JP3683024B2 - High corrosion resistance Ni-P alloy electroplating method - Google Patents

High corrosion resistance Ni-P alloy electroplating method Download PDF

Info

Publication number
JP3683024B2
JP3683024B2 JP04475396A JP4475396A JP3683024B2 JP 3683024 B2 JP3683024 B2 JP 3683024B2 JP 04475396 A JP04475396 A JP 04475396A JP 4475396 A JP4475396 A JP 4475396A JP 3683024 B2 JP3683024 B2 JP 3683024B2
Authority
JP
Japan
Prior art keywords
current density
plating
film
electroplating
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04475396A
Other languages
Japanese (ja)
Other versions
JPH09241883A (en
Inventor
勝英 大島
智志 湯浅
明子 末永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dipsol Chemicals Co Ltd
Original Assignee
Dipsol Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dipsol Chemicals Co Ltd filed Critical Dipsol Chemicals Co Ltd
Priority to JP04475396A priority Critical patent/JP3683024B2/en
Publication of JPH09241883A publication Critical patent/JPH09241883A/en
Application granted granted Critical
Publication of JP3683024B2 publication Critical patent/JP3683024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、種々の基体上に高耐食性Ni−P合金皮膜を電気めっきにより形成する方法に関するものである。
【従来の技術】
従来、基材表面の性能として高耐食性や高硬度が要求される場合には、化学Ni−Pまたは電気Ni−P合金めっき皮膜が採用されており、皮膜の内部応力を緩和させるために多糖類などの添加が有効であることが公知の技術として知られている。
しかし、化学Ni−Pや電気Ni−P合金めっきのいずれの場合でもピンホ−ルが発生するため、膜厚10μm以下では皮膜本来の耐食性能が発揮されないとの問題がある。従って、ピンホ−ルの影響が及ばないように膜厚20μm以上の厚付めっきする方法や下地に電気Niめっきを施す方法、あるいは電気Ni−P合金めっき後にクロム酸処理する方法が対応策として実施されている。
【0002】
しかし、作業効率や排水処理の問題、特に下地に電気Niめっきを施した場合にはNiめっきとNi−P合金めっきとの密着性を向上させるため特開平7−41985号公報に記載されているような熱処理工程が必要とされる。
一方、近年、亜リン酸塩を多量に含む化学Ni−Pめっきの廃液処理が問題化している。そこで、化学Ni−P廃液の処理や再利用方法として、特公平5−83635号公報、特開平7−126855号公報、特開平6−136549号公報、特開平5−247660号公報及び特開平7−267616号公報に記載されているような電気透析法、光触媒酸化法や亜リン酸塩の沈殿除去法等が提案されているが、いずれもの場合も化学Ni−Pめっきの廃液を直接再利用する方法ではない。
【発明が解決しようとする課題】
本発明は、ピンホ−ルがなく、密着性が高い高耐食性Ni−P合金電気めっき皮膜が効率よく得られ、かつ化学Ni−Pめっきの廃液が有効利用できるめっき方法を提供することを目的とする。
【0003】
【課題を解決するための手段】
本発明は、電気めっき開始初期と終了時の陰極電流密度を低くし、一方それ以外の期間の陰極電流密度を高くして電気めっきを行うと上記課題を効率よく解決できるとの知見に基づいてなされたのである。
すなわち、本発明は、Ni−P合金電気めっき方法において、陰極に負荷する陰極電流密度を0.1〜20A/dm2 の範囲とし、かつ電気めっき開始初期には低い陰極電流密度を採用し、ついで陰極電流密度を高め、電気めっき終了時に再び低い陰極電流密度とすることを特徴とするNi−P合金電気めっき方法を提供する。
【0004】
【発明の実施の形態】
本発明のめっき方法は、例えば、電気めっき開始初期の陰極電流密度が0.1〜5A/dm2 であり、その後の陰極電流密度が最高20A/dm2 までであり、かつ電気めっき終了時の陰極電流密度が0.1〜5A/dm2 とすることにより容易に行うことができる。ここで、電気めっき開始初期としては、電気めっき開始時から30分以内が好ましく、より好ましくは15分以内である。又、電気めっき終了時としては、めっき終了前30分までの間が好ましく、より好ましくは15分までの間である。
本発明の電気めっき方法では、さらに、電気めっき開始初期の析出Ni−P合金皮膜がリンを9〜20重量%含有し、次いでリン含有量が0.1〜20重量%のNi−P合金皮膜を形成し、かつ電気めっき終了時の析出Ni−P合金皮膜がリンを9〜20重量%含有するようにするのが好ましい。つまり、析出初期のNi−P合金皮膜を高リン含有皮膜とし、その上層に良好な皮膜が得られることを考慮した電流密度範囲内でNi−P合金皮膜を施し更に最表層に高リン含有Ni−P合金皮膜を施すのが好ましい。
【0005】
Ni−P合金めっき液はNi供給源としてNi塩、P供給源として亜リン酸または亜リン酸塩を基本成分とし、pHが0.5〜2.0の水溶液であるのが好ましい。より好ましいpHは、1.0〜1.5である。
具体的にはP供給源としては、次亜リン酸、亜リン酸またはそれらのナトリウム塩、カリウム塩、化学Ni−Pめっきの廃液などが挙げられる。それらの使用量は液全体として5〜100g/lが好ましく、より好ましくは10〜60g/lである。
Ni塩としては、硫酸ニッケル、塩化ニッケル、スルファミン酸ニッケル、炭酸ニッケル等が挙げられる。それらの使用量は液全体として100〜450g/lが好ましい。更にその他の添加剤としてホウ酸、リン酸、硫酸、塩酸、アンモニア水などを加えてもよい。
本発明ではめっき液として、無電解Ni−Pめっき廃液を用いることができる。このような廃液としては、例えば、Ni1〜20g/l、亜リン酸ナトリウム30〜1000g/l、次亜リン酸ナトリウム5〜100g/l、有機酸等10〜100g/l及び残部が水であるものがあげられる。
めっき液温度は40〜90℃が好ましく、より好ましくは50〜70℃の範囲において一定に保つほうがよく、液撹拌はエアブロ−撹拌等を行ってもよい。
【0006】
析出初期の高リン含有Ni−P合金めっき皮膜の厚さは0.5〜5μmが好ましく、より好ましくは1〜3μmである。また、この皮膜を析出させる電流密度としては0.1〜5A/dm2 が好ましく、より好ましくは0.5〜3A/dm2 である。
更に上層のNi−P合金めっき皮膜の厚さは必要な膜厚から2〜6μm差し引いた程度でよい。通常3〜15μm程度の膜厚があげられるが、これよりも厚くすることもできる。電流密度としては0.1〜20A/dm2 が好ましく、より好ましくは2〜15A/dm2 である。この範囲内であれば一定であっても変化させてもどちらでもよい。
最表層の高リン含有Ni−P合金めっき皮膜の厚さは0.5〜5μmが好ましく、より好ましくは1〜3μmである。また、この皮膜を析出させる電流密度としては0.5〜5A/dm2 が好ましく、より好ましくは0.5〜3A/dm2 である。
【0007】
本発明では、Ni−P合金めっき皮膜を形成できる基体としては、種々のものがあげられ、具体的には、鉄、銅、またはそれらの合金などがあげられる。本発明では、この基体を陰極とし、Niまたは白金などの不溶性電導物質を陽極として、Ni含量が80〜99.9重量%、P含量が0.1〜20重量%のNi−P合金めっき皮膜を形成することができる。尚、基体は、本発明の電気めっきを行う前に、公知のアルカリ脱脂や酸活性の前処理などを施すのが好ましい。
【発明の効果】
本発明によれば、先ず基板上に高リン含有電気Ni−P合金めっきを施すことができるのでピンホ−ルの発生を防止することができ、その上層に広い電流密度範囲から必要な膜厚を得る、次いで最表層として高リン含有電気Ni−P合金めっきを施すことで作業効率と耐食性、内部応力の緩和を向上させることができる。これと同時に電気Ni−P合金めっきのP供給源として化学Ni−Pめっきの廃液が使用できるため、化学Ni−Pめっき廃液の処分も可能となる。
次ぎに実施例により本発明を説明する。
【0008】
【実施例】
実施例1
基板としSPCC−SB(JIS−G−3141)を用い、公知のアルカリ脱脂、酸活性の前処理をした。この基板上に液組成としてNiSO4 ・6H2 O260g/l、NiCl2 ・6H2 O 60g/l、亜リン酸 10g/lを用いて液温65℃、pH1.3、無攪拌で初期電流密度0.5A/dm2 で15分間処理し(めっき皮膜中のリン含量12.5重量%)、連続的に10A/dm2 まで電流密度を上げ、10A/dm2 で5分間処理した(めっき皮膜中のリン含量6.2重量%)後、再び0.5A/dm2 まで電流密度を下げ、0.5A/dm2 で15分間処理し(めっき皮膜中のリン含量12.5重量%)、およそ10μmの電気Ni−P合金めっき皮膜を得た。
【0009】
実施例2
化学ニッケル−リンめっきの廃液(ディップソ−ル(株)製NP−1717)を冷却し芒硝を除去した溶液にニッケル塩を添加し、実施例1と同様の浴組成であるめっき液を作った。尚、この時廃液から混入する錯化剤、及び安定剤は非常に微量であるため無視できると判断した。
実施例1で用いた基材を同様の方法で前処理をし、この基材上に上記めっき液を用い、液温65℃、pH1.3(硫酸によりpH調整)、無攪拌で初期電流密度0.5A/dm2 まで15分間処理し(めっき皮膜中のリン含量12.3重量%)、連続的に10A/dm2 で電流密度を上げ、10A/dm2 まで5分間処理した(めっき皮膜中のリン含量7.6重量%)後、再び連続的に0.5A/dm2 で電流密度を下げ、0.5A/dm2 で15分間処理し(めっき皮膜中のリン含量12.3重量%)、およそ10μmの電気Ni−P合金めっき皮膜を得た。
【0010】
実施例3
実施例1で用いた基材を同様の方法で前処理した。この基板上に液組成としてNiSO4 ・6H2 O 260g/l、NiCl2 ・6H2 O 60g/l、亜リン酸 20g/lを用いて液温65℃、pH1.3(アンモニア水によりpH調整)、無攪拌で初期電流密度1A/dm2 で10分間処理し(めっき皮膜中のリン含量11.8重量%)、連続的に20A/dm2 まで電流密度を上げ、20A/dm2 で3分間処理した(めっき皮膜中のリン含量3.6重量%)後、再び1A/dm2 で電流密度を下げ、1A/dm2 で10分間処理し(めっき皮膜中のリン含量11.8重量%)およそ10μmの電気Ni−P合金めっき皮膜を得た。
【0011】
実施例4
実施例1で用いた基材を同様の方法で前処理した。この基板上に液組成としてNiSO4 ・6H2 O 260g/l、NiCl2 ・6H2 O 60g/l、亜リン酸 10g/lを用いて液温85℃、pH1.3、無攪拌で初期電流密度5A/dm2 で1分間処理し(めっき皮膜中のリン含量9.2重量%)、連続的に20A/dm2 まで電流密度を上げ、20A/dm2 で2分間処理した(めっき皮膜中のリン含量3.8重量%)後、再び5A/dm2 まで電流密度を下げ、5A/dm2 で1分間処理し(めっき皮膜中のリン含量9.2重量%)およそ10μmの電気Ni−P合金めっき皮膜を得た。
【0012】
実施例5
実施例1で用いた基材を同様の方法で前処理をした。この基板上に液組成としてNiSO4 ・6H2 O 260g/l、NiCl2 ・6H2 O 60g/l、亜リン酸 10g/lを用いて液温65℃、pH0.7(硫酸によりpH調整)、無攪拌で初期電流密度5A/dm2 で1分30秒間処理し(めっき皮膜中のリン含量11.2重量%)、連続的に20A/dm2 まで電流密度を上げ、20A/dm2 で5分間処理した(めっき皮膜中のリン含量3.2重量%)後、再び5A/dm2 まで電流密度を下げ、5A/dm2 で1分30秒間処理し(めっき皮膜中のリン含量11.2重量%)およそ10μmの電気Ni−P合金めっき皮膜を得た。
【0013】
比較例1
実施例1で用いた基材を同様の方法で前処理をした。この基材上に実施例1と同様のめっき液を用い、液温65℃、pH1.3、無攪拌で初期電流密度10A/dm2 で5分間処理した(めっき皮膜中のリン含量6.2重量%)後、連続的に0.5A/dm2 まで電流密度を下げ、0.5A/dm2 で30分間処理し(めっき皮膜中のリン含量12.5重量%)、およそ10μmの電気Ni−P合金めっき皮膜を得た。
【0014】
比較例2
実施例1で用いた基材を同様の方法で前処理をした。この基材上に実施例1と同様のめっき液を用い、液温65℃、pH1.3、無攪拌で電流密度10A/dm2 で6分15秒間処理し(めっき皮膜中のリン含量7.6重量%)、およそ10μmの電気Ni−P合金めっき皮膜を得た。
比較例3
実施例1で用いた基材を同様の方法で前処理をした。この基材上にディップソ−ル(株)製ニッケル光沢剤(Ni−1600B、L、W)を添加した公知のワット浴を用い、光沢ニッケルめっき処理を無攪拌で行ない、10μmの電気Niめっき皮膜を得た(めっき皮膜中のリン含量0.0重量%)。
【0015】
比較例4
実施例1で用いた基材を同様の方法で前処理をした。この基材上にディップソ−ル(株)製NP−1717を用い、液温90℃、pH4.8、無攪拌で30分間処理し、およそ10μmの化学Ni−Pめっき皮膜(めっき皮膜中のリン含量8.5重量%)を得た。
比較例5
実施例1で用いた基材を同様の方法で前処理をした。この基材上に実施例1と同様のめっき液を用い、液温65℃、pH1.3、無攪拌で初期電流密度0.5A/dm2 で30分間処理した(めっき皮膜中のリン含量12.5重量%)後、連続的に10A/dm2 まで電流密度を上げ、10A/dm2 で5分間処理し(めっき皮膜中のリン含量6.2重量%)、およそ10μmの電気Ni−P合金めっき皮膜を得た。
【0016】
比較例6
実施例1で用いた基材を同様の方法で前処理をした。この基材上に実施例1と同様のめっき液を用い、液温65℃、pH1.3、無攪拌で電流密度0.5A/dm2 で2時間30分間処理し、およそ10μmの電気Ni−P合金めっき皮膜(めっき皮膜中のリン含量12.3重量%)を得た。
上記実施例1〜5及び比較例1〜6の各めっきについて JIS Z−8617に基づき塩水噴霧試験及びフェロキシル試験を行なった。また、耐酸性試験として硝酸、塩酸、硫酸の1規定溶液に24時間浸漬後の皮膜減少量を測定した。内部応力については藤化成株式会社ストリップ電着応力測定器を用いて測定した。
これらの試験測定結果を表−1に示す。
【0017】

Figure 0003683024
【0018】
表−1からも明らかなように本発明によるめっき法より得られた皮膜は内部応力が低く、ピンホ−ルのない高耐食性電気Ni−P合金めっき皮膜である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming a highly corrosion-resistant Ni—P alloy film on various substrates by electroplating.
[Prior art]
Conventionally, when high corrosion resistance and high hardness are required as the performance of the substrate surface, a chemical Ni-P or electric Ni-P alloy plating film has been adopted, and a polysaccharide is used to reduce the internal stress of the film. It is known as a well-known technique that the addition of and the like is effective.
However, since pinholes are generated in both cases of chemical Ni—P and electric Ni—P alloy plating, there is a problem that the original corrosion resistance of the film cannot be exhibited at a film thickness of 10 μm or less. Therefore, as a countermeasure, a method of plating with a thickness of 20 μm or more, a method of applying electric Ni plating to the base, or a method of treating chromic acid after electric Ni-P alloy plating so that the influence of the pinhole is not implemented. Has been.
[0002]
However, it is described in Japanese Patent Application Laid-Open No. 7-41985 in order to improve the adhesion between Ni plating and Ni—P alloy plating when work efficiency and wastewater treatment are problems, especially when Ni is applied to the base. Such a heat treatment step is required.
On the other hand, waste liquid treatment of chemical Ni—P plating containing a large amount of phosphite has recently become a problem. Therefore, as methods for treating and reusing chemical Ni-P waste liquid, Japanese Patent Publication No. 5-83635, Japanese Patent Application Laid-Open No. 7-126855, Japanese Patent Application Laid-Open No. 6-136549, Japanese Patent Application Laid-Open No. 5-247660, and Japanese Patent Application Laid-Open No. Electrodialysis methods, photocatalytic oxidation methods, phosphite precipitation removal methods, and the like as described in Japanese Patent No. 267616 are proposed, but in any case, the waste solution of chemical Ni-P plating is directly reused. It's not a way to do it.
[Problems to be solved by the invention]
It is an object of the present invention to provide a plating method that can efficiently obtain a highly corrosion-resistant Ni-P alloy electroplating film having no pinhole and high adhesion, and that can effectively use a waste liquid of chemical Ni-P plating. To do.
[0003]
[Means for Solving the Problems]
The present invention is based on the knowledge that when the electroplating is performed by reducing the cathode current density at the beginning and end of electroplating, while increasing the cathode current density during other periods, the above problem can be solved efficiently. It was made.
That is, the present invention employs a cathode current density applied to the cathode in the range of 0.1 to 20 A / dm 2 in the Ni-P alloy electroplating method, and adopts a low cathode current density at the beginning of electroplating, Next, a Ni—P alloy electroplating method is provided in which the cathode current density is increased and the cathode current density is lowered again at the end of electroplating.
[0004]
DETAILED DESCRIPTION OF THE INVENTION
In the plating method of the present invention, for example, the cathode current density at the beginning of electroplating is 0.1 to 5 A / dm 2 , the cathode current density thereafter is up to 20 A / dm 2 , and at the end of electroplating. This can be easily performed by setting the cathode current density to 0.1 to 5 A / dm 2 . Here, the initial electroplating start time is preferably within 30 minutes from the start of electroplating, and more preferably within 15 minutes. Moreover, as the time of completion | finish of electroplating, between 30 minutes before completion | finish of plating is preferable, More preferably, it is between 15 minutes.
In the electroplating method of the present invention, the Ni-P alloy film in which the deposited Ni—P alloy film at the beginning of electroplating contains 9 to 20% by weight of phosphorus and then the phosphorus content is 0.1 to 20% by weight. It is preferable that the Ni—P alloy film deposited at the end of electroplating contains 9 to 20% by weight of phosphorus. That is, the Ni-P alloy film in the initial stage of precipitation is used as a high phosphorus content film, and a Ni-P alloy film is applied within the current density range considering that a good film can be obtained on the upper layer. It is preferable to apply a -P alloy film.
[0005]
The Ni—P alloy plating solution is preferably an aqueous solution containing Ni salt as a Ni supply source, phosphorous acid or phosphite as a P supply source as basic components and a pH of 0.5 to 2.0. A more preferred pH is 1.0 to 1.5.
Specifically, examples of the P supply source include hypophosphorous acid, phosphorous acid or their sodium salts, potassium salts, and waste liquids of chemical Ni—P plating. As for the usage-amount, 5-100 g / l of the whole liquid is preferable, More preferably, it is 10-60 g / l.
Examples of the Ni salt include nickel sulfate, nickel chloride, nickel sulfamate, and nickel carbonate. The amount used thereof is preferably 100 to 450 g / l as a whole liquid. Further, boric acid, phosphoric acid, sulfuric acid, hydrochloric acid, aqueous ammonia and the like may be added as other additives.
In the present invention, an electroless Ni-P plating waste liquid can be used as the plating liquid. Examples of such waste liquid include Ni 1 to 20 g / l, sodium phosphite 30 to 1000 g / l, sodium hypophosphite 5 to 100 g / l, organic acid 10 to 100 g / l, and the balance is water. Things can be raised.
The plating solution temperature is preferably 40 to 90 ° C, more preferably 50 ° C to 70 ° C, and the solution stirring may be performed by air blow-stirring or the like.
[0006]
The thickness of the high phosphorus content Ni—P alloy plating film in the initial stage of precipitation is preferably 0.5 to 5 μm, more preferably 1 to 3 μm. Further, the current density for depositing the film is preferably 0.1 to 5 A / dm 2 , more preferably 0.5 to 3 A / dm 2 .
Furthermore, the thickness of the upper Ni—P alloy plating film may be a value obtained by subtracting 2 to 6 μm from the required film thickness. Usually, the film thickness is about 3 to 15 μm, but it can be made thicker. The current density is preferably 0.1 to 20 A / dm 2 , more preferably 2 to 15 A / dm 2 . As long as it is within this range, it may be constant or changed.
The thickness of the outermost high phosphorus-containing Ni—P alloy plating film is preferably 0.5 to 5 μm, more preferably 1 to 3 μm. The current density for depositing the film is preferably 0.5 to 5 A / dm 2 , more preferably 0.5 to 3 A / dm 2 .
[0007]
In the present invention, various substrates can be used for forming the Ni-P alloy plating film, and specifically, iron, copper, or alloys thereof can be used. In the present invention, a Ni—P alloy plating film having a Ni content of 80 to 99.9 wt% and a P content of 0.1 to 20 wt% using the substrate as a cathode and an insoluble conductive material such as Ni or platinum as an anode. Can be formed. The substrate is preferably subjected to known alkali degreasing, acid activity pretreatment and the like before the electroplating of the present invention.
【The invention's effect】
According to the present invention, first, high phosphorus content electric Ni-P alloy plating can be applied on the substrate, so that the generation of pinholes can be prevented. Next, by applying high-phosphorus-containing electric Ni—P alloy plating as the outermost layer, it is possible to improve work efficiency, corrosion resistance, and relaxation of internal stress. At the same time, since the waste solution of chemical Ni-P plating can be used as a P supply source for electric Ni-P alloy plating, the waste solution of chemical Ni-P plating can be disposed.
Next, the present invention will be described with reference to examples.
[0008]
【Example】
Example 1
SPCC-SB (JIS-G-3141) was used as a substrate, and a known alkali degreasing and acid activity pretreatment was performed. NiSO 4 · 6H 2 O 260 g / l, NiCl 2 · 6H 2 O 60 g / l, phosphorous acid 10 g / l on this substrate, liquid temperature 65 ° C., pH 1.3, initial current density without stirring for 15 minutes at 0.5A / dm 2 (phosphorus content 12.5 wt% in the plating film), continuously increasing the current density up to 10A / dm 2, it was treated with 10A / dm 2 5 minutes (plated film The phosphorus content in the plating film was reduced to 0.5 A / dm 2 again and treated with 0.5 A / dm 2 for 15 minutes (the phosphorus content in the plating film was 12.5 wt%) An electric Ni—P alloy plating film of about 10 μm was obtained.
[0009]
Example 2
The nickel salt was added to the solution obtained by cooling the waste solution of chemical nickel-phosphorous plating (NP-1717, manufactured by DipSole Co., Ltd.) and removing the sodium sulfate, to prepare a plating solution having the same bath composition as in Example 1. At this time, the complexing agent and the stabilizer mixed from the waste liquid were judged to be negligible because they were very small amounts.
The base material used in Example 1 was pretreated by the same method, and the initial plating current density was adjusted using the above plating solution on the base material at a liquid temperature of 65 ° C., pH 1.3 (pH adjustment with sulfuric acid), and without stirring. 0.5A / dm 2 until for 15 minutes (phosphorus content 12.3 wt% in the plating film), increase the current density continuously 10A / dm 2, and 5 minutes to 10A / dm 2 (plated film After that, the current density was continuously decreased again at 0.5 A / dm 2 and treated at 0.5 A / dm 2 for 15 minutes (the phosphorus content in the plating film was 12.3 wt%). %), An electric Ni—P alloy plating film of approximately 10 μm was obtained.
[0010]
Example 3
The substrate used in Example 1 was pretreated in the same manner. On this substrate, NiSO 4 .6H 2 O 260 g / l, NiCl 2 .6H 2 O 60 g / l, phosphorous acid 20 g / l were used, and the liquid temperature was 65 ° C., pH 1.3 (pH adjusted with aqueous ammonia) ), Treated for 10 minutes at an initial current density of 1 A / dm 2 without stirring (phosphorus content in the plating film: 11.8% by weight), continuously increased to 20 A / dm 2 , and increased to 3 at 20 A / dm 2 . After treatment for 1 minute (phosphorus content in the plating film 3.6% by weight), the current density was lowered again at 1 A / dm 2 and treated for 10 minutes at 1 A / dm 2 (phosphorus content in the plating film 11.8% by weight). ) An electric Ni-P alloy plating film of about 10 μm was obtained.
