JP3686067B2 - Method for manufacturing magnetic recording medium - Google Patents

Method for manufacturing magnetic recording medium Download PDF

Info

Publication number
JP3686067B2
JP3686067B2 JP2003367542A JP2003367542A JP3686067B2 JP 3686067 B2 JP3686067 B2 JP 3686067B2 JP 2003367542 A JP2003367542 A JP 2003367542A JP 2003367542 A JP2003367542 A JP 2003367542A JP 3686067 B2 JP3686067 B2 JP 3686067B2
Authority
JP
Japan
Prior art keywords
film
nonmagnetic film
recording
nonmagnetic
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003367542A
Other languages
Japanese (ja)
Other versions
JP2005135455A (en
Inventor
孝裕 諏訪
充 高井
一博 服部
秀一 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2003367542A priority Critical patent/JP3686067B2/en
Priority to US10/972,325 priority patent/US7225528B2/en
Priority to CNB2004100896114A priority patent/CN1305035C/en
Publication of JP2005135455A publication Critical patent/JP2005135455A/en
Application granted granted Critical
Publication of JP3686067B2 publication Critical patent/JP3686067B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/855Coating only part of a support with a magnetic layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49036Fabricating head structure or component thereof including measuring or testing
    • Y10T29/49043Depositing magnetic layer or coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49036Fabricating head structure or component thereof including measuring or testing
    • Y10T29/49043Depositing magnetic layer or coating
    • Y10T29/49046Depositing magnetic layer or coating with etching or machining of magnetic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49048Machining magnetic material [e.g., grinding, etching, polishing]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49048Machining magnetic material [e.g., grinding, etching, polishing]
    • Y10T29/49052Machining magnetic material [e.g., grinding, etching, polishing] by etching

Description

本発明は、記録層が凹凸パターンで形成された磁気記録媒体の製造方法に関する。   The present invention relates to a method for manufacturing a magnetic recording medium in which a recording layer is formed in a concavo-convex pattern.

従来、ハードディスク等の磁気記録媒体は、記録層を構成する磁性粒子の微細化、材料の変更、ヘッド加工の微細化等の改良により著しい面記録密度の向上が図られており、今後も一層の面記録密度の向上が期待されている。   Conventionally, a magnetic recording medium such as a hard disk has been remarkably improved in surface recording density by improving the fineness of magnetic particles constituting the recording layer, changing the material, miniaturizing the head processing, and the like. Improvement in surface recording density is expected.

しかしながら、ヘッドの加工限界、磁界の広がりに起因するサイドフリンジ、クロストークなどの問題が顕在化し、従来の改良手法による面記録密度の向上は限界にきている。このため、一層の面記録密度の向上を実現可能である磁気記録媒体の候補として、記録層を所定の凹凸パターンで形成し、凹凸パターンの凹部に非磁性材を充填してなるディスクリートトラックタイプの磁気記録媒体が提案されている(例えば、特許文献1参照)。   However, problems such as side fringing and crosstalk due to the processing limit of the head and the spread of the magnetic field have become obvious, and the improvement of the surface recording density by the conventional improvement method has reached the limit. For this reason, as a candidate for a magnetic recording medium capable of realizing a further increase in surface recording density, a discrete track type in which a recording layer is formed in a predetermined concavo-convex pattern and a concave portion of the concavo-convex pattern is filled with a nonmagnetic material. A magnetic recording medium has been proposed (see, for example, Patent Document 1).

記録層を所定の凹凸パターンで形成する加工技術としては、反応性イオンエッチング等のドライエッチングの手法(例えば、特許文献2参照)を利用しうる。   As a processing technique for forming the recording layer with a predetermined uneven pattern, a dry etching technique such as reactive ion etching (see, for example, Patent Document 2) can be used.

又、非磁性材の充填を実現する手段としてはスパッタリング法、CVD(Chemical Vapor Deposition)法、IBD(Ion Beam Deposition)等の成膜手法を利用しうる。尚、これらの成膜手法を用いると非磁性材は凹凸パターンの凹部だけでなく、凸部の上面にも成膜され、又、非磁性材の表面は記録層の凹凸形状に倣って凹凸形状となる。   As a means for realizing the filling of the nonmagnetic material, a film forming method such as a sputtering method, a CVD (Chemical Vapor Deposition) method, or an IBD (Ion Beam Deposition) can be used. When these film formation methods are used, the nonmagnetic material is formed not only on the concave portion of the concave / convex pattern, but also on the upper surface of the convex portion, and the surface of the nonmagnetic material follows the concave / convex shape of the recording layer. It becomes.

良好な磁気特性を得るためには、記録層上の非磁性材はできるだけ除去することが好ましい。又、磁気記録媒体の表面に段差があるとヘッド浮上の不安定化、異物の堆積という問題が生じうるため、記録層上の余剰の非磁性材を除去しつつ表面を平坦化することが好ましい。この記録層上の余剰の非磁性材の除去及び平坦化についてはCMP(Chemical Mechanical Polishing)法や斜方イオンビームエッチング等の加工技術を利用しうる。尚、成膜された非磁性材の表面の凹凸が小さければ、それだけ平坦化工程で表面を平坦化することが容易である。従って、非磁性材を成膜する工程において非磁性材の表面の凹凸を極力小さく抑制することが好ましい。   In order to obtain good magnetic characteristics, it is preferable to remove as much nonmagnetic material as possible on the recording layer. Further, if there is a step on the surface of the magnetic recording medium, problems such as unstable head floating and accumulation of foreign matter may occur, so it is preferable to flatten the surface while removing excess nonmagnetic material on the recording layer. . For removal and planarization of excess nonmagnetic material on the recording layer, a processing technique such as a CMP (Chemical Mechanical Polishing) method or an oblique ion beam etching can be used. In addition, if the unevenness | corrugation of the surface of the formed nonmagnetic material is small, it is easy to planarize the surface by the planarization process. Therefore, it is preferable to suppress unevenness on the surface of the nonmagnetic material as much as possible in the step of forming the nonmagnetic material.

これについては、被加工体にバイアスパワーを印加しつつ非磁性材を成膜する手法が知られている(例えば、特許文献3参照)。バイアスパワーを印加しつつ成膜する場合、非磁性材を成膜する成膜作用と、バイアスパワーで付勢されたガス等が成膜済みの非磁性材をエッチングするエッチング作用と、が同時に進行し、成膜作用がエッチング作用を上回ることで成膜が進行するが、エッチング作用は、成膜された非磁性材の突出した部位を他の部位よりも選択的に早く除去する傾向があるので、このエッチング作用により非磁性材の成膜工程において表面の凹凸を小さく抑制できる。これにより、平坦化工程で、表面を効率良く充分に平坦化することができる。   With respect to this, a method of forming a nonmagnetic material while applying bias power to a workpiece is known (see, for example, Patent Document 3). When forming a film while applying bias power, a film forming action for forming a non-magnetic material and an etching action for etching a non-magnetic material on which a gas urged by the bias power has progressed simultaneously proceed. However, the film formation action proceeds when the film formation action exceeds the etching action, but the etching action tends to selectively remove the protruding part of the formed nonmagnetic material earlier than other parts. This etching action can suppress surface irregularities in the non-magnetic material film forming step. Thereby, the surface can be efficiently and sufficiently planarized in the planarization step.

特開平9−97419号公報JP-A-9-97419 特開平12―322710号公報JP-A-12-322710 特開2000―311937号公報JP 2000-311937 A

しかしながら、バイアスパワーを印加する成膜手法は、エッチング作用により非磁性材と共に記録層の一部も除去してしまうことがあり、これにより記録層の磁気特性が悪化して記録・再生精度が低下するという問題がある。   However, the film deposition method that applies bias power may remove part of the recording layer along with the non-magnetic material due to the etching action, which deteriorates the magnetic properties of the recording layer and decreases the recording / reproducing accuracy. There is a problem of doing.

又、平坦化工程において記録層を保護するため、記録層上に平坦化工程における加工レートが低いストップ膜を形成することがあり、この場合、ストップ膜上に非磁性材を成膜することになるが、非磁性材の成膜時のエッチング作用により非磁性材と共にストップ膜の一部も除去してしまうことがある。これによりストップ膜の機能が損なわれて平坦化工程において記録層が加工され、磁気特性が悪化するという問題もある。   In order to protect the recording layer in the flattening step, a stop film having a low processing rate in the flattening step may be formed on the recording layer. In this case, a nonmagnetic material is formed on the stop film. However, a part of the stop film may be removed together with the nonmagnetic material due to the etching action during the formation of the nonmagnetic material. As a result, the function of the stop film is impaired, and the recording layer is processed in the flattening process, resulting in a problem that the magnetic characteristics are deteriorated.

本発明は、以上の問題点に鑑みてなされたものであって、表面が充分に平坦で、且つ、記録・再生精度が良い凹凸パターンの記録層を有する磁気記録媒体を効率良く確実に製造することができる磁気記録媒体の製造方法を提供することをその課題とする。   The present invention has been made in view of the above problems, and efficiently and reliably manufactures a magnetic recording medium having a recording layer with a concavo-convex pattern having a sufficiently flat surface and good recording / reproducing accuracy. It is an object of the present invention to provide a method for manufacturing a magnetic recording medium that can be used.

本発明は、バイアスパワーを印加しないで、或いは、バイアスパワーを小さく抑制しつつ凹凸パターンの記録層上に下側非磁性膜を形成してから、バイアスパワーを印加しつつ下側非磁性膜上に上側非磁性膜を形成することにより上記課題を解決するに至った。バイアスパワーを印加しつつ上側非磁性膜を形成することにより、上側非磁性膜の表面の凹凸を小さく抑制することができる。又、記録層上に下側非磁性膜が形成されているので、上側非磁性膜形成工程において記録層はエッチング作用から保護される。又、下側非磁性膜形成工程ではバイアスパワーを上側非磁性膜形成工程よりも小さく抑制することで、下側非磁性膜形成工程でも記録層はエッチング作用から保護される。従って、記録層の磁気特性を悪化させることなく凹部を非磁性材で充填し、表面の凹凸を小さく抑制することができる。尚、記録層の磁気特性の悪化を防止する効果を高めるためにはバイアスパワーを印加しないで下側非磁性膜を形成することが好ましい。   In the present invention, the lower nonmagnetic film is formed on the recording layer of the concavo-convex pattern without applying the bias power or while suppressing the bias power to be small, and then applied to the lower nonmagnetic film while applying the bias power. The upper non-magnetic film is formed on the substrate to solve the above problem. By forming the upper nonmagnetic film while applying the bias power, the unevenness on the surface of the upper nonmagnetic film can be reduced. In addition, since the lower nonmagnetic film is formed on the recording layer, the recording layer is protected from the etching action in the upper nonmagnetic film forming step. Also, in the lower nonmagnetic film forming step, the bias power is suppressed to be smaller than that in the upper nonmagnetic film forming step, so that the recording layer is protected from the etching action even in the lower nonmagnetic film forming step. Therefore, the recesses can be filled with the nonmagnetic material without deteriorating the magnetic properties of the recording layer, and the surface unevenness can be suppressed to a small level. In order to enhance the effect of preventing deterioration of the magnetic characteristics of the recording layer, it is preferable to form the lower nonmagnetic film without applying bias power.

又、記録層上に平坦化工程における加工レートが低いストップ膜を形成する場合、ストップ膜上に下側非磁性膜を形成することで、上側非磁性膜形成工程においてストップ膜もエッチング作用から保護され、ストップ膜の機能の悪化を防止することができる。   In addition, when a stop film having a low processing rate in the flattening process is formed on the recording layer, a lower nonmagnetic film is formed on the stop film, so that the stop film is also protected from the etching action in the upper nonmagnetic film forming process. As a result, the deterioration of the function of the stop film can be prevented.

即ち、次のような本発明により、上記課題の解決を図ることができる。   That is, the following problems can be solved by the present invention as follows.

(1)基板上に記録層が所定の凹凸パターンで形成され、該凹凸パターンの凹部が非磁性材で充填された磁気記録媒体の製造方法であって、前記凹凸パターン上に下側非磁性膜を形成する下側非磁性膜形成工程と、前記下側非磁性膜上に上側非磁性膜を形成する上側非磁性膜形成工程と、を含み、少なくとも該上側非磁性膜形成工程において前記基板にバイアスパワーを印加し、且つ、前記下側非磁性膜形成工程において前記上側非磁性膜形成工程よりもバイアスパワーを小さく抑制して前記凹凸パターンの凹部に前記非磁性材を充填するようにしたことを特徴とする磁気記録媒体の製造方法。 (1) A method of manufacturing a magnetic recording medium in which a recording layer is formed on a substrate in a predetermined concavo-convex pattern, and the concave portions of the concavo-convex pattern are filled with a nonmagnetic material, the lower nonmagnetic film on the concavo-convex pattern And forming an upper nonmagnetic film on the lower nonmagnetic film, and forming at least the upper nonmagnetic film on the substrate in the upper nonmagnetic film forming process. Bias power is applied, and in the lower nonmagnetic film forming step, the bias power is suppressed to be smaller than that in the upper nonmagnetic film forming step, and the concave portion of the concave / convex pattern is filled with the nonmagnetic material. A method for manufacturing a magnetic recording medium.

(2)前記下側非磁性膜形成工程は、前記バイアスパワーを実質的に印加しないで前記下側非磁性膜を形成するようにしたことを特徴とする前記(1)の磁気記録媒体の製造方法。 (2) The manufacturing method of the magnetic recording medium according to (1), wherein the lower nonmagnetic film forming step forms the lower nonmagnetic film without substantially applying the bias power. Method.

(3)前記下側非磁性膜形成工程は、膜厚が1nm以上となるように前記下側非磁性膜を形成するようにしたことを特徴とする前記(1)又は(2)の磁気記録媒体の製造方法。 (3) The magnetic recording according to (1) or (2), wherein, in the lower nonmagnetic film forming step, the lower nonmagnetic film is formed so as to have a film thickness of 1 nm or more. A method for manufacturing a medium.

(4)前記上側非磁性膜形成工程の後に、前記上側非磁性膜の表面を平坦化する平坦化工程が設けられたことを特徴とする前記(1)乃至(3)のいずれかの磁気記録媒体の製造方法。 (4) The magnetic recording according to any one of (1) to (3), wherein a flattening step for flattening a surface of the upper nonmagnetic film is provided after the upper nonmagnetic film forming step. A method for manufacturing a medium.

(5)前記下側非磁性膜形成工程の前に、前記下側非磁性膜及び上側非磁性膜よりも前記平坦化工程における加工レートが低いストップ膜を前記記録層上に形成するストップ膜形成工程を設けたことを特徴とする前記(4)の磁気記録媒体の製造方法。 (5) Stop film formation for forming a stop film on the recording layer having a lower processing rate in the flattening process than the lower nonmagnetic film and the upper nonmagnetic film before the lower nonmagnetic film forming process (4) The method for producing a magnetic recording medium according to (4), wherein a step is provided.

尚、本出願において、「基板上に記録層が所定の凹凸パターンで形成され」とは、基板上に記録層が所定のパターンで多数の記録要素に分割して形成され、これら記録要素を凸部としてこれら記録要素の間に凹部が形成される場合の他、基板上に記録層を所定のパターンで部分的に分割して形成し、一部が連続する記録要素を凸部とし、該記録要素の間に凹部を形成する場合、例えば、螺旋状の渦巻き形状の記録層のように、基板上の一部に連続した記録要素を形成して該記録要素を凸部とし、該記録要素の間に凹部を形成する場合、基板上に凸部及び凹部双方を構成する連続記録層が形成された場合、も含む意義で用いることとする。   In this application, “the recording layer is formed in a predetermined concavo-convex pattern on the substrate” means that the recording layer is formed on the substrate in a predetermined pattern and divided into a large number of recording elements. In addition to the case where a concave portion is formed between these recording elements as a part, the recording layer is formed by partially dividing the recording layer in a predetermined pattern on the substrate, and the recording element partially continuous is formed as a convex part. When forming a concave portion between elements, for example, a continuous recording element is formed on a part of a substrate, such as a spiral spiral recording layer, so that the recording element is a convex portion. In the case where a concave portion is formed between them, it is used in the meaning including the case where a continuous recording layer constituting both the convex portion and the concave portion is formed on the substrate.

又、本出願において「磁気記録媒体」という用語は、情報の記録、読み取りに磁気のみを用いるハードディスク、フロッピー(登録商標)ディスク、磁気テープ等に限定されず、磁気と光を併用するMO(Magnet Optical)等の光磁気記録媒体、磁気と熱を併用する熱アシスト型の記録媒体も含む意義で用いることとする。   Further, in the present application, the term “magnetic recording medium” is not limited to a hard disk, a floppy (registered trademark) disk, a magnetic tape, or the like that uses only magnetism for recording and reading information, and is an MO (Magnet) that uses both magnetism and light. It is used in the meaning including a magneto-optical recording medium such as Optical) and a heat-assisted recording medium using both magnetism and heat.

本発明は、被加工体にバイアスパワーを印加しつつ上側非磁性膜を形成することにより、上側非磁性膜の表面の凹凸を小さく抑制することができる。これにより、上側非磁性膜の表面を効率良く確実に平坦化することができる。又、記録層上に下側非磁性膜が形成されているので、上側非磁性膜形成工程において記録層はエッチング作用から保護されると共に下側非磁性膜形成工程ではバイアスパワーが上側非磁性膜形成工程よりも小さく抑制されているので、下側非磁性膜形成工程でも記録層はエッチング作用から保護され、記録層の磁気特性の悪化を防止することができ、記録・再生精度の低下を防止することができる。   In the present invention, by forming the upper nonmagnetic film while applying a bias power to the workpiece, the surface irregularities of the upper nonmagnetic film can be suppressed to be small. Thereby, the surface of the upper nonmagnetic film can be flattened efficiently and reliably. Further, since the lower nonmagnetic film is formed on the recording layer, the recording layer is protected from the etching action in the upper nonmagnetic film forming step, and the bias power is increased in the lower nonmagnetic film forming step. Since it is controlled to be smaller than the formation process, the recording layer is protected from the etching action even in the lower non-magnetic film formation process, preventing deterioration of the magnetic properties of the recording layer, and preventing deterioration in recording and reproduction accuracy. can do.

又、記録層上に平坦化工程における加工レートが低いストップ膜を形成する場合、ストップ膜上に下側非磁性膜を形成することで、上側非磁性膜形成工程においてストップ膜もエッチング作用から保護され、ストップ膜の機能の悪化を防止することができる。   In addition, when a stop film having a low processing rate in the flattening process is formed on the recording layer, a lower nonmagnetic film is formed on the stop film, so that the stop film is also protected from the etching action in the upper nonmagnetic film forming process. As a result, the deterioration of the function of the stop film can be prevented.

以下、本発明の好ましい実施形態について図面を参照して詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

本実施形態は、ガラス基板12上に連続記録層20等を形成してなる図1に示されるような被加工体10の加工出発体に加工を施すことにより、図2に示されるように連続記録層20を多数の記録要素32Aに分割して所定の凹凸パターンの記録層32を形成すると共に記録要素32Aの間の凹部(凹凸パターンの凹部)34に非磁性材36を充填し、磁気記録媒体30を製造する磁気記録媒体の製造方法に関するものであり、非磁性材36を充填する工程に特徴を有している。他の工程については従来と同様であるので説明を適宜省略することとする。   In the present embodiment, as shown in FIG. 2, continuous processing is performed on the processing starting body of the workpiece 10 as shown in FIG. 1 formed by forming the continuous recording layer 20 and the like on the glass substrate 12. The recording layer 20 is divided into a large number of recording elements 32A to form a recording layer 32 having a predetermined concavo-convex pattern, and a concave portion (concave portion of the concavo-convex pattern) 34 between the recording elements 32A is filled with a nonmagnetic material 36 for magnetic recording. The present invention relates to a method of manufacturing a magnetic recording medium for manufacturing the medium 30, and is characterized by a step of filling a nonmagnetic material 36. The other steps are the same as in the prior art, so the description will be omitted as appropriate.

被加工体10の加工出発体は、図1に示されるように、ガラス基板12に、下地層14、軟磁性層16、配向層18、連続記録層20、第1のマスク層22、第2のマスク層24、レジスト層26がこの順で形成された構成とされている。   As shown in FIG. 1, the processing starting body of the workpiece 10 includes a glass substrate 12, an underlayer 14, a soft magnetic layer 16, an orientation layer 18, a continuous recording layer 20, a first mask layer 22, and a second mask layer. The mask layer 24 and the resist layer 26 are formed in this order.

下地層14は、厚さが30〜200nmで、材料はCr(クロム)又はCr合金である。軟磁性層16は、厚さが50〜300nmで、材料はFe(鉄)合金又はCo(コバルト)合金である。配向層18は、厚さが3〜30nmで、材料はCoO、MgO、NiO等である。   The underlayer 14 has a thickness of 30 to 200 nm and is made of Cr (chromium) or a Cr alloy. The soft magnetic layer 16 has a thickness of 50 to 300 nm and is made of an Fe (iron) alloy or a Co (cobalt) alloy. The alignment layer 18 has a thickness of 3 to 30 nm and is made of CoO, MgO, NiO or the like.

連続記録層20は、厚さが5〜30nmで、材料はCoCr(コバルト−クロム)合金である。   The continuous recording layer 20 has a thickness of 5 to 30 nm and is made of a CoCr (cobalt-chromium) alloy.

第1のマスク層22は、厚さが3〜50nmで、材料はTiN(窒化チタン)である。第2のマスク層24は、厚さが3〜30nmで、材料はNi(ニッケル)である。レジスト層26は、厚さが30〜300nmで、材料はネガ型レジスト(NBE22A 住友化学工業株式会社製)である。   The first mask layer 22 has a thickness of 3 to 50 nm and is made of TiN (titanium nitride). The second mask layer 24 has a thickness of 3 to 30 nm and is made of Ni (nickel). The resist layer 26 has a thickness of 30 to 300 nm and is made of a negative resist (NBE22A manufactured by Sumitomo Chemical Co., Ltd.).

磁気記録媒体30は、垂直記録型のディスクリートトラックタイプの磁気ディスクで、図2に示されるように、記録層32は、前記連続記録層20が径方向に微細な間隔で多数の同心円弧状の記録要素32Aに分割された凹凸パターン形状とされている。尚、磁気記録媒体30はサーボ領域において、連続記録層20が所定のサーボパターンで多数の記録要素に分割されている(図示省略)。又、記録要素32Aの間の凹部34に非磁性材36が充填され、記録要素32A及び非磁性材36上には保護層38、潤滑層40がこの順で形成されている。又、記録要素32Aの上面、側面及び凹部34の底面にはストップ膜42が形成されている。   The magnetic recording medium 30 is a perpendicular recording type discrete track type magnetic disk. As shown in FIG. 2, the recording layer 32 has a large number of concentric arc-shaped recordings at a fine interval in the radial direction. The concave / convex pattern is divided into elements 32A. In the servo area of the magnetic recording medium 30, the continuous recording layer 20 is divided into a number of recording elements with a predetermined servo pattern (not shown). Further, the recess 34 between the recording elements 32A is filled with a nonmagnetic material 36, and a protective layer 38 and a lubricating layer 40 are formed on the recording element 32A and the nonmagnetic material 36 in this order. A stop film 42 is formed on the top and side surfaces of the recording element 32A and the bottom surface of the recess 34.

非磁性材36は、下側非磁性膜36A、上側非磁性膜36Bがこの順で積層された構成とされている。   The nonmagnetic material 36 has a configuration in which a lower nonmagnetic film 36A and an upper nonmagnetic film 36B are laminated in this order.

下側非磁性膜36A、上側非磁性膜36Bの材料はいずれもSiO(二酸化ケイ素)であり、下側非磁性膜36A及び上側非磁性膜36Bは実質的に一体化されている。 The materials of the lower nonmagnetic film 36A and the upper nonmagnetic film 36B are both SiO 2 (silicon dioxide), and the lower nonmagnetic film 36A and the upper nonmagnetic film 36B are substantially integrated.

ストップ膜42の材料はダイヤモンドライクカーボンと呼称される硬質炭素膜である。尚、本明細において「ダイヤモンドライクカーボン(以下、「DLC」という)」という用語は、炭素を主成分とし、アモルファス構造であって、ビッカース硬度測定で200〜8000kgf/mm2程度の硬さを示す材料という意義で用いることとする。材料がDLCのストップ膜42は、材料がSiOの下側非磁性膜36A、上側非磁性膜36Bよりもイオンビームエッチングに対するエッチングレートが低い。 The material of the stop film 42 is a hard carbon film called diamond-like carbon. In the present specification, the term “diamond-like carbon (hereinafter referred to as“ DLC ”)” is mainly composed of carbon, has an amorphous structure, and exhibits a hardness of about 200 to 8000 kgf / mm 2 by Vickers hardness measurement. It will be used in the meaning of material. The stop film 42 made of DLC has a lower etching rate for ion beam etching than the lower non-magnetic film 36A and the upper non-magnetic film 36B of SiO 2 .

保護層38の材料はストップ膜42と同様にDLCであり、潤滑層40の材料はPFPE(パーフロロポリエーテル)である。   The material of the protective layer 38 is DLC like the stop film 42, and the material of the lubricating layer 40 is PFPE (perfluoropolyether).

非磁性材36の充填は、図3に示されるようなバイアススパッタリング装置50を用いて行う。   The non-magnetic material 36 is filled using a bias sputtering apparatus 50 as shown in FIG.

バイアススパッタリング装置50は、真空チャンバ52と、真空チャンバ52内でSiO(非磁性材)のターゲット54を保持するためのターゲットホルダ56と、真空チャンバ52内で被加工体10を保持するための被加工体ホルダ58と、を備えている。 The bias sputtering apparatus 50 includes a vacuum chamber 52, a target holder 56 for holding a SiO 2 (nonmagnetic material) target 54 in the vacuum chamber 52, and a workpiece 10 for holding the workpiece 10 in the vacuum chamber 52. A workpiece holder 58.

真空チャンバ52は、スパッタリングガスとしてAr(アルゴン)ガスを給気するための給気孔52Aと、スパッタリングガスを排気するための排気孔52Bと、が設けられている。   The vacuum chamber 52 is provided with an air supply hole 52A for supplying Ar (argon) gas as a sputtering gas and an exhaust hole 52B for exhausting the sputtering gas.

ターゲットホルダ56には、電源56Aが結線され、被加工体ホルダ58には、電源58Aが結線されている。   A power source 56A is connected to the target holder 56, and a power source 58A is connected to the workpiece holder 58.

バイアススパッタリング装置50は、バイアス電圧(電源58Aの電圧)の大きさ、真空チャンバ52内の圧力、ターゲット54及び被加工体10の間隔等のスパッタリング条件(成膜加工条件)を調節可能とされ、スパッタリング条件を調節することで成膜速度を調節可能とされている。   The bias sputtering apparatus 50 can adjust the sputtering conditions (film forming process conditions) such as the magnitude of the bias voltage (voltage of the power supply 58A), the pressure in the vacuum chamber 52, and the distance between the target 54 and the workpiece 10; The film formation rate can be adjusted by adjusting the sputtering conditions.

次に、被加工体10の加工方法について、図4に示すフローチャートに沿って説明する。   Next, the processing method of the to-be-processed body 10 is demonstrated along the flowchart shown in FIG.

まず、図1に示される被加工体10の加工出発体を用意する(S102)。被加工体10の加工出発体はガラス基板12に、下地層14、軟磁性層16、配向層18、連続記録層20、第1のマスク層22、第2のマスク層24をこの順でスパッタリング法により形成し、更にレジスト層26をディッピング法で塗布することにより得られる。尚、スピンコート法によりレジスト層26を塗布してもよい。   First, a processing starting body of the workpiece 10 shown in FIG. 1 is prepared (S102). The processing starting body of the workpiece 10 is sputtered on the glass substrate 12 with the underlayer 14, the soft magnetic layer 16, the orientation layer 18, the continuous recording layer 20, the first mask layer 22, and the second mask layer 24 in this order. It is obtained by applying the resist layer 26 by the dipping method. Note that the resist layer 26 may be applied by spin coating.

この被加工体10の加工出発体のレジスト層26に転写装置(図示省略)を用いて、コンタクトホールを含む所定のサーボパターン(図示省略)及び微細な間隔で記録要素32Aの分割パターンに相当する図5に示されるような凹凸パターンをナノ・インプリント法により転写する(S104)。尚、レジスト層26を露光・現像して、凹凸パターンを形成してもよい。   By using a transfer device (not shown) on the resist layer 26 as a processing starting body of the workpiece 10, it corresponds to a predetermined servo pattern (not shown) including a contact hole and a divided pattern of the recording elements 32 </ b> A at fine intervals. The uneven pattern as shown in FIG. 5 is transferred by the nano-imprint method (S104). The resist layer 26 may be exposed and developed to form a concavo-convex pattern.

次に、アッシングにより、凹部底面のレジスト層26を除去してから、Ar(アルゴン)ガスを用いたイオンビームエッチングにより、凹部底面の第2のマスク層24を除去し、更に、SF(6フッ化硫黄)ガスを用いた反応性イオンエッチングにより、凹部底面の第1のマスク層22を除去し、COガス及びNHガスを反応ガスとする反応性イオンエッチングにより、凹部底面の連続記録層20を除去する。これにより、図6に示されるように連続記録層20が多数の記録要素32Aに分割され、凹凸パターンの記録層32が形成される(S106)。尚、記録要素32Aは下面よりも上面の幅が狭くなり、記録要素32Aの側面は上面に対して垂直な90°から若干傾斜してテーパ角を有する形状に形成される。又、第1のマスク層22が記録要素32Aの上面に残存することがあるので、SFガスを反応ガスとする反応性イオンエッチングにより、記録要素32A上に残存する第1のマスク層22を完全に除去し、NHガス等の還元性のガスを供給して被加工体10の表面のSFガス等を除去する。 Next, after removing the resist layer 26 on the bottom surface of the recess by ashing, the second mask layer 24 on the bottom surface of the recess is removed by ion beam etching using Ar (argon) gas, and SF 6 (6 The first mask layer 22 on the bottom surface of the recess is removed by reactive ion etching using a sulfur fluoride gas, and the continuous recording layer on the bottom surface of the recess is formed by reactive ion etching using CO gas and NH 3 gas as reaction gases. 20 is removed. Thereby, as shown in FIG. 6, the continuous recording layer 20 is divided into a large number of recording elements 32A, and the recording layer 32 having a concavo-convex pattern is formed (S106). The recording element 32A has a narrower upper surface than the lower surface, and the side surface of the recording element 32A is formed in a shape having a taper angle slightly inclined from 90 ° perpendicular to the upper surface. In addition, since the first mask layer 22 may remain on the upper surface of the recording element 32A, the first mask layer 22 remaining on the recording element 32A is formed by reactive ion etching using SF 6 gas as a reactive gas. After complete removal, a reducing gas such as NH 3 gas is supplied to remove SF 6 gas and the like on the surface of the workpiece 10.

次に、CVD法により、図7に示されるように、記録要素32Aの上面及び側面にDLCのストップ膜42を1〜2nmの厚さで成膜する(S108)。ここで、ストップ膜42は記録要素32Aの間の凹部34の底面にも成膜される。尚、この工程ではバイアスパワーを印加しないので、記録要素32Aがエッチングされることはない。   Next, as shown in FIG. 7, a DLC stop film 42 having a thickness of 1 to 2 nm is formed by CVD on the top and side surfaces of the recording element 32A (S108). Here, the stop film 42 is also formed on the bottom surface of the recess 34 between the recording elements 32A. In this process, since no bias power is applied, the recording element 32A is not etched.

次に、バイアススパッタリング装置50を用いて記録要素32Aの間の凹部34にSiOの粒子を2工程で充填する。 Next, using the bias sputtering apparatus 50, the recesses 34 between the recording elements 32A are filled with SiO 2 particles in two steps.

まず、バイアスパワーを印加しないで下側非磁性膜36Aを形成する(S110)。具体的には、被加工体ホルダ58に被加工体10を保持し、バイアスパワーを印加しないで、給気孔52Aから真空チャンバ52内にスパッタリングガスを給気すると、スパッタリングガスはターゲット54に衝突してSiOの粒子が飛散し、SiOの粒子は被加工体10の表面に一様に堆積する。これにより、図8に示されるように、下側非磁性膜36Aが形成される。ここで、下側非磁性膜36Aは膜厚が1nm以上となるように形成することが好ましく、より好ましくは膜厚が3nm以上となるように下側非磁性膜36Aを形成する。この工程はバイアスパワーを印加していないので、ストップ膜42、記録要素32Aがエッチングされることはない。 First, the lower nonmagnetic film 36A is formed without applying bias power (S110). Specifically, when the workpiece 10 is held in the workpiece holder 58 and a sputtering gas is supplied from the supply holes 52A into the vacuum chamber 52 without applying bias power, the sputtering gas collides with the target 54. Thus, the SiO 2 particles are scattered, and the SiO 2 particles are uniformly deposited on the surface of the workpiece 10. As a result, as shown in FIG. 8, a lower nonmagnetic film 36A is formed. Here, the lower nonmagnetic film 36A is preferably formed to have a film thickness of 1 nm or more, and more preferably, the lower nonmagnetic film 36A is formed to have a film thickness of 3 nm or more. Since no bias power is applied in this step, the stop film 42 and the recording element 32A are not etched.

次に、上側非磁性膜36Bを形成する(S112)。具体的には、被加工体ホルダ58にバイアスパワーを印加しつつ給気孔52Aから真空チャンバ52内にスパッタリングガスを給気する。   Next, the upper nonmagnetic film 36B is formed (S112). Specifically, sputtering gas is supplied into the vacuum chamber 52 from the supply holes 52 </ b> A while applying bias power to the workpiece holder 58.

スパッタリングガスはターゲット54に衝突してSiOの粒子が飛散し、SiOの粒子は記録要素の凹凸形状に倣って一様に堆積しようとするので、上記下側非磁性膜形成工程(S110)と同様、図9(A)に示されるように表面が凹凸形状となる傾向があるが、電源58Aが被加工体ホルダ58にバイアス電圧を印加することにより、スパッタリングガスはバイアス電圧により被加工体10の方向に付勢されて堆積済みのSiOに衝突し、堆積済みのSiOの一部をエッチングする。このエッチング作用は、堆積済みのSiOのうち、突出した部分を他部よりも早く選択的に除去する傾向があるので、図9(B)に二点鎖線で示される部分が除去され、表面の凹凸が次第に均される。尚、図9(A)、(B)では、バイアススパッタリングによる成膜作用及びエッチング作用の理解のため、これらの作用を別個に示しているが、実際にはこれらの作用は同時に進行し、成膜作用がエッチング作用を上回ることで表面の凹凸が小さく抑制されつつ成膜が進行する。 Since the sputtering gas collides with the target 54 and the SiO 2 particles are scattered, and the SiO 2 particles attempt to deposit uniformly following the uneven shape of the recording element, the lower non-magnetic film forming step (S110). 9A, the surface tends to be uneven as shown in FIG. 9A, but when the power source 58A applies a bias voltage to the workpiece holder 58, the sputtering gas is applied to the workpiece by the bias voltage. is 10 biased in the direction of collides with the deposited pre SiO 2, etching a portion of the deposited a SiO 2. This etching action tends to selectively remove the protruding portion of the deposited SiO 2 earlier than the other portions, so that the portion indicated by the two-dot chain line in FIG. The unevenness is gradually smoothed. In FIGS. 9A and 9B, these actions are separately shown for understanding the film forming action and the etching action by bias sputtering. However, in actuality, these actions proceed at the same time. When the film action exceeds the etching action, film formation proceeds while suppressing surface irregularities to be small.

又、上側非磁性膜36Bは、下側非磁性膜36Aと材料が共通であるので一体化される。   The upper nonmagnetic film 36B is integrated with the lower nonmagnetic film 36A because the material is the same.

この際、下側非磁性膜36Aの一部はエッチングされるが、記録要素32A、ストップ膜42は下側非磁性膜36Aによりエッチング作用から保護される。   At this time, a part of the lower nonmagnetic film 36A is etched, but the recording element 32A and the stop film 42 are protected from the etching action by the lower nonmagnetic film 36A.

これにより、図10に示されるように、非磁性材36は、表面の凹凸が抑制された形状で記録要素32Aを覆うように成膜されると共に、凹部34に非磁性材36が充填される。   As a result, as shown in FIG. 10, the nonmagnetic material 36 is formed to cover the recording element 32A in a shape in which the unevenness of the surface is suppressed, and the recess 34 is filled with the nonmagnetic material 36. .

次に、イオンビームエッチングにより非磁性材36をストップ膜42の上面まで除去し、図11に示されるように、記録要素32A及び非磁性材36の表面を平坦化する(S114)。ストップ膜42は材質がDLCで、イオンビームエッチングにおけるエッチングレートがSiOよりも低いので、記録要素32Aはイオンビームエッチングから保護される。尚、ストップ膜42は一部を除去してもよいが、記録要素32Aの上面に一部が残るようにする。このように記録要素32A上にストップ膜42を残すことで記録要素32Aをイオンビームエッチングから確実に保護することができる。 Next, the nonmagnetic material 36 is removed up to the upper surface of the stop film 42 by ion beam etching, and the surfaces of the recording element 32A and the nonmagnetic material 36 are planarized as shown in FIG. 11 (S114). Since the material of the stop film 42 is DLC and the etching rate in ion beam etching is lower than that of SiO 2 , the recording element 32A is protected from ion beam etching. A part of the stop film 42 may be removed, but a part is left on the upper surface of the recording element 32A. Thus, by leaving the stop film 42 on the recording element 32A, the recording element 32A can be reliably protected from ion beam etching.

非磁性材36は上側非磁性材膜形成工程(S112)において表面の凹凸が微小に抑制された形状に成膜されているので、イオンビームエッチングにより表面の凹凸が確実に均され、平坦化される。   Since the nonmagnetic material 36 is formed in a shape in which the surface unevenness is suppressed in the upper nonmagnetic material film forming step (S112), the surface unevenness is surely leveled and flattened by ion beam etching. The

尚、この際、高精度な平坦化を行うためにはイオンビームエッチングに用いるArイオンの入射角は表面に対して−10〜15°の範囲とすることが好ましい。一方、上側非磁性材膜形成工程(S112)で非磁性材36の表面の良好な平坦性が得られていれば、Arイオンの入射角は30〜90°の範囲とするとよい。このようにすることで、加工速度が速くなり、生産効率を高めることができる。ここで「入射角」とは、被加工体の表面に対する入射角度であって、被加工体の表面とイオンビームの中心軸とが形成する角度という意義で用いることとする。例えば、イオンビームの中心軸が被加工体の表面と平行である場合、入射角は0°である。   At this time, in order to perform high-precision flattening, it is preferable that the incident angle of Ar ions used for ion beam etching is in a range of −10 to 15 ° with respect to the surface. On the other hand, if good flatness of the surface of the nonmagnetic material 36 is obtained in the upper nonmagnetic material film forming step (S112), the incident angle of Ar ions is preferably in the range of 30 to 90 °. By doing in this way, a processing speed becomes quick and production efficiency can be improved. Here, the “incident angle” is an incident angle with respect to the surface of the workpiece, and is used to mean an angle formed by the surface of the workpiece and the central axis of the ion beam. For example, when the central axis of the ion beam is parallel to the surface of the workpiece, the incident angle is 0 °.

次に、CVD法により記録要素32A及び非磁性材36の上面に1〜5nmの厚さでDLCの保護層38を形成し、更に、ディッピング法により保護層38の上に1〜2nmの厚さでPFPEの潤滑層40を塗布する(S116)。これにより、前記図2に示される磁気記録媒体30が完成する。   Next, a DLC protective layer 38 having a thickness of 1 to 5 nm is formed on the upper surface of the recording element 32A and the nonmagnetic material 36 by a CVD method, and further a thickness of 1 to 2 nm is formed on the protective layer 38 by a dipping method. Then, the lubricating layer 40 of PFPE is applied (S116). Thereby, the magnetic recording medium 30 shown in FIG. 2 is completed.

以上のように、バイアスパワーを印加しないで記録要素32A上にストップ膜42、下側非磁性膜36Aを形成しているので、記録要素32Aはストップ膜形成工程(S108)、下側非磁性膜形成工程(S110)において、エッチングされることがなく、磁気特性が悪化することがない。又、記録要素32A上(ストップ膜42上)に下側非磁性膜36Aを形成してから、上側非磁性膜36Bを形成しているので、記録要素32A、ストップ膜42は上側非磁性膜形成工程(S112)においてもエッチング作用から保護され、記録要素32Aの磁気特性やストップ膜42の機能が悪化することがない。更に、イオンビームエッチングに対するエッチングレートが低いストップ膜42が記録要素32A上に形成されているので、記録要素32Aは平坦化工程(S114)においてもエッチング作用から保護され、磁気特性が悪化することがない。即ち、記録要素32Aは、凹部34に非磁性材36を充填し、非磁性材36の表面を平坦化しても磁気特性が悪化することがなく、磁気記録媒体30は記録・再生精度が良い。   As described above, since the stop film 42 and the lower nonmagnetic film 36A are formed on the recording element 32A without applying the bias power, the recording element 32A has the stop film forming step (S108), the lower nonmagnetic film. In the forming step (S110), etching is not performed and magnetic characteristics are not deteriorated. Since the lower nonmagnetic film 36A is formed on the recording element 32A (on the stop film 42) and then the upper nonmagnetic film 36B is formed, the recording element 32A and the stop film 42 are formed on the upper nonmagnetic film. Also in the step (S112), it is protected from the etching action, and the magnetic characteristics of the recording element 32A and the function of the stop film 42 are not deteriorated. Further, since the stop film 42 having a low etching rate with respect to ion beam etching is formed on the recording element 32A, the recording element 32A is protected from the etching action even in the flattening step (S114), and the magnetic characteristics may deteriorate. Absent. That is, the recording element 32A is filled with the nonmagnetic material 36 in the recess 34, and the magnetic characteristics do not deteriorate even if the surface of the nonmagnetic material 36 is flattened, and the magnetic recording medium 30 has good recording / reproducing accuracy.

更に、記録要素32A上に材料がDLCでイオンビームエッチングに対するエッチングレートが比較的低いストップ膜42と、材質がSiOでイオンビームエッチングに対するエッチングレートが比較的高い下側非磁性膜36A及び上側非磁性膜36Bを形成しているので、平坦化工程(S114)において記録要素32A上の下側非磁性膜36A及び上側非磁性膜36Bを確実に除去することができ、この点でも磁気記録媒体30は記録・再生精度が良い。 Further, a stop film 42 made of DLC and a relatively low etching rate for ion beam etching on the recording element 32A, and a lower non-magnetic film 36A and an upper non-magnetic film 36A made of SiO 2 and having a relatively high etching rate for ion beam etching. Since the magnetic film 36B is formed, the lower nonmagnetic film 36A and the upper nonmagnetic film 36B on the recording element 32A can be surely removed in the flattening step (S114). Has good recording and playback accuracy.

尚、平坦化工程(S114)において記録要素32A上にストップ膜42を残しているが、ストップ膜42は材料がDLCでイオンビームエッチングに対するエッチングレートが低いので、それだけ膜厚を薄くすることができ、記録要素32A上にストップ膜42が残存しても記録・再生精度に及ぼす影響は小さい。一方、記録要素32Aのダメージを与えないように、ストップ膜42を除去できれば、平坦化工程(S114)において記録要素32A上のストップ膜42を完全に除去してもよい。このようにすることで、記録・再生精度を高める一定の効果が得られる。   In the planarization step (S114), the stop film 42 is left on the recording element 32A. However, since the stop film 42 is made of DLC and has a low etching rate for ion beam etching, the film thickness can be reduced accordingly. Even if the stop film 42 remains on the recording element 32A, the influence on the recording / reproducing accuracy is small. On the other hand, if the stop film 42 can be removed so as not to damage the recording element 32A, the stop film 42 on the recording element 32A may be completely removed in the planarization step (S114). By doing in this way, the fixed effect which improves recording / reproducing precision is acquired.

又、上側非磁性膜形成工程(S112)において、被加工体ホルダ58にバイアスパワーを印加しつつ上側非磁性膜36Bを形成しているので、表面の凹凸が抑制された形状に上側非磁性膜36Bを成膜することができ、平坦化工程(S114)において記録要素32A及び非磁性材36の表面を効率良く充分に平坦化することができる。これにより、保護層38、潤滑層40も充分平坦な形状とすることができ、磁気記録媒体30はヘッド浮上特性も良好である。   In the upper nonmagnetic film forming step (S112), since the upper nonmagnetic film 36B is formed while applying bias power to the workpiece holder 58, the upper nonmagnetic film has a shape in which surface irregularities are suppressed. 36B can be formed, and the surfaces of the recording element 32A and the nonmagnetic material 36 can be efficiently and sufficiently flattened in the flattening step (S114). As a result, the protective layer 38 and the lubricating layer 40 can also be made sufficiently flat, and the magnetic recording medium 30 has good head flying characteristics.

尚、本実施形態において、下側非磁性膜36A、上側非磁性膜36Bの材料はいずれもSiOであるが、本発明はこれに限定されるものではなく、スパッタリング等の成膜手法に適した材料であれば、例えば、他の酸化物、TiN(窒化チタン)等の窒化物、Ta(タンタル)、TaSi、Si等の他の非磁性材を用いてもよい。又、下側非磁性膜36A、上側非磁性膜36Bの材料は異なる材料としてもよいが、この場合、平坦化工程(S114)におけるエッチングレートが同等の材料とすることが好ましい。 In the present embodiment, the material of the lower nonmagnetic film 36A and the upper nonmagnetic film 36B is both SiO 2 , but the present invention is not limited to this, and is suitable for a film forming technique such as sputtering. For example, other oxides, nitrides such as TiN (titanium nitride), other nonmagnetic materials such as Ta (tantalum), TaSi, and Si may be used. The materials of the lower non-magnetic film 36A and the upper non-magnetic film 36B may be different materials, but in this case, it is preferable that the etching rate in the planarization step (S114) is the same.

又、本実施形態において、ストップ膜42の材料はDLCであるが、本発明はこれに限定されるものではなく、平坦化工程(S114)におけるエッチングレートが低い材料であれば、他の非磁性材を用いてもよい。   In this embodiment, the material of the stop film 42 is DLC. However, the present invention is not limited to this, and any other nonmagnetic material can be used as long as it has a low etching rate in the planarization step (S114). A material may be used.

又、本実施形態において、下側非磁性膜形成工程(S110)では、バイアスパワーを印加しないで、下側非磁性膜36Aを形成しているが、本発明はこれに限定されるものではなく、実質的にバイアスパワーを印加しないで、下側非磁性膜36Aを形成すれば同様の効果が得られる。ここで、「実質的にバイアスパワーを印加しない」とは、バイアスパワーを全く印加しない場合だけでなく、記録要素32Aやストップ膜42に対するエッチング作用による影響を無視しうる程度の微小なバイアスパワーを印加する場合、例えば、バイアスパワーを全く印加しない場合におけるSiOの成膜速度をV(Å/min)、下側非磁性膜形成工程(S110)におけるSiOの成膜速度をV(Å/min)とした場合、例えば0.9≦V/Vの関係を満たす程度の微小なバイアスパワーを印加する場合も含む意義で用いることとする。 In the present embodiment, in the lower nonmagnetic film forming step (S110), the lower nonmagnetic film 36A is formed without applying bias power. However, the present invention is not limited to this. The same effect can be obtained by forming the lower nonmagnetic film 36A substantially without applying bias power. Here, “substantially no bias power is applied” means not only a case where no bias power is applied, but also a small bias power that can ignore the influence of the etching action on the recording element 32A and the stop film 42. when applying, for example, the deposition rate of the SiO 2 in the case where none applying bias power V 0 (Å / min), the lower non-magnetic layer forming step (S110) V 1 the deposition rate of the SiO 2 in ( (Å / min), for example, it is used in the meaning including the case of applying a minute bias power that satisfies the relationship of 0.9 ≦ V 1 / V 0 .

又、例えば、V/Vが0.9よりも小さくなるようなバイアスパワーを印加しても、上側非磁性膜形成工程(S112)におけるバイアスパワーよりも小さく抑制したバイアスパワーを印加して、下側非磁性膜36Aを形成すれば、バイアススパッタリングによるエッチング作用から記録要素32Aやストップ膜42を保護する一定の効果が得られる。 For example, even if a bias power is applied such that V 1 / V 0 is smaller than 0.9, a bias power suppressed to be smaller than the bias power in the upper nonmagnetic film forming step (S 112) is applied. If the lower nonmagnetic film 36A is formed, a certain effect of protecting the recording element 32A and the stop film 42 from the etching action by bias sputtering can be obtained.

又、本実施形態において、上側非磁性膜形成工程(S112)では、バイアススパッタリング法を用いて上側非磁性膜36Bを成膜し、記録要素32Aの間の凹部34に非磁性材36を充填しているが、本発明はこれに限定されるものではなく、被加工体にバイアスパワーを印加しつつ被加工体の表面に非磁性材を成膜できれば、成膜手法は特に限定されず、例えば、バイアスパワーを印加するCVD法、IBD法等の成膜手法を用いて、上側非磁性膜36Bを成膜し、予め記録要素32A上に下側非磁性膜36Aを形成しておくことで、記録要素32Aやストップ膜42をエッチング作用から保護することができる。   In the present embodiment, in the upper nonmagnetic film forming step (S112), the upper nonmagnetic film 36B is formed by bias sputtering, and the nonmagnetic material 36 is filled in the recesses 34 between the recording elements 32A. However, the present invention is not limited to this, and the film forming method is not particularly limited as long as a nonmagnetic material can be formed on the surface of the workpiece while applying a bias power to the workpiece. The upper nonmagnetic film 36B is formed by using a film forming method such as a CVD method or an IBD method in which bias power is applied, and the lower nonmagnetic film 36A is formed on the recording element 32A in advance. The recording element 32A and the stop film 42 can be protected from the etching action.

同様に、本実施形態において、CVD法を用いてストップ膜42を形成し、スパッタリング法を用いて下側非磁性膜36Aを形成しているが、記録要素32Aに対するダメージが小さい成膜手法であれば、他の成膜手法を用いてストップ膜42、下側非磁性膜36Aを形成してもよい。   Similarly, in this embodiment, the stop film 42 is formed by using the CVD method, and the lower nonmagnetic film 36A is formed by using the sputtering method. For example, the stop film 42 and the lower nonmagnetic film 36 </ b> A may be formed using other film forming methods.

又、本実施形態において、記録要素32A上にストップ膜42、下側非磁性膜36A、上側非磁性膜36Bをこの順で形成しているが、本発明はこれに限定されるものではなく、ストップ膜42を省略し、記録要素32A上に直接、下側非磁性膜36A、上側非磁性膜36Bを形成してもよい。この場合も、上側非磁性膜36Bの表面の凹凸を小さく抑制できると共に、上側非磁性膜形成工程(S112)におけるバイアススパッタリングのエッチング作用から記録要素32Aを保護する一定の効果が得られる。   In this embodiment, the stop film 42, the lower nonmagnetic film 36A, and the upper nonmagnetic film 36B are formed in this order on the recording element 32A. However, the present invention is not limited to this. The stop film 42 may be omitted, and the lower nonmagnetic film 36A and the upper nonmagnetic film 36B may be formed directly on the recording element 32A. Also in this case, the unevenness of the surface of the upper nonmagnetic film 36B can be suppressed to a small level, and a certain effect of protecting the recording element 32A from the bias sputtering etching action in the upper nonmagnetic film forming step (S112) can be obtained.

又、本実施形態において、アルゴンガスを用いたイオンビームエッチングにより非磁性材36を記録要素32Aの上面まで除去し、記録要素32A及び非磁性材36の表面を平坦化しているが、本発明はこれに限定されるものではなく、例えば、Kr(クリプトン)、Xe(キセノン)等の他の希ガスを用いたイオンビームエッチングにより、非磁性材36を、記録要素32Aの上面まで除去し、記録要素32A及び非磁性材36の表面を平坦化してもよい。又、SF、CF(4フッ化炭素)、C(6フッ化エタン)等のハロゲン系のガスを用いた反応性イオンビームエッチングにより平坦化を行っても良い。又、非磁性材成膜後レジストなどを平坦に塗布した後、イオンビームエッチング法を用いて記録要素上まで余剰の非磁性材を除去するエッチバック法やCMP(Chemical Mechanical Polishing)法を用いて平坦化を行っても良い。 In this embodiment, the nonmagnetic material 36 is removed to the upper surface of the recording element 32A by ion beam etching using argon gas, and the surfaces of the recording element 32A and the nonmagnetic material 36 are flattened. For example, the nonmagnetic material 36 is removed to the upper surface of the recording element 32A by ion beam etching using another rare gas such as Kr (krypton) or Xe (xenon). The surfaces of the element 32A and the nonmagnetic material 36 may be flattened. Further, planarization may be performed by reactive ion beam etching using a halogen-based gas such as SF 6 , CF 4 (carbon tetrafluoride), C 2 F 6 (ethane hexafluoride), or the like. In addition, after a nonmagnetic material is deposited, a resist or the like is applied flatly, and then an ion beam etching method is used to remove excess nonmagnetic material up to the recording element, using an etch back method or a CMP (Chemical Mechanical Polishing) method. Planarization may be performed.

又、本実施形態において、第1のマスク層22、第2のマスク層24、レジスト層26を連続記録層20に形成し、3段階のドライエッチングで連続記録層20を分割しているが、連続記録層20を高精度で分割できれば、レジスト層、マスク層の材料、積層数、厚さ、ドライエッチングの種類等は特に限定されない。   In this embodiment, the first mask layer 22, the second mask layer 24, and the resist layer 26 are formed on the continuous recording layer 20, and the continuous recording layer 20 is divided by three stages of dry etching. As long as the continuous recording layer 20 can be divided with high accuracy, the material of the resist layer and the mask layer, the number of stacked layers, the thickness, the type of dry etching, and the like are not particularly limited.

又、本実施形態において、連続記録層20(記録層32)の材料はCoCr合金であるが、本発明はこれに限定されるものではなく、例えば、鉄族元素(Co、Fe(鉄)、Ni)を含む他の合金、これらの積層体等の他の材料の記録要素で構成される磁気記録媒体の加工のためにも本発明を適用可能である。   In the present embodiment, the material of the continuous recording layer 20 (recording layer 32) is a CoCr alloy, but the present invention is not limited to this. For example, an iron group element (Co, Fe (iron), The present invention can also be applied to the processing of magnetic recording media composed of recording elements of other materials such as other alloys including Ni) and laminates thereof.

又、本実施形態において、連続記録層20(記録層32)の下に下地層14、軟磁性層16、配向層18が形成されているが、本発明はこれに限定されるものではなく、連続記録層20(記録層32)の下の層の構成は、磁気記録媒体の種類に応じて適宜変更すればよい。例えば、下地層14、軟磁性層16、配向層18のうち一又は二の層を省略してもよい。又、基板上に連続記録層を直接形成してもよい。   In the present embodiment, the underlayer 14, the soft magnetic layer 16, and the orientation layer 18 are formed under the continuous recording layer 20 (recording layer 32), but the present invention is not limited to this. What is necessary is just to change suitably the structure of the layer under the continuous recording layer 20 (recording layer 32) according to the kind of magnetic recording medium. For example, one or two of the underlayer 14, the soft magnetic layer 16, and the orientation layer 18 may be omitted. Further, the continuous recording layer may be directly formed on the substrate.

又、本実施形態において、磁気記録媒体30は記録要素32Aがトラックの径方向に微細な間隔で並設された垂直記録型のディスクリートトラックタイプの磁気ディスクであるが、本発明はこれに限定されるものではなく、記録要素がトラックの周方向(セクタの方向)に微細な間隔で並設された磁気ディスク、トラックの径方向及び周方向の両方向に微細な間隔で並設された磁気ディスク、凹凸パターンが形成された連続記録層を有するパームタイプの磁気ディスク、トラックが螺旋形状をなす磁気ディスクの製造についても本発明は当然適用可能である。又、MO等の光磁気ディスク、磁気と熱を併用する熱アシスト型の磁気ディスク、更に、磁気テープ等ディスク形状以外の他の凹凸パターンの記録層を有する磁気記録媒体の製造に対しても本発明を適用可能である。   In this embodiment, the magnetic recording medium 30 is a perpendicular recording type discrete track type magnetic disk in which the recording elements 32A are arranged in parallel in the radial direction of the track, but the present invention is not limited to this. A magnetic disk in which recording elements are arranged in parallel in the circumferential direction (sector direction) of the track at fine intervals, a magnetic disk in which recording elements are arranged in parallel in the radial and circumferential directions of the track, Of course, the present invention can also be applied to the manufacture of a palm-type magnetic disk having a continuous recording layer having a concavo-convex pattern and a magnetic disk having a spiral track. The present invention is also applicable to the manufacture of magneto-optical disks such as MO, heat-assisted magnetic disks that use both magnetism and heat, and magnetic recording media having a recording layer with other concavo-convex patterns other than the disk shape, such as magnetic tapes. The invention can be applied.

上記実施形態のとおり、9枚の被加工体10を加工した。連続記録層20を分割する工程(S106)までは、いずれの被加工体10についても同様に加工して下記の形状の記録要素32Aを形成した。   As in the above embodiment, nine workpieces 10 were processed. Until the step of dividing the continuous recording layer 20 (S106), all the workpieces 10 were similarly processed to form recording elements 32A having the following shapes.

トラックピッチ(記録要素32Aの径方向の並設ピッチ):約150nm
径方向の幅(厚さ方向中央近傍の幅) : 約90nm
段差(記録要素32Aの厚さ) : 約40nm
記録要素32Aの側面テーパ角 : 約80°
Track pitch (arranged pitch in the radial direction of the recording elements 32A): about 150 nm
Width in the radial direction (width in the vicinity of the center in the thickness direction): about 90 nm
Step (thickness of the recording element 32A): about 40 nm
Side taper angle of recording element 32A: about 80 °

次に、CVD法により、記録要素32Aの上面、側面及び記録要素32Aの間の凹部34にストップ膜42を膜厚が約2nmとなるように一様に形成した。   Next, a stop film 42 was uniformly formed to a thickness of about 2 nm on the upper and side surfaces of the recording element 32A and the recesses 34 between the recording elements 32A by CVD.

次に、スパッタリング法により、ストップ膜42上にバイアスパワーを印加しないで下側非磁性膜36Aを3種類の膜厚で形成した。具体的には、下側非磁性膜36Aの膜厚が約1nm、2nm、3nmとなるように、下側非磁性膜36Aの膜厚が等しい被加工体10を3枚ずつ計9枚を作製した。尚、スパッタリングガスとしてArを用い、成膜パワー(ターゲットホルダ56に印加するパワー)は約500W、真空チャンバ52内の圧力は約0.3Paに設定した。   Next, the lower nonmagnetic film 36 </ b> A was formed in three types of film thickness by sputtering on the stop film 42 without applying bias power. Specifically, a total of nine workpieces 10 each having the same thickness of the lower nonmagnetic film 36A are produced so that the thickness of the lower nonmagnetic film 36A is about 1 nm, 2 nm, and 3 nm. did. Ar was used as the sputtering gas, the film formation power (power applied to the target holder 56) was set to about 500 W, and the pressure in the vacuum chamber 52 was set to about 0.3 Pa.

次に、バイアススパッタリング法により、3種類の大きさのバイアスパワーを印加しつつ9枚の被加工体10のストップ膜42上に、下側非磁性膜36A及び上側非磁性膜36Bの合計膜厚が約50nmとなるように上側非磁性膜36Bを形成した。具体的には、下側非磁性膜36Aの膜厚が等しい3枚の被加工体に対して、150W、250W、290Wの異なるバイアスパワーを印加しつつ上側非磁性膜36Bを形成した。又、下側非磁性膜形成工程(S110)と同様に、スパッタリングガスとしてArを用い、成膜パワーは約500W、真空チャンバ52内の圧力は約0.3Paに設定した。尚、上側非磁性膜36Bの表面は凹凸が微小に抑制された形状となるため、凹凸を無視しうる略平坦な面を有する膜厚計を被加工体10の近傍に設置し、膜厚計に成膜された表面が平坦な上側非磁性膜36B及び下側非磁性膜36Aの合計膜厚を、被加工体10の下側非磁性膜36A及び上側非磁性膜36Bの合計膜厚として測定した。   Next, the total film thickness of the lower nonmagnetic film 36A and the upper nonmagnetic film 36B on the stop films 42 of the nine workpieces 10 while applying bias powers of three kinds of magnitudes by bias sputtering. The upper nonmagnetic film 36B was formed so that the thickness of the film was about 50 nm. Specifically, the upper nonmagnetic film 36B was formed while applying different bias powers of 150 W, 250 W, and 290 W to three workpieces having the same thickness of the lower nonmagnetic film 36A. Similarly to the lower nonmagnetic film formation step (S110), Ar was used as the sputtering gas, the film formation power was set to about 500 W, and the pressure in the vacuum chamber 52 was set to about 0.3 Pa. Since the surface of the upper non-magnetic film 36B has a shape in which the unevenness is minutely suppressed, a film thickness meter having a substantially flat surface where the unevenness can be ignored is installed in the vicinity of the workpiece 10, and the film thickness meter The total film thickness of the upper nonmagnetic film 36B and the lower nonmagnetic film 36A having a flat surface is measured as the total film thickness of the lower nonmagnetic film 36A and the upper nonmagnetic film 36B. did.

この状態で、SEM(Scanning Electron Microscope)による断面観察を行い、記録要素32Aの側面のテーパ角、及び非磁性材36の表面の凹凸の段差を測定した。測定結果を表1に示す。   In this state, cross-sectional observation was performed by SEM (Scanning Electron Microscope), and the taper angle on the side surface of the recording element 32A and the unevenness on the surface of the nonmagnetic material 36 were measured. The measurement results are shown in Table 1.

Figure 0003686067
Figure 0003686067

[比較例1]
上記実施例に対し、下側非磁性膜36Aを形成しないでストップ膜42上に直接上側非磁性膜36Bを形成し、3枚の被加工体10を加工した。尚、上側非磁性膜32Bを形成する際、3枚の被加工体10に対して150W、250W、290Wの異なるバイアスパワーを印加した。他の条件は上記実施例と同様として、記録要素32Aの間の凹部34に非磁性材36を充填した。
[Comparative Example 1]
In contrast to the above embodiment, the upper nonmagnetic film 36B was formed directly on the stop film 42 without forming the lower nonmagnetic film 36A, and three workpieces 10 were processed. When the upper nonmagnetic film 32B was formed, different bias powers of 150 W, 250 W, and 290 W were applied to the three workpieces 10. Other conditions were the same as in the above example, and the non-magnetic material 36 was filled in the recesses 34 between the recording elements 32A.

このようにして得られた3枚の被加工体10について、SEMによる断面観察を行い、記録要素32Aの側面のテーパ角、非磁性材36の表面の凹凸の段差を測定した。測定結果を表1に示す。   The three workpieces 10 thus obtained were subjected to cross-sectional observation by SEM, and the taper angle on the side surface of the recording element 32A and the unevenness on the surface of the nonmagnetic material 36 were measured. The measurement results are shown in Table 1.

[比較例2]
上記実施例に対し、膜厚が約50nmとなるようにバイアスパワーを印加しないで下側非磁性膜36Aを形成し、上側非磁性膜36Bは形成しなかった。他の条件は上記実施例と同様として、記録要素32Aの間の凹部34に非磁性材36を充填した。このようにして得られた1枚の被加工体10について、SEMによる断面観察を行い、記録要素32Aの側面のテーパ角、非磁性材36の表面の凹凸の段差を測定した。測定結果を表1に示す。
[Comparative Example 2]
In contrast to the above example, the lower nonmagnetic film 36A was formed without applying bias power so that the film thickness was about 50 nm, and the upper nonmagnetic film 36B was not formed. Other conditions were the same as in the above example, and the non-magnetic material 36 was filled in the recesses 34 between the recording elements 32A. The cross section of the single workpiece 10 thus obtained was observed by SEM, and the taper angle on the side surface of the recording element 32A and the unevenness on the surface of the nonmagnetic material 36 were measured. The measurement results are shown in Table 1.

表1より、上側非磁性膜形成工程(S112)におけるバイアスパワーが等しい場合、ストップ膜42上にバイアスパワーを印加しないで膜厚が1nm以上の下側非磁性膜36Aを形成してから上側非磁性膜36Bを形成した実施例は、ストップ膜42上に直接上側非磁性膜36Bを形成した比較例1よりも、記録要素32Aの側面のテーパ角の減少幅が小さく、上側非磁性膜形成工程(S112)におけるエッチング作用から記録要素32Aやストップ膜42が保護されていることがわかる。言い換えれば、1nm以上の下側非磁性膜36Aを形成してから上側非磁性膜36Bを形成すれば、上側非磁性膜形成工程(S112)におけるエッチング作用から記録要素32Aやストップ膜42を保護する一定の効果が得られることが確認された。   From Table 1, when the bias power in the upper nonmagnetic film forming step (S112) is equal, the upper nonmagnetic film 36A is formed after the lower nonmagnetic film 36A having a thickness of 1 nm or more is formed on the stop film 42 without applying the bias power. The embodiment in which the magnetic film 36B is formed has a smaller taper angle reduction width on the side surface of the recording element 32A than the comparative example 1 in which the upper nonmagnetic film 36B is formed directly on the stop film 42, and the upper nonmagnetic film forming step. It can be seen that the recording element 32A and the stop film 42 are protected from the etching action in (S112). In other words, if the upper nonmagnetic film 36B is formed after the lower nonmagnetic film 36A of 1 nm or more is formed, the recording element 32A and the stop film 42 are protected from the etching action in the upper nonmagnetic film forming step (S112). It was confirmed that a certain effect can be obtained.

又、膜厚が3nmの下側非磁性膜36Aを形成してから上側非磁性膜36Bを形成した場合、記録要素32Aの側面のテーパ角は減少していないことがわかる。言い換えれば、3nm以上の下側非磁性膜36Aを形成してから上側非磁性膜36Bを形成すれば、上側非磁性膜形成工程(S112)におけるエッチング作用から記録要素32Aやストップ膜42がほぼ完全に保護されることが確認された。   It can also be seen that when the lower non-magnetic film 36A having a thickness of 3 nm is formed and then the upper non-magnetic film 36B is formed, the taper angle of the side surface of the recording element 32A does not decrease. In other words, if the upper nonmagnetic film 36B is formed after the lower nonmagnetic film 36A of 3 nm or more is formed, the recording element 32A and the stop film 42 are almost completely due to the etching action in the upper nonmagnetic film forming step (S112). It was confirmed that they were protected.

又、バイアスパワーを印加しつつ、上側非磁性膜36Bを形成した実施例は、バイアスパワーを印加しないで膜厚が約50nmの下側非磁性膜36Aだけを形成した比較例2よりも、表面の段差が小さく抑制されていることが確認された。尚、上側非磁性膜形成工程(S112)においてバイアスパワーを大きくする程、表面の段差が小さく抑制される傾向があるが、下側非磁性膜形成工程(S110)におけるSiOの成膜速度をV(Å/min)、上側非磁性膜形成工程(S112)におけるSiOの成膜速度をV(Å/min)とした場合、V/Vが過度に小さくなるレベルまでバイアスパワーを大きくすると、上側非磁性膜36Bの剥離が生じやすくなる。V/Vが0.1以上となる範囲でバイアスパワーを調節すれば、剥離が起こらないことが実験で確かめられており、実施例、比較例1はこの範囲でバイアスパワーを調節した。 Further, the embodiment in which the upper nonmagnetic film 36B is formed while applying the bias power is more surface than the comparative example 2 in which only the lower nonmagnetic film 36A having a thickness of about 50 nm is formed without applying the bias power. It was confirmed that the difference in level was suppressed small. Note that as the bias power is increased in the upper non-magnetic film forming step (S112), the surface step tends to be reduced, but the SiO 2 deposition rate in the lower non-magnetic film forming step (S110) is reduced. When V 1 (Å / min) and the deposition rate of SiO 2 in the upper nonmagnetic film forming step (S112) are V 2 (Å / min), the bias power is reduced to a level at which V 2 / V 1 becomes excessively small. Is increased, the upper nonmagnetic film 36B is likely to be peeled off. It has been experimentally confirmed that peeling does not occur if the bias power is adjusted in a range where V 2 / V 1 is 0.1 or more. In Examples and Comparative Example 1, the bias power was adjusted in this range.

本発明は、例えば、ディスクリートトラックタイプのハードディスク等、凹凸パターンの記録層を有する磁気記録媒体を製造するために利用することができる。   The present invention can be used for manufacturing a magnetic recording medium having a recording layer with a concavo-convex pattern, such as a discrete track type hard disk.

本発明の実施形態に係る被加工体の加工出発体の構造を模式的に示す側断面図Side sectional view which shows typically the structure of the process starting body of the to-be-processed body which concerns on embodiment of this invention 同被加工体を加工して得られる磁気記録媒体の構造を模式的に示す側断面図Side sectional view schematically showing the structure of a magnetic recording medium obtained by processing the workpiece 同磁気記録媒体の製造に用いるバイアススパッタリング装置の概略構造を模式的に示す側面図Side view schematically showing a schematic structure of a bias sputtering apparatus used for manufacturing the magnetic recording medium 同磁気記録媒体の製造工程の概要を示すフローチャートFlow chart showing an outline of the manufacturing process of the magnetic recording medium レジスト層に凹凸パターンが転写された前記被加工体の形状を模式的に示す側断面図Side sectional view schematically showing the shape of the workpiece with a concavo-convex pattern transferred to a resist layer 連続記録層が分割された前記被加工体の形状を模式的に示す側断面図Side sectional view schematically showing the shape of the workpiece with the continuous recording layer divided 凹凸パターン上にストップ膜が形成された前記被加工体の形状を模式的に示す側断面図Side sectional view schematically showing the shape of the workpiece in which a stop film is formed on an uneven pattern 前記ストップ膜上に下側非磁性膜が形成された前記被加工体の形状を模式的に示す側断面図Side sectional view schematically showing the shape of the workpiece in which a lower nonmagnetic film is formed on the stop film 前記下側非磁性膜上への上側非磁性膜の形成過程を模式的に示す側断面図Side sectional view schematically showing the formation process of the upper nonmagnetic film on the lower nonmagnetic film 前記上側非磁性膜の形成工程後の前記被加工体の形状を模式的に示す側断面図Side sectional view schematically showing the shape of the workpiece after the formation process of the upper nonmagnetic film 記録要素及び非磁性材の表面が平坦化された前記被加工体の形状を模式的に示す側断面図Side sectional view schematically showing the shape of the workpiece in which the surfaces of the recording element and the non-magnetic material are flattened

符号の説明Explanation of symbols

10…被加工体
12…ガラス基板
14…下地層
16…軟磁性層
18…配向層
20…連続記録層
22…第1のマスク層
24…第2のマスク層
26…レジスト層
30…磁気記録媒体
32…記録層
32A…記録要素
34…凹部
36…非磁性材
36A…下側非磁性膜
36B…上側非磁性膜
38…保護層
40…潤滑層
42…ストップ膜
S102…被加工体の加工出発体作製工程
S104…レジスト層への分割パターン転写工程
S106…記録層分割工程
S108…ストップ膜形成工程
S110…下側非磁性膜形成工程
S112…上側非磁性膜形成工程
S114…平坦化工程
S116…保護層、潤滑層形成工程
DESCRIPTION OF SYMBOLS 10 ... To-be-processed object 12 ... Glass substrate 14 ... Underlayer 16 ... Soft magnetic layer 18 ... Orientation layer 20 ... Continuous recording layer 22 ... 1st mask layer 24 ... 2nd mask layer 26 ... Resist layer 30 ... Magnetic recording medium 32 ... Recording layer 32A ... Recording element 34 ... Recess 36 ... Non-magnetic material 36A ... Lower non-magnetic film 36B ... Upper non-magnetic film 38 ... Protective layer 40 ... Lubricating layer 42 ... Stop film S102 ... Processing starting material of workpiece Fabrication process S104 ... Division pattern transfer process to resist layer S106 ... Recording layer division process S108 ... Stop film formation process S110 ... Lower nonmagnetic film formation process S112 ... Upper nonmagnetic film formation process S114 ... Planarization process S116 ... Protective layer , Lubricating layer formation process

Claims (5)

基板上に記録層が所定の凹凸パターンで形成され、該凹凸パターンの凹部が非磁性材で充填された磁気記録媒体の製造方法であって、
前記凹凸パターン上に下側非磁性膜を形成する下側非磁性膜形成工程と、前記下側非磁性膜上に上側非磁性膜を形成する上側非磁性膜形成工程と、を含み、少なくとも該上側非磁性膜形成工程において前記基板にバイアスパワーを印加し、且つ、前記下側非磁性膜形成工程において前記上側非磁性膜形成工程よりもバイアスパワーを小さく抑制して前記凹凸パターンの凹部に前記非磁性材を充填するようにしたことを特徴とする磁気記録媒体の製造方法。
A method of manufacturing a magnetic recording medium in which a recording layer is formed in a predetermined concavo-convex pattern on a substrate, and the concave portions of the concavo-convex pattern are filled with a nonmagnetic material,
A lower nonmagnetic film forming step of forming a lower nonmagnetic film on the concave-convex pattern, and an upper nonmagnetic film forming step of forming an upper nonmagnetic film on the lower nonmagnetic film, and at least the The bias power is applied to the substrate in the upper nonmagnetic film forming step, and the bias power is suppressed to be smaller than that in the upper nonmagnetic film forming step in the lower nonmagnetic film forming step, so that the concave pattern A method of manufacturing a magnetic recording medium, wherein a nonmagnetic material is filled.
請求項1において、
前記下側非磁性膜形成工程は、前記バイアスパワーを実質的に印加しない状態で前記下側非磁性膜を形成するようにしたことを特徴とする磁気記録媒体の製造方法。
In claim 1,
The method of manufacturing a magnetic recording medium, wherein the lower nonmagnetic film forming step forms the lower nonmagnetic film in a state where the bias power is not substantially applied.
請求項1又は2において、
前記下側非磁性膜形成工程は、膜厚が1nm以上となるように前記下側非磁性膜を形成するようにしたことを特徴とする磁気記録媒体の製造方法。
In claim 1 or 2,
The method of manufacturing a magnetic recording medium, wherein the lower nonmagnetic film forming step forms the lower nonmagnetic film so that the film thickness becomes 1 nm or more.
請求項1乃至3のいずれかにおいて、
前記上側非磁性膜形成工程の後に、前記上側非磁性膜の表面を平坦化する平坦化工程が設けられたことを特徴とする磁気記録媒体の製造方法。
In any one of Claims 1 thru | or 3,
A method of manufacturing a magnetic recording medium, wherein a flattening step of flattening a surface of the upper nonmagnetic film is provided after the upper nonmagnetic film forming step.
請求項4において、
前記下側非磁性膜形成工程の前に、前記下側非磁性膜及び上側非磁性膜よりも前記平坦化工程における加工レートが低いストップ膜を前記記録層上に形成するストップ膜形成工程を設けたことを特徴とする磁気記録媒体の製造方法。
In claim 4,
Before the lower nonmagnetic film forming step, there is provided a stop film forming step for forming on the recording layer a stop film having a lower processing rate in the planarization step than the lower nonmagnetic film and the upper nonmagnetic film. A method for manufacturing a magnetic recording medium, comprising:
JP2003367542A 2003-10-28 2003-10-28 Method for manufacturing magnetic recording medium Expired - Fee Related JP3686067B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003367542A JP3686067B2 (en) 2003-10-28 2003-10-28 Method for manufacturing magnetic recording medium
US10/972,325 US7225528B2 (en) 2003-10-28 2004-10-26 Method for manufacturing magnetic recording medium
CNB2004100896114A CN1305035C (en) 2003-10-28 2004-10-28 Method for manufacturing magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003367542A JP3686067B2 (en) 2003-10-28 2003-10-28 Method for manufacturing magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2005135455A JP2005135455A (en) 2005-05-26
JP3686067B2 true JP3686067B2 (en) 2005-08-24

Family

ID=34510298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003367542A Expired - Fee Related JP3686067B2 (en) 2003-10-28 2003-10-28 Method for manufacturing magnetic recording medium

Country Status (3)

Country Link
US (1) US7225528B2 (en)
JP (1) JP3686067B2 (en)
CN (1) CN1305035C (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8049993B2 (en) 2007-05-14 2011-11-01 Kabushiki Kaisha Toshiba Magnetic recording medium and magnetic storage device
US8338007B2 (en) 2007-09-26 2012-12-25 Kabushiki Kaisha Toshiba Magnetic recording medium and magnetic recording apparatus
US8980451B2 (en) 2010-09-17 2015-03-17 Kabushiki Kaisha Toshiba Magnetic recording medium, method of manufacturing the same, and magnetic recording apparatus

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7019924B2 (en) * 2001-02-16 2006-03-28 Komag, Incorporated Patterned medium and recording head
US7147790B2 (en) * 2002-11-27 2006-12-12 Komag, Inc. Perpendicular magnetic discrete track recording disk
US20050036223A1 (en) * 2002-11-27 2005-02-17 Wachenschwanz David E. Magnetic discrete track recording disk
JP4188125B2 (en) * 2003-03-05 2008-11-26 Tdk株式会社 Magnetic recording medium manufacturing method and manufacturing apparatus
US7300595B2 (en) * 2003-12-25 2007-11-27 Tdk Corporation Method for filling concave portions of concavo-convex pattern and method for manufacturing magnetic recording medium
JP4775806B2 (en) * 2004-02-10 2011-09-21 Tdk株式会社 Method for manufacturing magnetic recording medium
JP2005235356A (en) * 2004-02-23 2005-09-02 Tdk Corp Manufacturing method of magnetic recording medium
JP4008420B2 (en) * 2004-02-23 2007-11-14 Tdk株式会社 Method for manufacturing magnetic recording medium
JP4111276B2 (en) * 2004-02-26 2008-07-02 Tdk株式会社 Magnetic recording medium and magnetic recording / reproducing apparatus
JP4071787B2 (en) * 2004-12-13 2008-04-02 Tdk株式会社 Method for manufacturing magnetic recording medium
US7572499B2 (en) * 2005-01-26 2009-08-11 Hitachi Global Storage Technologies Netherlands B.V. Contact magnetic transfer template
JP2006216171A (en) * 2005-02-04 2006-08-17 Tdk Corp Magnetic recording medium, recording or reproducing apparatus, and stamper
JP4571084B2 (en) * 2006-03-01 2010-10-27 株式会社日立製作所 Patterned media and manufacturing method thereof
JP2007257801A (en) * 2006-03-24 2007-10-04 Toshiba Corp Manufacturing method of patterned medium
KR20080017804A (en) * 2006-08-22 2008-02-27 삼성전자주식회사 Method of manufacturing magnetic layer, patterned magnetic recording media comprising magnetic layer formed using the method, and method of manufacturing the same
JP4510796B2 (en) * 2006-11-22 2010-07-28 株式会社アルバック Method for manufacturing magnetic storage medium
JP2008146737A (en) * 2006-12-08 2008-06-26 Toshiba Corp Manufacturing method and equipment for discrete track medium
JP4296204B2 (en) * 2007-03-26 2009-07-15 株式会社東芝 Magnetic recording medium
JP4703608B2 (en) 2007-06-28 2011-06-15 株式会社東芝 Discrete track medium manufacturing method
JP4703609B2 (en) * 2007-06-29 2011-06-15 株式会社東芝 Method for manufacturing magnetic recording medium
JP2009064527A (en) * 2007-09-07 2009-03-26 Hitachi Ltd Perpendicular magnetic recording medium and magnetic recording device
US8878393B2 (en) 2008-05-13 2014-11-04 Qualcomm Incorporated Wireless power transfer for vehicles
US8629650B2 (en) 2008-05-13 2014-01-14 Qualcomm Incorporated Wireless power transfer using multiple transmit antennas
US20100034966A1 (en) * 2008-08-06 2010-02-11 Hitachi Global Storage Technologies Netherlands Bv System, method and apparatus for planarizing media topography via soaking in dilute non-functionalized polymer solution
US20100201312A1 (en) 2009-02-10 2010-08-12 Qualcomm Incorporated Wireless power transfer for portable enclosures
US8854224B2 (en) 2009-02-10 2014-10-07 Qualcomm Incorporated Conveying device information relating to wireless charging
US9312924B2 (en) 2009-02-10 2016-04-12 Qualcomm Incorporated Systems and methods relating to multi-dimensional wireless charging
US20100300884A1 (en) 2009-05-26 2010-12-02 Wd Media, Inc. Electro-deposited passivation coatings for patterned media
JP2011023082A (en) * 2009-07-17 2011-02-03 Showa Denko Kk Method for manufacturing magnetic recording medium and magnetic recording and reproducing device
JP2011090724A (en) 2009-10-20 2011-05-06 Showa Denko Kk Method of manufacturing magnetic recording medium and magnetic recording and reproducing apparatus
US8168311B2 (en) 2010-04-02 2012-05-01 Hitachi Global Storage Technologies Netherlands B.V. Magnetic recording disk having pre-patterned surface features and planarized surface
US8252437B2 (en) 2010-10-28 2012-08-28 Hitachi Global Storage Technologies Netherlands B.V. Planarized magnetic recording disk with pre-patterned surface features and secure adhesion of planarizing fill material and method for planarizing the disk
US20130001188A1 (en) * 2011-06-30 2013-01-03 Seagate Technology, Llc Method to protect magnetic bits during planarization
US8717710B2 (en) * 2012-05-08 2014-05-06 HGST Netherlands, B.V. Corrosion-resistant bit patterned media (BPM) and discrete track media (DTM) and methods of production thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697660B2 (en) * 1985-03-23 1994-11-30 日本電信電話株式会社 Thin film formation method
JPH0689895A (en) 1992-09-08 1994-03-29 Fuji Electric Co Ltd Flattening method
JP2711503B2 (en) 1993-07-07 1998-02-10 アネルバ株式会社 Thin film formation method by bias sputtering
JPH0997419A (en) 1995-07-24 1997-04-08 Toshiba Corp Magnetic disk, production of magnetic disk and magnetic recorder
JP3190610B2 (en) 1996-12-04 2001-07-23 ティアールダブリュー インコーポレイテッド Method for forming a substantially flat film
JPH1154457A (en) * 1997-08-04 1999-02-26 Canon Inc Formation of deposited film, formation of wiring, and manufacture of wiring board
JPH11316911A (en) * 1998-05-07 1999-11-16 Fuji Elelctrochem Co Ltd Manufacture of multi-track thin-film magnetic head
JP3719026B2 (en) * 1998-12-28 2005-11-24 富士通株式会社 Magnetic recording medium and manufacturing method thereof
JP2000311937A (en) 1999-04-26 2000-11-07 Nec Corp Manufacture of semiconductor device
JP4257808B2 (en) 1999-05-11 2009-04-22 独立行政法人科学技術振興機構 Magnetic material etching method and plasma etching apparatus
CN1176457C (en) * 1999-05-28 2004-11-17 富士通株式会社 Magnetic recording medium, method of manufacture thereof, and magnetic disk apparatus
US6391213B1 (en) * 1999-09-07 2002-05-21 Komag, Inc. Texturing of a landing zone on glass-based substrates by a chemical etching process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8049993B2 (en) 2007-05-14 2011-11-01 Kabushiki Kaisha Toshiba Magnetic recording medium and magnetic storage device
US8338007B2 (en) 2007-09-26 2012-12-25 Kabushiki Kaisha Toshiba Magnetic recording medium and magnetic recording apparatus
US8652338B2 (en) 2007-09-26 2014-02-18 Kabushiki Kaisha Toshiba Magnetic recording medium and method of manufacturing the same
US8980451B2 (en) 2010-09-17 2015-03-17 Kabushiki Kaisha Toshiba Magnetic recording medium, method of manufacturing the same, and magnetic recording apparatus

Also Published As

Publication number Publication date
US20050086795A1 (en) 2005-04-28
CN1612225A (en) 2005-05-04
CN1305035C (en) 2007-03-14
JP2005135455A (en) 2005-05-26
US7225528B2 (en) 2007-06-05

Similar Documents

Publication Publication Date Title
JP3686067B2 (en) Method for manufacturing magnetic recording medium
JP4071787B2 (en) Method for manufacturing magnetic recording medium
JP3881370B2 (en) Method for filling concave / convex pattern with concave / convex pattern and method for manufacturing magnetic recording medium
US7482070B2 (en) Magnetic recording medium
US7223439B2 (en) Method for manufacturing magnetic recording medium and magnetic recording medium
US20080078739A1 (en) Method for manufacturing magnetic recording medium
US7378029B2 (en) Method for manufacturing magnetic recording medium
US7494727B2 (en) Magnetic recording medium and magnetic recording and reproducing apparatus
US20060292400A1 (en) Magnetic recording medium, magnetic recording and reproducing apparatus, and method for manufacturing magnetic recording medium
JP2006092632A (en) Magnetic recording medium, its manufacturing method, and intermediate body for magnetic recording medium
US7273563B2 (en) Method for manufacturing a magnetic recording medium
JP2006012332A (en) Dry etching method, method of manufacturing magnetic recording medium, and magnetic recording medium
JP2008130181A (en) Method of manufacturing magnetic storage medium
JP2005050468A (en) Method and device to manufacture magnetic recording medium
JP3844755B2 (en) Method for manufacturing magnetic recording medium
US7682713B2 (en) Magnetic recording medium with recording layer having a predetermined concavo-convex pattern and magnetic recording and reproducing apparatus
JP3848672B2 (en) Magnetic recording medium and method for manufacturing the same
JP2005235356A (en) Manufacturing method of magnetic recording medium
JP2009104681A (en) Method for manufacturing magnetic recording medium
JP2006318648A (en) Method for filling recessed section in irregular pattern, and manufacturing method of magnetic recording medium
JP2005071543A (en) Manufacturing method of magnetic recording medium
JP4419622B2 (en) Method for manufacturing magnetic recording medium
JP2009230823A (en) Method for manufacturing magnetic recording medium
US20050089725A1 (en) Substrate for magnetic recording medium, magnetic recording medium, and method of manufacturing the same
JP2009176360A (en) Manufacturing method of magnetic recording medium

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees