JP3683731B2 - Coagulant for tofu - Google Patents
Coagulant for tofu Download PDFInfo
- Publication number
- JP3683731B2 JP3683731B2 JP02008399A JP2008399A JP3683731B2 JP 3683731 B2 JP3683731 B2 JP 3683731B2 JP 02008399 A JP02008399 A JP 02008399A JP 2008399 A JP2008399 A JP 2008399A JP 3683731 B2 JP3683731 B2 JP 3683731B2
- Authority
- JP
- Japan
- Prior art keywords
- coagulant
- emulsion
- tofu
- particle size
- magnesium chloride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Beans For Foods Or Fodder (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は凝固性や安定性能幅に優れた豆腐用乳化型凝固剤に関する。
【0002】
【従来の技術及び発明が解決しようする課題】
塩化マグネシウム含有物(苦汁)の水溶液を油脂および乳化剤で乳化すると、塩化マグネシウムによる豆腐の凝固反応が遅効化し、なめらかで緻密な組織を有する絹様の豆腐が得られる事が知られている。ところが、乳化物中の塩化マグネシウムの含有量が少ないと、豆乳に対する添加量を増加させる必要があり、できた豆腐の風味が油くさい、あるいは、原料負荷が増すなどの問題が生じる。このため、乳化物中の塩化マグネシウムの含有量をできるだけ増やすことが求められている。
しかし、高塩濃度の乳化物では乳化安定性を維持するために、乳化剤の配合量を多くする必要があるが、そうすると乳化剤特有の異味を生じるようになる。また、このようにして安定化した高塩濃度乳化物は、遅効性が充分な反面、優れた固さや弾力性を有する豆腐を得るための安定性能幅領域が狭い。
【0003】
【課題を解決するための手段】
本発明は、乳化物中の塩化マグネシウムの濃度が25〜50重量%の乳化型凝固剤であって、乳化物の平均乳化粒子径(体積基準)が0.5 〜4μm の範囲であり、且つ乳化粒子の分布の尖度が0.2 〜0.6 である豆腐用乳化型凝固剤により、上記課題を解決したものである。
【0004】
【発明の実施の形態】
本発明の乳化型凝固剤とは、塩化マグネシウムの水溶液を油脂および乳化剤でW/O型に乳化した乳化物であり、特に高温の豆乳を用いる豆腐の製造に適している。
本乳化型凝固剤中の塩化マグネシウムの含有量は塩化マグネシウム6水塩で換算し、25〜50重量%、さらに好ましくは31〜45重量%である。本乳化型凝固剤中には凝固剤として他の無機塩類を併用してもよい。
また本乳化型凝固剤のW/O比は好ましくは40/60〜70/30、更に好ましくは45/55〜65/35である。
【0005】
本発明に用いる乳化剤は、例えばショ糖脂肪酸エステル、リン脂質、モノグリセリン脂肪酸エステル、有機酸モノグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、プロピレングリコール脂肪酸エステル等であり、これらの1種以上を用いることができる。好ましくはHLB6以下のポリグリセリン脂肪酸エステル、さらに好ましくは縮合リシノレイン酸エステルである。乳化剤の使用量は乳化及び風味の観点から0.5 〜5重量%、好ましくは0.5 〜4重量%、さらに好ましくは0.5 〜3重量%である。
【0006】
本凝固剤で使用する油脂は、流動性のある油脂であればよく、流動性があれば結晶が分散していても使用できる。例えば、菜種油、大豆油、牛脂、オリーブ油、コーン油、ヤシ油、パーム核油、パーム油、サフラワー油、魚油、さらには、中鎖の脂肪酸からなるMCTなどがありこれらを混合、あるいはまたエステル交換、水添した油脂でもよい。またさらに、ジグリセリドを含有する油脂でもよい。
【0007】
本発明において、乳化型凝固剤の平均乳化粒子径とは、乳化型凝固剤中の乳化粒子の平均粒子径(体積規準)の事で、レーザー回折式粒度分布計による測定によって測定できる。平均乳化粒子径は、0.5 〜4μm であり、好ましくは0.5 〜3μm 、さらに好ましくは0.5 〜2μm が望ましい。
また、本発明における乳化粒子の分布の尖度とは、平均乳化粒子径と粒度分布(体積規準)から求まる標準偏差から、次式により算出される。
尖度=標準偏差/平均乳化粒子径
本発明における乳化粒子の分布の尖度は、0.2 〜0.6 、好ましくは0.2 〜0.5 、更に好ましくは0.25〜0.4 である。
平均乳化粒子径が4μm を越えると、安定性能領域は狭くなり、限られた範囲でしか充分な物性を有する豆腐が得られない。また、乳化粒子径が4μm 以下であっても尖度が0.6 を越えると、広い安定性能幅は得られない。4μm を越える粒子径を有する乳化粒子を多く持つものは、豆乳中で即座に塩化マグネシウム量が上昇し易く、豆乳中の凝固剤粒子の分散に対する対応幅が狭くなる。更には、豆乳中の凝固剤粒子表面から放出される高濃度の塩化マグネシウム水溶液も乳化粒子径に依存して拡散するために、大粒子から放出される塩化マグネシウムは拡散しづらく充分な性能を達成できないものと考えられる。また、尖度は、4μm を越える乳化粒子を極力少なくする意味を持つが、尖度が0.6 を越える乳化凝固剤は、異なる放出速度を有する乳化粒子の存在によって、安定性能幅が得られにくくなる。本発明の如く、平均乳化粒子径および尖度を制御することにより、高塩濃度の乳化凝固剤において、乳化剤量が低い乳化凝固剤の乳化安定性を改善すると共に、豆腐の性能に係わる安定性能幅領域を広げるという効果が発現される。平均乳化粒子径を0.5 μm 未満、尖度を0.2 未満にしても安定性能幅はほとんど広がらない。
【0008】
本発明における乳化型凝固剤の乳化粒子径の調節は、ナノマイザーなどの超高圧キャビテーション乳化機、あるいはマイルダーなど高エネルギータイプの乳化機を用いて乳化することにより得られる。
本発明の乳化型凝固剤は、豆乳中にスタティックミキサー、好ましくは豆乳中に分散した凝固剤粒子の粒子径を任意に可変できる高速回転剪断型の分散機あるいは高速回転剪断型の連続分散機を用いて分散することが望ましい。
【0009】
これら分散機を用いた凝固剤の分散方法は、凝固剤の分散の程度によっても凝固性能を制御できるという意味を持つ。例えば、豆乳中の凝固剤粒子の粒径を比較的大きくすると、塩化マグネシウムの溶解速度は遅くなり、これに伴って凝固反応が遅効化する傾向にある。逆に細かくすると塩化マグネシウムの溶解速度は速くなり凝固反応が早くなる。すなわち、この原理を用いて、凝固性能が異なる種々の豆乳に対する対応や、製造者が要求する凝固剤量に対して対応を行うことになる。しかしながら、この制御は機械・物理的問題から制御範囲はかなり限定される。それ故、凝固剤としての広い性能幅(安定性能幅)が何より必要となる。
【0010】
すなわち、本発明における凝固剤の安定性能幅とは、機械的・物理的分散力に対する凝固剤の性能幅、あるいは凝固剤配合量に対する性能幅の事である。本発明において、安定性能幅の確認は、本発明の凝固剤を豆乳に対し塩化マグネシウムとして0.25〜0.45重量%使用した場合に、機械的に凝固剤粒子の粒子径を可変し、この時の遅効性能あるいは豆腐の品質(豆腐の固さ、弾力性及び風味)を比較して凝固剤の安定性能幅とした。尚、通常、塩化マグネシウムの濃度が25〜50重量%の乳化型凝固剤は、分散機の回転数が不充分で豆乳中の分散粒子の平均粒子径(体積規準)が80μm を越えると豆腐表面に凝固剤の分散粒子の一部が凝集し浮いて表面で白濁し、外観を悪くする。そこで、本発明の実施例/比較例においては分散機の回転数を4000rpm 以上にして凝固剤の性能幅を確認した。
【0011】
本発明で使用する豆乳は、原料大豆は、外来大豆および国産大豆を用いることができ、豆乳濃度Brixは10〜15の煮沸豆乳を用いることができる。豆乳温度は、高温特に70〜90℃が好ましい。
【0012】
【実施例】
実施例1〜3
<乳化型凝固剤の調製>
乳化剤として、縮合リシノレイン酸ヘキサグリセリン(太陽化学(株)製、サンソフト818SK)とモノグリセリド(花王(株)製、エキセルO95R)を用い、表1に示すように乳化凝固剤の配合を行った。配合物を60℃に加温し、ホモミクサーを用い予備乳化を行い、マイルダーにて平均乳化粒子径(体積規準)が2μm 以下になる様に回転数を調整し乳化を行った。乳化終了後ただちに5℃まで冷却を行った。1昼夜5℃に保存し、凝固剤乳化物とした。
<凝固剤の平均乳化粒子径の測定>
1昼夜5℃にて保存した上記凝固剤をレーザー回折式粒度分布計(SALD−1100、島津製作所製)を用い粒度分布を測定し、体積規準によって平均粒子径を算出した。レーザー回折式粒度分布の測定は、溶媒に菜種油を使用し、作製した凝固剤乳化物を粒度分布計吸光度(ABS)として0.1〜0.05になる様に菜種油に分散し、0.1〜45μm のレンジ幅で凝固剤の粒度分布を測定した。結果を表1に示す。また、粒度分布を図1〜3に示す。
<乳化型凝固剤の保存安定性>
得られた乳化型凝固剤を、50ccのバイアル瓶(SV−50、日電理化硝子(株)製)に45cc入れて密封し、40℃で1ヶ月間密封保存し、油水分離の有無から、乳化物の安定性を判断した。
<凝固性能の確認>
豆腐の製造試験に使用する豆乳は、IOMからなる大豆を用い定法によって得られたBrix12の煮沸豆乳を用いた。
80℃に調整した上記豆乳を28L/分になる様に豆乳の流量を定量ポンプで調整し、凝固剤を豆乳に対して塩化マグネシウムとして0.25〜0.4重量%になる様に定量ポンプを調整し、配管内で混合し、さらにマイルダー(MDN304V、荏原製作所製)を用いて機械的分散を行った。分散処理液をMK箱(14L)に充填し、80℃で30分間蒸煮して豆腐を得た。マイルダーの回転数は凝固剤量に応じて3000/4000/5000/7000rpmで分散し豆腐を製造した。
<豆腐の品質評価>
5℃で冷却した豆腐について、物性評価、風味評価を行った。
豆腐の中心部から半径1cm、高さ2cmの円柱に切り出し、クリープメータ(山電(株)製)を用い圧縮試験を行った。破断点の強度(gf)を豆腐の固さ、破断点の圧縮距離(破断歪み率%)を豆腐の弾力性とした。破断強度500gf以上、破断歪み率50(%)以上を豆腐として十分な固さ、優れた豆腐の弾力性を有する豆腐とした。
また官能評価として、ポリグリセリン脂肪酸エステルの異味の有無を確認した。
これらの結果を表2〜3に示す。
【0013】
比較例1〜3
表1に示すように乳化凝固剤の配合を行い、配合物を60℃に加温し、ホモミクサーを用い、5000rpmで20分間攪拌した。できた乳化物を5℃まで冷却を行い、1昼夜5℃に保存し、凝固剤乳化物とし、上記実施例と同様の評価を行った。
【0014】
【表1】
【0015】
【表2】
【0016】
【表3】
【図面の簡単な説明】
【図1】 実施例1で得た凝固剤の乳化物の粒度分布を示すグラフである。
【図2】 実施例2で得た凝固剤の乳化物の粒度分布を示すグラフである。
【図3】 実施例3で得た凝固剤の乳化物の粒度分布を示すグラフである。
【図4】 比較例1で得た凝固剤の乳化物の粒度分布を示すグラフである。
【図5】 比較例2で得た凝固剤の乳化物の粒度分布を示すグラフである。
【図6】 比較例3で得た凝固剤の乳化物の粒度分布を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an emulsifying coagulant for tofu having excellent coagulation properties and stable performance ranges.
[0002]
[Background Art and Problems to be Solved by the Invention]
It is known that when an aqueous solution of a magnesium chloride-containing material (bitter juice) is emulsified with fats and oils and an emulsifier, the solidification reaction of tofu by magnesium chloride is delayed, and a silky tofu having a smooth and dense structure is obtained. However, if the content of magnesium chloride in the emulsion is small, it is necessary to increase the amount of addition to soy milk, resulting in problems such as the oily tofu flavor or increased raw material load. For this reason, it is required to increase the content of magnesium chloride in the emulsion as much as possible.
However, it is necessary to increase the amount of the emulsifier in order to maintain the emulsion stability in the emulsion having a high salt concentration, and this causes a peculiar taste unique to the emulsifier. In addition, the high salt concentration emulsion stabilized in this manner has a sufficient slow-acting effect, but has a narrow range of stability performance for obtaining tofu with excellent hardness and elasticity.
[0003]
[Means for Solving the Problems]
The present invention relates to an emulsion type coagulant having a magnesium chloride concentration of 25 to 50% by weight in an emulsion, wherein the emulsion has an average emulsion particle size (volume basis) in the range of 0.5 to 4 μm, and the emulsion particles This problem is solved by an emulsifying coagulant for tofu with a kurtosis of the distribution of 0.2 to 0.6.
[0004]
DETAILED DESCRIPTION OF THE INVENTION
The emulsifying type coagulant of the present invention is an emulsion obtained by emulsifying an aqueous solution of magnesium chloride into a W / O type with fats and oils and an emulsifier, and is particularly suitable for the production of tofu using high-temperature soy milk.
The content of magnesium chloride in the emulsifying coagulant is 25 to 50% by weight, more preferably 31 to 45% by weight, calculated as magnesium chloride hexahydrate. In this emulsification type coagulant, other inorganic salts may be used in combination as a coagulant.
The W / O ratio of the emulsifying coagulant is preferably 40/60 to 70/30, more preferably 45/55 to 65/35.
[0005]
Examples of the emulsifier used in the present invention include sucrose fatty acid ester, phospholipid, monoglycerin fatty acid ester, organic acid monoglycerin fatty acid ester, sorbitan fatty acid ester, polyglycerin fatty acid ester, propylene glycol fatty acid ester, and the like. Can be used. A polyglycerin fatty acid ester having an HLB of 6 or less is preferable, and a condensed ricinoleic acid ester is more preferable. The use amount of the emulsifier is 0.5 to 5% by weight, preferably 0.5 to 4% by weight, and more preferably 0.5 to 3% by weight from the viewpoint of emulsification and flavor.
[0006]
Oils and fats used in the present coagulant may be fluid oils and fats, and can be used even if crystals are dispersed. Examples include rapeseed oil, soybean oil, beef tallow, olive oil, corn oil, coconut oil, palm kernel oil, palm oil, safflower oil, fish oil, and MCT consisting of medium chain fatty acids. Oils that have been exchanged and hydrogenated may also be used. Furthermore, the fats and oils containing diglyceride may be sufficient.
[0007]
In the present invention, the average emulsion particle size of the emulsion type coagulant is the average particle size (volume standard) of the emulsion particles in the emulsion type coagulant, and can be measured by measurement with a laser diffraction particle size distribution meter. The average emulsified particle size is 0.5 to 4 μm, preferably 0.5 to 3 μm, more preferably 0.5 to 2 μm.
Further, the kurtosis of the distribution of emulsified particles in the present invention is calculated from the standard deviation obtained from the average emulsified particle size and the particle size distribution (volume criterion) by the following equation.
Kurtosis = standard deviation / average emulsified particle diameter The kurtosis of the emulsified particle distribution in the present invention is 0.2 to 0.6, preferably 0.2 to 0.5, and more preferably 0.25 to 0.4.
When the average emulsified particle diameter exceeds 4 μm, the stable performance range becomes narrow, and tofu having sufficient physical properties can be obtained only within a limited range. Further, even if the emulsified particle size is 4 μm or less, if the kurtosis exceeds 0.6, a wide stability performance range cannot be obtained. Those having a large number of emulsified particles having a particle diameter exceeding 4 μm tend to increase the amount of magnesium chloride immediately in soy milk, and the range of response to dispersion of coagulant particles in soy milk becomes narrow. Furthermore, since the high-concentration magnesium chloride aqueous solution released from the surface of the coagulant particles in soymilk also diffuses depending on the particle size of the emulsified particles, the magnesium chloride released from the large particles is difficult to diffuse and achieves sufficient performance. It is considered impossible. In addition, kurtosis has the meaning of reducing the number of emulsified particles exceeding 4 μm as much as possible, but the emulsifying coagulant having a kurtosis exceeding 0.6 μm is difficult to obtain a stable performance range due to the presence of emulsified particles having different release rates. . As in the present invention, by controlling the average emulsified particle size and kurtosis, in the emulsion coagulant with a high salt concentration, the emulsification stability of the emulsion coagulant with a low emulsifier amount is improved and the stability performance related to the performance of tofu The effect of widening the width region is expressed. Even if the average emulsified particle size is less than 0.5 μm and the kurtosis is less than 0.2, the stability performance range hardly expands.
[0008]
Adjustment of the emulsified particle size of the emulsification type coagulant in the present invention can be obtained by emulsification using an ultrahigh pressure cavitation emulsifier such as a nanomizer or a high energy type emulsifier such as a milder.
The emulsification type coagulant of the present invention comprises a static mixer in soy milk, preferably a high speed rotary shear type disperser or a high speed rotary shear type continuous disperser capable of arbitrarily changing the particle size of coagulant particles dispersed in soy milk. It is desirable to use and disperse.
[0009]
The coagulant dispersion method using these dispersers has the meaning that the coagulation performance can be controlled by the degree of coagulant dispersion. For example, when the particle size of the coagulant particles in soy milk is relatively large, the dissolution rate of magnesium chloride is slowed, and the coagulation reaction tends to be delayed. On the other hand, if it is made finer, the dissolution rate of magnesium chloride becomes faster and the coagulation reaction becomes faster. In other words, this principle is used to cope with various types of soymilk having different coagulation performance and the amount of coagulant required by the manufacturer. However, this control has a very limited control range due to mechanical and physical problems. Therefore, a wide performance range (stable performance range) as a coagulant is required above all.
[0010]
That is, the stable performance range of the coagulant in the present invention is the performance range of the coagulant with respect to the mechanical and physical dispersion force or the range of performance with respect to the coagulant blending amount. In the present invention, the stability performance range can be confirmed by changing the particle size of the coagulant particles mechanically when the coagulant of the present invention is used as magnesium chloride in an amount of 0.25 to 0.45% by weight with respect to soy milk. The performance or the quality of tofu (hardness of tofu, elasticity and flavor) was compared to determine the stability performance range of the coagulant. Normally, an emulsifying coagulant with a magnesium chloride concentration of 25 to 50% by weight will have a tofu surface if the dispersion machine has insufficient rotation speed and the average particle size (volume standard) of dispersed particles in soy milk exceeds 80 μm. In addition, some of the dispersed particles of the coagulant aggregate and float and become cloudy on the surface, which deteriorates the appearance. Therefore, in the examples / comparative examples of the present invention, the performance range of the coagulant was confirmed by setting the rotational speed of the disperser to 4000 rpm or more.
[0011]
In the soy milk used in the present invention, as the raw soybean, foreign soybean and domestic soybean can be used, and boiled soy milk having a soy milk concentration Brix of 10 to 15 can be used. The soymilk temperature is preferably a high temperature, particularly 70 to 90 ° C.
[0012]
【Example】
Examples 1-3
<Preparation of emulsion type coagulant>
As the emulsifier, condensed ricinoleic acid hexaglycerin (manufactured by Taiyo Kagaku Co., Ltd., Sunsoft 818SK) and monoglyceride (manufactured by Kao Co., Ltd., Excel O95R) were used, and an emulsion coagulant was blended as shown in Table 1. The blend was heated to 60 ° C., preliminarily emulsified using a homomixer, and emulsified by adjusting the rotation speed so that the average emulsified particle diameter (volume standard) was 2 μm or less with a milder. Immediately after the completion of emulsification, the mixture was cooled to 5 ° C. It was stored at 5 ° C. for 1 day and night to obtain a coagulant emulsion.
<Measurement of average emulsion particle size of coagulant>
The particle size distribution of the coagulant stored at 5 ° C. for one day and night was measured using a laser diffraction particle size distribution meter (SALD-1100, manufactured by Shimadzu Corporation), and the average particle size was calculated according to the volume standard. The laser diffraction particle size distribution is measured by using rapeseed oil as a solvent, and dispersing the prepared coagulant emulsion in rapeseed oil so that the absorbance (ABS) is 0.1 to 0.05. The particle size distribution of the coagulant was measured with a range width of ˜45 μm. The results are shown in Table 1. The particle size distribution is shown in FIGS.
<Storage stability of emulsifying type coagulant>
The obtained emulsification type coagulant was sealed by putting 45 cc into a 50 cc vial (SV-50, manufactured by Nichiden Rika Glass Co., Ltd.), and sealed and stored at 40 ° C. for 1 month. The stability of the object was judged.
<Confirmation of solidification performance>
As the soy milk used for the tofu production test, boiled soy milk of Brix 12 obtained by a conventional method using soybean made of IOM was used.
Adjust the soy milk flow rate with the metering pump so that the soy milk adjusted to 80 ° C. is 28 L / min, and the metering pump so that the coagulant is magnesium chloride with respect to the soy milk as 0.25 to 0.4% by weight. Were mixed in the pipe and further mechanically dispersed using a milder (MDN304V, manufactured by Ebara Seisakusho). The dispersion treatment liquid was filled in an MK box (14 L) and steamed at 80 ° C. for 30 minutes to obtain tofu. The milder was rotated at 3000/4000/5000/7000 rpm to produce tofu according to the amount of coagulant.
<Quality evaluation of tofu>
The tofu cooled at 5 ° C. was evaluated for physical properties and flavor.
It cut out from the center part of tofu into a cylinder with a radius of 1 cm and a height of 2 cm, and a compression test was performed using a creep meter (manufactured by Yamaden Co., Ltd.). The strength (gf) at the breaking point was taken as the tofu hardness, and the compression distance at the breaking point (breaking strain rate%) was taken as the elasticity of the tofu. A tofu having a breaking strength of 500 gf or more and a breaking strain ratio of 50 (%) or more was sufficient as tofu and had excellent tofu elasticity.
In addition, as a sensory evaluation, the presence or absence of a peculiar taste of the polyglycerol fatty acid ester was confirmed.
These results are shown in Tables 2-3.
[0013]
Comparative Examples 1-3
As shown in Table 1, an emulsion coagulant was blended, the blend was heated to 60 ° C., and stirred at 5000 rpm for 20 minutes using a homomixer. The resulting emulsion was cooled to 5 ° C., stored at 5 ° C. for one day and night to obtain a coagulant emulsion, and the same evaluation as in the above example was performed.
[0014]
[Table 1]
[0015]
[Table 2]
[0016]
[Table 3]
[Brief description of the drawings]
1 is a graph showing the particle size distribution of a coagulant emulsion obtained in Example 1. FIG.
2 is a graph showing the particle size distribution of the coagulant emulsion obtained in Example 2. FIG.
3 is a graph showing the particle size distribution of a coagulant emulsion obtained in Example 3. FIG.
4 is a graph showing the particle size distribution of a coagulant emulsion obtained in Comparative Example 1. FIG.
5 is a graph showing the particle size distribution of a coagulant emulsion obtained in Comparative Example 2. FIG.
6 is a graph showing the particle size distribution of a coagulant emulsion obtained in Comparative Example 3. FIG.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02008399A JP3683731B2 (en) | 1999-01-28 | 1999-01-28 | Coagulant for tofu |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02008399A JP3683731B2 (en) | 1999-01-28 | 1999-01-28 | Coagulant for tofu |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000217533A JP2000217533A (en) | 2000-08-08 |
JP3683731B2 true JP3683731B2 (en) | 2005-08-17 |
Family
ID=12017220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02008399A Expired - Lifetime JP3683731B2 (en) | 1999-01-28 | 1999-01-28 | Coagulant for tofu |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3683731B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4885022B2 (en) * | 2007-01-11 | 2012-02-29 | 理研ビタミン株式会社 | New filled tofu |
JP5385809B2 (en) * | 2010-02-02 | 2014-01-08 | 太子食品工業株式会社 | Tofu production method |
CN102573504A (en) * | 2009-10-28 | 2012-07-11 | 太子食品工业株式会社 | Method for producing soy milk and method for producing tofu |
CN103141724A (en) * | 2013-04-09 | 2013-06-12 | 连云港日丰钙镁有限公司 | Emulsified solidification agent suitable for bean curd manufacture and preparation method thereof |
JP6271546B2 (en) * | 2013-06-26 | 2018-01-31 | 理研ビタミン株式会社 | Coagulant composition for tofu and method for producing tofu using the composition |
JP6862143B2 (en) * | 2016-10-14 | 2021-04-21 | 花王株式会社 | Coagulant for filled tofu |
-
1999
- 1999-01-28 JP JP02008399A patent/JP3683731B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000217533A (en) | 2000-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2006215829B2 (en) | Process for the preparation of a spreadable dispersion | |
AU2012232995A1 (en) | Mesophase-stabilized emulsions and dispersions for use in low-fat and fat-free food products | |
JP4804761B2 (en) | Coagulation preparation for tofu | |
JP5297883B2 (en) | Coagulation preparation for tofu | |
WO2011077073A1 (en) | Double emulsions | |
EP3019023B1 (en) | Whey protein aggregates particles and use thereof | |
JP4391332B2 (en) | Water-in-oil emulsified tofu coagulant | |
JP5102866B2 (en) | Coagulant for tofu and method for producing the same | |
CA2974789C (en) | Method for producing nanoparticle-in-oil dispersion | |
JP3683731B2 (en) | Coagulant for tofu | |
JPH09501100A (en) | Water / oil emulsions and water / oil / water emulsions with high internal phase content | |
JP3853778B2 (en) | Method for producing cotton tofu | |
JP4290713B2 (en) | Whipped cream containing tofu puree | |
KR20160024989A (en) | Coagulant composition for tofu and method for manufacturing tofu using same | |
KR20060048513A (en) | Coagulating agent for bean curd | |
JP3980551B2 (en) | Coagulation preparation for tofu | |
JP3678919B2 (en) | Coagulation preparation for tofu | |
WO2019224892A1 (en) | Coagulant for tofu, coagulant composition for tofu and method for manufacturing same | |
JP2000060480A (en) | Acidic o/w-type emulsion composition | |
JP2005261233A (en) | Multiple emulsion-type acidic oil-in-water emulsified food | |
JP2008154526A (en) | Coagulation preparation for bean curd | |
JP2024092169A (en) | Production method of emulsion for food having bimodal distribution | |
JP2847922B2 (en) | Low calorie oil and fat processed food | |
JPH10257861A (en) | Emulsified material and its production | |
JPS61289859A (en) | Production of horseradish-containing acidulous o/w-type emulsion food |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040406 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040406 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050502 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050524 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050526 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090603 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100603 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100603 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110603 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110603 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120603 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120603 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130603 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |