JP3684744B2 - Paint resistant thermoplastic resin composition and method for producing the same - Google Patents

Paint resistant thermoplastic resin composition and method for producing the same Download PDF

Info

Publication number
JP3684744B2
JP3684744B2 JP04611097A JP4611097A JP3684744B2 JP 3684744 B2 JP3684744 B2 JP 3684744B2 JP 04611097 A JP04611097 A JP 04611097A JP 4611097 A JP4611097 A JP 4611097A JP 3684744 B2 JP3684744 B2 JP 3684744B2
Authority
JP
Japan
Prior art keywords
copolymer
weight
vinyl cyanide
resin composition
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04611097A
Other languages
Japanese (ja)
Other versions
JPH09302197A (en
Inventor
隆志 田口
朋三 松本
啓次 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP04611097A priority Critical patent/JP3684744B2/en
Publication of JPH09302197A publication Critical patent/JPH09302197A/en
Application granted granted Critical
Publication of JP3684744B2 publication Critical patent/JP3684744B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐衝撃性、耐塗装性、溶融時の色調安定性および成形加工性のバランスに優れた熱可塑性樹脂組成物に関するものである。
【0002】
【従来の技術】
ゴム質重合体にシアン化ビニル化合物と芳香族ビニル化合物をグラフト共重合してなる樹脂組成物は、アクリロニトリル・ブタジエン・スチレン(ABS樹脂)として知られており、機械的特性に優れまた良好な成形加工性を有することから広範囲な分野において利用されている。特に、自動車・オートバイ分野では、軽量化によるメリットから、内装のみならず外装部品としても用いられており、この場合塗装されることが多い。
【0003】
一般に、ABS樹脂中のアクリロニトリル含有率を増加させることにより、耐塗装性が向上することが知られており、これまでにABS樹脂中のアクリロニトリルの割合を検討することによって塗装性を改良する方法がいくつか検討されている。たとえば、特開平6−16896号公報ではゴム含有グラフト共重合体の中のシアン化ビニル含有率とシアン化ビニル系共重合体中のシアン化ビニル含有率の差および両共重合体の比を規定する方法が提案されている。しかし、この方法は塗装性および溶融時の色調安定性が十分ではなかった。
【0004】
また、特開平7−11099号公報では特定のシアン化ビニル含有率を有するシアン化ビニル系共重合体がゴム含有グラフト共重合体中のシアン化ビニル含有率に対して特定範囲にある樹脂組成物を提案している。しかし、溶融時の色調安定性が劣るという問題がある。
【0005】
【発明が解決しようとする課題】
従って、本発明の目的は、耐衝撃性、耐塗装性、溶融時の色調安定性および成形加工性のバランスに優れた耐塗装性熱可塑性樹脂組成物を提供することにある。本発明者らは、かかる目的を達成するために鋭意検討した結果、特定のシアン化ビニル含有率と組成分布を有するシアン化ビニル系共重合体およびゴム含有グラフト共重合体を組合わせることにより耐衝撃性、耐塗装性、溶融時の色調安定性および成形加工性のバランスに優れた樹脂組成物が得られることを見出し、本発明に到達した。
【0006】
【課題を解決するための手段】
上記本発明の目的は、ゴム含有グラフト共重合体(I)10〜50重量部、シアン化ビニル系単量体(a)15〜30重量%、芳香族ビニル系単量体(b)85〜70重量%からなり、かつ平均シアン化ビニル含有率より2重量%以上高い組成を有する共重合体が共重合体中2重量%以下であるシアン化ビニル系共重合体( II )50〜90重量部、およびシアン化ビニル系単量体(a)30〜50重量%、芳香族ビニル系単量体(b)70〜50重量%からなり、かつ平均シアン化ビニル含有率より2重量%以上高い組成を有する共重合体が共重合体中25重量%以上40重量%以下であるシアン化ビニル系共重合体( III 5〜45重量部からなる耐塗装性熱可塑性樹脂組成物であってゴム質重合体(A)5〜40重量%、ゴム質重合体以外の共重合体(B)95〜60重量%からなる樹脂組成物において、
(1)共重合体(B)の平均シアン化ビニル含有率が25〜35重量%、
(2)共重合体(B)のシアン化ビニルの組成分布において、平均シアン化ビニル含有率より2重量%以上高い組成を有する共重合体が共重合体(B)中に3〜20重量%存在すること
をともに満足することを特徴とする耐塗装性熱可塑性樹脂組成物によって達成される。
【0007】
【発明の実施の形態】
本発明におけるゴム含有グラフト共重合体(I)に用いるゴム質重合体(A)としては,ジエン系ゴム、アクリル系ゴム、エチレン系ゴムなどであり、具体例としては、ポリブタジエン、ポリ(ブタジエン−スチレン)、ポリ(ブタジエン−アクリロニトリル)、ポリイソプレン、ポリ(ブタジエン−アクリル酸ブチル)、ポリ(ブタジエン−アクリル酸メチル)、ポリ(ブタジエン−メタクリル酸メチル)、ポリ(アクリル酸ブチル−メタクリル酸メチル)、ポリ(ブタジエン−アクリル酸エチル)、エチレン−プロピレンラバー、エチレン−プロピレン−ジエンラバー、ポリ(エチレン−イソブチレン)、ポリ(エチレン−アクリル酸メチル)などが挙げられる。これらのゴム質重合体は、1種または2種以上の混合物で使用される。これらのゴム質重合体のうち、ポリブタジエン、ポリ(ブタジエン−スチレン)、ポリ(ブタジエン−アクリロニトリル)、エチレン−プロピレンラバーが耐衝撃性の点で特に好ましく用いられる。
【0008】
本発明におけるゴム含有グラフト共重合体(I)、シアン化ビニル系共重合体(II)およびシアン化ビニル系共重合体(III) に用いるシアン化ビニル系単量体(a)の具体例としてはアクリロニトリルおよびメタクリロニトリルなどが挙げられ、1種または2種以上用いることができる。中でもアクリロニトリルが耐塗装性の面で特に好ましい。
【0009】
本発明におけるゴム含有グラフト共重合体(I)、シアン化ビニル系共重合体(II)およびシアン化ビニル系共重合体(III) に用いる芳香族ビニル系単量体(b)の具体例としては、スチレン,α−メチルスチレン,オルソメチルスチレン,パラメチルスチレン,パラ−t−ブチルスチレンおよびハロゲン化スチレンなどが挙げられ、1種または2種以上用いることができる。なかでもスチレン,α−メチルスチレンが成形加工性の面で好ましく、さらにはスチレンが特に好ましい。
【0010】
本発明におけるゴム含有グラフト共重合体(I)に用いる共重合可能な他のビニル系単量体(c)の具体例としては、アクリル酸,メタクリル酸などの不飽和カルボン酸;アクリル酸メチル,メタクリル酸メチル,アクリル酸ブチルなどの(メタ)アクリル酸エステル類;アクリルアミド,メタクリルアミド,N−メチルアクリルアミドなどの(メタ)アクリルアミド類およびマレイミド,N−メチルマレイミド,N−フェニルマレイミドなどのマレイミド類、無水マレイン酸、無水シトラコン酸、無水アコニット酸などの不飽和カルボン酸無水物などを挙げることができ、なかでもメタクリル酸メチル、N−フェニルマレイミドが成形加工性の面で好ましい。
【0011】
本発明におけるゴム質重合体(A)は5〜40重量%、ゴム質重合体以外の共重合体(B)は95〜60%である必要がある。ゴム質重合体(A)が5重量%未満では得られる耐塗装性熱可塑性樹脂組成物の耐衝撃性が十分でなく、40重量%を越えると得られる耐塗装性熱可塑性樹脂組成物の成形加工性が劣るため好ましくない。中でもゴム質重合体(A)10〜35重量%、ゴム質重合体以外の共重合体(B)90〜65%が耐衝撃性と成形加工性のバランスの点から好ましい。
【0012】
本発明における共重合体(B)の平均シアン化ビニル含有率は25〜35重量%である必要がある。平均シアン化ビニル含有率が25重量%未満では得られる耐塗装性熱可塑性樹脂組成物の耐塗装性が十分でなく、35重量%を越えると溶融時の色調安定性が劣るため好ましくない。中でも平均シアン化ビニル含有率は28〜33重量%が耐塗装性と溶融時の色調安定性のバランスの点から好ましい。
【0013】
本発明における共重合体(B)のシアン化ビニルの組成分布において平均シアン化ビニル含有率より2重量%以上高い組成を有する共重合体が共重合体(B)中に3〜20重量%であることが必要である。3重量%未満では得られる耐塗装性熱可塑性樹脂組成物の耐塗装性が十分でなく、20重量%を越えると溶融時の色調安定性が劣るため好ましくない。中でも5〜18重量%が耐塗装性と溶融時の色調安定性のバランスの点から好ましい。
【0014】
本発明におけるゴム含有グラフト共重合体(I)に用いられるゴム質重合体(A)の含有率は特に制限はないが、10〜80重量%が耐衝撃性の点で好ましく、さらには40〜70重量%が好ましい。また、ゴム含有グラフト共重合体(I)におけるシアン化ビニル系単量体(a)の含有率は特に制限はないが、5〜50重量%が成形加工性の点で好ましく、さらには10〜40重量%が好ましい。また、ゴム含有グラフト共重合体(I)における芳香族ビニル系単量体(b)の含有率は特に制限はないが、10〜80重量%が成形加工性の点で好ましく、さらには20〜70重量%が好ましい。また、ゴム含有グラフト共重合体(I)における共重合可能な他のビニル系単量体(c)の含有率は特に制限はないが、5〜50重量%が成形加工性の点で好ましい。
【0015】
またグラフト率、グラフト成分の共重合体の還元粘度は特に制限はないが、グラフト率は10〜80重量%が、グラフト成分の共重合体の還元粘度は、0.2〜0.8dl/gが耐衝撃性の点で好ましい。
【0016】
本発明におけるシアン化ビニル系共重合体(II)は、シアン化ビニル系単量体(a)15〜35重量%,芳香族ビニル系単量体(b)85〜65重量%である。シアン化ビニル系単量体(a)が15重量%未満であると、得られるシアン化ビニル系共重合体を用いた耐塗装性熱可塑性樹脂組成物の耐塗装性が不十分であり、また35重量%を越えると、得られるシアン化ビニル系共重合体を用いた耐塗装性熱可塑性樹脂組成物の成形加工性および溶融時の色調安定性が共に著しく低下するため好ましくない。また、芳香族ビニル系単量体(b)が65重量%未満であると、得られる耐塗装性熱可塑性樹脂組成物の溶融時の色調安定性が著しく低下し、85重量%を越えると得られる耐塗装性熱可塑性樹脂組成物の耐塗装性が著しく低下するため好ましくない。特に、シアン化ビニル系単量体(a)20〜30重量%、芳香族ビニル系単量体(b)80〜70重量%の範囲のものが好ましい。
【0017】
本発明におけるシアン化ビニル系共重合体(III) は、シアン化ビニル系単量体(a)30〜50重量%,芳香族ビニル系単量体(b)70〜50重量%である。シアン化ビニル系単量体(a)が30重量%未満であると、得られるシアン化ビニル系共重合体を用いた耐塗装性熱可塑性樹脂組成物の耐塗装性が不十分であり、50重量%を越えると色調安定性が低下するため好ましくない。特に、シアン化ビニル系単量体(a)33〜45重量%、芳香族ビニル系単量体(b)67〜55重量%の範囲のものが好ましい。
【0018】
共重合体(B)のシアン化ビニルの組成分布において、平均シアン化ビニル含有率より2重量%以上高い組成を有する共重合体が共重合体(B)中の3〜20重量%であることが必須であるが、その具体的方法として、組成分布において平均シアン化ビニル含有率より2重量%以上高い組成を有する割合が2重量%以下であるシアン化ビニル系共重合体(II)を50〜90重量部、平均シアン化ビニル含有率より2重量%以上高い組成を有する割合が25〜40重量%であるシアン化ビニル系共重合体(III) を5〜45重量部混合する方法がある。
【0019】
シアン化ビニルの組成分布は、シアン化ビニル系共重合体のメチルエチルケトン溶液にシクロヘキサンを添加していき、分別沈殿したシアン化ビニル系共重合体を乾燥し、重量を測定した後、赤外分光光度計によりシアン化ビニル含有率を求めた。。また、平均シアン化ビニル含有率は、分別しないで全体を赤外分光光度計により求めた。
【0020】
本発明中のゴム含有グラフト共重合体(I)の製造方法については、特に制限はなく、乳化重合法、塊状重合法、溶液重合法ならびにそれらの組み合わせによる重合法により製造することができる。中でも、ゴムの粒子径およびグラフト率制御の点で乳化重合法が特に好ましい。
【0021】
本発明におけるシアン化ビニル系共重合体(II)の重合方法としては、特に制限はないが、シアン化ビニルの組成分布をシャープにするという点で、特に塊状重合法、溶液重合法が好ましい。
【0022】
本発明におけるシアン化ビニル系共重合体(III) の重合方法としては、特に制限はないが、シアン化ビニルの組成分布をブロードにするという点で、水系懸濁重合が好ましい。
【0023】
前記重合に用いられる懸濁安定剤として粘土、硫酸バリウム、水酸化マグネシウム等の無機系懸濁安定剤、ポリビニルアルコール、カルボキシメチルセルロース、ポリアクリルアミド、メタクリル酸メチル/アクリルアミド共重合体等の有機系懸濁安定剤などを用いて、アゾ系開始剤、ハイドロキシパーオキサイド系開始剤により重合することができる。
【0024】
本発明の耐塗装性熱可塑性樹脂組成物の製造方法については、特に制限はなく、配合の際にはリボンブレンダー、V型ブレンダー、ヘンシェルミキサー等を用いることができる。また、単軸押出機、2軸押出機などの押出機、ババリーミキサー、混合ロール、加圧ニーダー等を使用した混練処理を採用することができる。
【0025】
また、シアン化ビニル系共重合体(II)を連続塊状重合せしめるプロセス中の溶融状態であるシアン化ビニル系共重合体(II)に対して、ゴム含有グラフト共重合体(I)および懸濁重合法により製造されたシアン化ビニル系共重合体(III) を連続的に添加して混合することは色調をさらに良くするため好ましい。
【0026】
また特に、シアン化ビニル系共重合体(II)の脱モノマ工程において残存モノマが10重量%以下になったシアン化ビニル系共重合体(II)に、乳化重合ラテックスから得られるスラリーまたは含水ケークを予め脱水乾燥したゴム含有グラフト共重合体(I)および懸濁重合により得られた乾燥されたビーズ状のシアン化ビニル系共重合体(III)を単軸押出機もしくは2軸押出機を用いて連続的にベント付き2軸押出機に供給し、溶融混合すると同時に脱モノマすることにより耐塗装性熱可塑性樹脂組成物を製造することが色調の点から好ましい。
【0027】
本発明においては、さらに必要に応じて、2、6−ジ−t−ブチル−4−メチルフェノール、4、4´−ブチリデン−ビス(3−メチル−6−t−ブチルフェノール)などのフェノール系酸化防止剤、トリス(ミックスド、モノおよびジフェニル)フォスファイト、ジフェニルイソデシルフォスファイトなどのフォスファイト系酸化防止剤、ジラウリルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジアステリアルチオジプロピオネートなどの硫黄系酸化防止剤、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾールなどのベンゾトリアゾール系紫外線吸収剤、ビス(2、2、6、6−テトラメチル)−4−ピペリジニルなどの光安定剤、ヒドロキシルアルキルアミン、スルホン酸塩などの帯電防止剤、ペンタエリスリトールテトラステアレート、エチレンビスステアリルアミド、金属石鹸などの滑剤、およびテトラブロムビスフェノールA、デカブロモフェノールオキサイド、TBAエポキシオリゴマー、TBAポリカーボネートオリゴマー、三酸化アンチモンなどの難燃剤・難燃助剤などの各種添加剤、着色剤、ガラス繊維・カーボン繊維などの無機充填材などを配合することも可能である。
【0028】
中でも、ペンタエリスリトールテトラステアレートが塗装性において好ましく、0.1〜5重量部が良い。0.1重量部未満では塗装性向上効果が十分でなく、5重量部を越えると成形性が劣るため好ましくない。
【0029】
本発明の耐塗装性熱可塑性樹脂組成物は耐衝撃性、耐塗装性、溶融時の色調安定性および成形加工性のバランスに優れているため、射出成形、シート成形、押し出し成形、ブロー成形、圧縮成形、真空成形等、種々の成形加工用途に供され、それら加工品は塗装、真空蒸着、メッキ等に好適である。
【0030】
本発明の耐塗装性熱可塑性樹脂組成物が特に適する塗料としてアクリル系塗料およびウレタン系塗料がでるが、アクリル系塗料とは、アクリル酸およびそのエステル類、ならびにメタクリル酸およびそのエステル類あるいはその他のビニル化合物との共重合樹脂を塗膜形成主成分とする塗料のことである。また、ウレタン系塗料とは、樹脂骨格中にウレタン結合を有するかあるいは塗膜を形成する過程でウレタン結合を生成する塗料のことである。
【0031】
本発明をさらに具体的に説明するために、以下に実施例および比較例を挙げて説明するが、これら実施例は、本発明を限定するものではない。参考例、実施例、比較例中の部は重量部、%は重量%を表わす。なお、得られたゴム含有グラフト共重合体(I)、シアン化ビニル系共重合体(II)、シアン化ビニル系共重合体(III)、 共重合体(B)および耐塗装性熱可塑性樹脂組成物の各物性値は、下記の試験方法により求めた。
【0032】
グラフト率:ゴム含有グラフト共重合体(I)(重量M)にアセトンを加え、3時間還流し、この溶液を40分間遠心分離後、不溶分を濾過しこの不溶分を60℃で5時間真空乾燥、重量(N)を測定した。次式によりグラフト率を求めた。ただし、式中Lはゴム含有グラフト共重合体(I)中のゴム質重合体含有率(%)である。
【0033】
グラフト率(%)=100×(N−M×L/100)/(M×L/100)。
【0034】
還元粘度:ウベローデ粘度計を使用し、測定温度30℃、試料濃度0.4g/dlのメチルエチルケトン溶液より測定した。
【0035】
平均シアン化ビニル含有率:試料を加熱プレスにより40μm程度のフィルム状にし、赤外分光光度計により求めた。
【0036】
シアン化ビニル組成分布:試料2gを80mlのメチルエチルケトンに溶解し、そこへシクロヘキサンを添加していき、沈殿したシアン化ビニル系共重合体を真空乾燥して重量を測定し、そのシアン化ビニル系共重合体のシアン化ビニル含有率を赤外分光分析の吸光度比より求めた。 そして、累積重量%とシアン化ビニル含有率をプロットし、平均シアン化ビニル含有率より2重量%以上の割合(%)を求めた。
【0037】
アイゾット衝撃強度:耐塗装性熱可塑性樹脂組成物を射出成形し、得られた成形品をASTM D256にしたがって、1/2インチ ノッチ付きアイゾット衝撃強度を測定した。
【0038】
溶融時の色調安定性:耐塗装性熱可塑性樹脂組成物を射出成形する際、230℃30分成形機内で滞留後、得られた成形品をJISK7103に従い、日本電色工業(株)製、測色色差計を用いて、黄変度(YI)を測定した。
【0039】
耐塗装性:耐塗装性熱可塑性樹脂組成物を射出成形し、得られた成形品にアクリル系塗料溶液(藤倉化成(株)製の塗料アクリライン#66E/シンナーアクリラインI型シンナー=50/50重量比)をスプレー塗装し、70℃にて30分乾燥した後の塗装面の表面性を外観評価した。また、ウレタン系塗料の場合は、日本ペイント株製ブラッシュホワイト(アンダーコート:Pu Blush White Base 、ミドルコート:Pu Blush White Coctail#1、トップコート:Pu Pearl Cle ar、硬化剤:Polyuremightylac Hardenner、シンナー:Polyuremig htylac)を塗布し、70℃にて30分乾燥した後の塗装面の塗膜密着性を評価した。
【0040】
流動性:ISO 1133に準じて、220℃荷重10kgのメルトフローレイトを測定した。
【0041】
本発明をさらに具体的に説明するため、以下に実施例および比較例を挙げて説明するが、本発明はこれら実施例に限定されるものではない。なお、ここで特にことわりのない限り「%」は重量%、「部」は重量部を表す。
【0042】
【実施例】
参考例1(ゴム含有グラフト共重合体(I)の製造)
窒素置換した反応器に純水120部、ブドウ糖0.5部、ピロリン酸ナトリウム0.5部、硫酸第一鉄0.005部およびポリブタジエンラテックス(ゴム粒子径0.3μm、ゲル含有率85%)50部(固形分換算)を仕込み、撹拌しながら反応器内の温度を65℃に昇温した。内温が65℃に達した時点を重合開始としてモノマ(スチレン35部、アクリロニトリル15部)およびt−ドデシルメルカプタン0.3部からなる混合物を5時間かけて連続滴下した。同時に並行してクメンハイドロパーオキサイド0.25部、オレイン酸カリウム2.5部および純水25部からなる水溶液を7時間かけて連続滴下し、反応を完結させた。得られたグラフト共重合体ラテックスを硫酸で凝固し、苛性ソーダで中和後、洗浄後、濾過、乾燥してゴム含有グラフト共重合体(I)を得た。このゴム含有グラフト共重合体(I)のゴム質重合体含有率は50%、グラフト率は45%、樹脂成分の還元粘度は0.68dl/gであった。
【0043】
参考例2(シアン化ビニル系共重合体(II)Aの製造)
表1に示した仕様を有する2槽と予熱機および脱モノマ機からなる連続塊状重合装置を用い、アクリロニトリル25部、スチレン75部およびn−オクチルメカプタン0.15部からなる単量体混合物を135kg/時で第1重合槽に連続的に供給し、連続塊状重合させた。第1重合槽の重合率は、58〜61%の間であり、第2重合槽出のポリマーの重合率は、90〜91%での間で制御して運転した。重合反応混合物は、単軸押出機型脱モノマ機により未反応の単量体をベント口より減圧蒸発回収し、脱モノマ機の先端から表3記載のシアン化ビニル系共重合体(II)Aを得た。得られたシアン化ビニル系共重合体(II)Aの平均シアン化ビニル含有率および平均シアン化ビニル含有率より2重量%以上の割合(%)を表3に示した。
【0044】
参考例3(シアン化ビニル系共重合体(II)Bの製造)
表2に示した仕様を有する1槽と予熱機および脱モノマ機からなる連続塊状重合装置を用い、アクリロニトリル25部、スチレン75部およびn−オクチルメカプタン0.18部からなる単量体混合物を135kg/時の速度で重合槽に連続的に供給し、連続塊状重合させた。重合槽出のポリマーの重合率は、74〜76%での間で制御し、重合反応混合物は、単軸押出機型予熱機で予熱された後、2軸押出機型脱モノマ機により未反応の単量体をベント口より減圧蒸発回収し、脱モノマ機の先端から表3記載の組成のシアン化ビニル系共重合体(II)Bを得た。得られたシアン化ビニル系共重合体(II)Bの平均シアン化ビニル含有率および平均シアン化ビニル含有率より2重量%以上の割合(%)を表3に示した。
【0045】
参考例4(シアン化ビニル系共重合体(II)Cの製造)
表2に示した仕様を有する1槽と予熱機および脱モノマ機からなる連続塊状重合装置を用い、アクリロニトリル28部、スチレン72部およびn−オクチルメカプタン0.18部からなる単量体混合物を135kg/時の速度で重合槽に連続的に供給し、連続塊状重合させた。重合槽出のポリマーの重合率は、74〜76%での間で制御し、重合反応混合物は、単軸押出機型予熱機で予熱された後、2軸押出機型脱モノマ機により未反応の単量体をベント口より減圧蒸発回収し、脱モノマ機の先端から表3記載の組成のシアン化ビニル系共重合体(II)Cを得た。得られたシアン化ビニル系共重合体(II)Cの平均シアン化ビニル含有率および平均シアン化ビニル含有率より2重量%以上の割合(%)を表3に示した。
【0046】
参考例5(シアン化ビニル系共重合体(III)aの製造)
容量が20Lで、バッフルおよびファウドラ型撹拌翼を備えたステンレス製オートクレーブに、メタクリル酸メチル/アクリルアミド共重合体(特公昭45−24151号公報記載)0.05部をイオン交換水165部に溶解した溶液を400rpmで撹拌し、系内を窒素ガスで置換した。次にアクリロニトリル31部スチレン69部、t−ドデシルメルカプタン0.3部および2.2´−アゾビスイソブチロニトリル0.52部の混合溶液を反応系を撹拌しながら添加し、60℃に昇温し、重合を開始した。重合開始から100分までに65℃まで昇温し、その後50分かけて100℃まで昇温して重合を完結させた。以降は、通常の方法に従って、反応系の冷却、ポリマの分離、洗浄、乾燥を行ない、シアン化ビニル系共重合体(III)a を得た。得られたシアン化ビニル系共重合体(III)a の平均シアン化ビニル含有率および平均シアン化ビニル含有率より2重量%以上の割合(%)を表3に示した。
【0047】
参考例6(シアン化ビニル系共重合体(III)b の製造)
参考例5中のアクリロニトリルを37部に、スチレンを63部に変えた以外は、参考例5と同様に製造を行ない、表3記載のシアン化ビニル系共重合体(III )bを得た。
【0048】
参考例7(シアン化ビニル系共重合体(III)c の製造)
参考例5中のアクリロニトリルを20部に、スチレンを80部に変えた以外は、参考例5と同様に製造を行ない、表3記載のシアン化ビニル系共重合体(III )cを得た。
【0049】
参考例8(シアン化ビニル系共重合体(III)d の製造)
参考例5中のアクリロニトリルを37部に、スチレンを63部に変えた以外は、参考例5と同様に製造を行ない、表3記載のシアン化ビニル系共重合体(III )dを得た。
【0050】
実施例1〜3
参考例1により得られたゴム含有グラフト共重合体(I)、参考例2〜4により得られたシアン化ビニル系共重合体(II)A〜C、参考例5〜6により得られたシアン化ビニル系共重合体(III)a〜bおよびペンタエリスリトールテトラステアレートを表4に示す配合割合にてヘンシェルミキサーで混合後、40mmφ単押出機により溶融混練し、耐塗装性熱可塑性樹脂組成物を得た。得られた耐塗装性熱可塑性樹脂組成物のゴム質重合体含有率、共重合体(B)の平均シアン化ビニル含有率、共重合体(B)の平均シアン化ビニル含有率より2重量%以上の割合(%)、1/2インチ ノッチ付きアイゾット衝撃強度、黄変度(YI)、塗装性およびメルトフローレイトを測定し、表4に示した。
【0051】
実施例4
参考例3と同様にて連続塊状重合により表3記載のシアン化ビニル系共重合体(II)Bを得た。その脱モノマ機の先端から1/3長のバレル部にタンデムに接続した、加熱装置を有する2軸押出機型フィーダーから、20kg/時の速度で参考例1で製造したゴム含有グラフト共重合体(I)パウダー、7kg/時の速度で参考例6で製造したシアン化ビニル系共重合体(III)b および1kg/時の速度でペンタエリスリトールテトラステアレートを、73kg/時の速度のシアン化ビニル系共重合体(II)Bと脱モノマ機で溶融混練した後、さらに未反応モノマをベント口より減圧蒸発回収しストランド状に吐出させカッターにより耐塗装性熱可塑性樹脂組成物ペレットを得た。得られた耐塗装性熱可塑性樹脂組成物のゴム質重合体含有率、共重合体(B)の平均シアン化ビニル含有率、共重合体(B)の平均シアン化ビニル含有率より2重量%以上の割合(%)、1/2インチ ノッチ付きアイゾット衝撃強度、黄変度(YI)、塗装性およびメルトフローレイトを測定し、表4に示した。
【0052】
比較例1〜8
参考例1により得られたゴム含有グラフト共重合体(I)、参考例2〜4により得られたシアン化ビニル系共重合体(II)A〜C、参考例5〜8により得られたシアン化ビニル系共重合体(III)a〜d およびペンタエリスリトールテトラステアレートを表4に示す配合割合にてヘンシェルミキサーで混合後、40mmφ押出機により溶融混練し、耐塗装性熱可塑性樹脂組成物を得た。得られた耐塗装性熱可塑性樹脂組成物のゴム質重合体含有率、共重合体(B)の平均シアン化ビニル含有率、共重合体(B)の平均シアン化ビニル含有率より2重量%以上の割合(%)、1/2インチ ノッチ付きアイゾット衝撃強度、黄変度(YI)、塗装性およびメルトフローレイトを測定し、表4に示した。
【0053】
実施例1〜4により、本発明に規定する範囲の耐塗装性熱可塑性樹脂組成物が耐衝撃性、耐塗装性、溶融時の色調安定性および成形加工性のバランスに優れていることが判る。
【0054】
しかし、比較例1〜8はゴム質重合体含有率、共重合体(B)の平均シアン化ビニル含有率および共重合体(B)の平均シアン化ビニル含有率より2重量%以上の割合(%)が本発明の規定する範囲外であるため、比較例1、4、7は塗装性が悪く、比較例6は衝撃強度が低く、比較例2、3、5、8は黄変度が大きく色調安定性が劣る。
【0055】
実施例および比較例により、本発明の耐塗装性熱可塑性樹脂組成物は、耐衝撃性、耐塗装性、溶融時の色調安定性および成形加工性のバランスに優れていることが判る。これは、特定のシアン化ビニル含有率と組成分布を有するシアン化ビニル系共重合体、ゴム含有グラフト共重合体および必要に応じてペンタエリスリトールテトラステアレートを組合わせることにより、初めて実現されるものである。
【0056】
【表1】

Figure 0003684744
【表2】
Figure 0003684744
【表3】
Figure 0003684744
【表4】
Figure 0003684744
【0057】
【発明の効果】
本発明の耐塗装性熱可塑性樹脂組成物は、特定のシアン化ビニル含有率と組成分布を有するシアン化ビニル系共重合体、ゴム含有グラフト共重合体およびペンタエリスリトールテトラステアレートを組合わせることが特徴であり、耐衝撃性、耐塗装性、溶融時の色調安定性および成形加工性のバランスに優れている。
【0058】
本発明の耐塗装性熱可塑性樹脂組成物は、これらの特徴をいかして、種々の成形加工用途に供されるが、特にアクリル系塗料およびウレタン系塗料用自動車・オートバイ用外装部品用樹脂材料として好適である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermoplastic resin composition having an excellent balance of impact resistance, paint resistance, color tone stability upon melting, and moldability.
[0002]
[Prior art]
A resin composition obtained by graft copolymerizing a vinyl cyanide compound and an aromatic vinyl compound on a rubber polymer is known as acrylonitrile, butadiene, styrene (ABS resin), and has excellent mechanical properties and good molding properties. Since it has processability, it is used in a wide range of fields. In particular, in the automobile / motorcycle field, it is used not only as an interior but also as an exterior part because of the advantages of weight reduction. In this case, it is often painted.
[0003]
In general, it is known that the coating resistance is improved by increasing the acrylonitrile content in the ABS resin. So far, a method for improving the coating property by examining the ratio of acrylonitrile in the ABS resin is known. Some have been studied. For example, Japanese Patent Laid-Open No. 6-16896 defines the difference between the vinyl cyanide content in a rubber-containing graft copolymer and the vinyl cyanide content in a vinyl cyanide copolymer, and the ratio of both copolymers. A method has been proposed. However, this method is not sufficient in paintability and color stability upon melting.
[0004]
JP-A-7-11099 discloses a resin composition in which a vinyl cyanide-based copolymer having a specific vinyl cyanide content is in a specific range with respect to the vinyl cyanide content in the rubber-containing graft copolymer. Has proposed. However, there is a problem that the color stability at the time of melting is poor.
[0005]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a coating-resistant thermoplastic resin composition having an excellent balance of impact resistance, coating resistance, color tone stability upon melting, and molding processability. As a result of intensive studies to achieve the above object, the present inventors have determined that by combining a vinyl cyanide-based copolymer having a specific vinyl cyanide content and composition distribution and a rubber-containing graft copolymer, The inventors have found that a resin composition excellent in the balance of impact resistance, coating resistance, color tone stability upon melting, and molding processability can be obtained, and the present invention has been achieved.
[0006]
[Means for Solving the Problems]
  The object of the present invention is as follows.The rubber-containing graft copolymer (I) comprises 10 to 50 parts by weight, vinyl cyanide monomer (a) 15 to 30% by weight, aromatic vinyl monomer (b) 85 to 70% by weight, and A vinyl cyanide copolymer in which the copolymer having a composition higher by 2% by weight or more than the average vinyl cyanide content is 2% by weight or less in the copolymer ( II ) 50 to 90 parts by weight, and vinyl cyanide monomer (a) 30 to 50% by weight, aromatic vinyl monomer (b) 70 to 50% by weight, and from the average vinyl cyanide content A vinyl cyanide-based copolymer in which the copolymer having a composition higher by 2% by weight or more is 25% by weight or more and 40% by weight or less in the copolymer ( III ) A paint-resistant thermoplastic resin composition comprising 5-45 parts by weight,In the resin composition comprising 5 to 40% by weight of the rubbery polymer (A) and 95 to 60% by weight of the copolymer (B) other than the rubbery polymer,
(1) The average vinyl cyanide content of the copolymer (B) is 25 to 35% by weight,
(2) In the composition distribution of vinyl cyanide in the copolymer (B), a copolymer having a composition higher by 2% by weight or more than the average vinyl cyanide content is 3 to 20% by weight in the copolymer (B). To exist
This is achieved by a paint-resistant thermoplastic resin composition characterized by satisfying both of the above.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The rubbery polymer (A) used for the rubber-containing graft copolymer (I) in the present invention is a diene rubber, an acrylic rubber, an ethylene rubber, or the like. Specific examples include polybutadiene, poly (butadiene- Styrene), poly (butadiene-acrylonitrile), polyisoprene, poly (butadiene-butyl acrylate), poly (butadiene-methyl acrylate), poly (butadiene-methyl methacrylate), poly (butyl acrylate-methyl methacrylate) , Poly (butadiene-ethyl acrylate), ethylene-propylene rubber, ethylene-propylene-diene rubber, poly (ethylene-isobutylene), poly (ethylene-methyl acrylate), and the like. These rubbery polymers are used in one kind or a mixture of two or more kinds. Of these rubber polymers, polybutadiene, poly (butadiene-styrene), poly (butadiene-acrylonitrile), and ethylene-propylene rubber are particularly preferably used from the viewpoint of impact resistance.
[0008]
Specific examples of the vinyl cyanide monomer (a) used for the rubber-containing graft copolymer (I), vinyl cyanide copolymer (II) and vinyl cyanide copolymer (III) in the present invention Examples thereof include acrylonitrile and methacrylonitrile, and one or more of them can be used. Among them, acrylonitrile is particularly preferable in terms of paint resistance.
[0009]
Specific examples of the aromatic vinyl monomer (b) used in the rubber-containing graft copolymer (I), vinyl cyanide copolymer (II) and vinyl cyanide copolymer (III) in the present invention Examples thereof include styrene, α-methyl styrene, orthomethyl styrene, paramethyl styrene, para-t-butyl styrene and halogenated styrene, and one kind or two or more kinds can be used. Of these, styrene and α-methylstyrene are preferable in terms of moldability, and styrene is particularly preferable.
[0010]
Specific examples of other copolymerizable vinyl monomers (c) used in the rubber-containing graft copolymer (I) in the present invention include unsaturated carboxylic acids such as acrylic acid and methacrylic acid; methyl acrylate, (Meth) acrylic acid esters such as methyl methacrylate and butyl acrylate; (meth) acrylamides such as acrylamide, methacrylamide and N-methylacrylamide and maleimides such as maleimide, N-methylmaleimide and N-phenylmaleimide; Examples thereof include unsaturated carboxylic acid anhydrides such as maleic anhydride, citraconic anhydride, and aconitic anhydride. Among them, methyl methacrylate and N-phenylmaleimide are preferable in terms of moldability.
[0011]
The rubbery polymer (A) in the present invention needs to be 5 to 40% by weight, and the copolymer (B) other than the rubbery polymer needs to be 95 to 60%. If the rubber polymer (A) is less than 5% by weight, the impact resistance of the resulting coating resistant thermoplastic resin composition is not sufficient, and if it exceeds 40% by weight, the resulting coating resistant thermoplastic resin composition is molded. Since workability is inferior, it is not preferable. Of these, 10 to 35% by weight of the rubbery polymer (A) and 90 to 65% of the copolymer (B) other than the rubbery polymer are preferable from the viewpoint of the balance between impact resistance and moldability.
[0012]
The average vinyl cyanide content of the copolymer (B) in the present invention needs to be 25 to 35% by weight. If the average vinyl cyanide content is less than 25% by weight, the coating resistance of the resulting coating-resistant thermoplastic resin composition is not sufficient, and if it exceeds 35% by weight, the color tone stability upon melting is inferior. Among them, the average vinyl cyanide content is preferably 28 to 33% by weight from the viewpoint of the balance between coating resistance and color stability at the time of melting.
[0013]
In the composition distribution of vinyl cyanide of the copolymer (B) in the present invention, the copolymer having a composition higher by 2% by weight or more than the average vinyl cyanide content is 3 to 20% by weight in the copolymer (B). It is necessary to be. If it is less than 3% by weight, the coating resistance of the resulting coating-resistant thermoplastic resin composition is not sufficient, and if it exceeds 20% by weight, the color tone stability at the time of melting is inferior. Among these, 5 to 18% by weight is preferable from the viewpoint of a balance between coating resistance and color tone stability at the time of melting.
[0014]
The content of the rubbery polymer (A) used in the rubber-containing graft copolymer (I) in the present invention is not particularly limited, but is preferably 10 to 80% by weight in terms of impact resistance, and more preferably 40 to 40%. 70% by weight is preferred. Further, the content of the vinyl cyanide monomer (a) in the rubber-containing graft copolymer (I) is not particularly limited, but 5 to 50% by weight is preferable in terms of moldability, and more preferably 10 to 10%. 40% by weight is preferred. Further, the content of the aromatic vinyl monomer (b) in the rubber-containing graft copolymer (I) is not particularly limited, but is preferably 10 to 80% by weight in terms of moldability, and more preferably 20 to 70% by weight is preferred. Further, the content of the other copolymerizable vinyl monomer (c) in the rubber-containing graft copolymer (I) is not particularly limited, but 5 to 50% by weight is preferable from the viewpoint of moldability.
[0015]
The graft ratio and the reduced viscosity of the graft component copolymer are not particularly limited, but the graft ratio is 10 to 80% by weight, and the reduced viscosity of the graft component copolymer is 0.2 to 0.8 dl / g. Is preferable in terms of impact resistance.
[0016]
The vinyl cyanide copolymer (II) in the present invention is 15 to 35% by weight of vinyl cyanide monomer (a) and 85 to 65% by weight of aromatic vinyl monomer (b). When the vinyl cyanide monomer (a) is less than 15% by weight, the coating resistance of the resulting coating-resistant thermoplastic resin composition using the vinyl cyanide-based copolymer is insufficient, If it exceeds 35% by weight, both the molding processability and the color tone stability at the time of melting of the coating-resistant thermoplastic resin composition using the vinyl cyanide copolymer obtained are not preferred. Further, when the aromatic vinyl monomer (b) is less than 65% by weight, the color stability at the time of melting of the resulting coating-resistant thermoplastic resin composition is remarkably lowered, and when it exceeds 85% by weight, it is obtained. The coating resistance of the resulting coating-resistant thermoplastic resin composition is undesirably lowered. Particularly preferred are vinyl cyanide monomer (a) in the range of 20 to 30% by weight and aromatic vinyl monomer (b) in the range of 80 to 70% by weight.
[0017]
The vinyl cyanide copolymer (III) in the present invention is 30 to 50% by weight of the vinyl cyanide monomer (a) and 70 to 50% by weight of the aromatic vinyl monomer (b). When the vinyl cyanide monomer (a) is less than 30% by weight, the coating resistance of the resulting coating-resistant thermoplastic resin composition using the vinyl cyanide-based copolymer is insufficient, and 50 Exceeding% by weight is not preferable because the color stability is lowered. Particularly preferred are those in the range of 33 to 45% by weight of vinyl cyanide monomer (a) and 67 to 55% by weight of aromatic vinyl monomer (b).
[0018]
In the composition distribution of vinyl cyanide in the copolymer (B), the copolymer having a composition higher than the average vinyl cyanide content by 2% by weight or more is 3 to 20% by weight in the copolymer (B). However, as a specific method thereof, a vinyl cyanide-based copolymer (II) having a composition distribution that is 2% by weight or more higher than the average vinyl cyanide content in the composition distribution is 2% by weight or less. There is a method of mixing 5 to 45 parts by weight of a vinyl cyanide copolymer (III) having a composition having a composition higher by 2 to 90% by weight and 2% by weight or more than the average vinyl cyanide content. .
[0019]
The composition distribution of vinyl cyanide was determined by adding cyclohexane to the methyl ethyl ketone solution of the vinyl cyanide copolymer, drying the fractionated vinyl cyanide copolymer, measuring the weight, and measuring the infrared spectrophotometry. The vinyl cyanide content was determined by a total. . Further, the average vinyl cyanide content was obtained by an infrared spectrophotometer without fractionation.
[0020]
There is no restriction | limiting in particular about the manufacturing method of rubber-containing graft copolymer (I) in this invention, It can manufacture by the polymerization method by emulsion polymerization method, block polymerization method, solution polymerization method, and those combination. Among them, the emulsion polymerization method is particularly preferable from the viewpoint of controlling the rubber particle size and the graft ratio.
[0021]
The polymerization method of the vinyl cyanide copolymer (II) in the present invention is not particularly limited, but a bulk polymerization method and a solution polymerization method are particularly preferable in that the composition distribution of vinyl cyanide is sharpened.
[0022]
The polymerization method of the vinyl cyanide copolymer (III) in the present invention is not particularly limited, but aqueous suspension polymerization is preferred in view of broadening the composition distribution of vinyl cyanide.
[0023]
Suspension stabilizers used in the polymerization include inorganic suspension stabilizers such as clay, barium sulfate, magnesium hydroxide, and organic suspensions such as polyvinyl alcohol, carboxymethyl cellulose, polyacrylamide, and methyl methacrylate / acrylamide copolymer. Polymerization can be performed with an azo initiator or a hydroxy peroxide initiator using a stabilizer or the like.
[0024]
There is no restriction | limiting in particular about the manufacturing method of the coating-resistant thermoplastic resin composition of this invention, A ribbon blender, a V-type blender, a Henschel mixer etc. can be used in the case of a mixing | blending. Moreover, the kneading | mixing process using extruders, such as a single screw extruder and a twin screw extruder, a Beverley mixer, a mixing roll, a pressure kneader, etc. is employable.
[0025]
Also, the rubber-containing graft copolymer (I) and the suspension are compared with the vinyl cyanide copolymer (II) which is in a molten state during the process of continuous bulk polymerization of the vinyl cyanide copolymer (II). It is preferable to continuously add and mix the vinyl cyanide copolymer (III) produced by the polymerization method in order to further improve the color tone.
[0026]
In particular, the slurry or water-containing cake obtained from the emulsion polymerization latex is added to the vinyl cyanide copolymer (II) in which the residual monomer is 10% by weight or less in the demonomer process of the vinyl cyanide copolymer (II). The rubber-containing graft copolymer (I) previously dehydrated and dried and the bead-like vinyl cyanide copolymer (III) obtained by suspension polymerization using a single screw extruder or a twin screw extruder It is preferable from the viewpoint of color tone that the coating-resistant thermoplastic resin composition is produced by continuously supplying to a twin-screw extruder with a vent, melting and mixing, and simultaneously de-monomerizing.
[0027]
In the present invention, if necessary, phenolic oxidation such as 2,6-di-t-butyl-4-methylphenol, 4,4'-butylidene-bis (3-methyl-6-t-butylphenol) and the like. Antioxidants, phosphite antioxidants such as tris (mixed, mono and diphenyl) phosphite, diphenylisodecyl phosphite, dilauryl thiodipropionate, dimyristyl thiodipropionate, diasterial thiodipropionate Sulfur antioxidants, benzotriazole ultraviolet absorbers such as 2-hydroxy-4-octoxybenzophenone and 2- (2-hydroxy-5-methylphenyl) benzotriazole, bis (2,2,6,6- Light stabilizers such as tetramethyl) -4-piperidinyl, hydroxylalkyl Antistatic agents such as amines and sulfonates, lubricants such as pentaerythritol tetrastearate, ethylenebisstearylamide, metal soaps, and tetrabromobisphenol A, decabromophenol oxide, TBA epoxy oligomer, TBA polycarbonate oligomer, antimony trioxide It is also possible to add various additives such as flame retardants and flame retardant aids, coloring agents, inorganic fillers such as glass fibers and carbon fibers, and the like.
[0028]
Among these, pentaerythritol tetrastearate is preferable in terms of paintability, and 0.1 to 5 parts by weight is good. If it is less than 0.1 parts by weight, the effect of improving the paintability is not sufficient, and if it exceeds 5 parts by weight, the moldability is inferior.
[0029]
The paint-resistant thermoplastic resin composition of the present invention is excellent in the balance of impact resistance, paint resistance, color stability upon melting, and molding processability, so that injection molding, sheet molding, extrusion molding, blow molding, It is used for various molding processes such as compression molding and vacuum molding, and these processed products are suitable for painting, vacuum deposition, plating and the like.
[0030]
Acrylic paints and urethane paints are particularly suitable for the paint-resistant thermoplastic resin composition of the present invention. Acrylic paints include acrylic acid and esters thereof, and methacrylic acid and esters thereof or other materials. It is a paint having a copolymer resin with a vinyl compound as a main component for coating film formation. The urethane-based paint is a paint having urethane bonds in the resin skeleton or forming urethane bonds in the process of forming a coating film.
[0031]
In order to describe the present invention more specifically, examples and comparative examples will be described below, but these examples do not limit the present invention. In the reference examples, examples and comparative examples, “part” means “part by weight” and “%” means “% by weight”. The obtained rubber-containing graft copolymer (I), vinyl cyanide copolymer (II), vinyl cyanide copolymer (III), copolymer (B), and coating resistant thermoplastic resin Each physical property value of the composition was determined by the following test method.
[0032]
Graft ratio: A rubber-containing graft copolymer (I) (weight M) was added with acetone and refluxed for 3 hours. The solution was centrifuged for 40 minutes, the insoluble matter was filtered, and the insoluble matter was vacuumed at 60 ° C. for 5 hours. Dryness and weight (N) were measured. The graft ratio was determined by the following formula. In the formula, L is the rubbery polymer content (%) in the rubber-containing graft copolymer (I).
[0033]
Graft rate (%) = 100 × (N−M × L / 100) / (M × L / 100).
[0034]
Reduced viscosity: Measured from a methyl ethyl ketone solution using a Ubbelohde viscometer at a measurement temperature of 30 ° C. and a sample concentration of 0.4 g / dl.
[0035]
Average vinyl cyanide content: A sample was formed into a film of about 40 μm by a heating press, and obtained by an infrared spectrophotometer.
[0036]
Vinyl cyanide composition distribution: 2 g of sample was dissolved in 80 ml of methyl ethyl ketone, cyclohexane was added thereto, the precipitated vinyl cyanide copolymer was vacuum dried and weighed, and the vinyl cyanide copolymer was measured. The vinyl cyanide content of the polymer was determined from the absorbance ratio of infrared spectroscopic analysis. Then, the cumulative weight% and vinyl cyanide content were plotted, and a ratio (%) of 2% by weight or more was determined from the average vinyl cyanide content.
[0037]
Izod impact strength: A paint-resistant thermoplastic resin composition was injection molded, and the obtained molded product was measured for Izod impact strength with a 1/2 inch notch according to ASTM D256.
[0038]
Color tone stability during melting: When injection-molding a paint-resistant thermoplastic resin composition, it was retained in a molding machine at 230 ° C. for 30 minutes, and the resulting molded product was measured by Nippon Denshoku Industries Co., Ltd. according to JISK7103. The yellowing degree (YI) was measured using a color difference meter.
[0039]
Paint resistance: A paint-resistant thermoplastic resin composition is injection-molded, and an acrylic paint solution (paint acrylic line # 66E manufactured by Fujikura Kasei Co., Ltd./thinner acrylic line type I thinner = 50 / 50 weight ratio) was spray-coated, and the appearance of the coated surface after drying at 70 ° C. for 30 minutes was evaluated. In the case of urethane paint, Nippon Paint Co., Ltd. Brush White (undercoat: Pu Blush White Base, middle coat: Pu Blush White Coctail # 1, top coat: Pu Pearl Cleaner, curing agent: Polyuremightylac Hardenner, thinner: Polyuremig htylac) was applied and dried at 70 ° C. for 30 minutes, and the coating film adhesion of the painted surface was evaluated.
[0040]
Flowability: According to ISO 1133, a melt flow rate at 220 ° C. and a load of 10 kg was measured.
[0041]
In order to describe the present invention more specifically, examples and comparative examples will be described below, but the present invention is not limited to these examples. Unless otherwise specified, “%” represents “% by weight” and “part” represents “part by weight”.
[0042]
【Example】
Reference Example 1 (Production of rubber-containing graft copolymer (I))
In a reactor purged with nitrogen, 120 parts of pure water, 0.5 part of glucose, 0.5 part of sodium pyrophosphate, 0.005 part of ferrous sulfate and polybutadiene latex (rubber particle diameter 0.3 μm, gel content 85%) 50 parts (in terms of solid content) were charged, and the temperature in the reactor was raised to 65 ° C. while stirring. When the internal temperature reached 65 ° C., polymerization was started and a mixture of monomer (35 parts of styrene, 15 parts of acrylonitrile) and 0.3 part of t-dodecyl mercaptan was continuously added dropwise over 5 hours. At the same time, an aqueous solution consisting of 0.25 parts of cumene hydroperoxide, 2.5 parts of potassium oleate and 25 parts of pure water was continuously added dropwise over 7 hours to complete the reaction. The obtained graft copolymer latex was coagulated with sulfuric acid, neutralized with caustic soda, washed, filtered, and dried to obtain a rubber-containing graft copolymer (I). This rubber-containing graft copolymer (I) had a rubbery polymer content of 50%, a graft ratio of 45%, and a reduced viscosity of the resin component of 0.68 dl / g.
[0043]
Reference Example 2 (Production of vinyl cyanide copolymer (II) A)
A monomer mixture consisting of 25 parts of acrylonitrile, 75 parts of styrene and 0.15 part of n-octylmecaptan was prepared using a continuous bulk polymerization apparatus consisting of two tanks having the specifications shown in Table 1, a preheater and a demonomer. It was continuously fed to the first polymerization tank at 135 kg / hour, and continuous bulk polymerization was performed. The polymerization rate in the first polymerization tank was between 58 and 61%, and the polymerization rate of the polymer from the second polymerization tank was controlled between 90 and 91%. The polymerization reaction mixture was obtained by evaporating and recovering unreacted monomers from the vent port under reduced pressure using a single-screw extruder type demonomer, and from the front end of the demonomer, the vinyl cyanide copolymer (II) A described in Table 3 Got. Table 3 shows the average vinyl cyanide content of the obtained vinyl cyanide copolymer (II) A and the ratio (%) of 2% by weight or more from the average vinyl cyanide content.
[0044]
Reference Example 3 (Production of vinyl cyanide copolymer (II) B)
A monomer mixture consisting of 25 parts of acrylonitrile, 75 parts of styrene and 0.18 part of n-octylmecaptan was prepared using a continuous bulk polymerization apparatus consisting of one tank having the specifications shown in Table 2 and a preheater and a demonomer. The polymer was continuously fed to the polymerization tank at a rate of 135 kg / hour to carry out continuous bulk polymerization. The polymerization rate of the polymer discharged from the polymerization tank is controlled between 74 to 76%, and the polymerization reaction mixture is preheated by a single screw extruder type preheater and then unreacted by a twin screw extruder type demonomer. Was recovered by evaporation under reduced pressure from the vent port, and vinyl cyanide copolymer (II) B having the composition shown in Table 3 was obtained from the tip of the demonomer machine. Table 3 shows the average vinyl cyanide content of the obtained vinyl cyanide copolymer (II) B and the ratio (%) of 2% by weight or more from the average vinyl cyanide content.
[0045]
Reference Example 4 (Production of vinyl cyanide copolymer (II) C)
A monomer mixture consisting of 28 parts of acrylonitrile, 72 parts of styrene and 0.18 parts of n-octylmecaptan was prepared using a continuous bulk polymerization apparatus consisting of one tank having the specifications shown in Table 2 and a preheater and a demonomer. The polymer was continuously fed to the polymerization tank at a rate of 135 kg / hour to carry out continuous bulk polymerization. The polymerization rate of the polymer discharged from the polymerization tank is controlled between 74 to 76%, and the polymerization reaction mixture is preheated by a single screw extruder type preheater and then unreacted by a twin screw extruder type demonomer. Was recovered by evaporation under reduced pressure from the vent port, and vinyl cyanide copolymer (II) C having the composition shown in Table 3 was obtained from the front end of the demonomer machine. Table 3 shows the average vinyl cyanide content of the obtained vinyl cyanide copolymer (II) C and a ratio (%) of 2% by weight or more based on the average vinyl cyanide content.
[0046]
Reference Example 5 (Production of vinyl cyanide copolymer (III) a)
In a stainless steel autoclave having a volume of 20 L and equipped with a baffle and a foudra-type stirring blade, 0.05 part of methyl methacrylate / acrylamide copolymer (described in Japanese Patent Publication No. 45-24151) was dissolved in 165 parts of ion-exchanged water. The solution was stirred at 400 rpm, and the system was replaced with nitrogen gas. Next, a mixed solution of 31 parts of acrylonitrile, 69 parts of styrene, 0.3 part of t-dodecyl mercaptan and 0.52 part of 2.2'-azobisisobutyronitrile was added while stirring the reaction system, and the temperature was raised to 60 ° C. Warm and initiate polymerization. The temperature was raised to 65 ° C. by 100 minutes from the start of polymerization, and then heated to 100 ° C. over 50 minutes to complete the polymerization. Thereafter, the reaction system was cooled, the polymer was separated, washed and dried in accordance with the usual method to obtain a vinyl cyanide copolymer (III) a. Table 3 shows the average vinyl cyanide content of the obtained vinyl cyanide copolymer (III) a and a ratio (%) of 2% by weight or more from the average vinyl cyanide content.
[0047]
Reference Example 6 (Production of vinyl cyanide copolymer (III) b)
Production was carried out in the same manner as in Reference Example 5 except that acrylonitrile in Reference Example 5 was changed to 37 parts and styrene was changed to 63 parts to obtain vinyl cyanide-based copolymer (III) b shown in Table 3.
[0048]
Reference Example 7 (Production of vinyl cyanide copolymer (III) c)
Production was carried out in the same manner as in Reference Example 5 except that 20 parts of acrylonitrile and 80 parts of styrene were changed in Reference Example 5 to obtain vinyl cyanide-based copolymer (III) c shown in Table 3.
[0049]
Reference Example 8 (Production of vinyl cyanide copolymer (III) d)
Production was carried out in the same manner as in Reference Example 5 except that acrylonitrile in Reference Example 5 was changed to 37 parts and styrene was changed to 63 parts. Thus, a vinyl cyanide copolymer (III) d shown in Table 3 was obtained.
[0050]
Examples 1-3
Rubber-containing graft copolymer (I) obtained by Reference Example 1, vinyl cyanide copolymers (II) A to C obtained by Reference Examples 2 to 4, and cyan obtained by Reference Examples 5 to 6 The vinyl fluoride copolymers (III) ab and pentaerythritol tetrastearate are mixed with a Henschel mixer at the blending ratio shown in Table 4, then melt-kneaded with a 40 mmφ single extruder, and a paint-resistant thermoplastic resin composition. Got. 2% by weight from the rubbery polymer content of the resulting coating-resistant thermoplastic resin composition, the average vinyl cyanide content of the copolymer (B), and the average vinyl cyanide content of the copolymer (B) The ratio (%), 1/2 inch notched Izod impact strength, yellowing degree (YI), paintability and melt flow rate were measured and shown in Table 4.
[0051]
Example 4
In the same manner as in Reference Example 3, vinyl cyanide-based copolymer (II) B shown in Table 3 was obtained by continuous bulk polymerization. The rubber-containing graft copolymer produced in Reference Example 1 at a rate of 20 kg / hr from a twin-screw extruder type feeder having a heating device connected in tandem from the tip of the demonomer to a 1/3 long barrel. (I) Powder, the cyanidated vinyl cyanide copolymer (III) b produced in Reference Example 6 at a rate of 7 kg / hr and pentaerythritol tetrastearate at a rate of 1 kg / hr, cyanide at a rate of 73 kg / hr After melt-kneading with vinyl copolymer (II) B and a demonomer, unreacted monomers were recovered by evaporation from the vent port under reduced pressure and discharged into strands to obtain paint-resistant thermoplastic resin composition pellets by a cutter. . 2% by weight from the rubbery polymer content of the resulting coating-resistant thermoplastic resin composition, the average vinyl cyanide content of the copolymer (B), and the average vinyl cyanide content of the copolymer (B) The ratio (%), 1/2 inch notched Izod impact strength, yellowing degree (YI), paintability and melt flow rate were measured and shown in Table 4.
[0052]
Comparative Examples 1-8
Rubber-containing graft copolymer (I) obtained by Reference Example 1, vinyl cyanide-based copolymers (II) A to C obtained by Reference Examples 2 to 4, and cyan obtained by Reference Examples 5 to 8 The vinyl fluoride copolymers (III) a to d and pentaerythritol tetrastearate were mixed with a Henschel mixer at the blending ratio shown in Table 4 and then melt-kneaded with a 40 mmφ extruder to obtain a paint-resistant thermoplastic resin composition. Obtained. 2% by weight from the rubbery polymer content of the resulting coating-resistant thermoplastic resin composition, the average vinyl cyanide content of the copolymer (B), and the average vinyl cyanide content of the copolymer (B) The ratio (%), 1/2 inch notched Izod impact strength, yellowing degree (YI), paintability and melt flow rate were measured and shown in Table 4.
[0053]
From Examples 1 to 4, it can be seen that the coating-resistant thermoplastic resin composition in the range specified in the present invention is excellent in the balance between impact resistance, coating resistance, color tone stability upon melting, and molding processability. .
[0054]
However, in Comparative Examples 1 to 8, the rubbery polymer content, the average vinyl cyanide content of the copolymer (B), and the ratio of 2% by weight or more from the average vinyl cyanide content of the copolymer (B) ( %) Is outside the range defined by the present invention, Comparative Examples 1, 4, and 7 have poor paintability, Comparative Example 6 has low impact strength, and Comparative Examples 2, 3, 5, and 8 have yellowing degrees. Large color stability is poor.
[0055]
From the examples and comparative examples, it can be seen that the paint-resistant thermoplastic resin composition of the present invention has an excellent balance of impact resistance, paint resistance, color tone stability upon melting, and moldability. This is achieved for the first time by combining a vinyl cyanide copolymer having a specific vinyl cyanide content and composition distribution, a rubber-containing graft copolymer, and optionally pentaerythritol tetrastearate. It is.
[0056]
[Table 1]
Figure 0003684744
[Table 2]
Figure 0003684744
[Table 3]
Figure 0003684744
[Table 4]
Figure 0003684744
[0057]
【The invention's effect】
The paint-resistant thermoplastic resin composition of the present invention may be a combination of a vinyl cyanide copolymer having a specific vinyl cyanide content and composition distribution, a rubber-containing graft copolymer, and pentaerythritol tetrastearate. It is a characteristic and has excellent balance of impact resistance, paint resistance, color tone stability during melting, and moldability.
[0058]
The paint-resistant thermoplastic resin composition of the present invention can be used for various molding applications by taking advantage of these characteristics, and particularly as a resin material for exterior parts for automobiles and motorcycles for acrylic paints and urethane paints. Is preferred.

Claims (6)

ゴム含有グラフト共重合体(I)10〜50重量部、
シアン化ビニル系単量体(a)15〜30重量%、芳香族ビニル系単量体(b)85〜70重量%からなり、かつ平均シアン化ビニル含有率より2重量%以上高い組成を有する共重合体が共重合体中2重量%以下であるシアン化ビニル系共重合体(II)50〜90重量部、
およびシアン化ビニル系単量体(a)30〜50重量%、芳香族ビニル系単量体(b)70〜50重量%からなり、かつ平均シアン化ビニル含有率より2重量%以上高い組成を有する共重合体が共重合体中25重量%以上40重量%以下であるシアン化ビニル系共重合体(III) 5〜45重量部からなる耐塗装性熱可塑性樹脂組成物であってゴム質重合体(A)5〜40重量%、ゴム質重合体以外の共重合体(B)95〜60重量%からなる樹脂組成物において、下記(1)および(2)をともに満足することを特徴とする耐塗装性熱可塑性樹脂組成物。
(1)共重合体(B)の平均シアン化ビニル含有率が25〜35重量%。
(2)共重合体(B)のシアン化ビニルの組成分布において、平均シアン化ビニル含有率より2重量%以上高い組成を有する共重合体が共重合体(B)中に3〜20重量%存在すること。
10 to 50 parts by weight of rubber-containing graft copolymer (I),
It is composed of 15 to 30% by weight of vinyl cyanide monomer (a) and 85 to 70% by weight of aromatic vinyl monomer (b), and has a composition 2% or more higher than the average vinyl cyanide content. 50 to 90 parts by weight of vinyl cyanide copolymer (II) whose copolymer is 2% by weight or less in the copolymer,
And 30% to 50% by weight of the vinyl cyanide monomer (a), 70% to 50% by weight of the aromatic vinyl monomer (b) and 2% by weight or more higher than the average vinyl cyanide content. A coating-resistant thermoplastic resin composition comprising 5 to 45 parts by weight of a vinyl cyanide-based copolymer (III) whose copolymer is 25 wt% or more and 40 wt% or less in the copolymer. In the resin composition comprising 5 to 40% by weight of the union (A) and 95 to 60% by weight of the copolymer (B) other than the rubbery polymer, both of the following (1) and (2) are satisfied. A paint-resistant thermoplastic resin composition.
(1) The average vinyl cyanide content of the copolymer (B) is 25 to 35% by weight.
(2) In the composition distribution of vinyl cyanide in the copolymer (B), a copolymer having a composition higher by 2% by weight or more than the average vinyl cyanide content is 3 to 20% by weight in the copolymer (B). It exists.
ゴム含有グラフト共重合体(I)が、ゴム質重合体(A)の存在下にシアン化ビニル系単量体(a)、芳香族ビニル系単量体(b)およびこれらと共重合可能な他の単量体(c)から選ばれた少なくとも1種以上の単量体をグラフトしてなるゴム含有グラフト共重合体であることを特徴とする請求項1記載の耐塗装性熱可塑性樹脂組成物。  The rubber-containing graft copolymer (I) can be copolymerized with the vinyl cyanide monomer (a), the aromatic vinyl monomer (b) and these in the presence of the rubber polymer (A). The paint-resistant thermoplastic resin composition according to claim 1, which is a rubber-containing graft copolymer obtained by grafting at least one monomer selected from other monomers (c). Stuff. シアン化ビニル系共重合体(II)が連続塊状重合法により製造されることを特徴とする請求項1記載の耐塗装性熱可塑性樹脂組成物。  The paint-resistant thermoplastic resin composition according to claim 1, wherein the vinyl cyanide copolymer (II) is produced by a continuous bulk polymerization method. シアン化ビニル系共重合体(III)が懸濁重合法により製造されることを特徴とする請求項1記載の耐塗装性熱可塑性樹脂組成物。  2. The paint-resistant thermoplastic resin composition according to claim 1, wherein the vinyl cyanide copolymer (III) is produced by a suspension polymerization method. 共重合体(B)、シアン化ビニル系共重合体(II)およびシアン化ビニル系共重合体(III) がスチレンーアクリロニトリル共重合体であることを特徴とする請求項1、3または4記載の耐塗装性熱可塑性樹脂組成物。  5. The copolymer (B), vinyl cyanide copolymer (II) and vinyl cyanide copolymer (III) are styrene-acrylonitrile copolymers. Paint resistant thermoplastic resin composition. 請求項1の耐塗装性熱可塑性樹脂組成物100重量部に対してペンタエリスリトールテトラステアレート0.1〜5重量部を添加したことを特徴とする塗装性熱可塑性樹脂組成物。  A paintable thermoplastic resin composition comprising 0.1 to 5 parts by weight of pentaerythritol tetrastearate added to 100 parts by weight of the paint-resistant thermoplastic resin composition of claim 1.
JP04611097A 1996-03-13 1997-02-28 Paint resistant thermoplastic resin composition and method for producing the same Expired - Lifetime JP3684744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04611097A JP3684744B2 (en) 1996-03-13 1997-02-28 Paint resistant thermoplastic resin composition and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5581496 1996-03-13
JP8-55814 1996-03-13
JP04611097A JP3684744B2 (en) 1996-03-13 1997-02-28 Paint resistant thermoplastic resin composition and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09302197A JPH09302197A (en) 1997-11-25
JP3684744B2 true JP3684744B2 (en) 2005-08-17

Family

ID=26386233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04611097A Expired - Lifetime JP3684744B2 (en) 1996-03-13 1997-02-28 Paint resistant thermoplastic resin composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP3684744B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11208548B2 (en) 2016-03-10 2021-12-28 Techno-Umg Co., Ltd. Thermoplastic resin composition and resin molded article

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1564249B1 (en) * 2002-11-21 2009-09-23 Techno Polymer Co., Ltd. Thermoplastic resin composition, thermoplastic resin composition for exterior automotive molding, exterior automotive molding, and process for producing exterior automotive molding
JP2006111764A (en) * 2004-10-15 2006-04-27 Umg Abs Ltd Thermoplastic resin composition for direct vapor deposition, and molded article and lamp
JP2006131740A (en) * 2004-11-05 2006-05-25 Umg Abs Ltd Thermoplastic resin composition for direct vapor deposition and molded product and lamp using the same
US8334349B2 (en) 2008-07-08 2012-12-18 Toray Industries, Inc. Method for producing thermoplastic copolymer
JP2012177088A (en) * 2011-02-04 2012-09-13 Toray Ind Inc Thermoplastic resin composition, and molding thereof
CN102513944A (en) * 2011-12-29 2012-06-27 云南光电辅料有限公司 Resin-bonded grinding tool for processing sapphire crystals and preparation method for resin-bonded grinding tool
JP6447306B2 (en) * 2015-03-30 2019-01-09 東レ株式会社 Thermoplastic resin composition
JP6850932B1 (en) * 2020-11-10 2021-03-31 日本エイアンドエル株式会社 Resin composition for painting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11208548B2 (en) 2016-03-10 2021-12-28 Techno-Umg Co., Ltd. Thermoplastic resin composition and resin molded article

Also Published As

Publication number Publication date
JPH09302197A (en) 1997-11-25

Similar Documents

Publication Publication Date Title
KR101432633B1 (en) Thermoplastic Resin Composition Having Improved Aluminium Deposition and Adhesion Strength
JP3684744B2 (en) Paint resistant thermoplastic resin composition and method for producing the same
AU8321087A (en) Heat and impact resistant resin composition
KR20060079106A (en) Plastic resin composition having improved heat resistance, weld strength, chemical resistance, impact strength, elongation, and wettablility
EP1178079A1 (en) Rubber-reinforced transparent resin composition and method of producing the same
JPH0291152A (en) Reinforced or filled mixture of thermoplastic interpolymer and polyamide, and manufacture thereof
JP4119117B2 (en) Thermoplastic resin composition
JP3080217B2 (en) Thermoplastic copolymer and thermoplastic resin composition using the same
JP3405478B2 (en) Thermoplastic resin composition
JP2007023098A (en) Thermoplastic resin composition and its molded article
JP4595204B2 (en) Thermoplastic resin composition
US20060111514A1 (en) Thermoplastic resin composition, thermoplastic resin composition for exterior automotive molding, exterior automotive molding, and process for producing exterior automotive molding
JP4055979B2 (en) Thermoplastic resin composition
JP3694986B2 (en) Thermoplastic resin composition for blow molding and blow molded article comprising the same
KR100492806B1 (en) Thermoplastic sealant and its manufacturing method
JPH08333489A (en) Rubberlike polymer latex for base rubber of rubber-reinforced vinyl polymer, rubber-reinforced vinyl polymer, and thermoplastic polymer composition
JP2996115B2 (en) Thermoplastic resin composition
JP4827041B2 (en) Thermoplastic resin composition and molded article thereof
JP2000086848A (en) Thermoplastic resin composition for extrusion molding and molding made therefrom
JPH11315184A (en) Vinyl aromatic polymer/ketone polymer composition
JPH1036626A (en) Thermoplastic resin composition for blow molding and blow molded item produced therefrom
JP5573321B2 (en) Polystyrene resin coating resin composition and coated molded article
JPH09302174A (en) Thermoplastic resin composition for blow molding
KR20000029505A (en) Hub caps
JPH09137018A (en) Thermoplastic resin composition for blow molding

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 9

EXPY Cancellation because of completion of term