JP3684933B2 - Plastic power supply parts - Google Patents

Plastic power supply parts Download PDF

Info

Publication number
JP3684933B2
JP3684933B2 JP23683199A JP23683199A JP3684933B2 JP 3684933 B2 JP3684933 B2 JP 3684933B2 JP 23683199 A JP23683199 A JP 23683199A JP 23683199 A JP23683199 A JP 23683199A JP 3684933 B2 JP3684933 B2 JP 3684933B2
Authority
JP
Japan
Prior art keywords
resin
power supply
component
substrate
energization circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23683199A
Other languages
Japanese (ja)
Other versions
JP2001068235A (en
Inventor
哲 山内
渉 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP23683199A priority Critical patent/JP3684933B2/en
Publication of JP2001068235A publication Critical patent/JP2001068235A/en
Application granted granted Critical
Publication of JP3684933B2 publication Critical patent/JP3684933B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Connecting Device With Holders (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、電気絶縁性を有する樹脂材料で形成された成形基板を有し、この成形基板に通電回路が形成された樹脂製給電部品に関するものである。
【0002】
【従来の技術】
従来の給電部品は、電気絶縁性を有する合成樹脂成形材料を任意の形状に賦形して基板とした後、銅(Cu)などに代表される金属性のリードフレームやリード線を機械設備や人手により前記基板の所定位置に挿入、固定したり、めっきなどの湿式方式で通電回路を形成していた。図5に給電部品の一例を示す。図5(a)は給電部品の概略図、(b)はその内部構造を示す断面図であり、50は通電回路、51は位置決め用ピン、52は位置決め用リブ、53は蛍光管把持部である。
【0003】
【発明が解決しようとする課題】
しかしながら、上記手法により基板上に通電回路を形成する方法は、多数の製造工程が必要であるため、給電部品を製造するコストが大きくなるといった問題点があった。
【0004】
また、近年、電気・電子部品の小型化と並行して給電部品も小型化している。そのため、1つの基板上に通電回路として複数のリードフレームやリード線を配置する場合、通電回路同士が接触して短絡することがあり得る。これ防止するため、リードフレームやリード線をそれぞれ複雑な形状に折曲げ加工し配置したり、図6に示すように基板60の通電回路50間にリブ52、ボス(図示せず)などを設ける必要があった。
【0005】
上記のような手法を用いることで基板に配置された複数のリードフレームやリード線が接触して発生する短絡事故は防止できるが、リードフレームやリード線の複雑な曲げ加工は給電部品の製造コストをさらにアップさせる。また、成形基板にリブ、ボスなどを形成する場合、金型加工時間の増加によって金型製造コストがアップするとともに、成形基板にひけ、そり等の外観不良が発生するといった問題点もあった。
【0006】
さらに、給電部品の多くは低コスト化への競争が激しく、成形基板を構成する合成樹脂成形材料として、材料コストが比較的安価であるポリプロピレン(PP)樹脂が使用されることが多い。一方通電回路の多くは、加工性の高さと安価であることからCu(銅)製のリードフレームやリード線が使用さることが多い。しかしながら、PP樹脂は銅が長時間接触することにより酸化されて変色やひび割れ、機械的強度低下や電気絶縁性の低下などの劣化現象を防ぐため、成形基板を構成するPP樹脂に銅害防止剤と呼ばれる芳香族アミン系のナフチルアミンなどを予め添加して基板を形成する必要がある。
【0007】
しかし、このような銅害防止剤を添加することにより基板を構成するPP樹脂の材料費はアップし、給電部品の製造コストがさらに大きくなるといった問題点があった。
【0008】
したがって、この発明の目的は、リードフレームやリード線を使用することなく通電回路が形成され、給電部品の製造工程や部品点数、製造コストが削減できるとともに、通電回路の形状自由度が高い樹脂製給電部品を提供することである。
【0009】
【課題を解決するための手段】
上記課題を解決するためにこの発明の請求項1記載の樹脂製給電部品は、電気的絶縁性を有する合成樹脂からなる成形基板上に通電回路が形成され、この通電回路が熱可塑性樹脂、金属粉末または金属繊維、低融点金属により構成された電気伝導性を有する樹脂組成物によって形成され、前記通電回路の外部部品と接続する箇所に、弾性変形して前記外部部品と接続する接続部品を設け、この接続部品の位置決めを行う部品を前記通電回路と同じ樹脂組成物で通電回路と一体に形成したことを特徴とする。
【0010】
このように、電気絶縁性を有する合成樹脂からなる成形基板上に通電回路が形成され、この通電回路が熱可塑性樹脂、金属粉末または金属繊維、低融点金属により構成された電気伝導性を有する樹脂組成物によって形成されているので、リブ、ボス等、他の構造物によって通電回路を位置決めする必要がなくなる。このため、成形基板にリブ、ボス等を形成する場合に生じていた金型製造コストの上昇を抑え、ひけ、そり等の外観不良の問題を解消できる。また、リードフレーム、リード線などを使わず、樹脂組成物で通電回路が形成できるため、部品点数を削減できるとともに、通電回路形状の自由度がアップする。
また、通電回路の外部部品と接続する箇所に、弾性変形して外部部品と接続する接続部品を設け、この接続部品の位置決めを行う部品を通電回路と同じ樹脂組成物で通電回路と一体に形成したので、外部部品を給電部品に繰り返し接続、取り外ししても破損することなく、長時間使用することができる。また、配線部品の位置決め部材が通電回路と同じ電気の良導体である樹脂組成物で形成されているため、通電回路と配線部品を確実に接触させることができる。
【0012】
請求項記載の樹脂製給電部品は、請求項1において、成形基板が銅害防止剤を含まないポリプロピレン樹脂で構成された。リードフレームやリード線などの銅製品を使用しないので、上記のように成形基板が銅害防止剤を含まないポリプロピレン樹脂で構成できる。このため、基板が銅害により劣化することなく、長期信頼性に優れた給電部品の製造が可能となる。また、基板を構成するポリプロピレン樹脂に添加する銅害防止剤が必要なくなり、材料費が削減できる。また、ポリプロピレン樹脂は生産性に優れ、かつ材料コストが比較的安いという利点がある。
【0013】
請求項記載の樹脂製給電部品は、請求項1において、熱可塑性樹脂は、成形基板の材質と同じ材質にした。このように、熱可塑性樹脂は、成形基板の材質と同じ材質にしたので、基板と通電回路のより高い密着性が得られる。
【0014】
請求項記載の樹脂製給電部品は、請求項において、熱可塑性樹脂がポリプロピレン樹脂である。このように、熱可塑性樹脂が請求項の成形基板と同じポリプロピレン樹脂であるので、同じ材質によって基板と通電回路の高い密着性が得られる。
【0015】
【発明の実施の形態】
この発明の実施の形態の樹脂製給電部品を図1ないし図4に基づいて説明する。図1はこの発明の実施の形態の樹脂製給電部品の平面部分概略図、図2(a),(b)はそれぞれ配線部品の斜視図、図3はこの発明の実施の形態における通電回路の断面図、図4はこの発明の実施の形態における通電回路の別の例の断面図である。
【0016】
図1に示すように、この樹脂製給電部品10は、電気絶縁性を有する合成樹脂からなる成形基板1上に通電回路2が形成され、この通電回路2が熱可塑性樹脂、金属粉末または金属繊維、低融点金属により構成された電気伝導性を有する樹脂組成物によって形成されている。図1において、3a,3bは配線部品、4aは配線部品位置決め部材(ボス)、4bは配線部品位置決め部材(リブ)、5は外部部品、6は外部部品のリードである。
【0017】
この実施の形態において開示する給電部品10の成形基板1の基板材質は、所定の形状に成形が可能なポリプロピレン(PP)樹脂、ポリエチレン(PE)樹脂、ポリ塩化ビニル(PVC)樹脂、ABS樹脂、ポリアミド(PA)樹脂、ポリカーボネート(PC)樹脂等の熱可塑性樹脂成形材料、もしくはフェノール樹脂、エポキシ樹脂等の熱硬化性樹脂成形材料であれば特に限定しない。しかしながら、中でも生産性に優れ、かつ材料コストが比較的安いPP樹脂が好ましい。また、成形基板1は銅害防止剤を含まない。
【0018】
また、給電部品10の通電回路2を形成する材質は、少なくとも熱可塑性樹脂、金属粉末または金属繊維、鉛フリーハンダ等の低融点金属から構成され、これらの材料を予め溶融混練したものから構成されている。この材料は体積固有抵抗値が1.0×10-5Ω・cmとほぼ金属並みの体積抵抗値を有し、電気伝導性に優れている。なお、この材料が有する体積固有抵抗値は導電物質(金属粉末または金属繊維、鉛フリーハンダ)の配合割合により可変であり、前述した値に限られるものではない。ここで述べる熱可塑性樹脂は、ポリプロピレン(PP)樹脂、ポリエチレン(PE)樹脂、塩化ビニル(PVC)樹脂、ABS樹脂、ポリアミド(PA)樹脂、ポリカーボネート(PC)樹脂等、特に限定しないが、前記した成形基板1の材質と同じ材質にすることによって、基板1と通電回路2のより高い密着性が得られるため、これを意図的に選択することが望ましい。金属粉末または金属繊維の材質は銅(Cu)、ニッケル(Ni)、鉄(Fe)、アルミニウム(Al)など、及びそれらの合金があげられるが特に限定されるものではない。また、低融点金属としてはスズ(Sn)、ビスマス(Bi)、亜鉛(Zn)等、および鉛(Pb)を含まないそれらの合金があげられる。
【0019】
前記材料を用いて、通電回路2は基板1上に形成される。例えば、給電部品10の基板1に通電回路2を形成するため、図3に示すように、予め基板肉厚方向に凹形の通電回路溝7を設け、この溝7に通電回路2を形成する。この場合、通電回路溝7の断面形状は角状、半円状など特に限定されものではなく、溝7の肉厚、幅等の寸法も限定されるものではない。また、通電回路2の長さ、形状、本数も特に限定しない。このように凹形の通電回路溝7に通電回路2を形成する場合、予め通電回路2が形成される位置が基板1上に凹状で形成されているため、他の構造物によって通電回路を位置決めする必要がなくなるといった利点がある。また、図4に示すように、溝のない基板平面1上に通電回路2を形成してもよい。
【0020】
また、給電部品10の通電回路2は、電気・電子部品等、外部部品5のリードフレーム、リード線等との接続が必要になる場合がある。しかしながら、電気伝導性を有する材料で形成された通電回路2は、金属物質を多量に含んでいるため剛性は高いが非常に脆く、ばね性を有しない。そのため給電部品10と外部部品5とを接続し、かつ給電部品10を外部部品5から繰り返し取り外して使用する場合、給電部品10の通電回路2が部分的に破損して、使用不可能となる。
【0021】
そのため、図1に示すように、給電部品10の通電回路2のうち外部部品5と繰り返して接続、取り外し等が行われる部分を銅(Cu)、ニッケル(Ni)などの電気伝導性を有する金属材料(合金含む)を用い、かつ弾性変形して外部部品5のリード6などと接続する配線部品(接続部品)3a,3bとして別途に設ける。この場合、図2(a),(b)に示すように、配線部品3a,3bの形状はL形と溝形であるが、これ以外にどんな形状でもよく、特に限定しない。また、図1に示すように、通電回路2には配線部品3a,3bの位置決めを行うためのリブ、ボスなどの位置決め部材4a,4bを、前記した通電回路2と同様の電気伝導性を有する材料にて通電回路2と一体成形する。位置決め部材4a,4bの形状、寸法、本数等は特に限定するものではなく、配線部品3a,3bが所定の位置に固定されるものであれば構わない。
【0022】
このようにして給電部品を形成することにより、外部部品5を繰り返し接続、取り外ししても破損することなく、長時間使用することが可能な樹脂製給電部品を提供することができる
【0023】
つぎに上記した成形基板と通電回路の2つの材料を用いて給電部品を製造する方法について記述する。上記した基板材質は射出成形法、圧縮成形法、真空成形法等により任意の形状に成形できるが形状を精度よく再現でき、生産性が高いことから射出成形法が望ましい。また、通電回路2を構成する材料は射出成形法、圧縮成形法等により成形することが可能であるが前記同様、射出成形法が望ましい。
【0024】
樹脂により構成される基板1と通電回路2を一体化して製造する代表的な手法として、インサート成形方法がある。インサート成形方法は予め任意の形状に成形した基板1を通電回路2を形成するための金型中に挿入した後、溶融状態である通電回路2を形成するための材料を前記金型中に射出してして基板と通電回路2を一体化させる手法である。なお、通電回路2を成形した後、基板1を成形する金型に通電回路2を挿入して製造しても問題はない。
【0025】
上記手法で給電部品を製造することも可能であるが、この給電部品をさらに製造工程を削減し、より安価に製造する手法として2色成形方法がある。この手法は同一金型中に基板を形成する材料を射出した後、通電回路2を材料を射出して一体化させる手法である(成形する順番が逆でも可能)。
【0026】
これらの手法で樹脂製給電部品を製造することにより、基板1と通電回路2が完全に密着、一体化するため、使用時に通電回路同士が接触する短絡事故が発生することなく、より安価に給電部品を供給することが可能となる。
【0027】
【実施例】
この発明の実施例について説明する。この発明の実施の形態で使用した具体的な基板材質は、◆基板材質:PP樹脂(MS500W,松下電工(株))である。
【0028】
この発明の実施の形態で使用した具体的な通電回路材質は、◆通電回路材質:(a)熱可塑性樹脂;PP樹脂(MS500W,松下電工(株)製)、(b)銅粉末;FCC−115,福田金属箔粉工業(株)製、(c)鉛フリーハンダ;Sn−Cu−Ni−AtW−150,福田金属箔粉工業(株)製、◆材料組成:上記、(a)45vol%,(b)40vo1%,(c)15vol%で構成、◆体積抵抗値:1.0×10-5Ω・cmである。
【0029】
この発明の実施の形態で使用した具体的な給電部品概略は、◆名称:照明器具用・丸形蛍光管ホルダー(3灯用,L529)、◆基板形状: 図5に示す形状に同じ、◆基板断面形状:図3、◆通電回路寸法と本数:w4×t2mmの四角形断面,6本である。
【0030】
この発明の実施の形態で実施した具体的な製造方法は、◆2色成形法:(1)金型に前記PP樹脂を射出して基板を成形、(2)(1)の後、通電回路を形成する材料を射出し、基板凹部に通電回路を成形する。
【0031】
【発明の効果】
この発明の樹脂製給電部品によれば、電気絶縁性を有する合成樹脂からなる成形基板上に通電回路が形成され、この通電回路が熱可塑性樹脂、金属粉末または金属繊維、低融点金属により構成された電気伝導性を有する樹脂組成物によって形成されているので、リブ、ボス等、他の構造物によって通電回路を位置決めする必要がなくなる。このため、成形基板にリブ、ボス等を形成する場合に生じていた金型製造コストの上昇を抑え、基板の成形不良(ひけ、そり)が発生しない外観に優れた給電部品の成形が可能となる。
【0032】
また、基板と通電回路が一体成形できるため、給電部品の製造工程が削減でき、製造コストダウンが可能となる。また、リードフレーム、リード線などを使わず、樹脂組成物で通電回路が形成できるため、部品点数を削減できるとともに、通電回路形状の自由度がアップする。
【0033】
また、通電回路の外部部品と接続する箇所に、弾性変形して外部部品と接続する接続部品を設け、この接続部品の位置決めを行う部品を通電回路と同じ樹脂組成物で通電回路と一体に形成したので、外部部品を給電部品に繰り返し接続、取り外ししても破損することなく、長時間使用することができる。また、配線部品の位置決め部材が通電回路と同じ電気の良導体である樹脂組成物で形成されているため、通電回路と配線部品を確実に接触させることができる。
【0034】
請求項では、成形基板が銅害防止剤を含まないポリプロピレン樹脂で構成されているので、基板が銅害により劣化することなく、長期信頼性に優れた給電部品の製造が可能となる。また、基板を構成するポリプロピレン樹脂に添加する銅害防止剤が必要なくなり、材料費が削減できる。また、ポリプロピレン樹脂は生産性に優れ、かつ材料コストが比較的安いという利点がある。
【0035】
請求項記載の樹脂製給電部品は、請求項1において、熱可塑性樹脂は、成形基板の材質と同じ材質にした。このように、熱可塑性樹脂は、成形基板の材質と同じ材質にしたので、基板と通電回路のより高い密着性が得られる。
【0036】
請求項記載の樹脂製給電部品は、請求項において、熱可塑性樹脂がポリプロピレン樹脂である。このように、熱可塑性樹脂が請求項の成形基板と同じポリプロピレン樹脂であるので、同じ材質によって基板と通電回路の高い密着性が得られる。
【図面の簡単な説明】
【図1】この発明の実施の形態の樹脂製給電部品の平面部分概略図である。
【図2】(a),(b)は図1における配線部品の斜視図である。
【図3】この発明の実施の形態における通電回路の断面図である。
【図4】この発明の実施の形態における通電回路の別の例の断面図である。
【図5】(a)は従来の給電部品の概略図、(b)はその内部構造を示す断面図である。
【図6】従来例の問題点を示す説明図である。
【符号の説明】
1 成形基板
2 通電回路
3a,3b 配線部品
4a,4b 位置決め部材
5 外部部品
6 リード
10 樹脂製給電部品
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin-made power supply component having a molded substrate formed of a resin material having electrical insulation and having an energization circuit formed on the molded substrate.
[0002]
[Prior art]
In conventional power supply parts, a synthetic resin molding material having electrical insulation is formed into a desired shape to form a substrate, and then a metallic lead frame or lead wire represented by copper (Cu) or the like is used for mechanical equipment or An energization circuit is formed by a wet method such as manual insertion or fixing at a predetermined position of the substrate or plating. FIG. 5 shows an example of the power feeding component. FIG. 5A is a schematic view of a power feeding component, and FIG. 5B is a cross-sectional view showing an internal structure thereof. 50 is an energizing circuit, 51 is a positioning pin, 52 is a positioning rib, and 53 is a fluorescent tube gripping portion. is there.
[0003]
[Problems to be solved by the invention]
However, the method of forming the energization circuit on the substrate by the above-described method has a problem that the cost for manufacturing the power feeding component increases because a number of manufacturing steps are required.
[0004]
In recent years, power supply parts have also been downsized in parallel with downsizing of electric / electronic parts. For this reason, when a plurality of lead frames and lead wires are arranged as energization circuits on one substrate, the energization circuits may come into contact with each other and short-circuit. In order to prevent this, the lead frame and the lead wire are each bent and arranged in a complicated shape, or ribs 52 and bosses (not shown) are provided between the energization circuits 50 of the substrate 60 as shown in FIG. There was a need.
[0005]
By using the above-mentioned method, it is possible to prevent short-circuit accidents that occur when multiple lead frames and lead wires arranged on the substrate come into contact with each other. However, complicated bending of the lead frame and lead wires is a cost for manufacturing power supply components. To further improve. Further, when ribs, bosses, and the like are formed on the molded substrate, there are problems in that the mold manufacturing cost increases due to an increase in the mold processing time, and appearance defects such as sink marks and warpage occur on the molded substrate.
[0006]
Further, many power supply components are highly competitive in cost reduction, and polypropylene (PP) resin, which is relatively inexpensive in material cost, is often used as a synthetic resin molding material constituting the molding substrate. On the other hand, since many of the energization circuits have high workability and are inexpensive, Cu (copper) lead frames and lead wires are often used. However, the PP resin is oxidized by contact with copper for a long time to prevent deterioration phenomenon such as discoloration and cracking, mechanical strength decrease and electrical insulation decrease. It is necessary to add an aromatic amine-based naphthylamine or the like called in advance to form a substrate.
[0007]
However, there has been a problem in that the material cost of the PP resin constituting the substrate is increased by adding such a copper damage prevention agent, and the manufacturing cost of the power feeding component is further increased.
[0008]
Accordingly, an object of the present invention is to form a current-carrying circuit without using a lead frame or a lead wire, to reduce the manufacturing process, the number of parts, and the manufacturing cost of power-feeding parts, and to make the current-carrying circuit highly flexible in shape. It is to provide power supply components.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the resin power supply component according to claim 1 of the present invention, an energization circuit is formed on a molded substrate made of a synthetic resin having electrical insulation, and this energization circuit is formed of a thermoplastic resin, a metal Formed by a resin composition having electrical conductivity composed of powder, metal fiber, or low-melting-point metal, and provided with a connecting component that is elastically deformed and connected to the external component at a location where the external circuit is connected to the external component The component for positioning the connecting component is formed integrally with the energizing circuit with the same resin composition as the energizing circuit .
[0010]
In this way, an energization circuit is formed on a molded substrate made of a synthetic resin having electrical insulation, and this energization circuit is an electrically conductive resin composed of thermoplastic resin, metal powder or metal fiber, and a low melting point metal. Since it is formed of the composition, it is not necessary to position the energizing circuit with other structures such as ribs and bosses. For this reason, it is possible to suppress an increase in mold manufacturing cost that occurs when ribs, bosses, and the like are formed on the molded substrate, and to solve problems of appearance defects such as sinks and warpage. In addition, since the energization circuit can be formed from the resin composition without using a lead frame, a lead wire or the like, the number of parts can be reduced and the degree of freedom of the energization circuit shape can be increased.
In addition, a connection component that elastically deforms and connects to the external component is provided at a location where the external circuit of the energization circuit is connected, and the component for positioning the connection component is formed integrally with the energization circuit using the same resin composition as the energization circuit. Therefore, it can be used for a long time without being damaged even if the external component is repeatedly connected to and removed from the power supply component. Moreover, since the positioning member of the wiring component is formed of a resin composition that is the same electrical good conductor as the energization circuit, the energization circuit and the wiring component can be reliably brought into contact with each other.
[0012]
According to a second aspect of the present invention, in the resin power supply component of the first aspect, the molded substrate is made of a polypropylene resin that does not contain a copper damage inhibitor. Since copper products such as lead frames and lead wires are not used, the molded substrate can be made of a polypropylene resin that does not contain a copper damage inhibitor as described above. For this reason, it is possible to manufacture a power supply component having excellent long-term reliability without deterioration of the substrate due to copper damage. Moreover, the copper damage prevention agent added to the polypropylene resin which comprises a board | substrate becomes unnecessary, and material cost can be reduced. Polypropylene resin has the advantages of excellent productivity and relatively low material costs.
[0013]
According to a third aspect of the present invention, in the resin power supply component according to the first aspect, the thermoplastic resin is made of the same material as that of the molded substrate. Thus, since the thermoplastic resin is made of the same material as that of the molded substrate, higher adhesion between the substrate and the energization circuit can be obtained.
[0014]
According to a fourth aspect of the present invention, in the resin power supply component of the second aspect , the thermoplastic resin is a polypropylene resin. Thus, since the thermoplastic resin is the same polypropylene resin as the molded substrate of claim 2 , high adhesion between the substrate and the energization circuit can be obtained by the same material.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
A resin power supply component according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic plan view of a resin power supply component according to an embodiment of the present invention, FIGS. 2 (a) and 2 (b) are perspective views of wiring components, and FIG. 3 is a diagram of an energization circuit according to an embodiment of the present invention. Sectional drawing and FIG. 4 are sectional drawings of another example of the energization circuit in embodiment of this invention.
[0016]
As shown in FIG. 1, in the resin power supply component 10, an energization circuit 2 is formed on a molded substrate 1 made of a synthetic resin having electrical insulation, and the energization circuit 2 is made of thermoplastic resin, metal powder, or metal fiber. And an electrically conductive resin composition composed of a low melting point metal. In FIG. 1, 3a and 3b are wiring components, 4a is a wiring component positioning member (boss), 4b is a wiring component positioning member (rib), 5 is an external component, and 6 is a lead of the external component.
[0017]
The substrate material of the molded substrate 1 of the power supply component 10 disclosed in this embodiment is a polypropylene (PP) resin, a polyethylene (PE) resin, a polyvinyl chloride (PVC) resin, an ABS resin, which can be molded into a predetermined shape. There is no particular limitation as long as it is a thermoplastic resin molding material such as polyamide (PA) resin or polycarbonate (PC) resin, or a thermosetting resin molding material such as phenol resin or epoxy resin. However, among them, a PP resin having excellent productivity and relatively low material cost is preferable. Moreover, the molded substrate 1 does not contain a copper damage inhibitor.
[0018]
The material forming the energization circuit 2 of the power supply component 10 is composed of at least a thermoplastic resin, a metal powder or metal fiber, a low melting point metal such as lead-free solder, and a material obtained by melting and kneading these materials in advance. ing. This material has a volume resistivity value of 1.0 × 10 −5 Ω · cm, almost the same as that of a metal, and is excellent in electrical conductivity. The volume resistivity value of this material is variable depending on the blending ratio of the conductive substance (metal powder or metal fiber, lead-free solder), and is not limited to the above-described value. The thermoplastic resin described here is not particularly limited, such as polypropylene (PP) resin, polyethylene (PE) resin, vinyl chloride (PVC) resin, ABS resin, polyamide (PA) resin, polycarbonate (PC) resin, etc. By using the same material as that of the molded substrate 1, higher adhesion between the substrate 1 and the energization circuit 2 can be obtained. Therefore, it is desirable to select this intentionally. Examples of the material of the metal powder or metal fiber include copper (Cu), nickel (Ni), iron (Fe), aluminum (Al), and alloys thereof, but are not particularly limited. Moreover, examples of the low melting point metal include tin (Sn), bismuth (Bi), zinc (Zn), and the like, and alloys containing no lead (Pb).
[0019]
The energizing circuit 2 is formed on the substrate 1 using the material. For example, in order to form the energization circuit 2 on the substrate 1 of the power supply component 10, as shown in FIG. 3, a concave energization circuit groove 7 is provided in the substrate thickness direction in advance, and the energization circuit 2 is formed in the groove 7. . In this case, the cross-sectional shape of the energizing circuit groove 7 is not particularly limited, such as a square shape or a semicircular shape, and the thickness, width, and other dimensions of the groove 7 are not limited. Further, the length, shape, and number of energization circuits 2 are not particularly limited. When the energization circuit 2 is formed in the concave energization circuit groove 7 in this way, the position where the energization circuit 2 is formed in advance is formed in a concave shape on the substrate 1, so that the energization circuit is positioned by another structure. There is an advantage that there is no need to do. Moreover, as shown in FIG. 4, you may form the electricity supply circuit 2 on the board | substrate plane 1 without a groove | channel.
[0020]
The energization circuit 2 of the power supply component 10 may need to be connected to a lead frame, a lead wire, or the like of the external component 5 such as an electric / electronic component. However, the current-carrying circuit 2 formed of a material having electrical conductivity contains a large amount of a metal substance, and thus has high rigidity but is very brittle and does not have spring properties. Therefore, when the power supply component 10 and the external component 5 are connected and the power supply component 10 is repeatedly removed from the external component 5 and used, the energization circuit 2 of the power supply component 10 is partially damaged and cannot be used.
[0021]
Therefore, as shown in FIG. 1, a portion of the energizing circuit 2 of the power feeding component 10 that is repeatedly connected to and detached from the external component 5 is a metal having electrical conductivity such as copper (Cu) or nickel (Ni). It is separately provided as wiring components (connecting components) 3a and 3b that use materials (including alloys) and are elastically deformed to be connected to the leads 6 of the external component 5. In this case, as shown in FIGS. 2 (a) and 2 (b), the wiring components 3a and 3b have an L shape and a groove shape. As shown in FIG. 1, the energizing circuit 2 has positioning members 4a and 4b such as ribs and bosses for positioning the wiring components 3a and 3b, which have the same electrical conductivity as the energizing circuit 2 described above. The current-carrying circuit 2 and the material are formed integrally with the material. The shape, size, number, etc. of the positioning members 4a, 4b are not particularly limited as long as the wiring components 3a, 3b are fixed at predetermined positions.
[0022]
By forming the power supply component in this manner, it is possible to provide a resin power supply component that can be used for a long time without being damaged even if the external component 5 is repeatedly connected and disconnected .
[0023]
Next, a method for manufacturing a power feeding component using the two materials of the molded substrate and the energization circuit will be described. The substrate material described above can be molded into an arbitrary shape by an injection molding method, a compression molding method, a vacuum molding method, or the like. However, the injection molding method is desirable because the shape can be accurately reproduced and productivity is high. The material constituting the energization circuit 2 can be molded by an injection molding method, a compression molding method, or the like, but the injection molding method is desirable as described above.
[0024]
There is an insert molding method as a typical method for manufacturing the substrate 1 made of resin and the energization circuit 2 integrally. In the insert molding method, a substrate 1 molded in an arbitrary shape in advance is inserted into a mold for forming an energization circuit 2, and then a material for forming the energization circuit 2 in a molten state is injected into the mold. In this way, the substrate and the energization circuit 2 are integrated. Note that there is no problem if the energization circuit 2 is inserted into a mold for molding the substrate 1 after the energization circuit 2 is formed.
[0025]
Although it is possible to manufacture a power supply component by the above-described method, there is a two-color molding method as a method for manufacturing the power supply component further by reducing the manufacturing process and at a lower cost. This method is a method of injecting a material for forming the substrate into the same mold and then injecting the material to integrate the current-carrying circuit 2 (the molding order can be reversed).
[0026]
By manufacturing resin power supply parts using these methods, the substrate 1 and the current-carrying circuit 2 are completely adhered and integrated, so that a short-circuit accident where the current-carrying circuits come into contact with each other at the time of use does not occur. Parts can be supplied.
[0027]
【Example】
Embodiments of the present invention will be described. The specific substrate material used in the embodiment of the present invention is ◆ Substrate material: PP resin (MS500W, Matsushita Electric Works, Ltd.).
[0028]
Specific energizing circuit materials used in the embodiment of the present invention are as follows: ◆ Energizing circuit material: (a) thermoplastic resin; PP resin (MS500W, manufactured by Matsushita Electric Works), (b) copper powder; FCC- 115, Fukuda Metal Foil Powder Co., Ltd., (c) Lead-free solder; Sn-Cu-Ni-AtW-150, Fukuda Metal Foil Powder Industry Co., Ltd., ◆ Material composition: (a) 45 vol% , (B) 40 vol 1%, (c) 15 vol%, ◆ Volume resistance value: 1.0 × 10 −5 Ω · cm.
[0029]
The specific power supply component outline used in the embodiment of the present invention is as follows: ◆ Name: for lighting fixtures / round fluorescent tube holder (for three lamps, L529), ◆ Substrate shape: Same as the shape shown in FIG. Substrate cross-sectional shape: FIG. 3, ◆ dimension and number of energization circuits: square cross section of w4 × t2 mm, 6 pieces.
[0030]
The specific manufacturing method implemented in the embodiment of the present invention is as follows: ◆ Two-color molding method: (1) Injection of the PP resin into a mold to mold a substrate, (2) After (1), a current-carrying circuit The material for forming is injected, and an energization circuit is formed in the substrate recess.
[0031]
【The invention's effect】
According to the resin power supply component of the present invention, an energization circuit is formed on a molded substrate made of a synthetic resin having electrical insulation, and the energization circuit is made of thermoplastic resin, metal powder or metal fiber, or low melting point metal. In addition, since it is formed of a resin composition having electrical conductivity, it is not necessary to position the energizing circuit with other structures such as ribs and bosses. For this reason, it is possible to suppress the increase in mold manufacturing cost that occurred when forming ribs, bosses, etc. on the molded substrate, and to form power supply parts with excellent appearance that do not cause substrate molding defects (sink, warp). Become.
[0032]
Further, since the substrate and the energization circuit can be integrally formed, the manufacturing process of the power feeding component can be reduced, and the manufacturing cost can be reduced. In addition, since the energization circuit can be formed from the resin composition without using a lead frame, a lead wire or the like, the number of parts can be reduced and the degree of freedom of the energization circuit shape can be increased.
[0033]
In addition, a connection component that elastically deforms and connects to the external component is provided at a location where the external circuit of the energization circuit is connected, and the component for positioning the connection component is formed integrally with the energization circuit using the same resin composition as the energization circuit. Therefore, it can be used for a long time without being damaged even if the external component is repeatedly connected to and removed from the power supply component. Moreover, since the positioning member of the wiring component is formed of a resin composition that is the same electrical good conductor as the energization circuit, the energization circuit and the wiring component can be reliably brought into contact with each other.
[0034]
According to the second aspect of the present invention , since the molded substrate is made of a polypropylene resin that does not contain a copper damage preventing agent, the power supply component having excellent long-term reliability can be manufactured without the substrate being deteriorated by copper damage. Moreover, the copper damage prevention agent added to the polypropylene resin which comprises a board | substrate becomes unnecessary, and material cost can be reduced. Polypropylene resin has the advantages of excellent productivity and relatively low material costs.
[0035]
According to a third aspect of the present invention, in the resin power supply component according to the first aspect, the thermoplastic resin is made of the same material as that of the molded substrate. Thus, since the thermoplastic resin is made of the same material as that of the molded substrate, higher adhesion between the substrate and the energization circuit can be obtained.
[0036]
According to a fourth aspect of the present invention, in the resin power supply component of the second aspect , the thermoplastic resin is a polypropylene resin. Thus, since the thermoplastic resin is the same polypropylene resin as the molded substrate of claim 2 , high adhesion between the substrate and the energization circuit can be obtained by the same material.
[Brief description of the drawings]
FIG. 1 is a schematic partial plan view of a resin power supply component according to an embodiment of the present invention.
2A and 2B are perspective views of wiring components in FIG.
FIG. 3 is a cross-sectional view of an energization circuit according to the embodiment of the present invention.
FIG. 4 is a cross-sectional view of another example of the energization circuit according to the embodiment of the present invention.
5A is a schematic view of a conventional power feeding component, and FIG. 5B is a cross-sectional view showing the internal structure thereof.
FIG. 6 is an explanatory diagram showing a problem of a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Molding board 2 Current supply circuit 3a, 3b Wiring components 4a, 4b Positioning member 5 External component 6 Lead 10 Resin power supply component

Claims (4)

電気的絶縁性を有する合成樹脂からなる成形基板上に通電回路が形成され、この通電回路が熱可塑性樹脂、金属粉末または金属繊維、低融点金属により構成された電気伝導性を有する樹脂組成物によって形成され、前記通電回路の外部部品と接続する箇所に、弾性変形して前記外部部品と接続する接続部品を設け、この接続部品の位置決めを行う部品を前記通電回路と同じ樹脂組成物で通電回路と一体に形成したことを特徴とする樹脂製給電部品。An energization circuit is formed on a molded substrate made of a synthetic resin having electrical insulation, and this energization circuit is made of a thermoplastic resin, metal powder or metal fiber, and an electrically conductive resin composition composed of a low melting point metal. A connection component that is elastically deformed and connected to the external component is provided at a location that is formed and connected to the external component of the energization circuit, and the component that positions the connection component is made of the same resin composition as the energization circuit. Resin power supply parts, which are formed integrally with 成形基板が銅害防止剤を含まないポリプロピレン樹脂で構成された請求項1記載の樹脂製給電部品。  The resin power supply component according to claim 1, wherein the molded substrate is made of a polypropylene resin containing no copper damage inhibitor. 熱可塑性樹脂は、成形基板の材質と同じ材質にした請求項1記載の樹脂製給電部品。  The resin-made power supply component according to claim 1, wherein the thermoplastic resin is the same material as that of the molded substrate. 熱可塑性樹脂がポリプロピレン樹脂である請求項記載の樹脂製給電部品。The resin power supply component according to claim 2 , wherein the thermoplastic resin is a polypropylene resin.
JP23683199A 1999-08-24 1999-08-24 Plastic power supply parts Expired - Fee Related JP3684933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23683199A JP3684933B2 (en) 1999-08-24 1999-08-24 Plastic power supply parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23683199A JP3684933B2 (en) 1999-08-24 1999-08-24 Plastic power supply parts

Publications (2)

Publication Number Publication Date
JP2001068235A JP2001068235A (en) 2001-03-16
JP3684933B2 true JP3684933B2 (en) 2005-08-17

Family

ID=17006438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23683199A Expired - Fee Related JP3684933B2 (en) 1999-08-24 1999-08-24 Plastic power supply parts

Country Status (1)

Country Link
JP (1) JP3684933B2 (en)

Also Published As

Publication number Publication date
JP2001068235A (en) 2001-03-16

Similar Documents

Publication Publication Date Title
US6717065B2 (en) Electric contact and an electric connector both using resin solder and a method of connecting them to a printed circuit board
EP1246310A2 (en) An electric connector for twisted pair cable using resin solder and a method of connecting electric wire to the electric connector
US7644488B2 (en) Method to form a conductive device
US8342892B2 (en) High conductivity energy-saving clamping device
US6818839B2 (en) Electric contact and an electric connector both using resin solder and a method of connecting them to a printed circuit board
JP5286447B2 (en) Conductive contact terminals for board surface mounting
US3497859A (en) Electrical resistors for printed circuits
US20020043398A1 (en) Conductive plastic, conductive circuits formed thereof, and method of forming the conductive circuits
US6974615B2 (en) Binding member for coaxial cable and an electric connector for coaxial cable both using resin solder, and a method of connecting the binding member to coaxial cable or the electric connector
CN107251348A (en) Electric connection box and connection terminal part
JP2014212218A (en) Semiconductor device manufacturing method and semiconductor device
US20050206491A1 (en) Low cost electrical fuses manufactured from conductive loaded resin-based materials
EP0942436B1 (en) Electroconductive resin composition
US7326463B2 (en) Conductive circuits or cables manufactured from conductive loaded resin-based materials
JP3684933B2 (en) Plastic power supply parts
JP4582717B2 (en) Circuit structure
CN1138292C (en) Structure and method for connecting electric element to electromagnetic relay
EP1261079A2 (en) Functional connector
JP3901868B2 (en) Electronic component mounting substrate and manufacturing method thereof
CN212659691U (en) Cable connecting assembly
JP3506094B2 (en) Connection structure between the internal circuit of the junction box and electric wires
JPH0758422A (en) Molded circuit board
KR200490356Y1 (en) Wastebasket for toilet bowl
US20050199413A1 (en) Conductive circuits or cables manufactured from conductive loaded resin-based materials
JP2022151207A (en) Manufacturing method of inductor and inductor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050523

LAPS Cancellation because of no payment of annual fees