JP3687014B2 - Treatment method of chromium-containing iron ore - Google Patents
Treatment method of chromium-containing iron oreInfo
- Publication number
- JP3687014B2 JP3687014B2 JP09582196A JP9582196A JP3687014B2 JP 3687014 B2 JP3687014 B2 JP 3687014B2 JP 09582196 A JP09582196 A JP 09582196A JP 9582196 A JP9582196 A JP 9582196A JP 3687014 B2 JP3687014 B2 JP 3687014B2
- Authority
- JP
- Japan
- Prior art keywords
- chromium
- slag
- welding
- hexavalent chromium
- ascorbic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Processing Of Solid Wastes (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、ステンレス鋼等の含クロム合金鋼の溶接や溶断工程或は製鋼材料のフエロクロム.金属クロムなどの溶解等の各種加熱処理に伴って発生するクロムの酸化物やクロム塩などの含クロム鉱滓について、該鉱滓に含まれている極めて有害な6価クロムが工場内での一時保管から廃棄処分に至る間の粉塵飛散や雨水などへの溶出による人体への被害や排水公害の発生を未然に防止する含クロム鉱滓の無害化処理方法に係る。
【0002】
【従来の技術】
含クロム合金鋼の溶接、就中溶接フラックスを使用する手溶接棒やフラックス入りワイヤ(FCW)を用いる溶接に際しては、溶接施工後に於ける溶接線上にはフラックスが溶融して生成する通称スラグが付着する。
而して、これらスラグは、溶接棒の芯線かワイヤがフラックスと共に溶接熱によって溶融する際に発生するものであり、これら芯線とワイヤ、更には溶接母材たる含クロム合金鋼の一部が溶融すると同時に、その一部は溶接ヒュームとなって飛散し、或はまたその一部はスラグ中に移行することとなる。
ところで、ステンレス鋼のような含クロム合金鋼の溶接に際しては、溶接施工上の常套手段としては溶接すべき母材にほぼ近い組成の溶接棒又は溶接ワイヤが使用されるため、この種の生成スラグについて、本発明者が実施した試験結果に依れば、これら合金成分中のクロムの一部は有害物質に指定されている6価クロムに転化した状態で含まれていることを確認した。
この現象について本発明者が詳細に研究調査した考察に依れば、上記の芯線とワイヤ及び溶接母材中に含まれるクロムの一部は、溶接熱によってフラックス中の主成分であるライム系については炭酸カルシウム、またライム糸フラックスについては炭酸カルシウムと弗化カルシウム、またライムチタニヤ系フラックスの場合は炭酸カルシウムと酸化チタンなどと反応し、クロム酸カルシウムのようなクロム酸塩乃至はクロム酸のような何れも6価クロムの形態に酸化しているものと思考される。
つまりその証拠として、これらの溶接スラグは、溶接フラックス中の一部の成分は水に極めて易溶性であり、その水溶液についてJIS工場排水中の6価クロムの比色分析法であるジフェニルカルバジット法に準拠して発色させると、極めて明瞭に赤紫色の発色が認められ、6価クロムの存在が確認された。
またこの場合の6価クロムの多寡は、使用した溶接棒芯線や溶接ワイヤ又は溶接母材中に含まれるクロムの含有量に比例し、また採取したスラグ又はフラックスの量に比例することからも立証された。
このように、溶接スラグに含まれる6価クロムは、水に対して溶け易い特性があるため、作業者が汗ばんだ手でこれらに接触すれば、直ちに溶解して手に付着し、顔や他の皮膚への付着、時には口に6価クロムが入る可能性があるし、また溶接作業後これら溶接スラグは、サンダー,グラインダー等による研削作業或はハンマーなどによる打撃作業によりこれを溶接母材から剥離除去するのが通例である。
このように剥離された溶接スラグは、掃き集められて工場屋外に野積み状態で一時保管されており、風雨に曝されているのが現状である。
一方、ステンレス鋼等の含クロム合金鋼の製造プロセス中の、或は製鋼材料のフエロクロム,金属クロムなどの溶解工程や、爾後の連続鋳造工程と熱間圧延工程などからも上記溶接スラグと同様に、6価クロムを多く含有する鉱滓が多量に排出されるが、これら鉱滓も集められて工場屋外に野積み状態で一時保管されており、風雨に曝されているのが現状である。
斯かる保管状態にあるクロムの酸化物やクロム塩などの含クロム鉱滓に含まれている極めて有害な6価クロムは、工場内での床土や一時保管から廃棄処分に至る間に、粉塵飛散や雨水などへの溶出による人体への被害や土壌汚染,地下水汚染,排水公害等の発生の危険性がきわめて高い現況である。
この6価クロムの有害性については、既に明らかなように、人体の粘膜や皮膚を侵し、長期の吸引によって鼻中隔の穿孔や鼻、肺、咽喉などへの発癌性が認められているため、有害物質に指定されている所以である。
また、この種鉱滓が屋外に放置され、雨水に溶け易い状態にあると、6価クロムは水質汚濁防止法に係る工場排水としても極めて厳しく規制されている。
これらの事実からみても極めて有害なことが分かる。
従来公知の技術をもって、この種鉱滓を安全無害に完全処理する手段として考え得る方法は、先ず鉱滓を粉砕処理し、これを水に浸漬して鉱滓から6価クロムを抽出したうえ濾過し、次にこの濾液に対し硫酸第一鉄か若しくは亜硫酸ソーダを添加して6価クロムを3価クロムに還元処理し、更に消石灰などのアルカリ剤を添加することにより水酸化クロムとして沈殿させ、これを分離除去する方法しか見出せないが、斯かる処理方法は極めて煩雑で面倒なうえに、これらの還元剤は化学反応が穏やかなために処理に長時間を必要とする外、硫酸第一鉄の場合は大多量の鉄イオンがやがては水酸化第二鉄として沈殿副生する欠点があり、また亜硫酸ソーダの場合は、その取り扱いに際して亜硫酸ガスを発生するため、人体に対し有害である等の欠点がある。
これらの欠点を理由として、上記処理方法が実用化されていないのが実状であるが、これに代わる処理方法として、斯かる有害な含クロム鉱滓(含溶接スラグ)中の6価クロムに対してその危険性を根本的に回避するに有効な方法手段は皆無であり、危険は承知しながら、やむなく放置されているのが現状である。
【0003】
【発明が解決しようとする課題】
このような実態に対し、本発明者は、この種含クロム鉱滓中の水に溶けやすい有害な6価クロムを極簡単な処理によって、水に不溶性の無害な3価クロムに還元し、当該鉱滓を安全かつ迅速に無害化する新規な処理方法を提案するものである。
【0004】
【課題を解決するための手段】
上述の課題に鑑み、これを解決するための手段として、次の如く提案する。
ステンレス鋼等の含クロム合金鋼やフエロクロム.金属クロムなどの溶解,圧延,溶接,溶断等の加熱処理に伴って発生する含クロム鉱滓を破砕乃至は粉砕した状態で、その表面に対しアスコルビン酸若しくはアスコルビン酸の金属塩又はアンモニウム塩の一種又は二種以上を主成分とする溶液を散布又は浸漬することにより、当該鉱滓中に含まれる6価クロムを3価クロムに還元して無害化し、爾後の当該鉱滓の処理作業を安全ならしめるようにしたことを特徴とする含クロム鉱滓の処理方法にある。
【0005】
【作用】
含クロム合金鋼の当該鉱滓に対し、アスコルビン酸、若しくはアスコルビン酸の金属塩やアンモニウム塩等の誘導体の単独又は2種以上を含む溶液を散布するか、若しくは、浸漬する等の手段により、アスコルビン酸及びその誘導体の強力かつ速効的な還元力によって当該鉱滓に含まれている6価クロムを無害な3価クロムに還元させて無害化する作用を奏するものである。
尚、上記の溶液に対し、PH変化によって変色するPH指示薬を添加配合することによって、溶接スラグのアルカリ性に対しアスコルビン酸は酸性のため当該溶液の使用時その色調の変化から、当該溶液の使用量の適量を決定するうえで極めて好都合である。
尚、当該溶液の溶媒は水が好適であるが、これに限定するものではなく、アルコール等他の溶媒の採用を妨げるものではなく、また当該鉱滓に溶液が良く浸透するように界面活性剤を、湿潤性を付与するためにグリセリンなどを配合すれば更に効果的である。
尚、当該鉱滓の形状は、粉末状のものから大きな団塊状のものまであり、これに作用させる溶液の浸透状況も一様にならないので、団塊状のものは予め破砕乃至は粉砕することにより、鉱滓への溶液の浸透率が増大し、6価クロムの3価クロムへの還元効率をより高める効果がある。
尚、鉱滓に含まれている6価クロムの全量を必ずしも3価クロムへ還元する必要はなく、実用的には、溶液が浸透し得る限度の鉱滓の表層部に存在する6価クロムが3価クロムに還元され、無害化されていれば格別問題はないが、埋め立て用や増量材,骨材等として再利用する場合には、目的に応じて予め破砕乃至は粉砕して当該溶液による充分な無害化を考慮する必要がある。
【0006】
【実施例】
実施例1
SUS316材の溶接施工に際し、溶接棒としてはJIS−Z3221に定められたD316−15ライム系被覆アーク溶接棒を用いて溶接施工し、溶接母材の冷却後に、その溶接部に生成した溶接スラグを剥離して採取しこれに対し、純水で湿らした濾紙を貼付し、1分経過後濾紙を剥離してその貼付面に対し、JIS鉄鋼中クロムの吸光光度分析法に規定されている0.25%のジフェニルカルバジットのアセトン溶液を滴下したところ、赤紫色の発色が明瞭に認められ、明らかに6価クロムの存在が確認された。
そこで、引き続き、他の溶接部から採取した同様の溶接スラグに対し、アスコルビン酸の5%水溶液をガンスプレーを用いて散布し放置乾燥後再度前記と同様に純水で湿らした濾紙を貼付し、1分経過後濾紙を剥離してその貼付面に対し、0.25%のジフェニルカルバジットのアセトン溶液を滴下したが、赤紫色の発色は全く認められず、6価クロムは全く検出されないことが確認された。
実施例2
SUS304材の溶接施工に際し、JIS−Z3221のD308L−16相当のライム.チタニヤ系被覆アーク溶接棒を用いて溶接施工して10日間経過後の溶接片について、付着している溶接スラグを剥離して採取し、これに対して、実施例1に記載の試験方法と全く同様に、アスコルビン酸の5%水溶液の散布前後で比較したところ、当該水溶液の散布前においては、6価クロムが多量に検出されたに対し、当該水溶液の散布後においては、6価クロムは全く検出されず、安全無害化されていることが確認された。
実施例3
SUS304材の溶接施工に際し、JIS−Z3323のYF308L−C相当のフラックス入りワイヤ(FCW)を用いて溶接施工後、付着している溶接スラグを剥離して採取し、これに対して、実施例2と全く同様の手法でアスコルビン酸の水溶液の散布前後で比較したところ、被覆アーク溶接棒に比べれば、6価クロムの検出は若干少ないものの、矢張り6価クロムの存在が確認されたに対して、2.5%のアスコルビン酸の水溶液を散布した部分からは6価クロムの検出は全く認められなかった。
実施例4
クロムモリブデン鋼の溶接施工に際し、溶接棒としてはJIS−DT2516該当のライム系被覆アーク溶接棒を用いて溶接施工した後、付着している溶接スラグを剥離して採取し、これに対して、上記実施例と同様の手法でアスコルビン酸の水溶液の散布前後で比較したところ、散布前の6価クロムの検出量は、SUS304材の溶接の場合に比べ遥かに少ないものの、矢張り6価クロムの存在が溶接スラグ及び溶接フユーム部に於て確認された。
そこで、3%のアスコルビン酸の水溶液を散布したところ、6価クロムの検出は全く認められなかった。
実施例5
前記実施例2に於けるアスコルビン酸水溶液の濃度について、比較試験を実施したところ、0.1%以下では効果はそれなりに認められるものの使用量が多くなるため実用的でないが、約0.5%以上からは適度な使用量で顕著な還元効果が認められ、更にそれ以上の高濃度の場合は、より少量の使用量で足りるなど、溶接スラグの量に応じて適宜選択すればよく、また特に溶接棒芯線や溶接ワイヤ並びに溶接母材中に含まれているクロムの含有量の多寡に応じて適宜決定すればよいことが確認された。
実施例6
ステンレス鋼の製造工程から採取した団塊状含クロム鉱滓を粉砕したうえ、前記実施例1と同様の手法によりJIS鉄鋼中クロムの吸光光度分析法に規定されている0.25%のジフェニルカルバジットのアセトン溶液を滴下したところ、赤紫色の発色が明瞭に認められ、明らかに6価クロムの存在が確認された。
そこで、引き続き、他の採取した同様の含クロム鉱滓に対し、アスコルビン酸の5%水溶液をガンスプレーを用いて散布し放置乾燥後再度前記と同様に純水で湿らした濾紙を貼付し、1分経過後濾紙を剥離してその貼付面に対し、0.25%のジフェニルカルバジットのアセトン溶液を滴下したが、赤紫色の発色は全く認められず、6価クロムは全く検出されないことが確認された。
実施例7
製鋼材料のフェロクロムや金属クロムのインゴットから採取した含クロム鉱滓についても実施例6と同様のテストの結果、6価クロムの存在が確認されたが、アスコルビン酸の5%水溶液をガンスプレーを用いて散布した後では、6価クロムは全く検出されないことが確認された。
実施例8
前記実施例におけるアスコルビン酸に代えて、アスコルビン酸の金属塩やアンモニウム塩などの各誘導体を単体若しくは2種以上を用いて同様手法により6価クロムの還元効果を試験したところ、同量のアスコルビン酸よりも若干その効果は劣るものの、濃度を適宜高めることによりほぼ同様の効果が得られることを確認した。
【0007】
【発明の効果】
本発明によれば、含クロム合金鋼の溶接施工後の溶接部から剥離した溶接スラグや、含クロム合金鋼の製造工程から排出する含クロム鉱滓に存在する極めて有害な6価クロムを、迅速かつ安全に無害化させることを可能にしたものであるので、当該溶接スラグや、含クロム鉱滓の粉塵が堆積した工場床土や、収集し一時保管中のこれら溶接スラグや、含クロム鉱滓、或は廃棄処分場での当該汚染物質を効果的に、安全無害化させることを可能にしたものである。
尚、本発明において、従来公知の還元剤に代え、好適なものとして還元剤自体人体に対しては勿論、経口的にも安全無害なアスコルビン酸並びにその誘導体を見出すことにより、本発明方法実施による副作用的な弊害も全くなく、これら危険な汚染物質に接触する機会の多い工場作業者や当該汚染物質の処理作業に携わる作業者の保健衛生上にも甚だ有益であり、また当該汚染物質から雨水等により溶出する6価クロムによる土壌汚染、地下水汚染、海洋河川汚染などの憂慮すべき公害を未然に防止することを可能にしたもので環境保全上極めて有益である。[0001]
[Industrial application fields]
The present invention relates to a welding or fusing process of chromium-containing alloy steel such as stainless steel or ferrochrome. As for chromium-containing iron ores such as chromium oxides and chromium salts generated by various heat treatments such as dissolution of metallic chromium, extremely harmful hexavalent chromium contained in the iron ore is temporarily stored in the factory. The present invention relates to a detoxification method for chromium-containing slag that prevents damage to human bodies and wastewater pollution due to dust scattering and elution into rainwater during disposal.
[0002]
[Prior art]
When welding chromium-containing alloy steel, especially welding rods that use a welding flux or flux-cored wire (FCW), the so-called slag generated by melting the flux adheres to the weld line after welding. To do.
Therefore, these slags are generated when the core wire or wire of the welding rod is melted by the welding heat together with the flux, and a part of the core wire and the wire, and further the chromium-containing alloy steel as the welding base material is melted. At the same time, some of it will be scattered as welding fumes, or part of it will be transferred into the slag.
By the way, when welding a chromium-containing alloy steel such as stainless steel, a welding rod or welding wire having a composition almost similar to that of the base material to be welded is used as a conventional means for welding construction. According to the test results conducted by the present inventors, it was confirmed that a part of chromium in these alloy components was contained in a state converted to hexavalent chromium designated as a hazardous substance.
According to the study conducted by the inventor in detail about this phenomenon, a part of chromium contained in the core wire, the wire, and the welding base material is about the lime series that is the main component in the flux by the welding heat. Reacts with calcium carbonate, calcium carbonate and calcium fluoride for lime thread flux, and calcium carbonate and titanium oxide for lime titania-based fluxes, such as chromate or chromate such as calcium chromate All are considered to be oxidized to hexavalent chromium.
In other words, as a proof, some of the components in the welding slag are extremely soluble in water, and the diphenylcarbagit method, which is a colorimetric analysis method for hexavalent chromium in JIS factory effluent, is used for the aqueous solution. When the color was developed according to the above, reddish purple coloration was recognized very clearly, and the presence of hexavalent chromium was confirmed.
In addition, the amount of hexavalent chromium in this case is proved to be proportional to the chromium content contained in the welding rod core wire, welding wire or welding base material used, and also proportional to the amount of slag or flux collected. It was done.
In this way, hexavalent chromium contained in weld slag has the property of being easily dissolved in water, so if an operator touches it with a sweaty hand, it immediately dissolves and adheres to the hand, face and other parts. There is a possibility that hexavalent chromium may enter the mouth of the skin, and after the welding work, these welding slag is removed from the welded base metal by grinding work with a sander, grinder, etc. or hammering work with a hammer. It is usual to peel off.
The weld slag thus peeled off is swept up and temporarily stored in the field outside the factory, and is currently exposed to wind and rain.
On the other hand, during the manufacturing process of chromium-containing alloy steel such as stainless steel, or from the melting process of ferrous chrome, metal chromium, etc. of steelmaking materials, and the continuous casting process and hot rolling process after casting, the same as the above welding slag A large amount of iron slag containing a large amount of hexavalent chromium is discharged, but these slag are also collected and temporarily stored in the field outside the factory, and are currently exposed to wind and rain.
The extremely harmful hexavalent chromium contained in the chromium-containing slag such as chromium oxide and chromium salt in such storage state is scattered during the process from floor soil and temporary storage to disposal in the factory. The present situation is extremely high in the risk of damage to human bodies due to elution into water and rainwater, soil contamination, groundwater contamination, and drainage pollution.
As is obvious, the harmfulness of this hexavalent chromium is harmful because it affects the mucous membranes and skin of the human body, and perforation of the nasal septum and carcinogenic effects on the nose, lungs, throat, etc. have been observed due to prolonged suction This is why it is designated as a substance.
In addition, if this seed slag is left outdoors and easily dissolved in rainwater, hexavalent chromium is very strictly regulated as industrial wastewater according to the Water Pollution Control Law.
These facts also prove extremely harmful.
A method that can be considered as a means for safely and harmlessly treating this seed slag with a conventionally known technique is to first pulverize the slag, soak it in water, extract hexavalent chromium from the slag, filter it, In addition, ferrous sulfate or sodium sulfite is added to the filtrate to reduce hexavalent chromium to trivalent chromium, and further, an alkaline agent such as slaked lime is added to precipitate chromium hydroxide, which is separated. Although only a method of removing can be found, such a treatment method is very complicated and troublesome, and these reducing agents require a long time for the treatment because of a mild chemical reaction. In the case of ferrous sulfate, There is a defect that a large amount of iron ions eventually precipitate as ferric hydroxide, and in the case of sodium sulfite, sulfurous acid gas is generated during its handling, which is harmful to the human body. There is a point.
Because of these disadvantages, the above treatment method is not practically used. However, as an alternative treatment method, hexavalent chromium in such harmful chromium-containing slag (welded slag) is used. There is no effective means for fundamentally avoiding the danger, and the current situation is that it is unavoidably left unattended while knowing the danger.
[0003]
[Problems to be solved by the invention]
In response to this situation, the present inventor reduced harmful hexavalent chromium, which is easily soluble in water, in this kind of chromium-containing iron ore into extremely harmless trivalent chromium that is insoluble in water by an extremely simple treatment. We propose a new treatment method that can be safely and quickly detoxified.
[0004]
[Means for Solving the Problems]
In view of the above-mentioned problems, the following is proposed as means for solving this problem.
Chromium-containing alloy steel such as stainless steel and ferrochrome. Ascorbic acid, a metal salt of ascorbic acid, or a kind of ammonium salt on the surface of the chrome-containing slag generated by heat treatment such as melting, rolling, welding, fusing, etc. of metallic chromium By spraying or immersing a solution containing two or more kinds as the main component, hexavalent chromium contained in the slag is reduced to trivalent chromium and rendered harmless, and the processing of the slag after dredging is made safe. It is in the processing method of the chromium containing iron ore characterized by the above-mentioned.
[0005]
[Action]
Ascorbic acid or ascorbic acid or ascorbic acid metal salt or ammonium salt alone or a solution containing two or more of them is sprayed or immersed in the slag of chromium-containing alloy steel. In addition, the strong and rapid reducing power of the derivatives thereof has an effect of detoxifying hexavalent chromium contained in the slag into harmless trivalent chromium.
In addition, ascorbic acid is acidic with respect to the alkalinity of weld slag by adding and blending a PH indicator that changes color with PH to the above solution. It is extremely convenient to determine the appropriate amount of
The solvent of the solution is preferably water, but is not limited to this, and does not prevent the use of other solvents such as alcohol, and a surfactant is used so that the solution can penetrate well into the mines. Further, it is more effective if glycerin or the like is added in order to impart wettability.
In addition, the shape of the slag is from powder to large nodules, and the state of permeation of the solution acting on this is not uniform, so the nodules are pre-crushed or pulverized, The penetration rate of the solution into the slag increases, and there is an effect of further increasing the reduction efficiency of hexavalent chromium to trivalent chromium.
In addition, it is not always necessary to reduce the total amount of hexavalent chromium contained in the iron slag to trivalent chromium. Practically, the hexavalent chromium present in the surface layer portion of the iron slag where the solution can permeate is trivalent. If it is reduced to chromium and detoxified, there is no particular problem. However, when it is reused as landfill, bulking material, aggregate, etc., it is sufficient to use the solution by crushing or grinding in advance according to the purpose. It is necessary to consider detoxification.
[0006]
【Example】
Example 1
When welding SUS316 material, welding was performed using a D316-15 lime-coated arc welding rod defined in JIS-Z3221 as the welding rod, and the weld slag generated in the welded part was cooled after cooling the weld base metal. The sample was peeled and collected, and a filter paper moistened with pure water was affixed. After 1 minute, the filter paper was peeled off, and the affixed surface was regulated by the spectrophotometric analysis method for chromium in JIS steel. When an acetone solution of 25% diphenylcarbagit was added dropwise, a reddish purple color was clearly observed, and the presence of hexavalent chromium was clearly confirmed.
Therefore, for the same weld slag collected from other welds, a 5% aqueous solution of ascorbic acid was sprayed using a gun spray, allowed to dry, and then pasted with filter paper moistened with pure water again as described above, After 1 minute, the filter paper was peeled off and a 0.25% acetone solution of diphenylcarbagit was dropped on the applied surface, but no reddish purple color was observed and no hexavalent chromium was detected. confirmed.
Example 2
When welding SUS304 material, lime equivalent to D308L-16 of JIS-Z3221. The welded slag was removed from the welded piece after 10 days from the welding using a titania-based coated arc welding rod, and the welded slag was removed and collected. Similarly, when comparing before and after the application of a 5% aqueous solution of ascorbic acid, a large amount of hexavalent chromium was detected before the application of the aqueous solution, whereas no hexavalent chromium was found after the application of the aqueous solution. It was not detected and it was confirmed that it was made safe and harmless.
Example 3
In welding construction of SUS304 material, after welding construction was performed using a flux-cored wire (FCW) equivalent to YF308L-C of JIS-Z3323, the adhered welding slag was peeled off and collected. As compared with before and after the spraying of the aqueous solution of ascorbic acid using the same method, the detection of hexavalent chromium was confirmed although the detection of hexavalent chromium was slightly less than that of the coated arc welding rod. From the part sprayed with 2.5% aqueous solution of ascorbic acid, no hexavalent chromium was detected.
Example 4
At the time of welding of chromium molybdenum steel, after welding using a lime-based covered arc welding rod corresponding to JIS-DT2516 as the welding rod, the adhering slag was peeled off and collected. As a result of comparison between before and after the application of the aqueous solution of ascorbic acid in the same manner as in the example, the detected amount of hexavalent chromium before the application was much smaller than that in the case of welding SUS304 material, but the presence of hexavalent chromium in the direction of the arrow. Was confirmed in the weld slag and weld fumes.
Then, when 3% ascorbic acid aqueous solution was sprayed, no hexavalent chromium was detected.
Example 5
When a comparative test was conducted with respect to the concentration of the ascorbic acid aqueous solution in Example 2, it was not practical at 0.1% or less, although the effect was recognized as it was, but it was not practical, but about 0.5% From the above, a significant reduction effect is recognized at an appropriate amount used, and in the case of a higher concentration than that, a smaller amount may be used, and it may be appropriately selected according to the amount of welding slag, and in particular. It has been confirmed that it may be appropriately determined according to the amount of chromium contained in the welding rod core wire, the welding wire, and the welding base material.
Example 6
After pulverizing the nodular chromium-containing iron ore collected from the production process of stainless steel, 0.25% of diphenylcarbadiite specified in the spectrophotometric analysis method of chromium in JIS steel was obtained in the same manner as in Example 1. When the acetone solution was dropped, a reddish purple color was clearly recognized, and the presence of hexavalent chromium was clearly confirmed.
Therefore, another 5% aqueous solution of ascorbic acid was sprayed on a similar collected chrome-containing slag using a gun spray, left to dry, and then affixed with filter paper moistened with pure water again as described above. After the lapse of time, the filter paper was peeled off and a 0.25% acetone solution of diphenylcarbagit was dropped onto the affixed surface, but no reddish purple color was observed and no hexavalent chromium was detected. It was.
Example 7
As a result of the same test as in Example 6, the presence of hexavalent chromium was confirmed for the chromite slag collected from ingots of ferrochrome and metal chrome as steelmaking materials. A 5% aqueous solution of ascorbic acid was used with a gun spray. After spraying, it was confirmed that no hexavalent chromium was detected.
Example 8
In place of ascorbic acid in the above examples, each metal derivative or ammonium salt of ascorbic acid was used alone or in combination of two or more to test the reduction effect of hexavalent chromium by the same method. Although the effect was slightly inferior to the above, it was confirmed that almost the same effect was obtained by appropriately increasing the concentration.
[0007]
【The invention's effect】
According to the present invention, the welding slag peeled off from the welded portion after the chrome-containing alloy steel is welded, and the extremely harmful hexavalent chrome present in the chrome-containing slag discharged from the chrome-containing alloy steel manufacturing process can be quickly and Since it is possible to make it harmless safely, the weld slag, factory floor soil on which chrome-containing slag dust has accumulated, these welded slag being collected and temporarily stored, chrome-containing slag, or This makes it possible to effectively and safely render the pollutant at the disposal site safe.
In the present invention, in place of conventionally known reducing agents, the present invention is preferably carried out by finding ascorbic acid and its derivatives which are safe and harmless to the human body as well as the reducing agent itself. There is no adverse side effect, and it is extremely beneficial for the health and safety of factory workers who frequently come in contact with these dangerous pollutants and workers involved in the processing of the pollutants. This makes it possible to prevent harmful pollution such as soil pollution, groundwater pollution, marine river pollution, etc. due to hexavalent chromium eluted by the
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09582196A JP3687014B2 (en) | 1996-03-13 | 1996-03-13 | Treatment method of chromium-containing iron ore |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09582196A JP3687014B2 (en) | 1996-03-13 | 1996-03-13 | Treatment method of chromium-containing iron ore |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09248543A JPH09248543A (en) | 1997-09-22 |
JP3687014B2 true JP3687014B2 (en) | 2005-08-24 |
Family
ID=14148085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09582196A Expired - Lifetime JP3687014B2 (en) | 1996-03-13 | 1996-03-13 | Treatment method of chromium-containing iron ore |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3687014B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4911920B2 (en) * | 2005-05-18 | 2012-04-04 | 英夫 吉田 | Extraction method of hexavalent chromium |
JP4675219B2 (en) * | 2005-11-16 | 2011-04-20 | 富士通株式会社 | Detecting object |
JP2008231388A (en) * | 2007-03-20 | 2008-10-02 | Chemical Yamamoto:Kk | Detoxifying treatment agent for hexavalent chromium-containing specific waste |
JP5176839B2 (en) * | 2008-09-30 | 2013-04-03 | 栗田工業株式会社 | Soil or slag treatment method |
JP5445123B2 (en) * | 2009-12-25 | 2014-03-19 | 株式会社Ihi | Method and apparatus for treating metal residue |
EP3011064A4 (en) * | 2013-06-19 | 2017-03-01 | Calgon Carbon Corporation | Methods for mitigating the leaching of heavy metals from activated carbon |
-
1996
- 1996-03-13 JP JP09582196A patent/JP3687014B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH09248543A (en) | 1997-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008231388A (en) | Detoxifying treatment agent for hexavalent chromium-containing specific waste | |
Stern | Chromium compounds: production and occupational exposure | |
CA1331824C (en) | Compositions to encapsulate chromium, arsenic, and other toxic metals in wastes | |
US5536899A (en) | Stabilization of lead bearing waste | |
CA1280558C (en) | Composition to encapsulate toxic metal and/or organic pollutants from wastes | |
US5846178A (en) | Stabilization of lead bearing waste | |
Singh et al. | Cr (VI) removal in acidic aqueous solution using iron-bearing industrial solid wastes and their stabilisation with cement | |
JP3687014B2 (en) | Treatment method of chromium-containing iron ore | |
CN105873644B (en) | Metal treatment method | |
Devi et al. | A review on spent pickling liquor | |
CN110404226A (en) | A kind of chromic slag wet method detoxifcation process improving detoxifying effect | |
JP2006289306A (en) | Method of suppressing elution of fluorine and heavy metal from waste and stabilizing agent | |
JP2008238150A (en) | Detoxification agent for contaminated soil and industrial waste containing hexavalent chromium | |
JP3473444B2 (en) | Method for treating chromium oxide-containing material | |
US20050245783A1 (en) | Method for stabilization of chromium | |
MXPA02004510A (en) | Treatment of electric arc furnace dust to resist acid and alkaline leaching of heavy metals. | |
JP2000093934A (en) | Method for treatment of chromium oxide-containing soil | |
JP2649625B2 (en) | Electrolyte for electrolytic polishing of chromium-containing alloy steel | |
JP2006000778A (en) | Waste treatment method | |
JP5470699B2 (en) | Detoxification method for heavy metal-containing basic waste | |
JP2002248444A (en) | Method for treating waste containing chromium oxide | |
CN101443464B (en) | Method in connection with steel production | |
JP2003062541A (en) | Method for treating member having hexa-valent chromium | |
JP3622097B2 (en) | Chromium-containing alloy steel weld and its surrounding treatment method | |
JP2006305464A (en) | Reduction agent and reduction method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050525 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090617 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100617 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110617 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110617 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120617 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130617 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |