JP3684097B2 - In-pipe soil measurement method during construction of open-end steel pipe piles - Google Patents

In-pipe soil measurement method during construction of open-end steel pipe piles Download PDF

Info

Publication number
JP3684097B2
JP3684097B2 JP03147299A JP3147299A JP3684097B2 JP 3684097 B2 JP3684097 B2 JP 3684097B2 JP 03147299 A JP03147299 A JP 03147299A JP 3147299 A JP3147299 A JP 3147299A JP 3684097 B2 JP3684097 B2 JP 3684097B2
Authority
JP
Japan
Prior art keywords
steel pipe
pipe pile
soil
pile
open
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03147299A
Other languages
Japanese (ja)
Other versions
JP2000230234A (en
Inventor
孝雄 佐々木
一男 山本
成彦 山名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP03147299A priority Critical patent/JP3684097B2/en
Publication of JP2000230234A publication Critical patent/JP2000230234A/en
Application granted granted Critical
Publication of JP3684097B2 publication Critical patent/JP3684097B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、下端が解放された鋼管杭を地中に貫入する際に管内に侵入する土の高さを計測する方法に関する。
【0002】
【従来技術】
建築や土木構造物の基礎杭として用いられる鋼管杭の押込み支持力は、周面摩擦力と先端抵抗力の和となる。この内、先端抵抗力の算定において先端を解放した開端鋼管杭の場合は、打ち込みや圧入による貫入施工時に管内に侵入した土砂が鋼管杭の先端部を閉塞することによる先端抵抗力を評価できる。しかし、この閉塞作用は鋼管杭の径が大きくなると先端から管内土が侵入しやすくなり、閉塞作用が得にくくなる傾向があることが知られており、先端抵抗力の推定においては閉塞の程度(以下、閉塞率という)を知る必要がある。
この閉塞作用は管内土の高さと密接に関係するため管内土の高さ(鋼管杭先端から管内に侵入した土の表面までの距離)を計測すれば閉塞率を推定することができる。
【0003】
そしてこの閉塞率は、鋼管杭の先端抵抗力を評価する指標となる。すなわち、下端が解放された鋼管杭は地中に貫入するにともなって管内に土が侵入し、管内土の高さが増加するが、一定高さになると鋼管杭の内周壁と土の摩擦力によって先端閉鎖の効果が期待できるため、その閉鎖断面積の先端抵抗力を支持力算定において評価することができる。例えば、管内土が全く無い場合は鋼管杭の板厚面積分しか先端抵抗力を評価できないが、十分管内土高さがあると管内周面の摩擦抵抗によって鋼管杭先端部が閉塞状態となるため、先端の全面積が先端抵抗力として評価できる。
【0004】
この管内土高さの計測は、打ち込みや圧入による鋼管杭の貫入施工の他、特に鋼管杭の回転圧入工法による施工において重要なパラメータとなる。
【0005】
回転圧入工法は、下端部の外側面に羽根を設けた鋼管杭を無騒音・無振動で、かつ容易に回転圧入して貫入施工できるとともに、羽根部の支持力が付加されて大きな支持力を発揮できる。また、本工法は、回転圧入時のトルク、圧入力等の施工中の計測データから支持力を評価できる特徴を有するため、鋼管杭1本毎に支持力を確認しながら信頼性の高い施工管理ができる。この支持力評価において、鋼管杭の施工中の管内土の高さを連続して計測することができれば、このデータとトルク、圧入力等の施工管理データと組み合わせてリアルタイムに支持力を算定するすることが可能となる。
【0006】
従来、鋼管杭の打撃工法や圧入工法において行われていた管内土の計測方法は、図8に示すように、重り11を付けた検尺ロープ12を鋼管杭1の頂部から管内に吊り下げて、管内土2の表面2aと鋼管杭1の頂部の距離L1を計測して、鋼管杭全長Lから差し引いて管内土高さhを求める簡易な方法があった。
【0007】
【発明が解決しようとする課題】
しかし、前述の従来法は計測時に鋼管杭の施工を中断する必要があるとともに、鋼管杭の頂部が地上より高い位置にある状態では高所作業となって危険がともなうため、通常は鋼管杭の打設・圧入の完了後に行われていた。このため施工途中の管内土の連続データが得られない課題があった。
本発明の目的はこの課題を解消し、鋼管杭の貫入施工中に安全に、かつリアルタイムで管内土の高さを連続して計測可能とするものである。
【0008】
【課題を解決する手段】
本発明では、前記の目的を達成するため以下の構成とした。
請求項1に係る発明は、先端を解放した開端鋼管杭1の管内土2の高さを計測する方法において、鋼管杭1内に着脱可能なクランプ3に取り付けた光波距離計4を設け、鋼管杭1を地中に貫入する際に管内に侵入する土の高さhを非接触で計測することを特徴とする開端鋼管杭の施工時における管内土計測方法である。
【0009】
請求項2に係る発明は、請求項1における着脱可能なクランプ3に取付けた光波距離計4のセット位置を、光波ビーム5が鋼管杭1の管内壁に干渉しないようにクランプセット誤差とビーム特性に関係付けられた限界距離A内とした管内土高さ計測方法である。
【0010】
また、請求項3の発明は、鋼管杭下端部の外側面に羽根8を設けた開端鋼管杭1を回転圧入して埋設施工する回転圧入杭工法において、鋼管杭1内に着脱可能なクランプ3に取り付けた光波距離計4を設け、鋼管杭の頂部に設けた発信機9から管内度高さ計測データを地上の受信機10に無線伝送し、鋼管杭1を地中に貫入する際に管内に侵入する土の高さhを非接触で計測することを特徴とする開端鋼管杭の施工時における管内土計測方法である。
【0011】
【作用】
本発明の管内土高さ計測方法は、鋼管杭1を地中に貫入する際に、開端鋼管杭1中の上方に着脱可能に設けたクランプ3に光波距離計4を固定して取り付け、この光波距離計4から発振される光波ビーム5、で管内土の表面2aまでの距離L2を非接触で連続的に計測するものである。使用する光波距離計4は各種のレーザー距離計を用いることができるが、鋼管杭内の狭い空間にセットするためコンパクトな発振器が使える半導体レーザー距離計を用いるのが望ましい。
【0012】
この光波距離計4はクランプ3にて鋼管杭1の管内壁にセットするが、通常、鋼管杭は約10〜20mの長さのものを地中に貫入するに従って数本を溶接接合して延長するため、クランプ3は着脱可能なものにして鋼管杭1の接合時にセット替えが容易なものにする必要がある。
【0013】
クランプ3は鋼管杭1の管内壁を押圧して保持する機構を用い、望ましくは地上から遠隔操作で着脱できるものがよい。
【0014】
鋼管杭1内にセットする光波距離計4は、管内土表面2aとの距離があまり離れすぎると狭い鋼管内では管壁の影響が問題となる。この理由の一つは、クランプ3にて光波距離計4をセットする際の傾斜精度の問題である。すなわち、光波距離計4が傾斜して鋼管杭1内にセットされた場合、管内土表面2aとの距離が長いと図2(a)に示すように、光てこの作用によりわずかの傾斜sが大きなずれとなってしまい、光波ビーム5が管内土表面2aから外れて管壁に当り屈折反射して計測誤差を生じたり計測不能となったりする。また、半導体レーザーを用いた場合、装置をコンパクトにできる反面レーザービーム5の集光度が低いため、発振距離が長くなると図2(b)に示すように拡散した光波ビーム5が管壁に干渉してしまう。この場合も、管壁に当った光波ビーム5が屈折反射して計測誤差または計測不能の要因となる。
【0015】
請求項2の発明はこの問題を解消するもので、光波距離計4を光波ビーム5が管壁に干渉しないように、クランプセット誤差とビーム特性に関係付けられた限界距離A内にセットするようにしたものである。ここで限界距離Aは、クランプセット傾斜誤差による光波ビーム5の光軸のずれ量(r2)に光波ビーム半径(r1)を加えたものが鋼管杭1の半径(r)と同じになる距離である。すなわち、図3に示すように光波距離計4のクランプセット時の傾斜誤差を(s度)とした場合、A×(tans)+(r1)=rとなるAを限界距離とする。
【0016】
請求項3の発明は鋼管杭1を回転圧入する施工方法において、管内土2の高さを光波距離計4で非接触計測する方法である。鋼管杭1の貫入施工手段として回転圧入工法を用いる場合は、計測時に鋼管杭1が回転するため光波距離計4の信号伝達を有線で行うことができない。このため、光波距離計4で計測した管内土高さのデータを、鋼管杭1の頂部に設けた発信機9から地上の受信機に無線伝送して計測するようにしたものである。
【0017】
【発明の実施の形態】
以下、本発明の実施形態を図を参照して説明する。
図1は本発明の実施形態を示すものである。本発明を適用する鋼管杭1は、主として直径500mm以上の大径で先端が解放されている開端鋼管杭であり、地中への貫入施工は杭打ちハンマーによる打撃方式、圧入方式または回転圧入方式による。
【0018】
開端鋼管杭を地中に貫入すると杭先端から貫内に土が侵入し、管内土2の高さが増すと杭先端を閉塞する作用を呈する。本発明は鋼管杭1内により管内土2の高さを光波距離計4で非接触で、かつ連続して計測する方法を提供するものである。その計測手段は、鋼管杭1内の所定位置に着脱可能なクランプ3に取り付けた光波距離計4をセットしておき鋼管杭先端に向けて光波ビーム5を発振し、管内土2の表面2aで反射された光波ビーム5を捉えて計測装置4aで信号処理して距離L2を計測し、演算処理して管内土高さhを知るものである。
【0019】
光波距離計4は、小型発振器を使用できるように半導体レーザービーム距離計を用い、クランプ3に取付けて鋼管杭1の所定位置にセットする。
【0020】
光波距離計4を取り付けたクランプ3は、図4に示すように伸縮シリンダ3aにて着脱可能に鋼管杭内壁を押圧して位置保持するもので、伸縮シリンダ3aは空気圧、油圧、電動または手動式のものが使用できる。
【0021】
また、図5に示すクランプ3は、駆動源を用いないで地上からの遠隔操作で着脱セットするものであって、鋼管杭内壁を押圧する左右のクランプシュー3bをアーム3cの一端にピン結合3dし、さらに、このアーム同士を鋼管杭の中心部でピン連結3eし、またアーム3cの拡張方向にバネ3fを配し、またアーム3cのピン連結部3eには着脱ロ−プ6が取り付けられ、各クランプシュー3bには位置決めロープ7が取り付けられている。着脱ロープ6、位置決めロープ7のいずれも鋼管杭頂部を介して地上に達するように配置し、地上にて自由にクランプ3の着脱セットを可能としている。
【0022】
このクランプの着脱操作は、クランプを移動する場合、先ず着脱ロープを引っ張ると図6に示すように、クランプシュー3bとアーム3cの自重でアーム3cがピン部3d,3eを回転軸として回転して、クランプシュー3bが鋼管杭中心側に引き寄せられ管壁から離脱する。次に着脱ロープ6を引っ張った状態で位置決めロープ7によってクランプ3を所定の位置に移動した後、着脱ロープ6を緩めると図6に示すようにバネ3fの拡張力によって、クランプシュー3bが管壁方向に移動して管壁を押圧してクランプされる。押圧力を増すために、図示のようにアーム3cのピン連結部3eに重り3gを吊り下げて自重を増してもよい。なお、クランプ3は前記の例以外の公知の手段を用いてもよい。
【0023】
光波距離計4(とクランプ3)のセット位置は、前述のように管内土の表面2aから一定範囲の限界距離A内とした方が管内壁の影響を受けずに安定した計測が得られ、セット時の傾斜sをある程度許容できるためセット作業が容易となる。例えば、光波ビーム5の拡散特性が10mで4cmの半導体レーザーを用いて、鋼管杭1,000mm 、内径でセット時傾斜誤差sを5度許容するとしたら、管壁に光波ビーム5が触れない限界距離Aは約6mとなるため、管内土表面2aからこれ以下の距離に光波距離計4をセットする。
同様な条件でセット時傾斜誤差を2度許容する場合は限界距離Aは約13mとなる。
【0024】
なお、あまり光波距離計4(クランプ3)を管内土表面に近ずけてセットしていると、鋼管杭貫入施工に伴う管内土の侵入により当該光波距離計4(クランプ3)が管内土表面2aに接触してしまうため、セット替えを頻繁に行う必要が生じて好ましくない。実際面では限界距離Aは、鋼管杭1の直径の3〜10倍程度の範囲にするのが望ましい。
【0025】
【実施例】
図7は回転圧入工法で施工される鋼管杭1において、管内土2を計測する方法の実施例を示す図である。
回転圧入杭は図7a,7b に示すように、鋼管杭下端部の外側面に羽根8を設けた開端鋼管杭を回転圧入して埋設施工するため、鋼管杭1内にセットした光波距離計4の信号を地上の計測装置に有線で伝送できない。このため鋼管杭の頂部に設けた発振器9から計測データを地上の受信機10に無線伝送して行う。
【0026】
以上の手段で得られた鋼管杭の貫入施工中の管内土高さデータより、あらかじめ検証されている土質、管径等の条件と管内土高さの関係から閉塞率を推定することができる。
【0027】
また、連続して得られる管内土高さのデータの変化と鋼管杭の貫入量変化との関係から、リアルタイムに先端閉塞の状態を推定することもできる。すなわち、鋼管杭の貫入量と同じように管内土高さが増加している場合は、先端解放状態(閉塞率0%)のままと推定され、鋼管杭が貫入しているにも拘わらず管内土高さが変化せず、一定値を示す場合は先端閉塞状態(閉塞率100%)を示すものと推定できる。そして、この閉塞率により、鋼管杭の先端抵抗力を評価することができる。
【0028】
【発明の効果】
本発明によれば、先端を解放した開端鋼管杭の貫入施工時における管内土の高さを管内にセットした光波距離計によって連続して計測できるため、杭の貫入施工を中断することがなく計測作業を安全にできる。また、請求項2の発明によれば、管内土の表面から一定の範囲に光波距離計をセットして計測するため管壁の影響をうけないで安定して計測が行える。得られた管内土高さのデータによって鋼管杭先端の閉塞状態の推定が的確に行え、鋼管杭の先端支持力評価に反映される。特に回転圧入杭工法に本発明を適用すると鋼管杭貫入施工中の先端支持力評価がリアルタイムにかつ的確に得られ、鋼管杭支持力大きな効果を奏する。
【図面の簡単な説明】
【図1】(a)は、本発明の管内土高さ計測方法の実施形態を示す側断面図。
【図2】(a)は、光波ビームの管壁干渉の様子(セット誤差影響)を示す側面説明図、(b)は、光波ビームの管壁干渉(ビーム拡散影響)を示す側面説明図。
【図3】光波距離計セット時の限界距離の説明図。
【図4】クランプのセット例の説明図。
【図5】他のクランプセット例(セット時)の説明図。
【図6】他のクランプセット例(離脱時)の説明図。
【図7】(a),(b)は本発明を回転杭工法に適用した実施例の側面図と鋼管杭先端の部分拡大図。
【図8】従来の管内土高さ計測例の図。
【符号の説明】
1 鋼管杭
2 管内土
2a 管内土表面
3 クランプ
4 光波距離計
5 光波ビーム
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring the height of soil that enters a pipe when a steel pipe pile with a lower end released is penetrated into the ground.
[0002]
[Prior art]
The indentation support force of steel pipe piles used as foundation piles for buildings and civil engineering structures is the sum of peripheral surface friction force and tip resistance force. Among these, in the case of an open-ended steel pipe pile whose tip is released in the calculation of the tip resistance force, it is possible to evaluate the tip resistance force due to the earth and sand that has entered the pipe at the time of intrusion construction by driving or press fitting blocking the tip portion of the steel pipe pile. However, it is known that when the diameter of the steel pipe pile is increased, this clogging action tends to penetrate the soil in the pipe from the tip and tends to make it difficult to obtain the clogging action. Hereinafter, it is necessary to know the blockage rate).
Since this blockage is closely related to the height of the soil in the pipe, the blockage rate can be estimated by measuring the height of the soil in the pipe (the distance from the steel pipe pile tip to the surface of the soil that has entered the pipe).
[0003]
And this obstruction | occlusion rate becomes a parameter | index which evaluates the tip resistance force of a steel pipe pile. In other words, as the steel pipe pile with the lower end released penetrates into the ground, the soil penetrates into the pipe and the height of the soil in the pipe increases, but at a certain height, the frictional force between the inner peripheral wall of the steel pipe pile and the soil Thus, the effect of closing the tip can be expected, so that the tip resistance force of the closed cross-sectional area can be evaluated in the bearing capacity calculation. For example, if there is no pipe soil at all, the tip resistance can be evaluated only for the plate thickness area of the steel pipe pile, but if there is sufficient pipe soil height, the steel pipe pile tip will be closed due to the frictional resistance of the pipe inner peripheral surface. The entire area of the tip can be evaluated as the tip resistance.
[0004]
The measurement of the soil height in the pipe is an important parameter in the construction of the steel pipe pile in addition to the intrusion construction of the steel pipe pile by driving or press fitting.
[0005]
The rotary press-in method allows the steel pipe pile with blades on the outer side of the lower end to be penetrated by noise-free and vibration-free and press-fitted easily. Can demonstrate. In addition, this construction method has the characteristics that can evaluate the bearing capacity from the measurement data during construction such as torque at the time of rotary press-fitting, pressure input, etc., so highly reliable construction management while checking the bearing capacity for each steel pipe pile Can do. In this bearing capacity evaluation, if the height of the pipe soil during construction of steel pipe piles can be measured continuously, the bearing capacity is calculated in real time in combination with this data and construction management data such as torque and pressure input. It becomes possible.
[0006]
Conventionally, the pipe soil measurement method used in the steel pipe pile striking method and press-fitting method is as shown in FIG. 8, in which a measuring rope 12 with a weight 11 is suspended from the top of the steel pipe pile 1 into the pipe. There was a simple method for measuring the distance L1 between the surface 2a of the pipe soil 2 and the top of the steel pipe pile 1 and subtracting it from the total length L of the steel pipe pile 1 to obtain the pipe soil height h.
[0007]
[Problems to be solved by the invention]
However, the above-mentioned conventional method needs to interrupt the construction of the steel pipe pile at the time of measurement, and it is dangerous because it is a work at a high place when the top of the steel pipe pile is higher than the ground. This was done after the completion of the placement and press-fitting. For this reason, there was a problem that continuous data of the pipe soil during construction could not be obtained.
The object of the present invention is to solve this problem, and to make it possible to measure the height of the soil in the pipe continuously and in real time during the penetration of the steel pipe pile.
[0008]
[Means for solving the problems]
In the present invention, in order to achieve the above object, the following configuration is adopted.
The invention according to claim 1 is the method of measuring the height of the pipe soil 2 of the open-ended steel pipe pile 1 with the open end provided with a lightwave distance meter 4 attached to a detachable clamp 3 in the steel pipe pile 1, It is the pipe soil measurement method at the time of construction of the open end steel pipe pile characterized by measuring the height h of the soil which invades in the pipe when penetrating the pile 1 into the ground without contact.
[0009]
In the invention according to claim 2, the set position of the light wave distance meter 4 attached to the detachable clamp 3 in claim 1 is set so that the light wave beam 5 does not interfere with the pipe inner wall of the steel pipe pile 1 and the clamp set error and beam characteristics. This is a method for measuring the soil height in the pipe within the limit distance A related to.
[0010]
The invention of claim 3 is a rotary press-fit pile construction method in which an open-ended steel pipe pile 1 having blades 8 provided on the outer surface of the lower end portion of the steel pipe pile is rotationally press-fitted and embedded therein. An optical distance meter 4 attached to the pipe is installed, and the pipe inner height measurement data is wirelessly transmitted to the ground receiver 10 from a transmitter 9 provided at the top of the steel pipe pile, and the pipe 1 is inserted into the pipe when penetrating into the ground. It is the soil measurement method in the pipe | tube at the time of construction of the open end steel pipe pile characterized by measuring the height h of the soil which penetrate | invades into a non-contact.
[0011]
[Action]
In the pipe soil height measuring method of the present invention, when the steel pipe pile 1 penetrates into the ground, the light wave distance meter 4 is fixedly attached to the clamp 3 provided detachably above the open end steel pipe pile 1. The distance L2 to the surface 2a of the pipe soil is continuously measured in a non-contact manner by the light wave beam 5 oscillated from the light wave distance meter 4. Various types of laser rangefinders can be used as the lightwave rangefinder 4 to be used, but it is desirable to use a semiconductor laser rangefinder that can use a compact oscillator for setting in a narrow space in the steel pipe pile.
[0012]
This light wave distance meter 4 is set on the pipe inner wall of the steel pipe pile 1 by the clamp 3, but normally, several steel pipe piles are extended by welding and joining several pieces of about 10-20m in length into the ground. Therefore, the clamp 3 needs to be detachable so that the set can be easily changed when the steel pipe pile 1 is joined.
[0013]
The clamp 3 uses a mechanism that presses and holds the inner wall of the pipe of the steel pipe pile 1, and is preferably one that can be detached from the ground by remote operation.
[0014]
If the optical distance meter 4 set in the steel pipe pile 1 is too far from the pipe soil surface 2a, the influence of the pipe wall becomes a problem in a narrow steel pipe. One of the reasons is a problem of tilt accuracy when the lightwave distance meter 4 is set by the clamp 3. That is, when the light wave distance meter 4 is inclined and set in the steel pipe pile 1, if the distance from the pipe soil surface 2a is long, as shown in FIG. The light beam 5 deviates from the inner surface 2a of the pipe and hits the pipe wall to be refracted and reflected to cause a measurement error or make measurement impossible. In addition, when a semiconductor laser is used, the apparatus can be made compact. However, since the condensing degree of the laser beam 5 is low, the diffused light wave beam 5 interferes with the tube wall as shown in FIG. End up. Also in this case, the light wave beam 5 hitting the tube wall is refracted and reflected, which causes a measurement error or measurement failure.
[0015]
The invention of claim 2 solves this problem, and the light wave rangefinder 4 is set within a limit distance A related to the clamp set error and the beam characteristics so that the light beam 5 does not interfere with the tube wall. It is a thing. Here, the limit distance A is a distance that is obtained by adding the light beam radius (r1) to the deviation (r2) of the optical axis of the light beam 5 due to the clamp set tilt error, which is the same as the radius (r) of the steel pipe pile 1. is there. That is, as shown in FIG. 3, when the tilt error when the optical distance meter 4 is clamped is set to (s degrees), A that satisfies A × (tans) + (r1) = r is set as the limit distance.
[0016]
The invention of claim 3 is a construction method in which the steel pipe pile 1 is rotationally press-fitted, and the height of the pipe soil 2 is measured in a non-contact manner with the optical distance meter 4. When the rotary press-fitting method is used as the penetration construction means for the steel pipe pile 1, the steel pipe pile 1 rotates at the time of measurement, so that the signal transmission of the lightwave distance meter 4 cannot be performed by wire. For this reason, the data of the pipe soil height measured by the light wave distance meter 4 is wirelessly transmitted from the transmitter 9 provided on the top of the steel pipe pile 1 to the receiver on the ground and measured.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows an embodiment of the present invention. The steel pipe pile 1 to which the present invention is applied is an open-ended steel pipe pile mainly having a large diameter of 500 mm or more and a free end, and penetration into the ground is performed by a hammering hammering method, a press-fitting method, or a rotary press-fitting method. by.
[0018]
When the open-end steel pipe pile penetrates into the ground, the soil penetrates into the penetration from the pile tip, and when the height of the pipe soil 2 increases, the pile tip is blocked. The present invention provides a method for continuously measuring the height of the pipe soil 2 in the steel pipe pile 1 in a non-contact manner with the light wave distance meter 4. The measuring means is that a light wave distance meter 4 attached to a detachable clamp 3 is set at a predetermined position in the steel pipe pile 1 and a light beam 5 is oscillated toward the tip of the steel pipe pile, and the surface 2a of the pipe soil 2 is The reflected light wave beam 5 is captured and signal-processed by the measuring device 4a to measure the distance L2, and subjected to arithmetic processing to know the pipe soil height h.
[0019]
The light wave distance meter 4 is mounted on the clamp 3 and set at a predetermined position of the steel pipe pile 1 using a semiconductor laser beam distance meter so that a small oscillator can be used.
[0020]
As shown in FIG. 4, the clamp 3 to which the optical distance meter 4 is attached presses and holds the inner wall of the steel pipe pile so as to be detachable by the telescopic cylinder 3a. The telescopic cylinder 3a is pneumatic, hydraulic, electric or manually operated. Can be used.
[0021]
Also, the clamp 3 shown in FIG. 5 is detachably set by remote control from the ground without using a drive source, and the left and right clamp shoes 3b for pressing the inner wall of the steel pipe pile are pin-coupled 3d to one end of the arm 3c. Furthermore, these arms are pin-coupled 3e at the center of the steel pipe pile, and a spring 3f is arranged in the extending direction of the arm 3c, and a detachable loop 6 is attached to the pin-connecting portion 3e of the arm 3c. A positioning rope 7 is attached to each clamp shoe 3b. Both the detachable rope 6 and the positioning rope 7 are arranged so as to reach the ground via the steel pipe pile top, and the detachable set of the clamp 3 can be freely set on the ground.
[0022]
When the clamp is moved, when the clamp is moved, the arm 3c is rotated by the weights of the clamp shoe 3b and the arm 3c by using the weights of the clamp shoe 3b and the arm 3c as shown in FIG. The clamp shoe 3b is pulled toward the steel pipe pile center side and detached from the pipe wall. Next, after the clamp 3 is moved to a predetermined position by the positioning rope 7 with the detachable rope 6 pulled, when the detachable rope 6 is loosened, as shown in FIG. It moves in the direction and presses the tube wall to be clamped. In order to increase the pressing force, the weight 3g may be suspended from the pin connection portion 3e of the arm 3c as shown in the figure to increase its own weight. The clamp 3 may use a known means other than the above example.
[0023]
As described above, when the light wave distance meter 4 (and the clamp 3) is set within the limit distance A within a certain range from the surface 2a of the pipe soil, stable measurement can be obtained without being affected by the inner wall of the pipe. Since the inclination s at the time of setting can be tolerated to some extent, the setting operation becomes easy. For example, if a semiconductor laser having a diffusion characteristic of the light wave beam 5 of 10 m and 4 cm is used and a tilt error s at the time of setting is allowed at a steel pipe pile of 1,000 mm and an inner diameter of 5 degrees, the limit distance A at which the light beam 5 does not touch the tube wall Is about 6 m, so set the light wave rangefinder 4 at a distance less than this from the pipe soil surface 2a.
When the tilt error during setting is allowed twice under the same conditions, the limit distance A is about 13 m.
[0024]
If the light wave distance meter 4 (clamp 3) is set too close to the surface of the pipe soil, the light wave distance meter 4 (clamp 3) will move to the surface of the pipe soil due to the intrusion of the steel pipe pile. Since it comes in contact with 2a, it is necessary to change the set frequently, which is not preferable. In practice, the limit distance A is preferably in the range of about 3 to 10 times the diameter of the steel pipe pile 1.
[0025]
【Example】
FIG. 7 is a diagram showing an embodiment of a method for measuring the pipe soil 2 in the steel pipe pile 1 constructed by the rotary press-fitting method.
As shown in Figs. 7a and 7b, the rotary press-in pile is an optical distance meter 4 set in the steel pipe pile 1 so that an open-ended steel pipe pile with blades 8 provided on the outer surface of the lower end of the steel pipe pile is rotary-pressed and embedded. The signal cannot be transmitted to the ground measurement device by wire. For this reason, measurement data is transmitted wirelessly from the oscillator 9 provided on the top of the steel pipe pile to the receiver 10 on the ground.
[0026]
The clogging rate can be estimated from the relationship between the soil quality, pipe diameter, and other conditions verified in advance and the pipe soil height from the pipe soil height data during the intrusion work of the steel pipe pile obtained by the above means.
[0027]
Moreover, the state of the tip blockage can also be estimated in real time from the relationship between the change in the pipe soil height data obtained continuously and the change in the penetration amount of the steel pipe pile. That is, when the pipe soil height increases in the same way as the penetration of the steel pipe pile, it is estimated that the tip is released (blockage rate 0%), and the pipe pile is penetrating despite the penetration. When the soil height does not change and shows a constant value, it can be estimated that the tip is blocked (blocking rate is 100%). And the tip resistance force of a steel pipe pile can be evaluated by this obstruction | occlusion rate.
[0028]
【The invention's effect】
According to the present invention, since the height of the soil in the pipe at the time of the penetration construction of the open-ended steel pipe pile with the tip released can be continuously measured by the light wave distance meter set in the pipe, measurement without interruption of the pile penetration construction is possible. You can work safely. According to the second aspect of the present invention, since the light wave distance meter is set and measured within a certain range from the surface of the pipe soil, measurement can be performed stably without being affected by the pipe wall. The obtained data on the soil height in the pipe can be used to accurately estimate the closed state of the steel pipe pile tip, and this will be reflected in the evaluation of the tip bearing capacity of the steel pipe pile. In particular, when the present invention is applied to the rotary press-in pile method, the tip bearing capacity evaluation during the steel pipe pile penetration construction can be accurately obtained in real time, and the steel pipe pile bearing capacity can be greatly improved.
[Brief description of the drawings]
FIG. 1A is a side sectional view showing an embodiment of a method for measuring the soil height in a pipe according to the present invention.
FIG. 2A is a side explanatory view showing a state of tube wall interference of a light wave beam (set error effect), and FIG. 2B is a side view showing tube wall interference of a light wave beam (beam diffusion effect).
FIG. 3 is an explanatory diagram of a limit distance when a lightwave distance meter is set.
FIG. 4 is an explanatory diagram of a clamp setting example.
FIG. 5 is an explanatory diagram of another example of clamp setting (at the time of setting).
FIG. 6 is an explanatory diagram of another example of a clamp set (at the time of detachment).
FIGS. 7A and 7B are a side view of an embodiment in which the present invention is applied to a rotary pile method and a partially enlarged view of a steel pipe pile tip.
FIG. 8 is a diagram showing an example of conventional pipe soil height measurement.
[Explanation of symbols]
1 Steel pipe pile 2 Pipe soil
2a Soil surface 3 Clamp 4 Light wave rangefinder 5 Light wave beam

Claims (3)

先端を解放した開端鋼管杭の管内土の高さを計測する方法において、鋼管杭内に着脱可能なクランプに取り付けた光波距離計をセットし、鋼管杭を地中に貫入する際に管内に侵入する土の高さを非接触で計測することを特徴とする開端鋼管杭の施工時における管内土計測方法。In the method of measuring the height of the soil inside the open-ended steel pipe pile with the tip released, an optical distance meter attached to a detachable clamp is set in the steel pipe pile and enters the pipe when the steel pipe pile penetrates into the ground In-pipe soil measurement method during construction of open-ended steel pipe piles, characterized in that the height of soil to be measured is measured in a non-contact manner. 光波距離計のセット位置を、光波ビームが鋼管杭の管内壁に干渉しないようにクランプセット誤差とビーム特性に関係付けられた限界距離内としたことを特徴とする請求項1記載の開端鋼管杭の施工時における管内土計測方法。2. The open-ended steel pipe pile according to claim 1, wherein a set position of the optical distance meter is set within a limit distance related to a clamp set error and a beam characteristic so that the light wave beam does not interfere with a pipe inner wall of the steel pipe pile. Pipe soil measurement method during construction. 鋼管杭下端部の外側面に羽根を設けた開端鋼管杭を回転圧入して貫入施工する回転圧入杭工法において、鋼管杭内に着脱可能なクランプに取り付けた光波距離計をセットし、鋼管杭の頂部に設けた送信機から計測データを地上の受信機に無線伝送し、鋼管杭を地中に貫入する際に管内に侵入する土の高さを非接触で計測することを特徴とする請求項1または請求項2記載の開端鋼管杭の施工時における管内土計測方法。In the rotary press-in pile method, in which an open-end steel pipe pile with blades provided on the outer surface of the lower end of the steel pipe pile is rotationally press-fitted and installed, a light wave distance meter attached to a detachable clamp is set in the steel pipe pile. The measurement data is wirelessly transmitted from a transmitter provided on the top to a receiver on the ground, and the height of the soil entering the pipe is measured in a non-contact manner when the steel pipe pile penetrates into the ground. The pipe soil measurement method at the time of construction of the open end steel pipe pile of Claim 1 or Claim 2.
JP03147299A 1999-02-09 1999-02-09 In-pipe soil measurement method during construction of open-end steel pipe piles Expired - Lifetime JP3684097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03147299A JP3684097B2 (en) 1999-02-09 1999-02-09 In-pipe soil measurement method during construction of open-end steel pipe piles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03147299A JP3684097B2 (en) 1999-02-09 1999-02-09 In-pipe soil measurement method during construction of open-end steel pipe piles

Publications (2)

Publication Number Publication Date
JP2000230234A JP2000230234A (en) 2000-08-22
JP3684097B2 true JP3684097B2 (en) 2005-08-17

Family

ID=12332219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03147299A Expired - Lifetime JP3684097B2 (en) 1999-02-09 1999-02-09 In-pipe soil measurement method during construction of open-end steel pipe piles

Country Status (1)

Country Link
JP (1) JP3684097B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133140A (en) * 2008-12-04 2010-06-17 Sumitomo Metal Ind Ltd Rotary penetrating pile construction system
CN104075689A (en) * 2013-12-10 2014-10-01 河海大学 Sludge tidal flat beach face elevation observer and application method thereof
KR101550809B1 (en) * 2014-04-03 2015-09-21 삼성물산 주식회사 Design method for the large diameter driven steel pipe pile considering plugging effect and the device
CN104034304B (en) * 2014-05-26 2016-03-02 葛洲坝易普力股份有限公司 A kind of laser range finder stationary installation
JP6591813B2 (en) * 2015-07-22 2019-10-16 株式会社技研製作所 Press-in system, height measurement method, and occlusion state evaluation method
JP6515289B2 (en) * 2015-10-05 2019-05-22 日本製鉄株式会社 Penetration resistance reduction device, penetration structure of steel pipe pile, and construction method of steel pipe pile
WO2020218573A1 (en) * 2019-04-24 2020-10-29 日本製鉄株式会社 Rotary pile construction method, pile group manufacturing method, and pile group
JP7299501B2 (en) * 2019-10-16 2023-06-28 日本製鉄株式会社 Pipe soil measurement method and pipe soil measurement system
CN111174755B (en) * 2020-01-09 2022-02-15 青岛市勘察测绘研究院 Expansive soil area plane elevation measurement control point device and installation method
CN112762902B (en) * 2020-12-24 2022-08-23 张志高 Municipal construction is with multi-functional mapping tool of fixing a point
CN113309098B (en) * 2021-05-25 2024-01-12 中国一冶集团有限公司 Automatic elevation device for tubular pile cutting

Also Published As

Publication number Publication date
JP2000230234A (en) 2000-08-22

Similar Documents

Publication Publication Date Title
JP3684097B2 (en) In-pipe soil measurement method during construction of open-end steel pipe piles
JPH0486515A (en) Method and equipment for measuring diameter of pile hole of cast-in-place pile
JP4992416B2 (en) Excavator and equipment for determining the condition of expanded wings during foundation pile construction
WO2002057590A2 (en) Backreamer
JP4050172B2 (en) Evaluation method for soundness of concrete piles
CA1255920A (en) Method of and apparatus for measuring pile skin friction
CN100422488C (en) Anchor bolt construction method, and method and device for excavating anchor bolt burying hole
JP2005264505A (en) Construction management method for pile driving
CN108458164A (en) A kind of artificial push pipe control method and control system
JP2018520281A (en) Deep grooving plows on stern with instruments for assessing the protection ability of submarine trenches
JP3891345B2 (en) Underground curve drilling device and drilling control method using the device
JP3286953B2 (en) Measuring method and apparatus for ground support force
CN109374065B (en) Cantilever lever sensing device for early warning of position of concrete conveying conduit for cast-in-place pile construction
EP0737262B1 (en) Pile driving rig
JPH0742201A (en) Soil volume detector in bucket
JP7020589B2 (en) Construction method of rotating piles, manufacturing method of piles, and piles
KR102630927B1 (en) Ultrasonic sensor install structure, installing method and Ultrasonic sensor signal measurement method for estimating ground anchor quality
KR20200056171A (en) Construction member guiding means and construction equipment having thereof
JP2005113612A (en) Method for construction management of rotary press-in steel pipe pile
RU2825244C1 (en) Device for measuring shear deformations of soil relative to side surface of bored pile
JP2004244915A (en) Work execution method for rotary press-in pile with tip chip and rotary press-in pile with tip chip
JP2008255764A (en) Pile hole drilling unit
RU2164979C1 (en) Device for strain gaging of grounds on slopes
JP6812234B2 (en) Pile hole inspection method and pile hole inspection equipment
JP2563973B2 (en) Drilling auger head

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050527

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130603

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130603

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130603

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130603

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130603

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130603

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term