[0011]
Example 4
The substrate used in Example 1 was pretreated in the same manner. NiSO 4 · 6H 2 O (260 g / l), NiCl 2 · 6H 2 O (60 g / l) and phosphorous acid (10 g / l) were used as liquid compositions on this substrate, the liquid temperature was 85 ° C., the pH was 1.3, and the initial current was not stirred. density 5A / dm 2 in treated 1 minute (phosphorus content 9.2 wt% in the plating film), continuously increasing the current density up to 20A / dm 2, it was treated with 20A / dm 2 2 min (plated film in After that, the current density was lowered to 5 A / dm 2 again, and treated with 5 A / dm 2 for 1 minute (phosphorus content in the plating film: 9.2 wt%). A P alloy plating film was obtained.
[0012]
Example 5
The base material used in Example 1 was pretreated by the same method. On this substrate, NiSO 4 · 6H 2 O 260 g / l, NiCl 2 · 6H 2 O 60 g / l, phosphorous acid 10 g / l, liquid temperature 65 ° C., pH 0.7 (pH adjusted with sulfuric acid) , Treated at an initial current density of 5 A / dm 2 for 1 minute and 30 seconds without stirring (phosphorus content in the plating film: 11.2% by weight), continuously increased to 20 A / dm 2 , and at 20 A / dm 2 After 5 minutes of treatment (phosphorus content in the plating film: 3.2% by weight), the current density was lowered again to 5 A / dm 2 and treated at 5 A / dm 2 for 1 minute and 30 seconds (phosphorus content in the plating film of 11.1. 2 wt%) An electric Ni—P alloy plating film of about 10 μm was obtained.
[0013]
Comparative Example 1
The base material used in Example 1 was pretreated by the same method. The same plating solution as in Example 1 was used on this substrate, and the substrate was treated for 5 minutes at an initial current density of 10 A / dm 2 with a liquid temperature of 65 ° C., pH 1.3, and no stirring (phosphorus content 6.2% in the plating film). after wt%), continuously decreasing the current density up to 0.5A / dm 2, was treated with 0.5A / dm 2 30 minutes (phosphorus content 12.5 wt% in the plating film) of about 10μm electric Ni A -P alloy plating film was obtained.
[0014]
Comparative Example 2
The base material used in Example 1 was pretreated by the same method. The same plating solution as in Example 1 was used on this substrate, and the solution was treated at a liquid temperature of 65 ° C., pH 1.3, with no stirring at a current density of 10 A / dm 2 for 6 minutes and 15 seconds (phosphorus content in the plating film was 7. 6 wt%), an electric Ni—P alloy plating film of approximately 10 μm was obtained.
Comparative Example 3
The base material used in Example 1 was pretreated by the same method. Using a known watt bath to which a nickel brightener (Ni-1600B, L, W) manufactured by Dipsol Co., Ltd. was added on this base material, bright nickel plating treatment was performed without stirring, and a 10 μm electric Ni plating film (The phosphorus content in the plating film was 0.0% by weight).
[0015]
Comparative Example 4
The base material used in Example 1 was pretreated by the same method. This substrate was treated with NP-1717 manufactured by Dipsol Co., Ltd. for 30 minutes with a liquid temperature of 90 ° C., a pH of 4.8 and no stirring, and approximately 10 μm of chemical Ni—P plating film (phosphorus in the plating film). A content of 8.5% by weight) was obtained.
Comparative Example 5
The base material used in Example 1 was pretreated by the same method. The same plating solution as in Example 1 was used on this substrate, and the substrate was treated for 30 minutes at an initial current density of 0.5 A / dm 2 without stirring with a solution temperature of 65 ° C., pH 1.3 (phosphorus content in the plating film 12 Then, the current density is continuously increased to 10 A / dm 2 and treated with 10 A / dm 2 for 5 minutes (the phosphorus content in the plating film is 6.2 wt%). An alloy plating film was obtained.
[0016]
Comparative Example 6
The base material used in Example 1 was pretreated by the same method. The same plating solution as in Example 1 was used on this substrate, and the solution was treated at a liquid temperature of 65 ° C., pH 1.3, no stirring at a current density of 0.5 A / dm 2 for 2 hours and 30 minutes, and approximately 10 μm of electric Ni— A P alloy plating film (phosphorus content in the plating film: 12.3% by weight) was obtained.
About each plating of the said Examples 1-5 and Comparative Examples 1-6, the salt spray test and the ferroxyl test were done based on JISZ-8617. Further, as an acid resistance test, the amount of film decrease after immersion in a 1N solution of nitric acid, hydrochloric acid and sulfuric acid for 24 hours was measured. The internal stress was measured using a Fuji Kasei Co., Ltd. strip electrodeposition stress measuring instrument.
These test measurement results are shown in Table-1.
[0017]
Figure 0003683024
[0018]
As is apparent from Table 1, the film obtained by the plating method according to the present invention is a high corrosion resistance electric Ni-P alloy plating film having a low internal stress and no pinhole.

Claims (4)

Ni−P合金電気めっき方法において、陰極に負荷する陰極電流密度を0.1〜20A/dm2 の範囲とし、かつ電気めっき開始初期には低い陰極電流密度を採用し、ついで陰極電流密度を高め、電気めっき終了時に再び低い陰極電流密度とすることを特徴とするNi−P合金電気めっき方法。In the Ni-P alloy electroplating method, the cathode current density applied to the cathode is in the range of 0.1 to 20 A / dm 2 , and a low cathode current density is adopted at the beginning of electroplating, and then the cathode current density is increased. An Ni-P alloy electroplating method, wherein a low cathode current density is set again at the end of electroplating. 電気めっき開始初期の陰極電流密度が0.1〜5A/dm2 であり、その後の陰極電流密度が最高20A/dm2 までであり、かつ電気めっき終了時の陰極電流密度が0.1〜5A/dm2 である請求項1記載の電気めっき方法。The cathode current density at the beginning of electroplating is 0.1 to 5 A / dm 2 , the cathode current density thereafter is up to 20 A / dm 2 , and the cathode current density at the end of electroplating is 0.1 to 5 A. The electroplating method according to claim 1, which is / dm 2 . 電気めっき開始初期の析出Ni−P合金皮膜がリンを8〜20重量%含有し、次いでリン含有量が0.1〜20重量%のNi−P合金皮膜を形成し、かつ電気めっき終了時の析出Ni−P合金皮膜がリンを8〜20重量%含有するものである請求項1記載の電気めっき方法。The deposited Ni—P alloy film at the beginning of electroplating contains 8 to 20% by weight of phosphorus, and then a Ni—P alloy film having a phosphorus content of 0.1 to 20% by weight is formed. The electroplating method according to claim 1, wherein the deposited Ni-P alloy film contains 8 to 20 wt% of phosphorus. めっき液として無電解Ni−Pめっき廃液を用いる請求項1記載の電気めっき方法。The electroplating method according to claim 1, wherein an electroless Ni-P plating waste liquid is used as the plating liquid.
JP04475396A 1996-03-01 1996-03-01 High corrosion resistance Ni-P alloy electroplating method Expired - Fee Related JP3683024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04475396A JP3683024B2 (en) 1996-03-01 1996-03-01 High corrosion resistance Ni-P alloy electroplating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04475396A JP3683024B2 (en) 1996-03-01 1996-03-01 High corrosion resistance Ni-P alloy electroplating method

Publications (2)

Publication Number Publication Date
JPH09241883A JPH09241883A (en) 1997-09-16
JP3683024B2 true JP3683024B2 (en) 2005-08-17

Family

ID=12700207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04475396A Expired - Fee Related JP3683024B2 (en) 1996-03-01 1996-03-01 High corrosion resistance Ni-P alloy electroplating method

Country Status (1)

Country Link
JP (1) JP3683024B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210254232A1 (en) * 2020-02-14 2021-08-19 United Technologies Corporation Thermally stable nickel-phosphorus alloy for high temperature applications
CN115418687A (en) * 2021-05-14 2022-12-02 中国科学院金属研究所 Electroplating solution and preparation method of electrode plate for hydrogen production by alkaline electrolyzed water
CN114032589A (en) * 2021-11-26 2022-02-11 山西汾西重工有限责任公司 Electroplating solution and preparation method of nickel-phosphorus alloy electroplated layer

Also Published As

Publication number Publication date
JPH09241883A (en) 1997-09-16

Similar Documents

Publication Publication Date Title
Donten et al. Pulse electroplating of rich-in-tungsten thin layers of amorphous Co-W alloys
US3264199A (en) Electroless plating of metals
US3726771A (en) Process for chemical nickel plating of aluminum and its alloys
US2636850A (en) Electroplating of copper from cyanide electrolytes
JP5336762B2 (en) Copper-zinc alloy electroplating bath and plating method using the same
JPH0319308B2 (en)
TWI261075B (en) Pulse reverse electrolysis of acidic copper electroplating solutions
JP3683024B2 (en) High corrosion resistance Ni-P alloy electroplating method
CN101889107B (en) Use the system and method for electroplating technology plating metal alloys
US6699379B1 (en) Method for reducing stress in nickel-based alloy plating
JPH0257153B2 (en)
Krishnan et al. Electroplating of Copper from a Non-cyanide Electrolyte
CN116065208A (en) Preparation method of variable-frequency power ultrasonic electro-deposition nano nickel-based composite layer on magnesium alloy surface
JP2007254866A (en) Plating pretreatment method for aluminum or aluminum alloy raw material
US20040031694A1 (en) Commercial process for electroplating nickel-phosphorus coatings
US2546150A (en) Method for securing adhesion of electroplated coatings to a metal base
JP3938604B2 (en) Ni-P alloy electroplating method
Zhu et al. Copper coating electrodeposited directly onto AZ31 magnesium alloy
JP2560842B2 (en) Method for manufacturing corrosion resistant film
KR100402730B1 (en) Method process for forming copper and nickel-plated of electrolytic plating in magnesium compound
EP2218804A1 (en) Copper-zinc alloy electroplating bath and plating method using the copper-zinc alloy electroplating bath
JP3132714B2 (en) Surface treatment method for aluminum material
JP2899541B2 (en) Nickel chrome alloy plating solution with electroless electrolysis
US3790451A (en) Electrodeposition of copper from sulfur-free cyanide electrolytes using periodic reverse current
JPH0797719B2 (en) Method of forming electromagnetic wave shield layer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130603

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees