shown in FIGS. 1 to 3 to be described later, unique petal-like ones are randomly assembled with unique fine pores. It can be formed with a specific void and shape that the intended surface layer has, and as a base layer film such as impregnating property, supporting property and holding property, its function and performance are more fully It becomes a petal-like transparent alumina film that can be formed with the film to be exhibited. The treatment time for the hydrothermal treatment is preferably about 5 minutes to about 24 hours.
[0033]
Furthermore, as one of the evaluation methods of the obtained petal-like transparent alumina film, the surface of the surface of the surface layer was observed with a scanning electron microscope (SEM) at a magnification of 50000 times, and the photo was viewed at a cross section of 50000 times. Observation, photographic observation of the surface of the surface layer by means of a cyclic contact mode atomic force microscope (CC-AFM) and an average surface roughness Ra ′ value obtained by expanding the centerline average roughness Ra of the film by the observation Specific surface area SRIt can be displayed by seeking. [See Example 1].
[0034]
As a result, as shown in FIG. 1 to FIG. 3, for example, the size of the gap is about 50 nm to 100 nm, the petals are about 20 nm to 50 nm, and the average surface roughness Ra ′ value is about 17 nm. More than about and specific surface area SRIs about 1.5 nm or more, preferably the Ra ′ value is about 20 nm or more and the specific surface area SRIs about 1.7 or more. It goes without saying that problems such as haze are manifested when both values become extremely large.
[0035]
Furthermore, as one method for evaluating the water-repellent performance of the water-repellent film, a contact angle meter (manufactured by Elma Co., Ltd.) is used. μl) was measured by measuring the contact angle θ (°). As a result, the contact angle θ was about 140 ° or more, preferably the contact angle θ was about 150 ° or more and 170 ° or less, and it had super water-repellent performance.
[0036]
As described above, according to the water- and oil-repellent and antifouling film of the present invention and the method for forming the film, the petal-like transparent alumina film formed on the substrate and the water-repellent film coated on the petal-like transparent alumina film This makes it possible to improve the impregnation, supportability, or holding performance of the water-repellent film, and to control the finer and more firmly so that the unique voids and unique shapes are aggregated. In addition, a transparent alumina film with a petal-like shape with an increased specific surface area can be used as an underlayer film, and a water-repellent film can be coated on top of it to provide a highly safe, simple and efficient process without complicated processes. The water-repellent film is improved in impregnation, supportability, or holding performance, and at the same time, it utilizes the unique irregularities on the surface of the surface layer to produce a synergistic effect, resulting in an excellent super-water-repellent film. The optical properties will be demonstrated. Water resistance and water repellency are useful for window materials for building construction or automobiles, glass articles with various films, and various building materials. An oil antifouling film and a method for forming the same are provided.
[0037]
【Example】
Hereinafter, the present invention will be described specifically by way of examples. However, the present invention is not limited to the embodiment.
[0038]
Reference example  A clear float glass substrate having a size of about 100 mm × 100 mm and a thickness of about 2 mm was sequentially washed with a neutral detergent, water rinse, alcohol, dried and then wiped with acetone to obtain a glass substrate for coating.
[0039]
Aluminum-sec-butoxide (Al (O-sec-Bu)Three] And isopropyl alcohol [IPA] are stirred for about 30 minutes at room temperature, ethyl acetoacetate [EAcAc] is added and stirred for about 3 hours at room temperature, and then water [H2O] and [IPA], and in molar ratio, Al (O-sec-Bu)Three: IPA: EAcAc: H2O = 1: 20: 1: 2 and stirred for about 1 hour at room temperature.2OThreeA coating solution for an underlayer film that is a sol was prepared.
[0040]
Next, one side of the glass substrate for coating is masked with a mask material, and after the glass substrate for coating with masking is immersed in the coating liquid tank for the underlayer film, it is pulled up at a speed of about 1 mm / sec. Then, a coating film was formed on the surface of the glass substrate for coating by a so-called dipping method.
[0041]
Subsequently, after drying, heat treatment was performed by baking at about 500 ° C. for about 10 minutes to obtain a transparent amorphous alumina film.
Next, after hydrothermal treatment that is immersed in hot water at about 100 ° C for about 0.5 to 2 hours, it is dried at about 100 ° C for about 10 minutes and then baked at about 400 ° C for about 10 minutes. A glass substrate with a transparent alumina thin film having a surface layer shape was obtained.
[0042]
The following evaluation was performed on the transparent alumina thin film of the obtained glass substrate with a transparent alumina thin film having a unique surface layer shape.
[Observation of the surface of the surface]
B) Observation was performed with a scanning electron microscope (SEM) [S-4500, manufactured by Hitachi, accelerating voltage 5.0 kV, magnification 50000 times]. As a part thereof, it is shown by a photograph of the surface of the surface layer viewed from above and a photograph of a cross section viewed from the side.
[0043]
(B) Observation with a cyclic probe mode atomic force microscope (CC-AFM) of a scanning probe microscope (Seiko Electronics Co., Ltd., SPI3700, 1.0 μm square scan). Average surface roughness Ra ′ value (nm) and specific surface area S obtained by expanding the center line average roughness of the alumina thin filmRIt shows with.
[0044]
That is, the average surface roughness Ra 'value (nm) is a three-dimensional extension of the centerline average roughness Ra defined in JIS B 0601 to the measurement surface. It is expressed as “average value of absolute value of deviation until” and is given by the following equation.
[0045]
[Expression 1]
Figure 0003688042
[0046]
Where Ra ′: average surface roughness value (nm). S0: Area when the measurement surface is ideally flatt, | XR−XL| × | XT−XB|. F (X, Y): Height at the measurement point (X, Y), X is the X coordinate, and Y is the Y coordinate. XR~ XL: X coordinate range of the measurement surface. XT~ XB: Y coordinate range of the measurement surface. Z0: Average height in the measurement surface.
[0047]
The specific surface area (SR) SR= S / S0[S0: Area when the measurement surface is ideally flat. S: Surface area of the actual measurement surface. ].
The actual surface area of the measurement surface is obtained as follows.
[0048]
First, it is divided into minute triangles composed of the three closest data points (A, B, C), and then the area ΔS of each minute triangle is obtained using a vector product.
ΔS (ΔABC) = | AB × AC | / 2 (where AB and AC are the lengths of each side), and the sum of ΔS is the surface area S to be obtained.
[0049]
As a result, the surface layer surface of the transparent alumina film in the obtained glass substrate with a transparent alumina thin film was viewed as a SEM photograph of the surface layer surface when viewed from the top at 50000 times, and as viewed from the side cross section at 550,000 times. The SEM photograph of the cross-section is shown in Fig. 2, which creates a fine and complicated pore space of about 50 nm to 100 nm, randomly and complicatedly with a small size of about 20 nm to 50 nm. However, it was a petal-like transparent alumina film that had a unique petal shape and was aggregated.
[0050]
Furthermore, a CC-AFM photograph of the petal-like transparent alumina film in perspective is as shown in FIG. 3, and the average surface roughness Ra ′ value (nm) is about 26 nm, and the specific surface area (SR) Was about 1.8.
[0051]
The film thickness was about 150 nm, but in the range of about 50 nm to 400 nm, a petal-like transparent alumina film could be obtained without the appearance of defects such as cracks.
The obtained petal-like transparent alumina film with a petal-like transparent alumina film was evaluated for its hardness, heat resistance, weather resistance, optical characteristics such as visible light transmittance and visible light reflectance, for example. For example, it was sufficiently excellent in transparency, showed excellent reflection reduction properties, improved its hardness, and had heat resistance and weather resistance.
[0052]
Next, fluoride pitch [C6F6] 1,1,2-trichloro-1,2,2-trifluoroethane [Cl2FCCClF2, Melting point: -35 ° C., boiling point: 47.6 ° C.) was added, and the mixture was stirred at room temperature for about 24 hours to obtain a water-repellent coating solution.
[0053]
The non-film side of the petal-like transparent alumina film-coated glass substrate is masked with a mask material, and the petal-shaped transparent alumina film-coated glass substrate is immersed in the water-repellent film coating liquid in the water-repellent film coating liquid tank. The coating film is formed so as to cover the petal-like transparent alumina thin film on the glass substrate with the petal-like transparent alumina film by dipping. Formed.
[0054]
Next, the water-repellent film of the glass substrate with a petal-like transparent alumina film coated with the water-repellent film was dried to obtain a glass substrate with a laminated film in which the water-repellent film and the petal-like transparent alumina film were laminated in two layers.
[0055]
The following test was done about the obtained glass substrate with a laminated film.
[Water repellency test]
The contact angle θ (°) of the laminated film with respect to water (amount of water droplets of about 1.7 μl) in the atmosphere (about 25 ° C.) was measured using a contact angle meter (manufactured by Elma).
[0056]
As a result, the water and oil repellent antifouling film had a contact angle θ of about 140 °, a high contact angle for a relatively long time, and the expected performance.
Example 1
Reference exampleOn a glass substrate similar toReference exampleAfter the same petal-like transparent alumina film was formed, TSL8233 [manufactured by Toshiba Silicon Co., Ltd.] was used as a fluoroalkylsilane [FAS] as a water-repellent coating solution. C8F17C2HFourSi (OCHThree)Three] Was used to form a coating on the petal-like transparent alumina film. The mixing ratio of the water-repellent coating solution is a molar ratio of C8F17C2HFourSi (OCHThree)Three: Methyl alcohol [MeOH]: Water [H2O]: hydrochloric acid [HCl] = 1: 10: 3: around 0.0005. The film was heat-treated at about 200 ° C. to 400 ° C. for about 10 minutes and wiped with a cloth.
[0057]
The same test as in Example 1 was performed on the obtained glass substrate with a laminated film in which the water-repellent film and the petal-like transparent alumina film were laminated in two layers.
As a result, the water and oil repellent antifouling film had a contact angle θ of about 165 °, kept a high contact angle for a relatively long time, and had the expected performance.
[0058]
Furthermore, when the influence of the hydrothermal treatment time to obtain the petal-like transparent alumina film on the contact angle θ was confirmed, the contact angle θ was about 165 ° to 167 ° for the treatment time of 10 minutes to 120 minutes. Was in the range.
[0059]
Further, when the influence of the heat treatment temperature of the FAS on the contact angle θ was confirmed, the contact angle θ was in the range of about 166 ° to 155 ° at the heat treatment temperature of 400 ° C. to 450 ° C.
[0060]
Comparative Example 1
Aluminum nitrate nonahydrate (Al (NOThree)Three・ 9H2O] was added with 1,3-butanediol [1,3-Butandiol] and stirred at about 90 ° C. for about 5 hours, and 20 wt% Al (NOThree)Three・ 9H2An O solution was prepared as a coating solution.
[0061]
Next, the same glass substrate for coating as in Example 1 was dipped in a coating solution in the coating solution tank, and then coated by a dipping method in which it was pulled up with a lifting speed of about 0.4 mm / second. Subsequently, it was dried at about 100 ° C. for about 2 hours and then calcined at about 500 ° C. for about 5 hours.
[0062]
Next, it was subjected to hot water treatment with hot water at about 100 ° C. for about 2 hours, dried at about 100 ° C. for about 30 minutes, and then fired at about 400 ° C. for about 10 minutes.
The obtained glass substrate with an alumina thin film was photographed with the same SEM as in Example 1, the average surface roughness Ra '(nm) and the specific surface area S by CC-AFM.RI evaluated it.
[0063]
As a result, as shown in FIG. 4 which is a 35,000 times SEM photograph, a collection of fibrous particles having pores of about 100 nm to 200 nm, lengths of about 50 nm to 100 nm and widths of about 5 nm. It was a sponge-like surface shape consisting of a body.
[0064]
Further, the CC-AFM photograph is as shown in FIG. 5, and the average surface roughness Ra ′ value (nm) is about 15 nm, and the specific surface area (SR) Was about 1.3.
Next, the same water-repellent film as in Example 1 was coated on the sponge-like transparent alumina film of the glass substrate with the sponge-like transparent alumina thin film.
[0065]
The same test as in Example 1 was performed on the obtained glass substrate with a laminated film in which the water-repellent film and the sponge-like transparent alumina film were laminated in two layers.
As a result, the contact angle θ is about 130 ° to 135 °, which is not necessarily a water and oil repellent and antifouling film having the desired super water repellency.
[0066]
【The invention's effect】
As described above, according to the water- and oil-repellent and antifouling film of the present invention and the method for forming the film, a film can be easily and inexpensively obtained by an easy film forming means and hot water treatment. It is possible to obtain an alumina oxide thin film that has a surface layer that is formed of petal-like aggregates with a unique shape and that has a unique pore-like void and that has a higher specific surface area, such as a water-repellent thin film. Demonstrate optical performance by remarkably exerting its performance, such as embedding and coating with excellent impregnation, supportability or holding properties as the underlayer film of various functional thin films. Suitable for various glass articles, building material articles, etc., including architectural and automotive window materials, such as super water repellency, excellent adhesion, heat resistance, durability and weather resistance. Picked It is intended to provide useful water-repellent, oil-repellent antifouling film and its formation method.
[Brief description of the drawings]
FIG. 1 is a view showing a photograph of a surface of a surface layer of a petal-like transparent alumina film, which is an underlayer film of the present invention, as viewed from the top at a magnification of 50000 times by SEM in Example 1. FIG.
FIG. 2 is a view showing a photograph of a cross section of the petal-like transparent alumina film, which is the underlayer film of the present invention, as viewed from the side at a magnification of 50000 times in Example 1 according to the present invention.
FIG. 3 is a view showing a photograph of the surface of the surface layer as viewed by CC-AFM with respect to the petal-like transparent alumina film which is the underlayer film of the present invention in Example 1.
FIG. 4 is a view showing a photograph of a surface of a surface layer viewed from the top at a magnification of 35,000 times by SEM with respect to a sponge-like transparent alumina film, which is a conventional underlayer film, in Comparative Example 1;
FIG. 5 is a view showing a photograph of the surface of a surface layer as viewed by CC-AFM with respect to a sponge-like transparent alumina film, which is a conventional underlayer film, in Comparative Example 1.

Claims (5)

基体上に形成した花弁状透明アルミナ膜と、該花弁状透明アルミナ膜上に被覆した撥水膜とでなり、前記花弁状透明アルミナ膜が、アルミニウムアルコキシドと安定化剤から少なくともなる塗布液で被膜を乾燥し熱処理して成膜したアモルフアスアルミナ膜を、熱水処理し、乾燥、焼成したことでなる膜の中心線平均粗さを面拡張した平均面粗さRa’値が17nm以上、比表面積SRが1.5 以上である花弁状の透明アルミナ膜であり、前記撥水膜が、フッ素含有シラン化合物からなる塗布液を塗布し、加熱処理した被覆膜であり、該フッ素含有シラン化合物がフルオロカ−ボン基を有するフッ素含有シラン化合物であり、25℃の大気中で1.7μlの水の接触角が155乃至167°であることを特徴とする超撥水撥油防汚性膜。A petal-like transparent alumina film formed on a substrate and a water-repellent film coated on the petal-like transparent alumina film, wherein the petal-like transparent alumina film is coated with a coating solution comprising at least an aluminum alkoxide and a stabilizer. Amorphous alumina film formed by drying and heat treatment was subjected to hot water treatment, dried and baked, and the average surface roughness Ra ′ value obtained by expanding the center line average roughness of the film was 17 nm or more. It is a petal-like transparent alumina film having a surface area S R of 1.5 or more, and the water repellent film is a coating film obtained by applying a coating liquid comprising a fluorine-containing silane compound and heat-treating the fluorine-containing silane compound. A super-water / oil-repellent / anti-fouling film, which is a fluorine-containing silane compound having a fluorocarbon group and has a contact angle of 1.7 μl of water in the atmosphere at 25 ° C. of 155 to 167 °. 花弁状透明アルミナ膜の膜厚が50nm以上400nm以下であることを特徴とする請求項1に記載の超撥水撥油防汚性膜。The super-water / oil-repellent / anti-fouling film according to claim 1, wherein the petal-like transparent alumina film has a thickness of 50 nm or more and 400 nm or less. 請求項1又は請求項2に記載の超撥水撥油防汚性膜が形成されてなる自動車用窓材。 An automotive window material comprising the super water- and oil-repellent antifouling film according to claim 1 or 2 formed thereon. 請求項1又は請求項2に記載の超撥水撥油防汚性膜が形成されてなる建築建装用窓材。The window material for building constructions in which the super water-repellent and oil-repellent antifouling film according to claim 1 or 2 is formed. 基体上に、アルミニウムアルコキシドと安定化剤から少なくともなる塗布液を塗布し、乾燥、焼成をしてアモルフアスアルミナ膜を成膜し、次いで該アモルフアスアルミナ膜に熱水処理をし、乾燥、焼成して花弁状透明アルミナ膜を形成した後、その上にフルオロカ−ボン基を有するフッ素含有シラン化合物からなる塗布液を塗布し、400〜450℃で加熱処理して撥水膜を被覆形成する撥水撥油防汚性膜の形成法であり、前記熱水処理の時間を10乃至120分間とすることで、撥水撥油防汚性膜の25℃の大気中での1.7μlの水の接触角を155乃至166°とすることを特徴とする超撥水撥油防汚性膜の形成法。On the substrate, a coating solution comprising at least an aluminum alkoxide and a stabilizer is applied, dried and baked to form an amorphous alumina film, and then the amorphous alumina film is treated with hot water, dried and baked. After forming a petal-like transparent alumina film, a coating solution made of a fluorine-containing silane compound having a fluorocarbon group is applied thereon , and heat-treated at 400 to 450 ° C. to form a water-repellent film. This is a method for forming a water / oil repellent / antifouling film, and the water-repellent / oil / repellent / antifouling film is 1.7 μl of water in the atmosphere at 25 ° C. by setting the hot water treatment time to 10 to 120 minutes The contact angle of 155 to 166 ° is a method for forming a super water- and oil-repellent antifouling film.
JP00998296A 1996-01-24 1996-01-24 Super water and oil repellent antifouling film and method for forming the same Expired - Fee Related JP3688042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00998296A JP3688042B2 (en) 1996-01-24 1996-01-24 Super water and oil repellent antifouling film and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00998296A JP3688042B2 (en) 1996-01-24 1996-01-24 Super water and oil repellent antifouling film and method for forming the same

Publications (2)

Publication Number Publication Date
JPH09202650A JPH09202650A (en) 1997-08-05
JP3688042B2 true JP3688042B2 (en) 2005-08-24

Family

ID=11735113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00998296A Expired - Fee Related JP3688042B2 (en) 1996-01-24 1996-01-24 Super water and oil repellent antifouling film and method for forming the same

Country Status (1)

Country Link
JP (1) JP3688042B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008009939A1 (en) 2007-02-20 2008-09-04 Pentax Corp. Dust-proof reflective mirror and optical device containing it

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4293035B2 (en) * 2003-05-07 2009-07-08 セイコーエプソン株式会社 Liquid repellent film covering member, component of liquid ejection device, nozzle plate of liquid ejection head, liquid ejection head, and liquid ejection device
JP4384898B2 (en) * 2003-11-28 2009-12-16 日油株式会社 Method for producing water / oil repellent coating
JP2006159730A (en) 2004-12-09 2006-06-22 Canon Inc Wiper blade member for ink jet recording head and ink jet recording method
JP2007183366A (en) 2006-01-05 2007-07-19 Pentax Corp Dust-proof light transmissive member, its application and imaging apparatus provided with the member
TW200746123A (en) 2006-01-11 2007-12-16 Pentax Corp Optical element having anti-reflection coating
JP2007213780A (en) * 2006-01-11 2007-08-23 Pentax Corp Optical element having antireflective film
JP2009017305A (en) * 2007-07-05 2009-01-22 Hoya Corp Method of manufacturing dust-proof light transmissive member, its application and imaging apparatus provided with the member
JP5867325B2 (en) * 2011-07-12 2016-02-24 株式会社デンソー Method for producing water-repellent substrate
JP5656026B2 (en) * 2011-11-14 2015-01-21 株式会社豊田中央研究所 Water repellent material and method for producing the same
CN105948480B (en) * 2016-04-22 2018-01-30 芜湖新利德玻璃制品有限公司 Impact resistance plate glass and preparation method thereof
CN105837040B (en) * 2016-04-22 2018-01-16 芜湖新利德玻璃制品有限公司 High intensity plate glass and preparation method thereof
CN105837037B (en) * 2016-04-22 2018-01-30 芜湖新利德玻璃制品有限公司 Pressure-resistant plate glass and preparation method thereof
CN105712626B (en) * 2016-04-22 2018-01-02 芜湖新利德玻璃制品有限公司 Resistance to fracture plate glass and preparation method thereof
JP7275801B2 (en) * 2018-04-25 2023-05-18 Agc株式会社 glass substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008009939A1 (en) 2007-02-20 2008-09-04 Pentax Corp. Dust-proof reflective mirror and optical device containing it

Also Published As

Publication number Publication date
JPH09202650A (en) 1997-08-05

Similar Documents

Publication Publication Date Title
JP3688042B2 (en) Super water and oil repellent antifouling film and method for forming the same
JPH09202649A (en) Flower pedal-like transparent alumina membrane and its formation
EP0658525B1 (en) Multilayered water-repellent film and method of forming same on glass substrate
JP2809889B2 (en) Water- and oil-repellent coating and method for producing the same
WO2003039855A1 (en) Article coated with coating film, and functional article coated with coating film using the same
JP4247354B2 (en) Low temperature formation method of surface fine uneven structure and substrate having the structure
JPH09309746A (en) Water-repellent glass
JPH09100141A (en) Production of water repellent glass
JPH11171592A (en) Water-repellent article and its manufacture
JP4256662B2 (en) Film-coated article and method for producing the same
Wankhede et al. Development of hydrophobic non-fluorine sol-gel coatings on aluminium using long chain alkyl silane precursor
JPH04239633A (en) Water and repelling film and manufacture thereof
JPH11171594A (en) Water repellent glass article and its production
JP2004136630A (en) Functional film coated article, and its manufacturing method
JPH04359031A (en) Water-and-oil repellent film
JP3165672B2 (en) Article having water / oil repellent coating and method for producing the same
JPH09309745A (en) Water-repellent and oil-repellent article and its production
JP2000144116A (en) Super water repellent film
JPH04249146A (en) Water-repellent oil-repellent stainproof film and manufacture thereof
JPH10259037A (en) Water-repelling coating film and its formation
JP3150133B2 (en) Article having a water-repellent and oil-repellent surface and a hydrophilic surface and method for producing the same
JPH0913018A (en) Composition for water-repellent coating film and water-repellent glass
JP2004002187A (en) Water repellent and oil repellent coating film
JP3017965B2 (en) Article having a water- and oil-repellent coating and method for forming the same
JPH09132433A (en) Sol-gel film and water-repellent glass using same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees