JP3683790B2 - Antibacterial fiber and method for producing the same - Google Patents

Antibacterial fiber and method for producing the same Download PDF

Info

Publication number
JP3683790B2
JP3683790B2 JP2000250896A JP2000250896A JP3683790B2 JP 3683790 B2 JP3683790 B2 JP 3683790B2 JP 2000250896 A JP2000250896 A JP 2000250896A JP 2000250896 A JP2000250896 A JP 2000250896A JP 3683790 B2 JP3683790 B2 JP 3683790B2
Authority
JP
Japan
Prior art keywords
antibacterial
weight
fine particles
fiber
tea polyphenols
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000250896A
Other languages
Japanese (ja)
Other versions
JP2002060309A (en
Inventor
光郎 傍島
直幸 藤井
篤史 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Original Assignee
Nisshinbo Holdings Inc
Nisshinbo Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Holdings Inc, Nisshinbo Industries Inc filed Critical Nisshinbo Holdings Inc
Priority to JP2000250896A priority Critical patent/JP3683790B2/en
Publication of JP2002060309A publication Critical patent/JP2002060309A/en
Application granted granted Critical
Publication of JP3683790B2 publication Critical patent/JP3683790B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、抗菌剤,それを用いた抗菌性繊維及びそれらの製造方法に関する。さらに詳しくは、本発明は、天然由来の抗菌性成分を内蔵した多孔質微粒子からなる抗菌剤,この抗菌剤を付着させた繊維からなり、編織布や不織布などに利用される肌にやさしく、かつ洗濯耐久性に優れる抗菌性繊維,並びに上記抗菌剤及び抗菌性繊維を効率よく製造する方法に関するものである。
【0002】
【従来の技術】
従来、繊維製品に防かび,防虫,防腐などを目的として衛生処理を施すことが一般的に行われていたが、特に近年、病原性大腸菌のO157の問題やMRSA(メチシリン耐性黄色ブドウ球菌)による院内感染問題の発生を契機に、抗菌加工を施した製品の需要が、繊維製品を始めプラスチック製品や紙製品などの分野において、急速に広がっている。
上記抗菌加工に用いられる抗菌剤は、大別すると無機系,有機系,天然有機系に分類することができる。無機系抗菌剤としては、銀,銅,亜鉛などの金属を用いたものが知られているが、これらの中で、銀は殺菌力が比較的強いにもかかわらず、人体に対してほとんど無害であるため、銀を抗菌成分とするものが主流を占めている。現在、銀単独、あるいは銀に銅や亜鉛を添加混合して、リン酸塩やケイ酸塩などの無機多孔質担体と複合化したものが、種々開発され、企業化されている。
しかしながら、銀系抗菌剤は、塩素あるいは、光や熱に弱いという欠点がある。例えば銀カチオンは、塩素が存在すると塩化銀を生成し、抗菌作用を失ってしまう。したがって、銀系抗菌剤を用いた繊維製品は、耐洗濯性が劣るのを免れない。
また、無機系抗菌剤としては、最近、酸化チタンの光触媒作用を利用した抗菌剤が注目され、この光触媒を材料表面にコーティングし、抗菌加工を施した製品が実用化され始めている。しかしながら、この光触媒系抗菌剤は、暗所では抗菌作用を発揮しないという欠点がある。
さらに、有機系抗菌剤としては、例えばトリクロサン,クロロヘキシジン,ジンクピリチオン,クロロキシレノールなどが知られているが、人体に対する安定性などの面から、特に繊維製品に対しては使用しにくい。
【0003】
一方、天然有機系抗菌剤は、人体に対して安全性が、高く、かつ環境にやさしいことから、例えばキトサン,カテキン,ヒノキチオール,カラシ,ワサビ精油などの応用研究が積極的になされており、すでに一部実用化されている。
ところで、茶葉にはポリフェノール類(タンニン)が含まれており、そして、このポリフェノール類は、カテキン類,テアフラビン類,テアルビギン類などを成分とすることが知られている。特に緑茶には、カテキン類が、乾物に対し約10〜18重量%含まれており、エピカテキン,エピガロカテキン,エピカテキンガレート,エピガロカテキンガレートなどが茶ポリフェノール類の主要成分となっている。
このような茶ポリフェノール類は、抗菌・抗ウイルス作用の外に、抗酸化作用,血中コレステロールの上昇抑制,血糖・血圧の上昇抑制,抗潰瘍・抗腫瘍作用などの薬理活性を有することが知られており、また、消臭や脱臭作用を有することも確認されている。
【0004】
従来、この茶ポリフェノール類を繊維製品に付着させる方法としては、金属キレートを利用した媒染処理方法が種々提案されている(特開昭58−115178号公報,特開平3−19985号公報,特開平9−316786号公報)。これらの技術は「草木染め」の分野に属するものである。しかしながら、このような媒染処理方法においては、(1)着色を呈するので、白物の繊維製品を作製するのが困難であり、また色物についても色が限定されるのを免れない、(2)水の硬度によって媒染処理できない場合がある、(3)洗濯耐久性が不充分であって、抗菌作用が洗濯を重ねるに伴い、低下する、などの欠点がある。
【0005】
【発明が解決しようとする課題】
本発明は、このような状況下で、茶ポリフェノール系抗菌剤を簡単な方法で付着させたものであって、色調の制限をあまり受けることがなく、抗菌作用の洗濯耐久性に優れる上、人体に対して安全でかつ肌にやさしい抗菌性繊維、及びこの抗菌性繊維の作製などに好適に用いることのできる茶ポリフェノール系抗菌剤を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、茶葉抽出物の水不溶化物、具体的には茶ポリフェノール類の金属キレートを内蔵した多孔質微粒子が、茶ポリフェノール系抗菌剤としてその目的に適合し得ること、そして、この抗菌剤を、バインダーなどを用いて繊維に固着させてなるものが、抗菌性繊維として、その目的に適合し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。
すなわち、本発明は、
(1)茶葉抽出物の水不溶化物を内蔵した多孔質微粒子からなる抗菌剤、
(2)上記抗菌剤を繊維に付着させてなる抗菌性繊維、
(3)茶葉抽出物の水性溶液中に多孔質微粒子を浸漬して、該微粒子に茶葉抽出物を含浸させたのち、これをキレート形成性金属塩水溶液と接触させて、該微粒子中の茶葉抽出物を水不溶化させることを特徴とする、茶葉抽出物の水不溶化物を内蔵した多孔質微粒子からなる抗菌剤の製造方法、及び
(4)バインダーを含み、かつ茶葉抽出物の水不溶化物を内蔵した多孔質微粒子からなる抗菌剤を分散させてなる水性懸濁液を繊維に付着させたのち、乾燥処理することを特徴とする抗菌性繊維の製造方法、
を提供するものである。
【0007】
【発明の実施の形態】
本発明の抗菌剤は、茶ポリフェノール系抗菌剤であって、茶葉抽出物の水不溶化物を内蔵した多孔質微粒子からなるものである。
茶葉抽出物は、緑茶と紅茶により大きく異なる。緑茶の抽出物は、下記の構造で示される(−)−エピカテキン〔(−)−epicatechin, EC 〕,(−)−エピカテキン−3−ガレート〔(−)−epicatechin −3−gallate,ECG 〕,(−)−エピガロカテキン〔(−)−epigallocatechin,EGC〕及び(−)−エピガロカテキン−3−ガレート〔(−)−epigallocatechin−3−gallate,EGCG〕の4種類のカテキン類が主要成分(全ポリフェノールに対し、約90重量%)で、乾物に対して約10〜18重量%含まれている。上記4種類のカテキン類の中で、EGCGが約40重量%以上を占め、最も多い。
【0008】
【化1】

Figure 0003683790
【0009】
一方、紅茶は摘採,萎稠,揉稔及び乾燥の基本的な工程で製造されるが、ポリフェノール類は、この工程における発酵過程で酵素的酸化作用を受けて重合し、カテキン類は、下記構造のテアフラビン(theaflavin) とテアルビギン(thearubigin)に変換する。したがって、紅茶抽出物には、乾物に対し、カテキン類が約3〜10重量%、テアフラビンが約3〜6重量%及びテアルビンが約12〜18重量%含まれている。
【0010】
【化2】
Figure 0003683790
【0011】
本発明の茶葉抽出物における原料の茶葉としては特に制限はなく、緑茶,紅茶,ウーロン茶など、いずれも用いることができる。
また、茶葉に含まれるポリフェノール類の量は、土質,肥料,天候,摘採の時期,芽葉の熟度,品種,栽培法などによって異なり、一番茶が最も少なく、二番茶,三番茶になると多くなる。わが国の緑茶には、前述のように、乾物に対しカテキン類が約10〜18重量%含まれているが、遮光栽培した茶葉から作る玉露や抹茶には少ない。
茶葉抽出物の製造方法としては、例えば下記の方法を用いることができる。
まず、茶葉を熱湯若しくはメタノール水溶液などの水性有機溶剤で抽出したのち、この抽出成分を含む溶液をクロロホルムなどで洗浄する。次いで、抽出成分を有機溶剤に転溶したのち、該有機溶剤を留去させて、抽出成分濃縮液を得る。本発明においては、茶葉抽出物として、この抽出成分濃縮液を用いてもよく、また、必要に応じ、該抽出成分濃縮液をカラムクロマトグラフィーに付し、各成分に分画し、分画された所望成分を用いてもよい。
また、市販品の茶ポリフェノール,例えば「サンフェノン」(太陽化学社製)や、「ポリフェノンシリーズ」(三井農林社製),「緑茶抽出物MF」(丸善製薬社製)なども用いることができる。
【0012】
一方、本発明の抗菌剤における多孔質微粒子としては、無機系多孔質微粒子及び有機系多孔質微粒子のいずれも用いることができるが、これらの多孔質微粒子は、茶葉抽出物の水不溶化物を内蔵させるために、気孔が互いに連通し、通水性を有する開放気孔型であることが肝要である。
開放気孔型無機系多孔質微粒子としては特に制限はなく、様々なものを用いることができる。例えば、シリカ,アルミナ,シリカ−アルミナ,リン酸カルシウム,リン酸ジルコニウム,ケイ藻土,ゼオライト,軽石粉,燒結金属粉末などの中から、一種又は二種以上を適宜選択し、用いることができる。また、プラスチック微小球のような弾性体の表面に二酸化チタンや炭酸カルシウムのような金属酸化物の粒体を付着させた無機質壁マイクロカプセルも用いることができる。
一方、開放気孔型有機系多孔質微粒子としては、特に制限はなく、様々なものを用いることができる。例えば、ポリウレタン,フェノール樹脂,ポリスチレン,ポリエチレン,ポリプロピレン,ポリ塩化ビニルなどの発泡微粒子などの中から、一種又は二種以上を適宜選択し、用いることができる。
【0013】
これらの多孔質微粒子の中で、無機系多孔質微粒子が好ましく、特にシリカが好適である。
これらの多孔質微粒子の平均粒径は、コストや風合いなどの点から、好ましくは0.1〜20μm、より好ましくは0.5〜10μm、特に好ましくは1〜5μmの範囲である。また、細孔径及び気孔率については、茶葉抽出物の水不溶化物の内蔵量が後述の範囲になるような多孔質微粒子であればよく、特に制限はない。本発明の抗菌剤における前記茶葉抽出物の水不溶化物としては、金属キレートを挙げることができる。上記茶ポリフェノール類と金属キレートを形成し得る金属としては特に制限はなく、様々な金属、例えばアルミニウム,銅,クロム,鉄,スズ,ニッケル,銀,バリウム,鉛,亜鉛などを用いることができるが、金属キレートの着色が少ない上、人体に対して安全で、かつ環境に悪影響をもたらさない点から、亜鉛が好適である。
【0014】
本発明の抗菌剤においては、上記茶葉抽出物の水不溶化物の内蔵量は、通常〔茶葉抽出物量/(茶葉抽出物量+多孔質微粒子量)〕×100が1〜80重量%になるように選定される。この含有量が1重量%未満では、抗菌性能が充分に発揮されないおそれがあり、また80重量%を超えるものは、製造しにくく、実用的でない。茶葉抽出物の水不溶化物の好ましい内蔵量は、該含有率が5〜65重量%、特に10〜55重量%になるように選定される。
本発明の抗菌剤の製造方法としては特に制限はないが、以下に示す本発明の方法に従えば、所望の抗菌剤を効率よく製造することができる。
まず、水性媒体中に、茶葉抽出物を加え、溶解させて、茶葉抽出物の水性溶液を調製する。ここで、水性媒体としては、水や、水と水混和性有機溶剤との混合物を用いることができる。
【0015】
水性媒体に使用する水としては、キレート生成を阻害する成分を含まない水、具体的にはイオン交換水、蒸留水が好ましく、水混和性有機溶剤としては、メタノールやエタノールなどの低級脂肪族アルコール類、アセトンやメチルエチルケトンなどの低級脂肪族ケトン類などが挙げられる。この茶葉抽出物の水性溶液の調製には、通常、水性媒体に茶葉抽出物が、水性溶液中の該茶葉抽出物の濃度が0.05〜30重量%の範囲になるような割合で加えられるが、水性溶液中の茶葉抽出物の濃度はできるだけ高い方が好ましく、必要ならば加温した水性媒体を用いてもよい。このようにして調製した茶葉抽出物の水性溶液中に、多孔質微粒子、好ましくは無機系多孔質微粒子の適当量を浸漬し、該微粒子の細孔内に上記茶葉抽出物の水性溶液を含浸させる。この含浸操作は常圧でも行えるが、含浸を促進させるには、アスピレーターで得られる程度の減圧下で行うのが好ましい。
次いで、そのまま水性媒体を、加熱又は減圧下の加熱により留去させ、茶葉抽出物を内蔵した多孔質微粒子を得る。あるいは、湿潤状態の多孔質微粒子を取り出し、乾燥処理して、茶葉抽出物を内蔵した多孔質微粒子を得る。この操作は、茶葉抽出物の内蔵量が所定の値に達するまで、必要に応じ繰り返すことができる。
次に、このようにして茶葉抽出物を所定量内蔵した多孔質微粒子と、キレート形成性金属塩水溶液とを接触させ、茶葉抽出物の金属キレートを形成させて、該茶葉抽出物を水不溶化物とする。上記キレート形成性金属塩としては、前記した如く種々の金属の塩が使用し得るが、酢酸亜鉛などの亜鉛塩が好適である。これらの金属塩を溶解する水は、前記の茶葉抽出物の水性溶液に使用する水性媒体の場合と同様に、キレート生成を阻害する成分を含まない水、具体的にはイオン交換水、蒸留水が好ましく、また、金属塩水溶液の濃度はできるだけ高い方が好ましい。茶葉抽出物を内蔵した多孔質微粒子とキレート形成性金属塩水溶液とを接触させる際のキレート形成性金属塩の量としては、茶葉抽出物と金属キレートを形成するのに必要な化学量論的量以上であることが肝要である。
【0016】
茶葉抽出物を内蔵した多孔質微粒子とキレート形成性金属塩水溶液とを接触させる方法としては特に制限はなく、例えばこの金属塩水溶液中に、該多孔質微粒子を浸漬する方法、あるいは該多孔質微粒子をカラムに充填し、これにキレート形成性金属塩水溶液を通液する方法などを用いることができる。接触させる際の温度は室温でよいが、必要ならば加温してもよい。
このようにして、茶葉抽出物の水不溶化物を内蔵した多孔質微粒子からなる本発明の抗菌剤が効率よく得られる。
次に、本発明の抗菌性繊維は、前述の茶葉抽出物の水不溶化物を内蔵した多孔質微粒子からなる本発明の抗菌剤を繊維に付着させてなるものである。
該抗菌剤を付着させる繊維は、編織布や不織布などの構造体に加工する前の繊維自体であってもよく、また編織布や不織布などの繊維構造体であってもよい。繊維素材としては特に制限はなく、例えば綿、麻、羊毛、絹などの天然繊維、ビスコース人造絹糸、銅アンモニアレーヨンなどの再生人造繊維、セルロース系繊維などの半合成繊維、ポリエステル系繊維、ナイロン系繊維、アクリル系繊維、ポリプロピレン系繊維、ポリエチレン系繊維、ポリ塩化ビニル系繊維、ポリ塩化ビニリデン系繊維、ポリビニルアルコール系繊維、ポリウレタン系繊維、ポリスチレン系繊維、ポリフッ化エチレン系繊維などの合成繊維、あるいはこれらの繊維を二種以上組み合わせた混紡繊維などを挙げることができる。
【0017】
本発明の抗菌剤を、前記繊維に付着させるには、バインダーにより、該抗菌剤を所望の繊維に固着させる方法を用いるのが有利である。
本発明の抗菌性繊維における該抗菌剤の付着量は、該抗菌剤中の茶葉抽出物量が、抗菌性繊維の重量に対して、0.1〜3.0%owfになるように選定するのが好ましい。該茶葉抽出物量が0.1%owf未満では抗菌性能が充分に発揮されにくい上、洗濯耐久性が低くなるおそれがあり、また、3.0%owfを超えると繊維表面がざらつき、風合いが悪くなる原因となる。抗菌性能、洗濯耐久性、風合いなどを考慮すると、該茶葉抽出物量が、抗菌性繊維の重量に対して、0.5〜1.0%owfの範囲になるように、該抗菌剤を付着させるのが、より好ましい。 本発明の抗菌性繊維の製造方法としては特に制限はないが、以下に示す本発明の方法に従えば、極めて効率よく、所望の抗菌性繊維を製造することができる。
【0018】
本発明の方法においては、まず、バインダーを含み、かつ茶葉抽出物の水不溶化物を内蔵した多孔質微粒子からなる抗菌剤(以下、微粒子状抗菌剤と称すことがある。)を分散させてなる水性懸濁液を調製する。
この際用いるバインダーとしては、繊維に該微粒子状抗菌剤をしっかりと固着し得るものであればよく、特に制限されず、例えばアクリル系バインダーやポリウレタン系バインダーなどを用いることができる。該水性懸濁液に分散させる微粒子状抗菌剤の濃度としては特に制限はないが、作業性などを考慮すると、0.1〜10重量%程度が好ましい。また、水性懸濁液中のバインダー濃度としては特に制限はないが、バインダー固形分として、通常0.5〜20重量%の範囲で選定される。
【0019】
繊維に、前記水分散液を付着させる方法としては、例えばパディング法やスプレー法などを好ましく用いることができる。このようにして、該水分散液を繊維に付着させたのち、加熱処理することにより、微粒子状抗菌剤が繊維にしっかりと固着し、本発明の抗菌性繊維が得られる。この際の加熱処理温度としては、使用するバインダーの種類により左右され、例えばアクリル系バインダーを使用する場合には、通常70〜160℃程度である。
このようにして得られた本発明の抗菌性繊維は、良好な抗菌性能を有すると共に、洗濯耐久性に優れている。
【0020】
【実施例】
次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
なお、各例で得られた抗菌性加工布について、以下の方法に従い、抗菌性能を評価した。
<抗菌性能の評価>
JIS L1902−1998(繊維製品の抗菌性試験方法B法)に準拠し、供試菌として黄色ブドウ球菌(IFO12732)を用い、下記の各布について抗菌性試験を行い、抗菌性能を評価した。
(1)比較未加工布
接種直後の生菌数及び18時間培養後の生菌数を測定する。
(2)未洗濯加工布
18時間培養後の生菌数を測定する。
(3)洗濯10回の加工布
JAFET(繊維製品新機能評価協議会)規定の洗濯方法に従い、10回洗濯した加工布について、18時間培養後の生菌数を測定する。
なお、各生菌数は3検体の平均値である。
【0021】
実施例1
イオン交換水275重量部に「緑茶抽出物MF」〔商品名:丸善製薬(株)製、総ポリフェノール含有量40重量%〕25重量部を加え、40℃で攪拌溶解して、均一な緑茶抽出物水溶液を調製した。
この緑茶抽出物水溶液300重量部を、真空チャンバー内に収納した平均粒径3.2μm、比表面積64300cm2 /cm3 の多孔質シリカ微粒子「SE MCB−FP/2」〔商品名:エネックス(株)製〕71.5重量部に減圧下、室温で加えて30分間静置し、次いで30分間攪拌した後、大気圧に戻した。
次いで、再び真空チャンバー内を減圧下に置き、攪拌しながら46重量%の塩化亜鉛水溶液7.6重量部を加えた。30分間攪拌後、一旦大気圧に戻してから更に30分間攪拌し、再び減圧下に置き、80℃に加熱して攪拌しながら水を蒸発させて、金属キレート化緑茶抽出物25重量%を内蔵した微粒子状抗菌剤を作製した。
この微粒子状抗菌剤1重量%を含有する水分散液95重量部に、アクリル系バインダー(固形分濃度40重量%)5重量部を混合した液にて、綿100%ブロード布を絞り率80%でパッドし、85℃で10分間乾燥処理することにより、抗菌性加工布を作製した。
この加工布の抗菌性能を評価すると共に、色調を調べた。その結果を第1表に示す。
【0022】
実施例2及び3
実施例1において、微粒子状抗菌剤1重量%を含有する水分散液の代わりに、微粒子状抗菌剤3重量%(実施例2)及び5重量%(実施例3)を、それぞれ含有する水分散液を用いた以外は、実施例1と同様にして、抗菌性加工布を作製した。
各加工布の抗菌性能を評価すると共に、色調を調べた。その結果を第1表に示す。
【0023】
実施例4
多孔質シリカ微粒子「SE MCB−FP/2」(前出)43重量部、「緑茶抽出物MF」(前出)50重量部、46重量%塩化亜鉛水溶液15.2重量部を用いた他は実施例1と同様にして、金属キレート化緑茶抽出物50重量%を内蔵した微粒子状抗菌剤を調製した。
次いで、この微粒子状抗菌剤3重量%を含有する水分散液95重量部に、アクリル系バインダー(固形分濃度40重量%)5重量部を混合した液にて、綿100%ブロード布を絞り率80%でパッドし、85℃で10分間乾燥処理することにより、抗菌性加工布を作製した。
この加工布の抗菌性能を評価すると共に、色調を調べた。その結果を第1表に示す。
【0024】
実施例5
実施例4において、微粒子状抗菌剤3重量%を含有する水分散液の代わりに、微粒子状抗菌剤5重量%を含有する水分散液を用いた以外は、実施例4と同様にして、抗菌性加工布を作製した。
この加工布の抗菌性能を評価すると共に、色調を調べた。その結果を第1表に示す。
【0025】
比較例1
「緑茶抽出物MF」(前出)0.5重量%を含む水溶液にて、綿100%ブロード布を絞り率80%でパッドし、85℃で10分間乾燥処理した。次いで、この布を、酢酸亜鉛1.0重量%を含む水溶液にて絞り率80%でパッドし、85℃で10分間乾燥処理して、布上でキレートを形成させ、緑茶抽出物を固着させることにより、抗菌性加工布を作製した。
この加工布の抗菌性能を評価すると共に、色調を調べた。その結果を第1表に示す。
【0026】
比較例2
比較例1において、酢酸亜鉛1.0重量%を含む水溶液の代わりに、塩化第二鉄1.0重量%を含む水溶液を用いた以外は、比較例1と同様にして抗菌性加工布を作製した。
この加工布の抗菌性能を評価すると共に、色調を調べた。その結果を第1表に示す。
【0027】
比較例3
イオン交換水75重量部に「緑茶抽出物MF」(前出)25重量部を加え、40℃で攪拌溶解して、均一な緑茶抽出物水溶液を調製した。
この緑茶抽出物水溶液100重量部を、真空チャンバー内に収納した多孔質シリカ微粒子「SE MCB−FP/2」(前出)75重量部に減圧下、室温で加えて30分間静置し、次いで30分間攪拌した後、大気圧に戻した。
次いで、再び真空チャンバー内を減圧下に置き、80℃に加熱して攪拌しながら水を蒸発させて、緑茶抽出物25重量%を内蔵したシリカ微粒子を作製した。この緑茶抽出物25重量%を内蔵したシリカ微粒子4重量%を含有する水分散液95重量部に、アクリル系バインダー(固形分濃度40重量%)5重量部を混合した液にて、綿100%ブロード布を絞り率80%でパッドし、85℃で10分間乾燥処理することにより、抗菌性加工布を作製した。
この加工布の抗菌性能を評価すると共に、色調を調べた。その結果を第1表に示す。
【0028】
比較例4
イオン交換水50重量部に「緑茶抽出物MF」(前出)50重量部を加え、40℃で攪拌溶解して、均一な緑茶抽出物水溶液を調製した。
この緑茶抽出物水溶液100重量部を、真空チャンバー内に収納した多孔質シリカ微粒子「SE MCB−FP/2」(前出)50重量部に減圧下、室温で加えて30分間静置し、次いで30分間攪拌した後、大気圧に戻した。
次いで、再び真空チャンバー内を減圧下に置き、80℃に加熱して攪拌しながら水を蒸発させて、緑茶抽出物50重量%を内蔵したシリカ微粒子を作製した。この緑茶抽出物50重量%を内蔵したシリカ微粒子4重量%を含有する水分散液を用いて、比較例3と同様にして、抗菌性加工布を作製した。
この加工布の抗菌性能を評価すると共に、色調を調べた。その結果を第1表に示す。
【0029】
【表1】
Figure 0003683790
【0030】
(注)
実施例1:金属キレート化緑茶抽出物25重量%を内蔵したシリカ微粒子1重量%を含む水分散液を使用。
実施例2:金属キレート化緑茶抽出物25重量%を内蔵したシリカ微粒子3重量%を含む水分散液を使用。
実施例3:金属キレート化緑茶抽出物25重量%を内蔵したシリカ微粒子5重量%を含む水分散液を使用。
実施例4:金属キレート化緑茶抽出物50重量%を内蔵したシリカ微粒子3重量%を含む水分散液を使用。
実施例5:金属キレート緑茶抽出物50重量%を内蔵したシリカ微粒子5重量%を含む水分散液を使用。
比較例1:緑茶抽出物0.5重量%を含む水溶液を用い、布上で酢酸亜鉛1.0重量%水溶液によりキレート化。
比較例2:緑茶抽出物0.5重量%を含む水溶液を用い、布上で塩化第二鉄1.0重量%水溶液によりキレート化。
比較例3:緑茶抽出物25重量%を内蔵したシリカ微粒子(キレート化していない)4重量%を含む水分散液を使用。
比較例4:緑茶抽出物50重量%を内蔵したシリカ微粒子(キレート化していない)4重量%を含む水分散液を使用。
【0031】
第1表から分かるように、実施例のものは、いずれも加工布の色調がほぼ白で良好であり、洗濯耐久性も、実施例1を除いて、極めて良好である。
これに対し、比較例1、3及び4のものは、洗濯耐久性が、実施例1のものより、さらに悪い。また、比較例2のものは、洗濯耐久性がよいが、加工布はグレーを呈しており、色調が不良である。
【0032】
【発明の効果】
本発明の抗菌剤は、天然由来の茶葉抽出物からなるポリフェノール系の抗菌性成分を内蔵した多孔質微粒子であって、抗菌性繊維の作製などに好適に用いられる。
また、本発明の抗菌性繊維は、前記抗菌剤を簡単な方法で付着させたものであって、色調の制限をあまり受けることがなく、抗菌作用の洗濯耐久性に優れる上、人体に対して安全でかつ肌にやさしいなどの特徴を有し、抗菌性を有する編織布や不織布などとして、家庭や病院などにおける各種用途に、好適に用いることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an antibacterial agent, an antibacterial fiber using the same, and a method for producing them. More specifically, the present invention comprises an antibacterial agent composed of porous fine particles containing a naturally occurring antibacterial component, a fiber to which the antibacterial agent is attached, and is gentle on the skin used for woven fabrics and non-woven fabrics. The present invention relates to an antibacterial fiber excellent in washing durability, and an antibacterial agent and a method for efficiently producing the antibacterial fiber.
[0002]
[Prior art]
Conventionally, hygiene treatment has been generally performed on textile products for the purpose of fungicide, insect repellent, antiseptic, etc., but in recent years, due to the problem of pathogenic E. coli O157 and MRSA (methicillin resistant Staphylococcus aureus) With the outbreak of nosocomial infections, the demand for antibacterial processed products is rapidly expanding in fields such as textile products, plastic products and paper products.
The antibacterial agents used in the antibacterial processing can be roughly classified into inorganic, organic, and natural organic types. Inorganic antibacterial agents are known that use metals such as silver, copper, and zinc. Among these, silver is almost harmless to the human body despite its relatively strong bactericidal activity. For this reason, silver is the mainstream. At present, various types of silver alone or in which copper or zinc is added to silver and combined with an inorganic porous carrier such as phosphate or silicate have been developed and commercialized.
However, silver antibacterial agents have the disadvantage of being vulnerable to chlorine or light and heat. For example, silver cations produce silver chloride in the presence of chlorine and lose their antibacterial action. Therefore, textile products using silver antibacterial agents are unavoidably inferior in washing resistance.
Further, as an inorganic antibacterial agent, an antibacterial agent utilizing the photocatalytic action of titanium oxide has recently attracted attention, and products in which the photocatalyst is coated on the surface of the material and subjected to antibacterial processing have been put into practical use. However, this photocatalytic antibacterial agent has a drawback that it does not exhibit antibacterial action in the dark.
Furthermore, as an organic antibacterial agent, for example, triclosan, chlorohexidine, zinc pyrithione, chloroxylenol and the like are known. However, they are difficult to use especially for textile products from the viewpoint of stability to the human body.
[0003]
On the other hand, natural organic antibacterial agents are safe for the human body, and are environmentally friendly. For example, applied researches such as chitosan, catechin, hinokitiol, mustard, and wasabi essential oil have been actively conducted. Some have been put to practical use.
By the way, tea leaves contain polyphenols (tannins), and these polyphenols are known to contain catechins, theaflavins, thearbigins and the like. In particular, green tea contains about 10 to 18% by weight of catechins based on dry matter, and epicatechin, epigallocatechin, epicatechin gallate, epigallocatechin gallate, etc. are the main components of tea polyphenols. .
In addition to antibacterial and antiviral effects, such tea polyphenols are known to have pharmacological activities such as antioxidative action, blood cholesterol rise inhibition, blood sugar / blood pressure rise inhibition, anti-ulcer and antitumor action. It has also been confirmed that it has a deodorizing and deodorizing action.
[0004]
Conventionally, various methods of mordanting using metal chelates have been proposed as methods for adhering tea polyphenols to textile products (Japanese Patent Laid-Open Nos. 58-115178, 3-19985, and 9-316786). These technologies belong to the field of “plant dyeing”. However, in such a mordant treatment method, (1) since it exhibits coloration, it is difficult to produce a white textile product, and it is inevitable that the color of the colored product is limited. ) The mordanting may not be possible depending on the hardness of the water. (3) The washing durability is insufficient, and the antibacterial action decreases with repeated washing.
[0005]
[Problems to be solved by the invention]
Under such circumstances, the present invention is obtained by adhering a tea polyphenol antibacterial agent by a simple method, is not subject to much restrictions on color tone, is excellent in antibacterial washing durability, It is an object of the present invention to provide antibacterial fibers that are safe and gentle to the skin, and a tea polyphenol antibacterial agent that can be suitably used for the production of such antibacterial fibers.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have found that a water-insolubilized product of tea leaf extract, specifically, a porous fine particle containing a metal chelate of tea polyphenols is a tea polyphenol antibacterial agent. It has been found that an agent that can be adapted to its purpose as an agent and that an antibacterial agent fixed to a fiber using a binder or the like can be adapted to that purpose as an antibacterial fiber. The present invention has been completed based on such findings.
That is, the present invention
(1) an antibacterial agent comprising porous fine particles containing a water-insolubilized tea leaf extract,
(2) an antibacterial fiber obtained by attaching the antibacterial agent to the fiber;
(3) After immersing porous microparticles in an aqueous solution of tea leaf extract and impregnating the microparticles with tea leaf extract, this is contacted with a chelate-forming metal salt aqueous solution to extract tea leaves in the microparticles A method for producing an antibacterial agent comprising porous fine particles containing water-insolubilized tea leaf extract, and (4) containing a binder and containing water-insolubilized tea leaf extract A method for producing antibacterial fibers, characterized in that an aqueous suspension obtained by dispersing an antibacterial agent comprising porous fine particles is adhered to the fibers and then dried.
Is to provide.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The antibacterial agent of the present invention is a tea polyphenol-based antibacterial agent, and is composed of porous fine particles containing a water insolubilized product of tea leaf extract.
The tea leaf extract varies greatly between green tea and black tea. The extract of green tea has the following structure: (−)-epicatechin [(−)-epicatechin, EC], (−)-epicatechin-3-gallate [(−)-epicatechin-3-gallate, ECG ], (−)-Epigallocatechin [(−)-epigallocatechin, EGC] and (−)-epigallocatechin-3-gallate [(−)-epigallocatechin-3-gallate, EGCG] It is the main component (about 90% by weight based on the total polyphenols) and is contained in an amount of about 10-18% by weight based on the dry matter. Among the four types of catechins, EGCG accounts for about 40% by weight or more, and is the largest.
[0008]
[Chemical 1]
Figure 0003683790
[0009]
On the other hand, black tea is produced by the basic processes of plucking, atrophy, strawberries and drying. Polyphenols are polymerized by enzymatic oxidation during the fermentation process in this process, and catechins have the following structure. To theaflavin and thearubigin. Therefore, the black tea extract contains about 3 to 10% by weight of catechins, about 3 to 6% by weight of theaflavin, and about 12 to 18% by weight of thearvin based on the dry matter.
[0010]
[Chemical formula 2]
Figure 0003683790
[0011]
There is no restriction | limiting in particular as a tea leaf of the raw material in the tea leaf extract of this invention, Any, such as green tea, black tea, oolong tea, can be used.
The amount of polyphenols contained in tea leaves varies depending on soil quality, fertilizer, weather, harvesting time, ripening maturity, variety, cultivation method, etc. Become. As described above, Japanese green tea contains about 10 to 18% by weight of catechins relative to dry matter, but is less in gyokuro and matcha tea made from light-cultivated tea leaves.
As a method for producing a tea leaf extract, for example, the following method can be used.
First, tea leaves are extracted with an aqueous organic solvent such as hot water or an aqueous methanol solution, and then the solution containing the extracted components is washed with chloroform or the like. Next, after the extract component is dissolved in an organic solvent, the organic solvent is distilled off to obtain an extract component concentrate. In the present invention, this extract component concentrate may be used as a tea leaf extract, and, if necessary, the extract component concentrate is subjected to column chromatography, fractionated into each component, and fractionated. The desired components may be used.
Commercially available tea polyphenols such as “Sunphenon” (manufactured by Taiyo Kagaku), “Polyphenon series” (manufactured by Mitsui Norin), “Green tea extract MF” (manufactured by Maruzen Pharmaceutical Co., Ltd.) and the like can also be used. .
[0012]
On the other hand, as the porous fine particles in the antibacterial agent of the present invention, both inorganic porous fine particles and organic porous fine particles can be used, and these porous fine particles contain a water-insolubilized product of tea leaf extract. In order to achieve this, it is important that the pores communicate with each other and have an open pore type having water permeability.
There are no particular limitations on the open pore type inorganic porous fine particles, and various types can be used. For example, one or two or more types can be appropriately selected and used from silica, alumina, silica-alumina, calcium phosphate, zirconium phosphate, diatomaceous earth, zeolite, pumice powder, sintered metal powder, and the like. An inorganic wall microcapsule in which particles of metal oxide such as titanium dioxide or calcium carbonate are attached to the surface of an elastic body such as plastic microspheres can also be used.
On the other hand, the open-pore organic porous fine particles are not particularly limited, and various types can be used. For example, one or two or more kinds can be appropriately selected and used from foamed fine particles such as polyurethane, phenol resin, polystyrene, polyethylene, polypropylene, and polyvinyl chloride.
[0013]
Among these porous fine particles, inorganic porous fine particles are preferable, and silica is particularly preferable.
The average particle diameter of these porous fine particles is preferably in the range of 0.1 to 20 μm, more preferably 0.5 to 10 μm, and particularly preferably 1 to 5 μm from the viewpoint of cost and texture. In addition, the pore diameter and porosity are not particularly limited as long as the amount of the water-insolubilized product of the tea leaf extract is within the range described later. Examples of the water insolubilized product of the tea leaf extract in the antibacterial agent of the present invention include metal chelates. The metal that can form a metal chelate with the tea polyphenols is not particularly limited, and various metals such as aluminum, copper, chromium, iron, tin, nickel, silver, barium, lead, and zinc can be used. Zinc is preferred because it is less colored by the metal chelate, is safe for the human body, and does not adversely affect the environment.
[0014]
In the antibacterial agent of the present invention, the amount of water-insolubilized product of the tea leaf extract is usually [tea leaf extract amount / (tea leaf extract amount + porous fine particle amount)] × 100 1-80 wt%. Selected. If this content is less than 1% by weight, the antibacterial performance may not be sufficiently exhibited, and if it exceeds 80% by weight, it is difficult to produce and is not practical. A preferable built-in amount of the water insolubilized product of the tea leaf extract is selected so that the content is 5 to 65% by weight, particularly 10 to 55% by weight.
Although there is no restriction | limiting in particular as a manufacturing method of the antibacterial agent of this invention, According to the method of this invention shown below, a desired antibacterial agent can be manufactured efficiently.
First, a tea leaf extract is added and dissolved in an aqueous medium to prepare an aqueous solution of the tea leaf extract. Here, as the aqueous medium, water or a mixture of water and a water-miscible organic solvent can be used.
[0015]
The water used in the aqueous medium is preferably water that does not contain a component that inhibits chelate formation, specifically ion-exchanged water or distilled water, and the water-miscible organic solvent is a lower aliphatic alcohol such as methanol or ethanol. And lower aliphatic ketones such as acetone and methyl ethyl ketone. In preparing an aqueous solution of this tea leaf extract, the tea leaf extract is usually added to the aqueous medium at a ratio such that the concentration of the tea leaf extract in the aqueous solution is in the range of 0.05 to 30% by weight. However, the concentration of the tea leaf extract in the aqueous solution is preferably as high as possible, and a warmed aqueous medium may be used if necessary. An appropriate amount of porous fine particles, preferably inorganic porous fine particles, is immersed in the aqueous solution of the tea leaf extract thus prepared, and the aqueous solution of the tea leaf extract is impregnated in the pores of the fine particles. . This impregnation operation can be performed at normal pressure, but in order to promote the impregnation, it is preferably performed under a reduced pressure that can be obtained with an aspirator.
Next, the aqueous medium is distilled off as it is by heating or heating under reduced pressure to obtain porous fine particles containing a tea leaf extract. Alternatively, wet porous fine particles are taken out and dried to obtain porous fine particles containing tea leaf extract. This operation can be repeated as necessary until the incorporated amount of the tea leaf extract reaches a predetermined value.
Next, porous fine particles containing a predetermined amount of tea leaf extract in this way and a chelate-forming metal salt aqueous solution are brought into contact with each other to form a metal chelate of the tea leaf extract. And As the chelate-forming metal salt, various metal salts can be used as described above, but zinc salts such as zinc acetate are preferable. Water that dissolves these metal salts is water that does not contain a component that inhibits chelate formation, specifically ion-exchanged water, distilled water, as in the case of the aqueous medium used for the aqueous solution of the tea leaf extract. In addition, the concentration of the aqueous metal salt solution is preferably as high as possible. The amount of the chelate-forming metal salt when the porous fine particles containing the tea leaf extract and the aqueous solution of the chelate-forming metal salt are brought into contact with each other is the stoichiometric amount necessary for forming the metal chelate with the tea leaf extract. It is important that this is the case.
[0016]
There is no particular limitation on the method of contacting the porous fine particles containing the tea leaf extract with the chelate-forming metal salt aqueous solution, for example, the method of immersing the porous fine particles in the metal salt aqueous solution, or the porous fine particles Can be used, and a method of passing a chelate-forming metal salt aqueous solution through the column can be used. The temperature at the time of contacting may be room temperature, but may be heated if necessary.
In this way, the antibacterial agent of the present invention consisting of porous fine particles containing a water insolubilized tea leaf extract is efficiently obtained.
Next, the antibacterial fiber of the present invention is obtained by adhering the antibacterial agent of the present invention composed of porous fine particles containing the water-insolubilized product of the tea leaf extract to the fiber.
The fiber to which the antibacterial agent is attached may be a fiber itself before being processed into a structure such as a woven or non-woven fabric, or may be a fiber structure such as a woven or non-woven fabric. The fiber material is not particularly limited. For example, natural fibers such as cotton, hemp, wool, and silk, artificial fibers such as viscose artificial silk, regenerated artificial fibers such as copper ammonia rayon, semi-synthetic fibers such as cellulosic fibers, polyester fibers, and nylons. Fiber, acrylic fiber, polypropylene fiber, polyethylene fiber, polyvinyl chloride fiber, polyvinylidene chloride fiber, polyvinyl alcohol fiber, polyurethane fiber, polystyrene fiber, synthetic fiber such as polyfluoroethylene fiber, Or the blended fiber etc. which combined 2 or more types of these fibers can be mentioned.
[0017]
In order to adhere the antibacterial agent of the present invention to the fiber, it is advantageous to use a method of fixing the antibacterial agent to a desired fiber with a binder.
The amount of the antibacterial agent attached to the antibacterial fiber of the present invention is selected so that the amount of tea leaf extract in the antibacterial agent is 0.1 to 3.0% owf with respect to the weight of the antibacterial fiber. Is preferred. If the tea leaf extract amount is less than 0.1% owf, the antibacterial performance is not sufficiently exerted and the washing durability may be lowered. If it exceeds 3.0% owf, the fiber surface becomes rough and the texture is poor. Cause. In consideration of antibacterial performance, washing durability, texture, and the like, the antibacterial agent is adhered so that the amount of the tea leaf extract is in the range of 0.5 to 1.0% owf with respect to the weight of the antibacterial fiber. Is more preferable. Although there is no restriction | limiting in particular as a manufacturing method of the antimicrobial fiber of this invention, According to the method of this invention shown below, a desired antimicrobial fiber can be manufactured very efficiently.
[0018]
In the method of the present invention, first, an antibacterial agent (hereinafter sometimes referred to as a particulate antibacterial agent) comprising porous fine particles containing a binder and containing a water-insolubilized tea leaf extract is dispersed. An aqueous suspension is prepared.
The binder used in this case is not particularly limited as long as the fine particulate antibacterial agent can be firmly fixed to the fiber. For example, an acrylic binder or a polyurethane binder can be used. The concentration of the particulate antibacterial agent dispersed in the aqueous suspension is not particularly limited, but is preferably about 0.1 to 10% by weight in consideration of workability and the like. The binder concentration in the aqueous suspension is not particularly limited, but is usually selected in the range of 0.5 to 20% by weight as the binder solid content.
[0019]
As a method for attaching the aqueous dispersion to the fiber, for example, a padding method or a spray method can be preferably used. In this way, the aqueous dispersion is adhered to the fiber, and then heat-treated, whereby the particulate antibacterial agent is firmly fixed to the fiber, and the antibacterial fiber of the present invention is obtained. The heat treatment temperature at this time depends on the type of binder to be used. For example, when an acrylic binder is used, it is usually about 70 to 160 ° C.
The antibacterial fibers of the present invention thus obtained have good antibacterial performance and are excellent in washing durability.
[0020]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
In addition, about the antibacterial processed cloth obtained in each case, the antibacterial performance was evaluated according to the following method.
<Evaluation of antibacterial performance>
In accordance with JIS L1902-1998 (antibacterial test method B for textile products), Staphylococcus aureus (IFO12732) was used as a test bacterium, and the antibacterial performance was evaluated for each of the following fabrics.
(1) The number of viable bacteria immediately after inoculation of the comparative unprocessed cloth and the viable count after 18 hours of culture are measured.
(2) Measure the number of viable bacteria after culturing for 18 hours on unwashed cloth.
(3) 10 times of processed cloth 10 times according to the washing method stipulated by JAFET (Textile Products New Function Evaluation Council), the number of viable cells after 18 hours of cultivation is measured for the processed cloth washed 10 times.
In addition, each viable count is an average value of 3 samples.
[0021]
Example 1
25 parts by weight of “Green tea extract MF” (trade name: Maruzen Pharmaceutical Co., Ltd., total polyphenol content 40% by weight) is added to 275 parts by weight of ion-exchanged water, and the mixture is stirred and dissolved at 40 ° C. to obtain a uniform green tea extraction. Aqueous solution was prepared.
300 parts by weight of this green tea extract aqueous solution was stored in a vacuum chamber and porous silica fine particles “SE MCB-FP / 2” having an average particle diameter of 3.2 μm and a specific surface area of 64300 cm 2 / cm 3 [trade name: Enex Co., Ltd. The product was added to 71.5 parts by weight at room temperature under reduced pressure, allowed to stand for 30 minutes, stirred for 30 minutes, and then returned to atmospheric pressure.
Next, the inside of the vacuum chamber was again placed under reduced pressure, and 7.6 parts by weight of a 46 wt% zinc chloride aqueous solution was added with stirring. After stirring for 30 minutes, return to atmospheric pressure, then stir for another 30 minutes, place under reduced pressure again, heat to 80 ° C and evaporate water with stirring to incorporate 25 wt% metal chelated green tea extract A microparticulate antibacterial agent was prepared.
100% cotton broad cloth is squeezed 80% with a solution obtained by mixing 95 parts by weight of an aqueous dispersion containing 1% by weight of the particulate antibacterial agent and 5 parts by weight of an acrylic binder (solid content concentration: 40% by weight). Padded and dried at 85 ° C. for 10 minutes to prepare an antibacterial fabric.
The antibacterial performance of the processed fabric was evaluated and the color tone was examined. The results are shown in Table 1.
[0022]
Examples 2 and 3
In Example 1, instead of the aqueous dispersion containing 1% by weight of the particulate antibacterial agent, the water dispersion containing 3% by weight (Example 2) and 5% by weight (Example 3) of the particulate antibacterial agent, respectively. An antibacterial processed cloth was produced in the same manner as in Example 1 except that the liquid was used.
The antibacterial performance of each processed fabric was evaluated and the color tone was examined. The results are shown in Table 1.
[0023]
Example 4
Other than using 43 parts by weight of porous silica fine particles “SE MCB-FP / 2” (supra), 50 parts by weight of “green tea extract MF” (supra), 15.2 parts by weight of 46 wt% zinc chloride aqueous solution In the same manner as in Example 1, a particulate antibacterial agent containing 50% by weight of a metal chelated green tea extract was prepared.
Subsequently, 95% by weight of an aqueous dispersion containing 3% by weight of the microparticulate antibacterial agent is mixed with 5 parts by weight of an acrylic binder (solid content concentration: 40% by weight), and a 100% cotton broad cloth is squeezed. An antibacterial processed cloth was produced by padding at 80% and drying at 85 ° C. for 10 minutes.
The antibacterial performance of the processed fabric was evaluated and the color tone was examined. The results are shown in Table 1.
[0024]
Example 5
In Example 4, an antibacterial activity was obtained in the same manner as in Example 4 except that an aqueous dispersion containing 5% by weight of the particulate antibacterial agent was used instead of the aqueous dispersion containing 3% by weight of the particulate antibacterial agent. Fabric was made.
The antibacterial performance of the processed fabric was evaluated and the color tone was examined. The results are shown in Table 1.
[0025]
Comparative Example 1
A 100% cotton broad cloth was padded at an squeezing rate of 80% with an aqueous solution containing “green tea extract MF” (supra) 0.5% by weight and dried at 85 ° C. for 10 minutes. Next, this cloth is padded with an aqueous solution containing 1.0% by weight of zinc acetate at a drawing rate of 80%, dried at 85 ° C. for 10 minutes to form a chelate on the cloth, and the green tea extract is fixed. Thus, an antibacterial processed cloth was produced.
The antibacterial performance of the processed fabric was evaluated and the color tone was examined. The results are shown in Table 1.
[0026]
Comparative Example 2
In Comparative Example 1, an antibacterial processed fabric was prepared in the same manner as in Comparative Example 1, except that an aqueous solution containing 1.0% by weight of ferric chloride was used instead of an aqueous solution containing 1.0% by weight of zinc acetate. did.
The antibacterial performance of the processed fabric was evaluated and the color tone was examined. The results are shown in Table 1.
[0027]
Comparative Example 3
25 parts by weight of “green tea extract MF” (supra) was added to 75 parts by weight of ion-exchanged water, and the mixture was stirred and dissolved at 40 ° C. to prepare a uniform green tea extract aqueous solution.
100 parts by weight of this green tea extract aqueous solution was added to 75 parts by weight of porous silica fine particles “SE MCB-FP / 2” (supra) housed in a vacuum chamber at room temperature under reduced pressure, and allowed to stand for 30 minutes. After stirring for 30 minutes, the pressure was returned to atmospheric pressure.
Next, the inside of the vacuum chamber was again placed under reduced pressure, and water was evaporated while heating to 80 ° C. while stirring to produce silica fine particles containing 25% by weight of green tea extract. 100% cotton in a mixture of 95 parts by weight of an aqueous dispersion containing 4% by weight of silica fine particles containing 25% by weight of this green tea extract and 5 parts by weight of an acrylic binder (solid content concentration 40% by weight). A broad cloth was padded at a drawing rate of 80% and dried at 85 ° C. for 10 minutes to prepare an antibacterial processed cloth.
The antibacterial performance of the processed fabric was evaluated and the color tone was examined. The results are shown in Table 1.
[0028]
Comparative Example 4
50 parts by weight of “green tea extract MF” (supra) was added to 50 parts by weight of ion-exchanged water, and stirred and dissolved at 40 ° C. to prepare a uniform green tea extract aqueous solution.
100 parts by weight of this green tea extract aqueous solution was added to 50 parts by weight of porous silica fine particles “SE MCB-FP / 2” (supra) housed in a vacuum chamber under reduced pressure at room temperature, and allowed to stand for 30 minutes. After stirring for 30 minutes, the pressure was returned to atmospheric pressure.
Next, the inside of the vacuum chamber was again placed under reduced pressure, and water was evaporated while heating to 80 ° C. while stirring to produce silica fine particles containing 50% by weight of green tea extract. An antibacterial processed cloth was prepared in the same manner as in Comparative Example 3 using an aqueous dispersion containing 4% by weight of silica fine particles containing 50% by weight of the green tea extract.
The antibacterial performance of the processed fabric was evaluated and the color tone was examined. The results are shown in Table 1.
[0029]
[Table 1]
Figure 0003683790
[0030]
(note)
Example 1: An aqueous dispersion containing 1% by weight of silica fine particles containing 25% by weight of a metal chelated green tea extract is used.
Example 2: An aqueous dispersion containing 3% by weight of silica fine particles containing 25% by weight of a metal chelated green tea extract is used.
Example 3: An aqueous dispersion containing 5% by weight of silica fine particles containing 25% by weight of a metal chelated green tea extract is used.
Example 4: An aqueous dispersion containing 3% by weight of silica fine particles containing 50% by weight of a metal chelated green tea extract is used.
Example 5: An aqueous dispersion containing 5% by weight of silica fine particles containing 50% by weight of a metal chelate green tea extract is used.
Comparative Example 1: Chelating with a 1.0% by weight aqueous solution of zinc acetate on a cloth using an aqueous solution containing 0.5% by weight of green tea extract.
Comparative Example 2: Chelation with a 1.0 wt% aqueous solution of ferric chloride on a cloth using an aqueous solution containing 0.5 wt% of green tea extract.
Comparative Example 3: An aqueous dispersion containing 4% by weight of silica fine particles (not chelated) containing 25% by weight of green tea extract was used.
Comparative Example 4: An aqueous dispersion containing 4% by weight of silica fine particles (not chelated) containing 50% by weight of green tea extract was used.
[0031]
As can be seen from Table 1, in all of the examples, the color tone of the work cloth is almost white and good, and the washing durability is very good except for Example 1.
On the other hand, those of Comparative Examples 1, 3 and 4 have worse washing durability than that of Example 1. Moreover, although the thing of the comparative example 2 has good washing durability, the work cloth is exhibiting gray, and its color tone is bad.
[0032]
【The invention's effect】
The antibacterial agent of the present invention is a porous fine particle containing a polyphenol-based antibacterial component composed of a naturally derived tea leaf extract, and is suitably used for production of antibacterial fibers.
Further, the antibacterial fiber of the present invention is obtained by adhering the antibacterial agent by a simple method, is not subject to much restrictions on color tone, has excellent antibacterial washing durability, and is suitable for the human body. It can be suitably used for various uses in homes and hospitals as a woven fabric or non-woven fabric having features such as safety and being gentle to the skin and having antibacterial properties.

Claims (8)

茶ポリフェノール類と亜鉛,銀又は銅との金属キレートを内蔵した多孔質微粒子からなる抗菌剤を繊維に付着させてなる抗菌性繊維。  An antibacterial fiber made by adhering an antibacterial agent consisting of porous fine particles containing a metal chelate of tea polyphenols and zinc, silver or copper to the fiber. 茶ポリフェノール類がカテキン類を主成分として含むものである請求項1に記載の抗菌性繊維。  The antimicrobial fiber according to claim 1, wherein the tea polyphenols contain catechins as a main component. 多孔質微粒子が無機系多孔質微粒子である請求項1又は2に記載の抗菌性繊維。  The antibacterial fiber according to claim 1 or 2, wherein the porous fine particles are inorganic porous fine particles. 無機系多孔質微粒子が、シリカ,アルミナ,シリカ−アルミナ,リン酸カルシウム,リン酸ジルコニウム,ケイ藻土,ゼオライト,軽石粉,焼結金属粉末及び無機質壁マイクロカプセルの中から選ばれる少なくとも一種の開放気孔型多孔質微粒子である請求項3に記載の抗菌性繊維。  At least one kind of open pore type in which the inorganic porous fine particles are selected from silica, alumina, silica-alumina, calcium phosphate, zirconium phosphate, diatomaceous earth, zeolite, pumice powder, sintered metal powder and inorganic wall microcapsules. The antibacterial fiber according to claim 3, which is a porous fine particle. 抗菌剤が茶ポリフェノール類と亜鉛,銀又は銅との金属キレートを、〔茶ポリフェノール類量/(茶ポリフェノール類量+多孔質微粒子量)〕×100の値が1〜80重量%になるように内蔵してなる請求項1〜5のいずれかに記載の抗菌性繊維。  The antibacterial agent is a metal chelate of tea polyphenols and zinc, silver or copper, so that the value of [tea polyphenols amount / (tea polyphenols amount + porous fine particle amount)] × 100 is 1 to 80% by weight. The antibacterial fiber according to any one of claims 1 to 5, which is incorporated. 抗菌剤が茶ポリフェノール類の水性溶液中に多孔質微粒子を浸漬して、該微粒子に茶ポリフェノール類を含浸させたのち、これを亜鉛塩,銀塩又は銅塩の水溶液と接触させて、該微粒子中の茶ポリフェノール類と亜鉛,銀又は銅との金属キレートを形成させることにより製造したものである請求項 1〜5のいずれかに記載の抗菌性繊維。  An antibacterial agent immerses porous microparticles in an aqueous solution of tea polyphenols, impregnates the microparticles with tea polyphenols, and then contacts this with an aqueous solution of a zinc salt, a silver salt or a copper salt, and the microparticles The antibacterial fiber according to any one of claims 1 to 5, which is produced by forming a metal chelate of tea polyphenols and zinc, silver or copper therein. 抗菌剤の繊維への付着が、バインダーによる固着である請求項1〜6のいずれかに記載の抗菌性繊維。  The antibacterial fiber according to any one of claims 1 to 6, wherein the antibacterial agent is adhered to the fiber by fixing with a binder. バインダーを含み、かつ茶ポリフェノール類と亜鉛、銀又は銅との金属キレートを内蔵した多孔質微粒子からなる抗菌剤を分散させてなる水性懸濁液を繊維に付着させたのち、乾燥処理することを特徴とする抗菌性繊維の製造方法。  An aqueous suspension in which an antibacterial agent comprising porous fine particles containing a binder and containing a metal chelate of tea polyphenols and zinc, silver, or copper is dispersed is attached to the fiber and then dried. A method for producing an antibacterial fiber, which is characterized.
JP2000250896A 2000-08-22 2000-08-22 Antibacterial fiber and method for producing the same Expired - Fee Related JP3683790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000250896A JP3683790B2 (en) 2000-08-22 2000-08-22 Antibacterial fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000250896A JP3683790B2 (en) 2000-08-22 2000-08-22 Antibacterial fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002060309A JP2002060309A (en) 2002-02-26
JP3683790B2 true JP3683790B2 (en) 2005-08-17

Family

ID=18740392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000250896A Expired - Fee Related JP3683790B2 (en) 2000-08-22 2000-08-22 Antibacterial fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP3683790B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002242074A (en) * 2001-02-14 2002-08-28 Teijin Ltd Deodorant fiber structure
KR20040073895A (en) * 2003-02-15 2004-08-21 박기원 Fabrics for Inducing Deep Sleep and for Promoting Secretion of Growth Hormone and Clothes prepared thereby
JP4585188B2 (en) * 2003-09-04 2010-11-24 株式会社Nbcメッシュテック Antibacterial component
US7829132B2 (en) * 2004-11-03 2010-11-09 Unilever Bestfoods, North America Division Of Conopco, Inc. Consumable tea composition with antioxidants
CN101809108B (en) * 2007-10-01 2013-04-03 东亚合成株式会社 Anti-allergen agent
JPWO2010074311A1 (en) * 2008-12-24 2012-06-21 セーレン株式会社 Deodorant fiber products
JP5666432B2 (en) * 2009-05-08 2015-02-12 セーレン株式会社 Pouch cover
JP5555257B2 (en) * 2009-12-10 2014-07-23 学校法人関東学院 COMPOSITE MATERIAL FOR PRODUCING NATURAL FIBER-CONTAINING PLASTIC AND ITS MANUFACTURING METHOD, AND NATURAL FIBER-CONTAINING PLASTIC AND ITS MANUFACTURING METHOD
JP2015117458A (en) * 2013-11-13 2015-06-25 株式会社大和 Antibacterial fiber, fiber product using the same and production method of antibacterial fiber
KR102133640B1 (en) * 2018-07-18 2020-07-13 김병성 Antibacteria Fiber
KR102140408B1 (en) * 2019-11-19 2020-08-03 주식회사 포머스 Eco-friendly LPM furniture with excellent antibacterial and adhesive properties, and method of manufacturing thereof
CN114182530A (en) * 2021-04-14 2022-03-15 青岛尼希米生物科技有限公司 Antibacterial and deodorant cotton fiber and preparation method thereof, antibacterial and deodorant cotton yarn and preparation method and application thereof

Also Published As

Publication number Publication date
JP2002060309A (en) 2002-02-26

Similar Documents

Publication Publication Date Title
JP3683790B2 (en) Antibacterial fiber and method for producing the same
CN101836655B (en) Functionalized inorganic antibiosis material and preparation method thereof
CN102733184B (en) Finishing technology for aromatic anti-bacteria cotton textile
JP2000328443A (en) Antibacterial use of fiber having fixed tea polyphenol
Gupta Antimicrobial treatments for textiles
CN100462486C (en) Viscose fibre with tea anti-bacterial anti-foul function and its preparing method
DE3734297C2 (en)
JP3489917B2 (en) Functional fiber product and method for producing the same
EP1834030A1 (en) Manufacturing methods and applications of antimicrobial plant fibers having silver particles
CN102217651A (en) Method for preparing inorganic aromatic nano-antibacterial agent and antibacterial fabrics
KR20120131673A (en) Antimicrobial sanitary non-weaven fabric, and sanitary products using thereof, and method of producing the same
US4618496A (en) Antimicrobial peat moss composition
WO2011155953A1 (en) Methods for treating textiles with an antimicrobial composition
JP4903777B2 (en) Deodorant fiber fabric and method for producing the same
RU2640277C2 (en) Method for production of antimicrobial silver-containing cellulose material
JPH08296173A (en) Antimicrobial fibers
JP2017520521A (en) Liquid antibacterial agent comprising water soluble polymer and water soluble antibacterial agent
CN114073921A (en) Composite microsphere and preparation method and application thereof
JP3484520B2 (en) Antimicrobial fiber product and method for producing the same
WO2011028204A1 (en) Antimicrobial compositions and products
WO1999042658A1 (en) Antimicrobial treatment of currency paper
JP2005213686A (en) Fiber material containing regenerated cellulose fiber
RU2525545C2 (en) Method of production of antimicrobial argentiferous cellulosic material
JP2001172861A (en) Method and composition for fixing functional agent to fiber
JP2001329463A (en) Method for antimicrobial treatment of textile products

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050526

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130603

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees