JP3686031B2 - Method for manufacturing hollow member - Google Patents

Method for manufacturing hollow member Download PDF

Info

Publication number
JP3686031B2
JP3686031B2 JP2001381221A JP2001381221A JP3686031B2 JP 3686031 B2 JP3686031 B2 JP 3686031B2 JP 2001381221 A JP2001381221 A JP 2001381221A JP 2001381221 A JP2001381221 A JP 2001381221A JP 3686031 B2 JP3686031 B2 JP 3686031B2
Authority
JP
Japan
Prior art keywords
tubular material
longitudinal direction
hollow member
mold
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001381221A
Other languages
Japanese (ja)
Other versions
JP2003181556A (en
Inventor
裕司 金井
孝樹 水谷
学 丸山
一雄 磯貝
出 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001381221A priority Critical patent/JP3686031B2/en
Publication of JP2003181556A publication Critical patent/JP2003181556A/en
Application granted granted Critical
Publication of JP3686031B2 publication Critical patent/JP3686031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、長手方向と直交する断面板厚が、その長手方向で異なる中空部材の製造方法、また、長手方向と直交する断面形状が、その長手方向で異なる中空部材の製造方法に関する。
【0002】
【従来の技術】
一般に、産業機器、輸送機器などでは、その構成部品として金属製の中空部材が使用され、たとえば、自動車では、そのボデーフレーム、ドアフレームなどのフレーム部材として広く使用されている。
【0003】
ところで、近年、環境対策、リサイクル、省資源化、軽量化などの要請から、前記中空部材は、アルミ材などの軽量材料を使用する外、長手方向における板厚や断面形状を自由にコントロールでき、駄肉を削減した最適な板厚配分とした管状部材や長手方向に最適な断面形状をもつ中空部材の開発が望まれている。
【0004】
たとえば、特開平5−76950号公報、特許第2874467号公報に開示されるように、等厚の管状素材の所定部位を加熱した後、その管状素材を長手方向に圧縮して加熱部を増肉させることにより、その長手方向に断面形状の異なる中空部材を得るようにした中空部材の製造方法は既に知られている。
【0005】
【発明が解決しようとする課題】
ところが、かかる従来の方法では、管状素材をその長手方向から圧縮するので、
▲1▼管状素材に座屈、倒れなどが発生するおそれがある。
【0006】
▲2▼管状素材を、その全長にわたり一定の周長にするのが難しい。
【0007】
などの理由から高精度の製品が得られないという問題がある。
【0008】
本発明はかかる事情に鑑みてなされたものであり、長手方向における所望の板厚分布を有し、かつくびれ部分や膨出部分のない、一定周長の中空部材、または長手方向における断面形状が異なる中空部材を簡単に製造できるようにした、新規な中空部材の製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本請求項1記載の発明は、長手方向と直交する断面板厚が、その長手方向で異なる中空部材の製造方法であって、
管状素材を、その長手方向に温度差をつけて加熱する加熱工程と、前記工程で加熱された管状素材に内圧を加えて、その管状素材を軸方向に引張する引張工程とを含むことを特徴としており、かかる特徴によれば、長手方向における断面板厚を可変とした中空部材を製造することができ、特に、管状素材に内圧を加えて軸方向に引張することにより、部分的な「くびれ」が発生することがなく、全長にわたり周長の略等しい中空部材を、精度よく簡単に製造することができる。
【0010】
また、本請求項2記載の発明は、長手方向と直交する断面形状が、その長手方向で異なる中空部材の製造方法であって、
管状素材を、その長手方向に温度差をつけて加熱する加熱工程と、前記工程で加熱された管状素材に内圧を加えて、その管状素材を軸方向に引張する引張工程と、前記工程で長手方向と直交する方向の断面板厚が、その長手方向に変化した伸長管状素材を金型のキャビティ内にセットし、該伸長管状素材に内圧を加えて拡管成形する拡管成形工程とを含むことを特徴としており、かかる特徴によれば、長手方向における断面形状が異なる中空部材を製造することができ、特に、管状素材は、内圧を加えて軸方向に引張することにより、部分的な「くびれ」が発生することがなく、全長にわたり周長の略等しい中空部材を、精度よく簡単に製造することができる。
【0011】
【発明の実施の形態】
本発明の実施の形態を、添付図面に例示した本発明の実施例に基づいて以下に具体的に説明する。
【0012】
まず、図1〜5を参照して、本発明の第1実施例について説明する。図1は、本発明製造方法により製造された中空部材の斜視図、図2は、管状素材から中空部材を製造する製造工程を示す図、図3は、部分通電加熱、全体通電加熱、および内部加圧、引張成形工程の概略工程図、図4は、内部加圧、引張成形装置の断面図、図5は、拡管(バルジ)成形装置の断面図である。
【0013】
この第1実施例では、アルミ合金製の、長手方向に同じ断面板厚であり、かつ等径の管状素材Paから長手方向における断面板厚を可変に制御したのち、拡管(バルジ)成形により、略同じ断面板厚の、拡管成形部位を有する中空部材を製造する場合であり、この製造方法は、具体的には、
▲1▼管状素材Paの部分通電加熱工程
▲2▼管状素材Paの全体通電加熱工程
▲3▼管状素材Paに内圧を加えて軸方向に引張する内部加圧、引張成形工程
▲4▼引張成形後の伸長管状素材Pbの拡管(バルジ)成形工程
とよりなり、以下に、これらの工程について順に説明する。
【0014】
〔▲1▼管状素材Paの部分通電加熱工程〕(図3▲1▼参照)
長手方向に同じ断面板厚で、同じ断面形状の、アルミ合金製の管状素材Paは、加熱手段、たとえば通電加熱手段HEによりその長手方向に部分的に加熱される。すなわち、管状素材Paの両端部には、通電加熱手段HEの+極部30と−極部31とが導電接続され、また管状素材Paの中間部の外周面には、電流迂回手段BPが配設される。この電流迂回手段BPは、管状素材Paの長手方向の中間部分に、その長手方向に間隔をあけてアルミ合金よりも電気抵抗の小さい2つの低抵抗電導体(たとえば銅体)32,33を、そこをとり巻くように電導接続し、それらの低抵抗電導体32,33を導線34により相互に接続して構成される。
【0015】
前記管状素材Paには、その左右両開口端を封緘する封緘部材36,37が設けられ、また、その軸方向の両側には、後の内部加圧、引張成形工程において、管状素材Paに内圧を加えるための内部加圧手段PRと、それを軸方向に引張する引張手段PLがそれぞれ設けられる。前記内部加圧手段PRは、管状素材Pa内に加圧エアを圧送するための内部加圧源50と、その内部加圧源50と管状素材Pa内とを連通する加圧回路51とを備え、加圧エアは、加圧回路51より、一方の封緘部材35を通して管状素材Pa内に圧送される。また、前記引張手段PLは、管状素材Paの他端に設けられる封緘部材36に連結される引張アクチュエータ、すなわち引張シリンダ37より構成されており、この引張シリンダ37の作動によれば、管状素材Paはその長手方向に引張される。
【0016】
前記通電加熱手段HEを通電稼働すれば、電流は管状素材Paより、電流迂回手段BPを経て再び管状素材Paへと流れる。すなわち電流は、2つの低抵抗電導体32,33が、アルミ合金製の管状素材Paよりも電気抵抗値が小さいことにより図3▲1▼の矢印aに示すように、2つの低抵抗電導体32,33間に対応する管状素材Paの中空部位Nを迂回して該管状素材Paを流れる。したがって、管状素材Paは、その長手方向の両側部位S,Sが加熱されて、その中間部位Nに比べ相対的に発熱量が大きくなる。
【0017】
なお、この部分通電加熱工程では、前記内部加圧手段PRおよび引張手段PLは作動しない。
【0018】
〔▲2▼管状素材の全体通電加熱工程〕(図3▲2▼参照)
前工程にて、管状素材Paの部分加熱により、その両側部位S,Sが、その中間部位Nよりも高温に加熱されたところで、通電加熱手段HEの作動を継続しながら、電流迂回手段BPの、2つの低抵抗電導体32,33を管状素材Paから分離させる。これにより、通電加熱手段HEの+極部30と−極部31とは、管状素材Paを全長を通して通電状態となり、電流は図3▲2▼の矢印bに示すように、管状素材Paを流れ、該管状素材Paをその全長に亘って通電加熱する。したがって、前記2つの工程により、管状素材Paは、その左右両側部位S,Sが高温、たとえばその管状素材Paの再結晶温度(500°C)以上に加熱され、一方、管状素材Paの中間部位Nは、それらよりも低温に加熱される。
【0019】
なお、この全体通電加熱工程でも、前記内部加圧手段PRおよび管状素材Paの引張手段PLは作動しない。
【0020】
〔▲3▼管状素材Paの内部加圧、引張成形工程〕(図3▲3▼、図4参照)
前記工程で、管状素材Paは、その左右両側部位S,Sと、それらの中間部位Nが所定の温度差をもって加熱された状態となり、ここで前記内部加圧手段PRの作動により、加圧エアを管状素材Pa内に圧送して該管状素材Pa内に所定の内圧を加えつつ、引張手段PLの作動により、該管状素材Paに、その軸方向に所定の張力を与える。これにより、管状素材Paは、その内部に所定の内圧を加えられながら軸方向に伸長する。このとき、高温に加熱された左右両端部位S,Sは、変形抵抗が小さいので速く伸びて伸び量が大きくなるのに対し、それよりも低温に加熱された中間部位Nは、それよりも変形抵抗が大きいので遅く伸びてその伸び量が小さい。また、この引張工程中、管状素材Pa内には、内部加圧手段PRから加圧エアが供給されて所定の内圧が加えられているため、前記軸方向の引張にも拘らず、その軸方向に「くびれ」を発生することがなく、周長がその全長にわたり略一定に保持される。
【0021】
その結果、図2(C)、図4に示すように、軸方向に伸ばされた伸長管状素材Pbの断面板厚は、その中空部位Nが厚く、すなわち1.25tであり、その左右両側部位S,Sの断面板厚は、中空部位Nよりも薄く、すなわちtであり、断面板厚が可変制御され、しかも、「くびれ」のない、全長に亘り周長の略等しい伸長管状素材Pbが得られる。
【0022】
〔▲4▼引張成形後の伸長管状素材Pbの拡管成形(バルジ成形)工程〕(図5参照)
前工程で軸方向に伸長され、かつ周長の略等しい伸長管状素材Pbは、適宜の搬送手段により拡管成形(バルジ成形)装置へ搬送される。
【0023】
図4に示すように、拡管成形(バルジ成形)装置の金型Mは、基台1上に固設される固定金型、すなわち下金型2と、それらの固定金型に対する可動金型、すなわち上金型3とよりなり、該金型M上には昇降シリンダ4が連結され、該昇降シリンダ4の伸縮作動により、上金型3が昇降作動される。
【0024】
前記金型Mは、前記工程にて軸方向に伸長され、未だ加熱状態(約500°C)に保持されている、伸長管状素材Pbの再結晶温度以上での熱間拡管成形(熱間バルジ成形)をするための拡管成形型であり、この金型Mは図示しない加熱手段により、約500°Cに加熱されている。
【0025】
前記下金型2の上面には、伸長管状素材Pbの下側半部を成形するための下型成形面2mが形成され、また上金型3の下面には、伸長管状素材Pbの上側半部を成形するための上型成形面3mが形成され、金型Mを型締めしたとき、それらの成形面2m、3mによりキャビティ5が形成される。金型Mの左右両側には、伸長管状素材Pbの両端部を固定するためのホールド手段Hが設けられる。このホールド手段Hは、金型Mの左右に左右ホルダ6,7を備えており、これらのホルダ6,7は、金型Mに対して進退移動が可能であり、基台1上に設けたガイド8,9上をアクチュエータ10,11の作動により移動制御される。そして左右ホルダ6,7の前進により、伸長管状素材Pbの両端部は、左右ホルダ6,7の支持孔6a,7aに嵌合、固定される。
【0026】
また、金型Mの左右両側には、そこにセットされた伸長管状素材Pbを軸方向から押圧するための押圧手段PUが設けられる。この押圧手段PUは、左右押圧シリンダ12,13を有しており、これらの押圧シリンダ12,13のロッド部12r,13rの先部に固定される押圧部材16,17は、前記左右ホルダ6,7の支持孔6a,6b内に進退自在に嵌入されており、左右押圧シリンダ12,13の伸長作動によれば、押圧部材16,17の先端が、伸長管状素材Pbの両端にそれぞれ係合し、引き続く押圧部材16,17の前進作動により、伸長管状素材Pbをその両端から軸方向に押圧することができる。
【0027】
左右の押圧部材16,17と支持孔6a,7a間、およびこれらの支持孔6a,7aと伸長管状素材Pbの両端部外周面間には、それぞれシール手段SとしてのOリング19,20が設けられ、これらのOリング19,20は、押圧部材16,17が伸長管状素材Pbに係合したとき、該伸長管状素材Pbと、ホルダ6,7および押圧部材16,17間を流体密にシールすることができる。
【0028】
金型M1の左右両側には、伸長管状素材Pb内を加圧するための圧縮エア供給手段Aが設けられる。この圧縮エア供給手段Aは、圧縮エア供給源22から圧縮エア回路23および押圧部材16,17に穿設したエア導入路24を経て、伸長管状素材Pbの密閉の中空部に圧縮エアを圧送するように構成されている。
【0029】
前工程にて伸長成形され、未だ加熱状態(約500°C)にある伸長管状素材Pbは、同じく約500°Cに加熱された金型M内に投入してそこにセットしてから、型締めシリンダ、すなわち昇降シリンダ4の作動により、該金型Mの型締めを行う。伸長管状素材Pbの両端部を左右ホルダ6,7の前進により固定したのち、押圧シリンダ12,13を伸長作動すれば、そのロッド部12a,13aが管状素材Paを軸方向に押し込み、軸押しを行いながら、圧縮エア源22から圧縮エア供給路23、エア導入路24を経て管状素材Pa内に、加圧エアを圧送して、該伸長管状素材Pbに内圧を加えれば、伸長管状素材Pbは、キャビティ5の上、下成形面3m、2mになじむように熱間拡管成形(熱間バルジ成形)される。
【0030】
拡管成形後の、伸長管状素材Pbは、左右ホルダ6,7の後退後の、金型Mの型開きにより、そこから取り出されて、図2(c)に示す、拡管成形管(バルジ成形管)Pcが得られる。しかして、この拡管成形管Pcは、その中空部位Nの径大部と、そこから左右に続く、左右両側部S,Sの先細りの左右截頭円錐部と、それらから続く未拡管成形(未バルジ成形部)の左右端部E,Eとを有する形状に成形されるが、前記左右端部E,Eは、それらを切断して、最終の成形品すなわち中空部材Pを得る(図1参照)。
【0031】
ところで、前記▲1▼〜▲3▼の部分加熱、全体加熱および内部加圧、引張工程を経た伸長管状素材Pbは、図2(b)に示すように、左右両側端部位S,Sの断面板厚がtであり、またその中間部位Nの断面板厚がそれよりも厚い1.25tであって、しかもその外周面は、全長にわたり「くびれ」がなく、一定の周長に成形される。
【0032】
また、この伸長管状素材Pbは、前記▲4▼の拡管成形(バルジ成形)により、図2(c)に示すように、その中間部位Nが、左右両側端部位S,Sよりも径方向に伸びて径大に拡管成形されることにより、拡管成形後の拡管成形管Pcは、その全長に亘り略同じ板厚tとすることができ、その結果、左右端部E,Eを切断した拡管成形後の最終成形品、すなわち中空部材Pは、拡管成形により断面形状を変更したにも拘らず、その全長にわたり略等しい断面板厚tとする拡管成形管Pcを得ることができる。そして、この第1実施例によれば、従来の拡管成形(バルジ成形)方法の欠点であるバルジ成形部の断面薄肉化が解消される。
【0033】
つぎに、図6を参照して本発明の第2実施例について説明する。
【0034】
図6は、管状素材から中空部材を製造する製造工程を示す図であり、図6(a)に示すように加工前に管状素材Paは、長手方向の板厚が、全長にわたり一定の1.5tである。
【0035】
図6(b)に示すように、前記管状素材Paは、前記第1実施例と同じ、部分通電加熱工程および全体通電加熱工程により、長手方向の部分加熱温度をコントロールし、また前記内部加圧および引張成形工程により内圧および引張力をコントロールすることにより、全長にわたり「くびれ」がなく、一定周長であり、かつ中間部位Nの板厚が1.5tで、その左右両側部位S,Sの板厚がtである伸長管状素材Pbを得ることができる。
【0036】
図6(c)に示すように、前記伸長管状素材Pbは、前記第1実施例と同じ▲4▼拡管成形(バルジ成形)を経ることにより、その中間部位Nが径大に拡管成形され、その断面板厚1.25tであり、その左右両側部位S,Sの板厚tよりも厚い拡管成形管Pcを得ることができる。
【0037】
そして、拡管成形後の拡管成形管Pcは、前記第1実施例と同じく、その両端部E,Eを切断することにより、最終成形品であり中空部材P(図1参照)を得る。
【0038】
つぎに、図7を参照して本発明の第3実施例について説明する。
【0039】
図7は、管状素材の、内部加圧、引張成形装置の断面図である。
【0040】
この第3実施例は、前記第1実施例における▲1▼管状素材Paの部分加熱工程、▲2▼管状素材Paの全体通電加熱工程および▲4▼伸長管状素材Pbの拡管(バルジ)成形工程において前記第1実施例と同じであるが、▲3▼管状素材Paの内部加圧、引張成形工程の具体的な構成が前記第1実施例と相違している。すなわち、この第3実施例によれば、図7に示すように、加熱された管状素材Paに内圧をかけての軸方向への引張工程を金型M1内で行い、管状素材Paの引張成形時に、その外周面に部分的な「くびれ」の発生をより確実に防止でき、しかもその周長をその全長にわたり一定とすることができ、以下に、その具体的な構成について図7を参照して説明するに、前記加熱工程を経て長手方向に温度差をもって加熱(左右両側部位S,Sが再結晶温度(500°C以上)、中央部位Nがそれよりも低温)された管状素材Paは、内部加圧および引張用の金型M1にセットされる。この金型M1は、基台53上に固定される下金型55と、それに対して昇降可能な上金型54とよりなり、上金型54は昇降シリンダ56に連結されて昇降可能である。前記金型M1は、部分加熱状態にある管状素材Paを、その加熱状態を保持すべく適温に保温されている。管状素材Paの一方の開口端(図6左端部)には、そこを封緘する封緘部材57が設けられ、また、管状素材Paの他方の開口端(図6右端部)には、そこを封緘する他の封緘部材58が設けられ、この他の封緘部材58には、引張手段PLの引張シリンダ37が連結されている。また、前記金型M1の一方の端部には、管状素材Pa内を所定圧に加圧するための内部加圧手段PRが配設されており、この内部加圧手段PRは、内部加圧源50からの加圧エアを加圧回路51を経て管状素材Pa内に圧送するように構成される。
【0041】
金型M1内にセットされた管状素材Paは、内部加圧手段PRからの加圧エアの供給により、その内圧が所定圧に保持された状態で、引張手段PLの引張シリンダ37の作動により、管状素材Paにはその軸方向に所定の張力が与えられる。これにより管状素材Paは伸長するが、その際、前記第1実施例と同じく高温に加熱された左右両側部位S,Sは、速く延びて伸び量が大きくなる一方、低温に加熱された中間部位Nは伸び量が小さくなり、軸方向に断面板厚の違う伸長管状素材Pbを成形することができる。
【0042】
しかして、この第3実施例によれば、管状素材Paの引張成形時に、管状素材Paには、所定の内圧が加えられる上に、金型M1によりその外形が一定に規制されるので、その管状素材Paに「くびれ」が形成されることなく、全長にわたり一定周長の伸長管状素材Pbを精度よく成形することができる。
【0043】
そして、引張成形後の伸長管状素材Pbは、前記第1実施例の拡管(バルジ)成形工程を経て長手方向と直交する断面形状を可変とした拡管成形品を得ることができる。
【0044】
以上の実施例より明らかなように、本発明にかかる中空部材の製造方法によれば、長手方向における断面板厚を可変とした、あるいは長手方向における断面形状が異なる中空部材を製造することができ、特に、管状素材は、内圧を加えて軸方向に引張することにより、部分的な「くびれ」が発生することがなく、全長にわたり周長の略等しい伸長管状部材を、精度よく簡単に製造することができる。
【0045】
以上、本発明の実施例について説明したが、本発明はその実施例に限定されることなく、本発明の範囲内で種々の実施例が可能である。
【0046】
たとえば、前記実施例では、本発明の成形方法をアルミ合金製の中空部材に実施した場合について説明したが、これを他の金属製中空部材の製造にも実施できることは勿論であり、この場合に管状部材の材質などに応じて、管状素材および金型の加熱温度がコントロールされる。また、この実施例では、管状素材に内圧を加える流体にエアを用いているが、他の流体を用いてもよい。
【0047】
【発明の効果】
以上のように本請求項1記載の発明によれば、長手方向における断面板厚を可変とた中空部材を製造することができ、特に、管状素材は、内圧を加えて軸方向に引張することにより、部分的な「くびれ」が発生することがなく、全長にわたり周長の略等しい中空部材を、精度よく簡単に製造することができる。
【0048】
また、本請求項2記載の発明によれば、長手方向における断面形状が異なる中空部材を製造することができ、特に、管状素材に内圧を加えて軸方向に引張することにより、部分的な「くびれ」が発生することがなく、全長にわたり周長の略等しい中空部材を、精度よく簡単に製造することができる。
【図面の簡単な説明】
【図1】本発明製造方法により製造された中空部材の斜視図(第1実施例)
【図2】管状素材から中空部材を製造する製造工程を示す図(第1実施例)
【図3】部分通電加熱、全体通電加熱、および内部加圧、引張成形工程の概略工程図、(第1実施例)
【図4】内部加圧、引張成形装置の断面図(第1実施例)
【図5】拡管(バルジ)成形装置の断面図(第1実施例)
【図6】管状素材から中空部材を製造する製造工程を示す図(第2実施例)
【図7】内部加圧、引張成形装置の断面図(第3実施例)
【符号の説明】
Pa・・・・・・・・・管状素材
Pb・・・・・・・・・伸長管状素材
M・・・・・・・・・・金型
5・・・・・・・・・・キャビテイ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a hollow member having a cross-sectional plate thickness orthogonal to the longitudinal direction and a method for producing a hollow member having a cross-sectional shape orthogonal to the longitudinal direction.
[0002]
[Prior art]
Generally, metal hollow members are used as component parts in industrial equipment, transportation equipment, and the like. For example, in automobiles, they are widely used as frame members such as body frames and door frames.
[0003]
By the way, in recent years, due to demands for environmental measures, recycling, resource saving, weight reduction, etc., the hollow member can freely control the plate thickness and cross-sectional shape in the longitudinal direction outside using a lightweight material such as aluminum material, Development of a tubular member having an optimal plate thickness distribution with reduced waste and a hollow member having an optimal cross-sectional shape in the longitudinal direction is desired.
[0004]
For example, as disclosed in JP-A-5-76950 and Japanese Patent No. 2874467, after heating a predetermined portion of an equal thickness tubular material, the tubular material is compressed in the longitudinal direction to increase the thickness of the heating part. A hollow member manufacturing method is already known in which a hollow member having a different cross-sectional shape in the longitudinal direction is obtained.
[0005]
[Problems to be solved by the invention]
However, in such a conventional method, since the tubular material is compressed from the longitudinal direction,
(1) There is a risk of buckling or falling of the tubular material.
[0006]
{Circle around (2)} It is difficult to make the tubular material have a constant circumference over its entire length.
[0007]
For this reason, there is a problem that a high-precision product cannot be obtained.
[0008]
The present invention has been made in view of such circumstances, and has a desired plate thickness distribution in the longitudinal direction, a hollow member having a constant circumferential length without a constricted portion or a bulging portion, or a sectional shape in the longitudinal direction. It is an object of the present invention to provide a novel method for producing a hollow member, which can easily produce different hollow members.
[0009]
[Means for Solving the Problems]
The invention according to claim 1 is a method of manufacturing a hollow member having a cross-sectional plate thickness orthogonal to the longitudinal direction, the longitudinal direction being different,
A heating step of heating the tubular material with a temperature difference in the longitudinal direction thereof, and a tensioning step of applying an internal pressure to the tubular material heated in the step to pull the tubular material in the axial direction. According to such a feature, it is possible to manufacture a hollow member with a variable cross-sectional plate thickness in the longitudinal direction, and in particular, by applying an internal pressure to the tubular material and pulling it in the axial direction, ”Does not occur, and a hollow member having a substantially equal circumferential length can be easily and accurately manufactured.
[0010]
The invention according to claim 2 is a method for manufacturing a hollow member having a cross-sectional shape orthogonal to the longitudinal direction, which is different in the longitudinal direction.
A heating process for heating the tubular material with a temperature difference in its longitudinal direction, a tensioning process for applying an internal pressure to the tubular material heated in the process and pulling the tubular material in the axial direction, and a longitudinal process in the process. An expansion tube forming step in which an elongated tubular material whose cross-sectional plate thickness in a direction orthogonal to the direction is changed in the longitudinal direction thereof is set in the cavity of the mold, and an internal pressure is applied to the elongated tubular material to expand the tube. According to such a feature, hollow members having different cross-sectional shapes in the longitudinal direction can be manufactured. In particular, the tubular material is partially “necked” by pulling in the axial direction by applying an internal pressure. The hollow member having the substantially equal circumferential length over the entire length can be easily and accurately manufactured.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be specifically described below based on the embodiments of the present invention illustrated in the accompanying drawings.
[0012]
First, the first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a perspective view of a hollow member manufactured by the manufacturing method of the present invention, FIG. 2 is a diagram showing a manufacturing process for manufacturing a hollow member from a tubular material, and FIG. 3 is a partial current heating, a whole current heating, and an interior FIG. 4 is a cross-sectional view of the internal pressurization and tension forming apparatus, and FIG. 5 is a cross-sectional view of the tube expansion (bulge) forming apparatus.
[0013]
In the first embodiment, aluminum alloy, the same cross-sectional plate thickness in the longitudinal direction, and the cross-sectional plate thickness in the longitudinal direction is variably controlled from an equal-diameter tubular material Pa. This is a case of manufacturing a hollow member having a tube expansion part having substantially the same cross-sectional plate thickness.
(1) Partial energization heating process of tubular material Pa (2) Entire energization heating process of tubular material Pa (3) Internal pressurization and tension forming process in which internal pressure is applied to tubular material Pa to pull in axial direction (4) Tensile molding It consists of a tube expansion (bulge) forming step of the elongated tubular material Pb later, and these steps will be described in order below.
[0014]
[(1) Partial energization heating process for tubular material Pa] (See (1) in FIG. 3)
An aluminum alloy tubular material Pa having the same cross-sectional plate thickness and the same cross-sectional shape in the longitudinal direction is partially heated in the longitudinal direction by a heating means, for example, an electric heating means HE. That is, the positive electrode portion 30 and the negative electrode portion 31 of the energization heating means HE are conductively connected to both ends of the tubular material Pa, and the current bypass means BP is arranged on the outer peripheral surface of the intermediate portion of the tubular material Pa. Established. This current bypass means BP has two low resistance conductors (for example, copper bodies) 32 and 33 having an electrical resistance smaller than that of an aluminum alloy at an interval in the longitudinal direction at an intermediate portion in the longitudinal direction of the tubular material Pa. Conductive connection is made so as to surround it, and the low resistance conductors 32 and 33 are connected to each other by a conductive wire 34.
[0015]
The tubular material Pa is provided with sealing members 36 and 37 for sealing both the left and right open ends, and the internal pressure is applied to the tubular material Pa in the subsequent internal pressurization and tensile forming processes on both sides in the axial direction. Is provided with an internal pressurizing means PR for applying pressure and a pulling means PL for pulling it in the axial direction. The internal pressurization means PR includes an internal pressurization source 50 for pumping pressurized air into the tubular material Pa, and a pressurization circuit 51 that communicates the internal pressurization source 50 with the inside of the tubular material Pa. The pressurized air is pumped from the pressurizing circuit 51 through the one sealing member 35 into the tubular material Pa. The pulling means PL is composed of a pulling actuator connected to a sealing member 36 provided at the other end of the tubular material Pa, that is, a pulling cylinder 37. According to the operation of the pulling cylinder 37, the tubular material Pa is formed. Is pulled in its longitudinal direction.
[0016]
When the energization heating means HE is energized, the current flows from the tubular material Pa to the tubular material Pa again through the current bypass means BP. That is, the two low resistance conductors 32 and 33 have two electric resistance values smaller than that of the tubular material Pa made of aluminum alloy, so that the two low resistance conductors are shown in FIG. The tubular material Pa flows around the hollow portion N of the tubular material Pa corresponding to between 32 and 33. Accordingly, the tubular material Pa is heated at both side portions S, S in the longitudinal direction, and the calorific value is relatively larger than that at the intermediate portion N.
[0017]
In the partial energization heating process, the internal pressurizing means PR and the pulling means PL do not operate.
[0018]
[(2) Whole energization heating process of tubular material] (Refer to (2) in FIG. 3)
In the previous step, when the both side portions S, S are heated to a temperature higher than the intermediate portion N by partial heating of the tubular material Pa, the operation of the current heating means HE is continued while the current bypass means BP The two low resistance conductors 32 and 33 are separated from the tubular material Pa. As a result, the positive electrode 30 and the negative electrode 31 of the energization heating means HE are energized through the entire length of the tubular material Pa, and the current flows through the tubular material Pa as shown by the arrow b in FIG. The tubular material Pa is heated by energization over its entire length. Therefore, by the two steps, the left and right side portions S, S of the tubular material Pa are heated to a high temperature, for example, higher than the recrystallization temperature (500 ° C.) of the tubular material Pa, while the intermediate portion of the tubular material Pa. N is heated to a lower temperature than them.
[0019]
Note that the internal pressurizing means PR and the pulling means PL of the tubular material Pa do not operate even in this overall energization heating process.
[0020]
[(3) Internal pressurization and tensile forming process of tubular material Pa] (See FIG. 3 (3) and FIG. 4)
In the above process, the tubular material Pa is in a state in which the left and right side portions S, S and the intermediate portion N thereof are heated with a predetermined temperature difference. A predetermined tension is applied to the tubular material Pa in the axial direction by the operation of the pulling means PL while feeding the tubular material Pa into the tubular material Pa and applying a predetermined internal pressure to the tubular material Pa. Thereby, the tubular material Pa extends in the axial direction while a predetermined internal pressure is applied to the inside thereof. At this time, the left and right end portions S, S heated to a high temperature are stretched quickly and increase in elongation because the deformation resistance is small, whereas the intermediate portion N heated to a lower temperature is deformed more than that. Since resistance is large, it grows slowly and its elongation is small. Further, during this tensioning process, the tubular material Pa is supplied with pressurized air from the internal pressurizing means PR and is applied with a predetermined internal pressure. No “necking” occurs, and the circumference is kept substantially constant over its entire length.
[0021]
As a result, as shown in FIGS. 2 (C) and 4, the cross-sectional plate thickness of the elongated tubular material Pb stretched in the axial direction is that the hollow portion N is thick, that is, 1.25 t, and its left and right side portions The cross-sectional plate thicknesses of S and S are thinner than the hollow portion N, that is, t, the cross-sectional plate thickness is variably controlled, and there is no “necking”, and an elongated tubular material Pb having a substantially equal circumferential length is provided. can get.
[0022]
[(4) Tube expansion forming (bulge forming) process of elongated tubular material Pb after tensile forming] (see FIG. 5)
The elongated tubular material Pb which is elongated in the axial direction in the previous step and has substantially the same circumferential length is conveyed to a tube expansion molding (bulge molding) device by an appropriate conveying means.
[0023]
As shown in FIG. 4, the mold M of the tube expansion molding (bulge molding) apparatus includes a fixed mold fixed on the base 1, that is, a lower mold 2, and a movable mold for these fixed molds, That is, it is composed of the upper mold 3, and an elevating cylinder 4 is connected on the mold M, and the upper mold 3 is moved up and down by the expansion and contraction operation of the lifting cylinder 4.
[0024]
The mold M is stretched in the axial direction in the above process and is still held in a heated state (about 500 ° C.), and is subjected to hot tube expansion (hot bulge) above the recrystallization temperature of the elongated tubular material Pb. The mold M is heated to about 500 ° C. by heating means (not shown).
[0025]
A lower mold forming surface 2m for forming the lower half of the elongated tubular material Pb is formed on the upper surface of the lower mold 2, and an upper half of the elongated tubular material Pb is formed on the lower surface of the upper mold 3. An upper mold molding surface 3m for molding the portion is formed, and when the mold M is clamped, the cavity 5 is formed by the molding surfaces 2m and 3m. Hold means H for fixing both end portions of the elongated tubular material Pb are provided on the left and right sides of the mold M. The holding means H includes left and right holders 6 and 7 on the left and right sides of the mold M, and these holders 6 and 7 can move forward and backward with respect to the mold M and are provided on the base 1. Movement on the guides 8 and 9 is controlled by the operation of the actuators 10 and 11. As the left and right holders 6 and 7 are advanced, both end portions of the elongated tubular material Pb are fitted and fixed in the support holes 6 a and 7 a of the left and right holders 6 and 7.
[0026]
Further, on both the left and right sides of the mold M, pressing means PU for pressing the elongated tubular material Pb set therein from the axial direction is provided. The pressing means PU has left and right pressing cylinders 12 and 13, and the pressing members 16 and 17 fixed to the tip portions of the rod portions 12 r and 13 r of these pressing cylinders 12 and 13 are the left and right holders 6 and 6. 7 is inserted into the support holes 6a and 6b so as to be able to advance and retreat. According to the extending operation of the left and right pressing cylinders 12 and 13, the distal ends of the pressing members 16 and 17 are respectively engaged with both ends of the elongated tubular material Pb. The elongate tubular material Pb can be pressed in the axial direction from both ends by the forward operation of the pressing members 16 and 17 that follow.
[0027]
O-rings 19 and 20 as sealing means S are provided between the left and right pressing members 16 and 17 and the support holes 6a and 7a, and between the support holes 6a and 7a and the outer peripheral surfaces of both ends of the elongated tubular material Pb, respectively. The O-rings 19 and 20 are fluid-tightly sealed between the elongated tubular material Pb and the holders 6 and 7 and the pressing members 16 and 17 when the pressing members 16 and 17 are engaged with the elongated tubular material Pb. can do.
[0028]
Compressed air supply means A for pressurizing the inside of the elongated tubular material Pb is provided on both the left and right sides of the mold M1. This compressed air supply means A pumps compressed air from the compressed air supply source 22 to the sealed hollow portion of the elongated tubular material Pb through the compressed air circuit 23 and the air introduction path 24 formed in the pressing members 16 and 17. It is configured as follows.
[0029]
The elongated tubular material Pb that has been stretch-formed in the previous step and is still heated (about 500 ° C.) is put into a mold M that is also heated to about 500 ° C. The mold M is clamped by the operation of the clamping cylinder, that is, the elevating cylinder 4. After fixing the both ends of the elongated tubular material Pb by the advancement of the left and right holders 6 and 7, if the pressing cylinders 12 and 13 are extended, the rod portions 12a and 13a push the tubular material Pa in the axial direction and push the shaft. While performing, if compressed air is pumped into the tubular material Pa through the compressed air supply path 23 and the air introduction path 24 from the compressed air source 22 and the internal pressure is applied to the expanded tubular material Pb, the expanded tubular material Pb is Then, hot pipe expansion molding (hot bulge molding) is performed so as to conform to the upper and lower molding surfaces 3 m and 2 m of the cavity 5.
[0030]
The expanded tubular material Pb after the pipe expansion molding is taken out from the mold M by opening the mold M after the left and right holders 6 and 7 are retracted, and the pipe expansion molding pipe (bulge molding pipe) shown in FIG. ) Pc is obtained. Thus, the tube-forming tube Pc has a large diameter portion of the hollow portion N, left and right side portions S, S that are tapered from left to right, and tapered left and right frustoconical portions. The left and right end portions E and E are cut to obtain a final molded product, that is, a hollow member P (see FIG. 1). ).
[0031]
By the way, as shown in FIG. 2 (b), the elongated tubular material Pb that has undergone the partial heating, total heating, internal pressurization, and tensioning steps (1) to (3) is cut off at the left and right end portions S and S. The face plate thickness is t, and the cross-sectional plate thickness of the intermediate portion N is 1.25 t larger than that, and the outer peripheral surface has no “necking” over the entire length, and is formed with a constant peripheral length. .
[0032]
In addition, as shown in FIG. 2 (c), the elongated tubular material Pb is formed such that its intermediate portion N is more radially positioned than the left and right end portions S and S, as shown in FIG. 2 (c). The expanded pipe Pc after the expanded molding can be made to have substantially the same thickness t over the entire length by being expanded and expanded to a large diameter, and as a result, the expanded pipe with the left and right end portions E and E cut off. Although the final molded product after molding, that is, the hollow member P has been changed in cross-sectional shape by pipe expansion molding, a pipe expansion molded pipe Pc having a substantially equal cross-sectional plate thickness t can be obtained over the entire length. And according to this 1st Example, the cross-sectional thinning of the bulge forming part which is a fault of the conventional pipe expansion forming (bulge forming) method is eliminated.
[0033]
Next, a second embodiment of the present invention will be described with reference to FIG.
[0034]
FIG. 6 is a diagram showing a manufacturing process for manufacturing a hollow member from a tubular material. As shown in FIG. 6A, the tubular material Pa has a thickness of 1. 5t.
[0035]
As shown in FIG. 6 (b), the tubular material Pa controls the partial heating temperature in the longitudinal direction by the partial energization heating process and the overall energization heating process as in the first embodiment, and the internal pressurization. In addition, by controlling the internal pressure and the tensile force by the tension forming process, there is no “necking” over the entire length, the circumference is constant, and the plate thickness of the intermediate portion N is 1.5 t. An elongated tubular material Pb having a plate thickness t can be obtained.
[0036]
As shown in FIG. 6 (c), the elongated tubular material Pb is subjected to the same (4) tube expansion molding (bulge molding) as in the first embodiment, so that the intermediate portion N is expanded into a large diameter, The expanded pipe Pc having a cross-sectional plate thickness of 1.25 t and thicker than the plate thickness t of the left and right side portions S, S can be obtained.
[0037]
And the pipe expansion forming pipe Pc after pipe expansion forming is the final molded product and obtains the hollow member P (refer FIG. 1) by cut | disconnecting the both ends E and E similarly to the said 1st Example.
[0038]
Next, a third embodiment of the present invention will be described with reference to FIG.
[0039]
FIG. 7 is a cross-sectional view of an internal pressurizing and tensile forming apparatus for a tubular material.
[0040]
In the third embodiment, (1) the partial heating process of the tubular material Pa, (2) the entire energization heating process of the tubular material Pa, and (4) the expansion (bulge) forming process of the elongated tubular material Pb in the first embodiment. However, (3) the specific structure of the internal pressurizing and tensile forming steps of the tubular material Pa is different from that of the first embodiment. That is, according to the third embodiment, as shown in FIG. 7, the tensile process in the axial direction by applying an internal pressure to the heated tubular material Pa is performed in the mold M1, and the tubular material Pa is formed by tension. Occasionally, the occurrence of partial “necking” on the outer peripheral surface can be more reliably prevented, and the peripheral length can be made constant over the entire length. The specific configuration will be described below with reference to FIG. The tubular material Pa that has been heated through the heating step with a temperature difference in the longitudinal direction (the left and right side portions S, S are at the recrystallization temperature (500 ° C. or higher), and the central portion N is at a lower temperature) , And set in a mold M1 for internal pressure and tension. The mold M1 includes a lower mold 55 fixed on a base 53 and an upper mold 54 that can be raised and lowered relative to the lower mold 55. The upper mold 54 is connected to a lift cylinder 56 and can be lifted and lowered. . In the mold M1, the tubular material Pa in a partially heated state is kept at an appropriate temperature so as to maintain the heated state. A sealing member 57 is provided at one opening end (left end portion in FIG. 6) of the tubular material Pa, and the other opening end (right end portion in FIG. 6) of the tubular material Pa is sealed there. The other sealing member 58 is provided, and the other sealing member 58 is connected to the tension cylinder 37 of the tension means PL. Further, an internal pressurizing means PR for pressurizing the inside of the tubular material Pa to a predetermined pressure is disposed at one end of the mold M1, and this internal pressurizing means PR is an internal pressurizing source. The pressurized air from 50 is configured to be pumped into the tubular material Pa through the pressurizing circuit 51.
[0041]
The tubular material Pa set in the mold M1 is operated by the operation of the tension cylinder 37 of the tension means PL while the internal pressure is maintained at a predetermined pressure by supplying pressurized air from the internal pressure means PR. The tubular material Pa is given a predetermined tension in its axial direction. As a result, the tubular material Pa elongates. At this time, the left and right side portions S, S heated to a high temperature as in the first embodiment extend quickly and increase in elongation, while the intermediate portion heated to a low temperature. N has a small elongation and can form elongated tubular materials Pb having different cross-sectional plate thicknesses in the axial direction.
[0042]
Thus, according to the third embodiment, when the tubular material Pa is stretch-formed, a predetermined internal pressure is applied to the tubular material Pa, and the outer shape thereof is regulated by the mold M1. The elongated tubular material Pb having a constant circumference over the entire length can be accurately formed without forming a “neck” in the tubular material Pa.
[0043]
The expanded tubular material Pb after the tensile molding can obtain a tube-expanded molded product having a variable cross-sectional shape perpendicular to the longitudinal direction through the tube expansion (bulge) molding process of the first embodiment.
[0044]
As is clear from the above examples, according to the method for manufacturing a hollow member according to the present invention, it is possible to manufacture a hollow member having a variable cross-sectional plate thickness in the longitudinal direction or having a different cross-sectional shape in the longitudinal direction. In particular, the tubular material can be easily and accurately produced by extending the axial direction by applying an internal pressure, without causing any partial “necking”, and with a substantially equal circumferential length over the entire length. be able to.
[0045]
As mentioned above, although the Example of this invention was described, this invention is not limited to the Example, A various Example is possible within the scope of the present invention.
[0046]
For example, in the above-described embodiment, the case where the forming method of the present invention is applied to a hollow member made of an aluminum alloy has been described. However, this can also be applied to the manufacture of other metal hollow members. The heating temperature of the tubular material and the mold is controlled according to the material of the tubular member. In this embodiment, air is used as the fluid that applies the internal pressure to the tubular material, but other fluids may be used.
[0047]
【The invention's effect】
As described above, according to the first aspect of the present invention, a hollow member having a variable cross-sectional thickness in the longitudinal direction can be manufactured. In particular, the tubular material is pulled in the axial direction by applying an internal pressure. Accordingly, a hollow member having substantially the same peripheral length over the entire length can be easily and accurately manufactured without causing partial “necking”.
[0048]
In addition, according to the invention described in claim 2, it is possible to manufacture hollow members having different cross-sectional shapes in the longitudinal direction, and in particular, by applying an internal pressure to the tubular material and pulling it in the axial direction, a partial “ It is possible to easily and accurately manufacture a hollow member having substantially the same peripheral length over the entire length without causing “necking”.
[Brief description of the drawings]
FIG. 1 is a perspective view of a hollow member manufactured by a manufacturing method of the present invention (first embodiment).
FIG. 2 shows a manufacturing process for manufacturing a hollow member from a tubular material (first embodiment).
FIG. 3 is a schematic process diagram of partial energization heating, overall energization heating, internal pressurization, and tension forming process, (first embodiment)
FIG. 4 is a cross-sectional view of an internal pressure and tension forming apparatus (first embodiment).
FIG. 5 is a sectional view of a bulge forming apparatus (first embodiment).
FIG. 6 shows a manufacturing process for manufacturing a hollow member from a tubular material (second embodiment).
FIG. 7 is a cross-sectional view of an internal pressure and tension forming apparatus (third embodiment).
[Explanation of symbols]
Pa ······· Tubular material Pb ·······································································

Claims (2)

長手方向と直交する断面板厚が、その長手方向で異なる中空部材の製造方法であって、
管状素材(Pa)を、その長手方向に温度差をつけて加熱する加熱工程と、
前記工程で加熱された管状素材(Pa)に内圧を加えて、その管状素材(Pa)を軸方向に引張する引張工程と、
を含むことを特徴とする、中空部材の製造方法。
The cross-sectional plate thickness orthogonal to the longitudinal direction is a method for producing a hollow member different in the longitudinal direction,
A heating step of heating the tubular material (Pa) with a temperature difference in its longitudinal direction;
A tensile step of applying an internal pressure to the tubular material (Pa) heated in the step and pulling the tubular material (Pa) in the axial direction;
A method for producing a hollow member, comprising:
長手方向と直交する断面形状が、その長手方向で異なる中空部材の製造方法であって、
管状素材(Pa)を、その長手方向に温度差をつけて加熱する加熱工程と、
前記工程で加熱された管状素材(Pa)に内圧を加えて、その管状素材(Pa)を軸方向に引張する引張工程と、
前記工程で長手方向と直交する方向の断面板厚が、その長手方向に変化した伸長管状素材(Pb)を金型(M)のキャビティ(5)内にセットし、該伸長管状素材(Pb)に内圧を加えて拡管成形する拡管成形工程と、
を含むことを特徴とする、中空部材の製造方法。
The cross-sectional shape orthogonal to the longitudinal direction is a method for producing a hollow member different in the longitudinal direction,
A heating step of heating the tubular material (Pa) with a temperature difference in its longitudinal direction;
A tensile step of applying an internal pressure to the tubular material (Pa) heated in the step and pulling the tubular material (Pa) in the axial direction;
The elongated tubular material (Pb) whose cross-sectional plate thickness in the direction orthogonal to the longitudinal direction is changed in the longitudinal direction in the step is set in the cavity (5) of the mold (M), and the elongated tubular material (Pb) Tube expansion molding process for expanding the tube by applying internal pressure to
A method for producing a hollow member, comprising:
JP2001381221A 2001-12-14 2001-12-14 Method for manufacturing hollow member Expired - Fee Related JP3686031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001381221A JP3686031B2 (en) 2001-12-14 2001-12-14 Method for manufacturing hollow member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001381221A JP3686031B2 (en) 2001-12-14 2001-12-14 Method for manufacturing hollow member

Publications (2)

Publication Number Publication Date
JP2003181556A JP2003181556A (en) 2003-07-02
JP3686031B2 true JP3686031B2 (en) 2005-08-24

Family

ID=27591974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001381221A Expired - Fee Related JP3686031B2 (en) 2001-12-14 2001-12-14 Method for manufacturing hollow member

Country Status (1)

Country Link
JP (1) JP3686031B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013223272A1 (en) * 2013-11-14 2015-05-21 Bombardier Transportation Gmbh Method for producing a tubular equipment element for a rail vehicle
JP2020093261A (en) * 2017-03-30 2020-06-18 住友重機械工業株式会社 Electric heating device
CN109482703B (en) * 2018-12-28 2019-12-24 哈尔滨工业大学 Differential temperature and air pressure forming method and device for large-section-difference titanium alloy pipe fitting

Also Published As

Publication number Publication date
JP2003181556A (en) 2003-07-02

Similar Documents

Publication Publication Date Title
JP4944322B2 (en) Method for manufacturing hollow member
US5826320A (en) Electromagnetically forming a tubular workpiece
WO2003035299A1 (en) Method of forming tubular member
CN110465575B (en) Titanium alloy thin-wall part heat treatment and air pressure forming integrated method
JP2017061135A (en) Reducing wrinkling of contoured hat stiffeners formed from single composite charge
CN109175061B (en) Electric auxiliary heating forming device and method for dissimilar material pipe fitting with complex section
EP2815870A1 (en) Device for welding thermoplastic resin material, welding method, and pressing unit for welding device
CN101987337A (en) Hot bulge forming apparatus, a hot bulge forming method and a product formed through hot bulge forming
JP3686031B2 (en) Method for manufacturing hollow member
CN110586684B (en) Large-size thin-wall annular shell inflation hot-press bending forming device and method
TWI272143B (en) Forging method, forged article and forging apparatus
JP2775490B2 (en) Bellows tube manufacturing equipment
CN117225974A (en) Special-shaped thin-wall pipe fitting thermoforming device and method with additional air pressure assistance
JP3719928B2 (en) Bulge processing method
JP4428840B2 (en) Hot bulge forming equipment
CN114714609A (en) Flaring tool and flaring method for PVC-O pipe
CN112893665A (en) Electric pulse assisted pipe necking thickening forming device and method
JP2008049589A (en) Method and apparatus for jointing strip
WO2012039399A1 (en) Press-forming method and press-forming device
JPH10328749A (en) High ductile material forming device and split die restricting tool therefor
JP2010221543A (en) Method for manufacturing bent shaped hose
CN214026647U (en) Tube blank vulcanizing mould and equipment for fabric reinforced rubber tube
KR101276106B1 (en) Method and apparatus for preparing a bellows using oil
JP5306936B2 (en) Tire conveying member holding and conveying pressure bonding apparatus and green tire manufacturing method
JP2024512174A (en) Device for thickening a pipe from the outside in its middle part

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050601

R150 Certificate of patent or registration of utility model

Ref document number: 3686031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees