JP3682192B2 - Transition type plasma heating anode - Google Patents

Transition type plasma heating anode Download PDF

Info

Publication number
JP3682192B2
JP3682192B2 JP35377299A JP35377299A JP3682192B2 JP 3682192 B2 JP3682192 B2 JP 3682192B2 JP 35377299 A JP35377299 A JP 35377299A JP 35377299 A JP35377299 A JP 35377299A JP 3682192 B2 JP3682192 B2 JP 3682192B2
Authority
JP
Japan
Prior art keywords
anode
tip
type plasma
heating
supply means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35377299A
Other languages
Japanese (ja)
Other versions
JP2001170760A (en
Inventor
毅 河内
和人 山村
裕幸 三武
輝夫 川畑
潤一 木下
克洋 今永
正弘 土岐
欣晃 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP35377299A priority Critical patent/JP3682192B2/en
Priority to TW089126456A priority patent/TW469757B/en
Priority to US09/913,342 priority patent/US6649860B2/en
Priority to BRPI0008795-5B1A priority patent/BR0008795B1/en
Priority to AU18886/01A priority patent/AU762693B2/en
Priority to KR10-2001-7010216A priority patent/KR100480964B1/en
Priority to EP00981694A priority patent/EP1154678A4/en
Priority to PCT/JP2000/008828 priority patent/WO2001043511A1/en
Priority to CA002362657A priority patent/CA2362657C/en
Publication of JP2001170760A publication Critical patent/JP2001170760A/en
Application granted granted Critical
Publication of JP3682192B2 publication Critical patent/JP3682192B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Discharge Heating (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は移行型プラズマ用陽極の改良に係り、特にタンディッシュ内溶鋼加熱用として適用するのが好適な移行型プラズマ加熱用陽極に関する。
【0002】
【従来の技術】
タンディッシュ内溶鋼を加熱するための直流電流ツイントーチ型プラズマ加熱装置の概要は図1の様になっている。タンディッシュカバー2にはそれぞれ陽極3と陰極4である2本のプラズマトーチが挿入されており、それぞれのトーチ3,4と溶鋼5との間にプラズマアーク6を発生させ、溶鋼を加熱するものである。このとき電子の流れ7は、陰極4から溶鋼5を通り陽極3に向かう。
【0003】
上記陽極プラズマトーチの1例を図2に示す。同図は上記陽極トーチの先端部断面を示す。陽極3の材質として、例えば無酸素銅が用いられる。上記陽極トーチは外側を覆うステンレス又は銅製の外筒ノズル8と、内側の銅製の陽極本体3からなる。陽極3の先端部は平らな円盤状であり、陽極3及びノズル8はいずれも冷却構造となっており、冷却水入側と出側水路はそれぞれ円筒形の仕切版9,11で仕切られている(図中、10及び12は冷却水の流れを示す)。また、ノズル8と陽極3の間は隙間13があり、その隙間13からプラズマガスを吹き出す構造となっている。
【0004】
【本発明が解決しようとする課題】
上記直流電流陽極プラズマトーチの問題点の1つに、陽極先端が損傷し寿命が短いということがある。陽極はプラズマ加熱稼働時においては、電子の受け手となるために電子が陽極先端外表面に衝突し、先端外表面にかかる熱負荷が大きい。また、陽極先端外表面中心部には熱が集中しやすく、陽極が寿命に至る場合の殆どは先端中心部における穴あきによるものである。更に、陽極表面に一旦電流の集中ヶ所(アノードスポット)が形成されると、そのアノードスポットに更に電流が集中する性質がある。つまり、陽極先端外表面において、溶解によって損傷し始めると更に損傷が促進し、最終的に冷却水側まで溶損し寿命に至る。
【0005】
図3はプラズマにかかるピンチ効果を説明したものである。ノズルと陽極との隙間13から吹き出るプラズマに比べて十分温度の低いガスの流れ14により、プラズマ15は中心方向に集中しやすい性質(サーマルピンチ効果)をもっている。プラズマ中の電流密度は一般に温度に対する増加関数であり、プラズマ中心部16の電流密度は全体の平均に比べ大きいと言えるので、陽極先端外表面中心部17に入射する電流密度は大きくなる。従って、陽極先端外表面中心部17は先端外表面外周部18に比べ損傷の度合いが大きい。また、プラズマ中を流れる電流19が作り出す回転磁場20との相互作用によりプラズマ中を陽極に向かって運動する電子21は中心方向に向かう力22を受ける(磁気的ピンチ効果)。
【0006】
また、図4に示す様に、内部を流れる冷却水水圧、熱応力やクリープにより陽極先端は外側に凸型に変形をおこす。この凸型変形は陽極先端外表面中心部17に突起23を形成することとなり、電場32は前記突起部23へ集中する。プラズマ中を運動する電子21は電場32の方向に加速されるので、電流19は突起部23に集中しやすいことから、更に陽極先端外表面中心部への電流集中を招くことになる。つまり、陽極先端外表面中心部17は更に損傷を受けやすくなる。陽極先端外表面中心部17の損傷が進行すると、最終的に、陽極先端外表面中心部17において冷却水路25が破れ操業不能状態に陥る。このように、陽極先端外表面中心部への電流集中により陽極の耐用時間は著しく短縮されてしまう。
【0007】
図5aから図5dはアノードスポットへの電流集中について説明したものである。陽極先端外表面表面の清浄性が良好な初期状態(図5a)において、電子21は陽極先端外表面26に対しほぼ垂直に入射する。しかし、前述した様に、図4に示した陽極先端外表面中心部17には電流が集中しやすく、陽極先端外表面が高温になることで銅が融解・蒸発し外表面中心近傍に銅蒸気の雲27を形成する(図5b)。
電子21の衝突により、蒸発した銅原子28の中の電子は励起し、電離する。この時、銅原子より電離した電子29は質量が小さく移動度が大きいため、すぐに陽極先端外表面に入射する。しかし、銅イオン30は移動度が小さく蒸気雲27中に停滞するので、蒸気雲は正に帯電する(図5c)。
この蒸気雲27の正電荷ポテンシャルにより、プラズマアーク中の電子21は蒸気雲27へ向かう加速度を受ける(図5d)。
結果として、アノードスポット31が生じると、プラズマアーク中の電子は陽極先端外表面近傍において陽極先端外表面中心部に加速度的に集中する。このような機構により、陽極先端の損傷は加速度的に進行する。
本発明は、プラズマ加熱用陽極における上記のような陽極先端の損傷速度を遅延させ、寿命を延長させるための、上記陽極先端形状及び材質に関するものである。
【0008】
【課題を解決するための手段】
上記の課題を解決するため、本発明の要旨とするところは、
(1)直流電流を容器内の溶融金属に通電し、Arプラズマを発生させながら溶融金属を加熱する移行型プラズマトーチであって、内部水冷構造を有する導電性金属からなる陽極と、前記陽極の外側に一定の間隔を設け内部水冷構造を有する金属製保護体と、前記陽極と前記保護体の間隙にArを含有する気体を供給する気体供給手段を有し、前記陽極先端外表面の中心部が内側に凹んでいることを特徴とする移行型プラズマ加熱用陽極。
(2)直流電流を容器内の溶融金属に通電し、Arプラズマを発生させながら溶融金属を加熱する移行型プラズマトーチであって、内部水冷構造を有する導電性金属からなる陽極と、前記陽極の外側に一定の間隔を設け内部水冷構造を有する金属製保護体と、前記陽極と前記保護体の間隙にArを含有する気体を供給する気体供給手段を有し、前記陽極先端外表面の全体が内側に凹んでいることを特徴とする移行型プラズマ加熱用陽極。
(3)直流電流を容器内の溶融金属に通電し、Arプラズマを発生させながら溶融金属を加熱する移行型プラズマトーチであって、内部水冷構造を有する導電性金属からなる陽極と、前記陽極の外側に一定の間隔を設け内部水冷構造を有する金属製保護体と、前記陽極と前記保護体の間隙にArを含有する気体を供給する気体供給手段を有し、前記陽極先端冷却面にリブを有することを特徴とする移行型プラズマ加熱用陽極。
(4)直流電流を容器内の溶融金属に通電し、Arプラズマを発生させながら溶融金属を加熱する移行型プラズマトーチであって、内部水冷構造を有する導電性金属からなる陽極と、前記陽極の外側に一定の間隔を設け内部水冷構造を有する金属製保護体と、前記陽極と前記保護体の間隙にArを含有する気体を供給する第1の気体供給手段を有し、前記陽極内部に第2の気体供給手段を有し、前記第2の気体供給手段は陽極先端外表面より気体を吹き出す機能を有することを特徴とする移行型プラズマ加熱用陽極。
(5)陽極先端外表面の中心部及び全体が内側に凹んでいることを特徴とする(1)に記載の移行型プラズマ加熱用陽極。
(6)陽極先端冷却面にリブを有することを特徴とする(1),(2)又は(5)のいずれか1項に記載の移行型プラズマ加熱用陽極。
(7)陽極内部に第2の気体供給手段を有し、前記第2の気体供給手段は陽極先端外表面より気体を吹き出す機能を有することを特徴とする(1),(2),(3),(5)又は(6)のいずれか1項に記載の移行型プラズマ加熱用陽極。
(8)陽極先端外表面の全体及び/又は中心部が凹んでおり、かつ、前記陽極先端の内側に円周方向に回転自在な1又は2以上の永久磁石を有することを特徴とする(1)から(7)のいずれか1項に記載の移行型プラズマ加熱用陽極。
(9)陽極先端材質をCr又はZrを含む銅合金とする(1)から(8)のいずれかに記載の移行型プラズマ加熱用陽極。
である。
【0009】
【発明の実施の形態】
前述した様に、陽極先端中心部損傷を引き起こすものは、プラズマにかかるピンチ効果による電流集中、電流集中を加速させる陽極先端の凸変形やアノードスポットの形成である。本発明では、この様な電流集中、凸変形やアノードスポットの形成を防止するために、陽極先端形状を変更し、陽極先端に高強度合金を適用し、アノードスポット形成防止のための外乱発生装置を設置する。
プラズマのピンチ効果から生じる陽極先端外表面中心部への電流集中を防止するためには、陽極の有効面積を大きくすることが考えられる。しかし、設備の取り合い上の問題や、陽極を大きくすることでトーチの質量が増加するのでトーチ保持設備限界の問題等、陽極の有効面積を十分大きくできない場合がある。そのため、陽極部を適当な形状とすることで陽極先端外表面中心部への電流集中を防止する必要がある。そのような形状の前記(1)に係る本発明例を図6に示す。図6において、陽極先端外表面中心部17を凹ませる。図7において、電場32は導体表面に対して垂直に入射するので、図16に示す比較例に比べ陽極先端外表面中心部を凹ませることにより陽極先端外表面中心部の電束密度を低下させ電流集中を防ぐことができる。
【0010】
凹部の領域は、電流集中防止領域を確保するため、陽極先端中心から陽極先端半径Raの1/5〜3/4を半径とする円であることが望ましい。また、凹部の中心高さHdは、電流拡散効果を確保するため、凹部領域半径Rdの1/3〜2/1とすることが望ましい。また、本発明において、気体供給手段から供給する気体は、Ar100%でも良いし、Ar75%以上で電圧上昇のためN20.1〜25%を含有し、残部不可避的不純物としても良い。
【0011】
前記(2)に係る本発明において、陽極先端の凸型変形を防止するための陽極先端外表部形状の1例を図8に示す。図8において、陽極先端にかかる水圧と熱応力による凸変形をキャンセルするために陽極先端外表面全体33に内側に凹み(クラウン)を形成する。クラウンの高さHcは、プラズマ加熱時において陽極先端外表面が変形により水平面を保持するため、100〜500μmとすることが望ましい。
【0012】
前記(5)に係る本発明では、(1)と(2)に係る本発明を組み合わせることにより、更に電流集中を防ぐことができる。
【0013】
陽極先端の凸変形を防止するために、陽極先端に高温状態においても陽極先端の剛性を高く保つ必要がある。前記(3)又は(6)に係る本発明として、高剛性を保持するための手法の1つとして、陽極先端冷却面側においてリブを設置する。図9は、陽極先端冷却面側の外周部にリブ34を設置した陽極の断面図を表す。リブは円周方向に1枚以上、好ましくは等間隔に4枚以上設置する。
リブの高さHr、半径方向の長さLr及び幅Drはそれぞれ、高剛性を保ちかつ冷却水の流れを妨げないようにするため、陽極先端半径Raの1/5〜2/3、陽極先端半径Raの1/5〜2/3及び陽極先端冷却水路幅Dcの1/4〜1/1とするのが好ましい。しかし、冷却面内にリブを設置する場合、冷却水路や仕切版の形状を変更する必要があるので、高剛性を保持するためにはCr−Cu、Zr−Cu又はCr−Zr−Cu等の高強度材を適用することが望ましい。
【0014】
以上のことから、陽極先端外表面中心部への電流集中を防止できるが、前述したように、アノードスポットが形成されるとそのアノードスポットに更に電流集中が生じるので、陽極先端外表面中心部以外にアノードスポットが形成されてもそのアノードスポットにやはり電流集中を生じる虞がある。そこで、アノードスポット形成防止用外乱発生装置の例を図10と図11に示す。
【0015】
前記(4)に係る本発明例を示す図10において、プラズマ作動ガスを陽極先端外表面26から吹き出し、陽極先端外表面近傍においてガス流れに擾乱や旋回を引き起こすための第2の気体供給手段43を設けることで、アノードスポット31を移動させることができる。第2の気体供給手段43は陽極先端外表面を貫通する円筒管とすることが好ましく、前記円筒管の外径は冷却水の流れを妨げることなく確実に気体を供給できるように1mm〜5mmとし、材質は腐食防止のためステンレス、銅又は腐食防止メッキを施した銅が好ましい。また、効果は1本でも得ることができ、好ましくは図10に示すように、陽極中心部に1本と陽極内部に設置された冷却水路仕切版9の内部に円周方向に等間隔に4〜10本設置することが好ましい。
【0016】
前記(8)に係る本発明例を示す図11において、陽極内部に永久磁石36を埋め込み、その永久磁石を回転させることで時間的に変動する外部磁場38(図19)を形成し、アノードスポットを移動させることができる。図13に示すように、永久磁石に繋がる羽を冷却水路内に有し冷却水の流れにより永久磁石の回転を実施できる。
【0017】
高剛性を保持するための手段の1つとして、前記(9)に係る本発明では、高強度を保てる銅合金を陽極先端に適用する。但し、陽極先端外表面温度を低く保つために、前記銅合金の熱伝導率は従来材質である無酸素銅と同程度、若しくは、それ以上である必要がある。この様な条件を満たす銅合金の例として、Cr−Cu、Zr−CuとCr−Zr−Cuがある。例えば、Cr−Zr−Cuでは、市販されているCr0.5〜1.5%、Zr0.08〜0.30%、残部銅がある。
【0018】
【実施例】
以下に本発明の実施例について説明する。
図12、図13、図17及び図18はそれぞれ本発明の一実施例を示す断面図である。
図12及び図17で示される陽極の特徴は以下の(1)〜(5)の通りであり、図12は本発明の垂直断面図、図17は本発明の水平断面図を示す。
(1)陽極先端半径Ra=25mm、陽極先端厚みDa=3mmである。
(2)陽極先端外表面全体の凹み(クラウン)は曲率Rc=1041mmの球面であり先端中心における高さはHc=300μmである。このクラウンにより、プラズマ加熱操業時における陽極先端外表面は熱応力変形によりほぼ平面となる。
【0019】
(3)陽極先端外表面中心部17に形成した半径rd=10mmの範囲における曲率Rd=15mmの球面状の凹部40を設置する。先端中心における凹部40の高さはHd=4mmである。図16に示すように凹部40がない従来型にくらべ陽極先端外表面中心部17に入射する電場32は分散し、電流密度は低下する。但し、陽極先端外表面の凹部とその外側との境界41は大きな凸部を形成しないように滑らかに繋げる必要がある。その境界41の曲率はRb=30mm以上が望ましく、本実施例の場合、Rb=50mmとした。
【0020】
(4)陽極先端外表面は500度以上の高温に曝されるので、従来の無酸素銅を用いた陽極ではクリープによる変形の虞がある。特に、陽極先端外表面の損傷が進行し先端厚みが減少すると、クリープ変形は大きくなり陽極先端は凸型に変形してしまう。そこで、陽極の材質にCr0.08%、Zr0.15%を含む銅合金を適用した。図14は、半径25mmの銅(又は銅合金)円盤の板厚に対する中心のクリープ変形変形量(図15で示されるhc[mm])を示したものである。図中◇直線49で示される無酸素銅に対して、図中○直線50で示されるCr−Zr−Cuはクリープ変形が小さく、特に、陽極先端厚み1.5mmにおいては3桁小さい。つまり、Cr−Zr−Cuは無酸素銅に比べクリープ変形しにくく、陽極先端の凸型変形を抑えることができる。
【0021】
(5a)陽極先端外表面に作動ガスを吹き出すための8個の吹き出し口42a〜42hを陽極先端外表面において円周上に、更に1個の吹き出し口42i(図示しない)を陽極先端外表面中心部に設置し、更に、吹き出し口42a〜42hに繋がる作動ガスを通すための内管43a〜43hを仕切版9の内部に、吹き出し口42i(図示しない)に繋がる内管を陽極中心軸上に有する。また、作動ガスの旋回を引き起こすために、内管42a〜42hは陽極下方において斜めになっている。吹き出し口42a〜42iから吹き出される作動ガスにより、陽極先端外表面近傍における作動ガスの流れに旋回をおこさせることで、アノードスポットを移動させることができる。
図2に示す従来の移行型プラズマ加熱用陽極に比べ、本発明による移行型プラズマ加熱用陽極の寿命は1.5〜2倍に増加した。
図13及び図18は図12及び図17で示される陽極の(1)〜(4)と同じ特徴を有し、更に5つめの特徴として以下の特徴を有し、更に5つめの特徴として以下の特徴を有し、図13は本発明の垂直断面図、図18は本発明の水平断面図を示す。
【0022】
(5b)陽極内部の仕切版9の中に永久磁石36を2個有する。この2個の永久磁石36a、36bは陽極対称軸に対して対称な位置に設置され、連結棒44によって繋がっており、連結棒44は陽極先端冷却側中心から垂直上方5mmに設置された回転軸45と連結しており、永久磁石36a、36bは回転軸を中心に円周方向に回転可能である。また、連結棒44に固定された羽46を冷却水路47内に設置することで、冷却水の流れ48により永久磁石36a、36bは円周方向に回転する。陽極先端外表面近傍において、永久磁石36a、36bによって形成される磁場38(図19参照)は永久磁石36a、36bが回転することで時間に対して周期的に変動する。磁場と運動する荷電粒子は相互作用するので、時間的に変動する磁場38によりプラズマ中のイオンや電子の運動も変動の影響を受ける。そのため、陽極先端外表面においてアノードスポットが形成されても時間的に変動する磁場により荷電粒子は外乱を受けアノードスポットを移動することができる。
図2に示す従来の移行型プラズマ加熱用陽極に比べ、本発明による移行型プラズマ加熱用陽極の寿命は1.5〜2倍に増加した。
【0023】
【発明の効果】
本発明により、直流電流ツイントーチ型プラズマ加熱装置の陽極先端の損傷速度を遅延させ、寿命を延長させることができる。
【図面の簡単な説明】
【図1】タンディッシュとプラズマトーチの概略図。
【図2】従来技術によるタンディッシュ内溶鋼加熱用移行型プラズマ陽極の概略図。
【図3】プラズマのピンチ効果の説明図。
【図4】陽極先端凸型変形による電流集中の説明図。
【図5】アノードスポット形成による電流集中の説明図。
【図6】本発明に係る移行型プラズマ加熱用陽極の1例の垂直断面図。
【図7】図6で示す移行型プラズマ加熱用陽極の1例の先端から出る電場の概略図。
【図8】本発明に係る移行型プラズマ加熱用陽極の1例の垂直断面図。
【図9】本発明に係る移行型プラズマ加熱用陽極の1例の垂直断面図。
【図10】本発明に係る移行型プラズマ加熱用陽極の1例の垂直断面図。
【図11】本発明に係る移行型プラズマ加熱用陽極の1例の垂直断面図。
【図12】本発明に係る移行型プラズマ加熱用陽極の1例の垂直断面図。
【図13】本発明に係る移行型プラズマ加熱用陽極の1例の垂直断面図。
【図14】クリープ変形量の材質比較。
【図15】図14で示されるグラフの説明図。
【図16】図2で示される従来技術による移行型プラズマ加熱用陽極の先端から出る電場の概略図。
【図17】図12で示される移行型プラズマ加熱用陽極の水平断面図。
【図18】図13で示される移行型プラズマ加熱用陽極の水平断面図。
【図19】図13で示される本発明における、磁場の概略図。
【図20】図10で示される移行型プラズマ加熱用陽極の水平断面図。
【符号の説明】
1 タンディッシュ
3 陽極
5 溶鋼
6 プラズマアーク
7 電子の流れ
9 仕切版
17 陽極先端外表面中心部
19 電流
21 プラズマ中の電子
23 陽極先端凸変形部
26 陽極先端外表面
31 アノードスポット
29 陽極先端外表面クラウン
32 電場
34 リブ
36,36a,36b 永久磁石
38 磁場
40 陽極先端凹部
42 作動ガス吹き出し口
43 第2の気体供給手段(作動ガス吹き出し用小管)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement of a transition type plasma anode, and more particularly to a transition type plasma heating anode that is suitable for heating in molten steel in a tundish.
[0002]
[Prior art]
The outline of the direct current twin torch type plasma heating apparatus for heating the molten steel in the tundish is as shown in FIG. The tundish cover 2 is inserted with two plasma torches, which are an anode 3 and a cathode 4, respectively, and generates a plasma arc 6 between the torches 3, 4 and the molten steel 5 to heat the molten steel. It is. At this time, the electron flow 7 travels from the cathode 4 to the anode 3 through the molten steel 5.
[0003]
An example of the anode plasma torch is shown in FIG. The figure shows a cross section of the tip of the anode torch. For example, oxygen-free copper is used as the material of the anode 3. The anode torch comprises a stainless steel or copper outer cylinder nozzle 8 that covers the outside, and an inner copper anode body 3. The tip of the anode 3 has a flat disk shape, and both the anode 3 and the nozzle 8 have a cooling structure. The cooling water inlet side and the outlet side water channel are partitioned by cylindrical partition plates 9 and 11, respectively. (10 and 12 in the figure indicate the flow of cooling water). Further, there is a gap 13 between the nozzle 8 and the anode 3, and the plasma gas is blown out from the gap 13.
[0004]
[Problems to be solved by the present invention]
One problem with the DC current anode plasma torch is that the anode tip is damaged and its life is short. Since the anode serves as an electron receiver during the plasma heating operation, the electrons collide with the outer surface of the tip of the anode, and the heat load applied to the outer surface of the tip is large. Also, heat tends to concentrate on the center of the outer surface of the anode tip, and most of the case where the anode reaches the end of its life is due to perforation in the center of the tip. Further, once a current concentration point (anode spot) is formed on the anode surface, there is a property that current is further concentrated on the anode spot. In other words, when the damage starts on the outer surface of the anode tip due to melting, the damage is further promoted, and finally the melt reaches the cooling water side and reaches the lifetime.
[0005]
FIG. 3 explains the pinch effect on the plasma. The plasma 15 has a property (thermal pinch effect) that tends to concentrate in the center direction due to the gas flow 14 having a sufficiently low temperature compared to the plasma blown out from the gap 13 between the nozzle and the anode. Since the current density in the plasma is generally an increasing function with respect to temperature, and the current density in the plasma center portion 16 can be said to be larger than the overall average, the current density incident on the anode tip outer surface center portion 17 is increased. Therefore, the anode tip outer surface center portion 17 is more damaged than the tip outer surface outer peripheral portion 18. Further, the electrons 21 moving toward the anode in the plasma by the interaction with the rotating magnetic field 20 generated by the current 19 flowing in the plasma receive a force 22 toward the center (magnetic pinch effect).
[0006]
Also, as shown in FIG. 4, the tip of the anode is deformed outwardly by the cooling water pressure, thermal stress and creep flowing inside. This convex deformation forms a projection 23 at the center 17 of the outer surface of the anode tip, and the electric field 32 concentrates on the projection 23. Since the electrons 21 moving in the plasma are accelerated in the direction of the electric field 32, the current 19 is likely to concentrate on the protrusion 23, which further causes current concentration to the central portion of the outer surface of the anode tip. That is, the anode tip outer surface center portion 17 is more easily damaged. When damage to the anode tip outer surface center portion 17 progresses, the cooling water passage 25 is eventually broken at the anode tip outer surface center portion 17 and becomes inoperable. In this way, the service life of the anode is significantly shortened due to the current concentration at the center of the outer surface of the anode tip.
[0007]
FIGS. 5a to 5d illustrate current concentration on the anode spot. In an initial state where the cleanliness of the outer surface of the anode tip is good (FIG. 5a), the electrons 21 are incident substantially perpendicularly to the outer surface 26 of the anode tip. However, as described above, the current tends to concentrate on the anode tip outer surface center portion 17 shown in FIG. 4, and the copper melts and evaporates due to the anode tip outer surface becoming high temperature, so that the copper vapor near the center of the outer surface. Cloud 27 is formed (FIG. 5b).
The electrons in the evaporated copper atoms 28 are excited and ionized by the collision of the electrons 21. At this time, since the electrons 29 ionized from the copper atoms have a small mass and a high mobility, they immediately enter the outer surface of the anode tip. However, since the copper ions 30 have a low mobility and stay in the vapor cloud 27, the vapor cloud is positively charged (FIG. 5c).
Due to the positive charge potential of the vapor cloud 27, the electrons 21 in the plasma arc are subjected to acceleration toward the vapor cloud 27 (FIG. 5d).
As a result, when the anode spot 31 is generated, electrons in the plasma arc are concentrated at the central portion of the outer surface of the anode tip in the vicinity of the outer surface of the anode tip. By such a mechanism, the damage of the anode tip proceeds at an accelerated rate.
The present invention relates to the anode tip shape and material for delaying the damage rate of the anode tip as described above in the plasma heating anode and extending the life.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the gist of the present invention is as follows:
(1) A transitional plasma torch for heating a molten metal while supplying a direct current to the molten metal in the container and generating Ar plasma, and comprising an anode made of a conductive metal having an internal water cooling structure, A metal protector having an internal water cooling structure with a constant interval on the outside, and a gas supply means for supplying a gas containing Ar to the gap between the anode and the protector, and a central portion of the anode tip outer surface A negative electrode for transition type plasma heating characterized by being recessed inside.
(2) A transitional plasma torch for heating a molten metal while passing a direct current through the molten metal in the container and generating an Ar plasma, comprising an anode made of a conductive metal having an internal water cooling structure, A metal protector having an internal water cooling structure with a constant interval on the outside, and a gas supply means for supplying a gas containing Ar to the gap between the anode and the protector, and the entire outer surface of the anode tip is A transition type plasma heating anode characterized in that it is recessed inside.
(3) A transitional plasma torch for heating a molten metal while supplying a direct current to the molten metal in the container and generating Ar plasma, and an anode made of a conductive metal having an internal water cooling structure; A metal protector having an internal water cooling structure with a constant interval on the outside, and a gas supply means for supplying a gas containing Ar to the gap between the anode and the protector, and a rib on the anode tip cooling surface A positive electrode for transfer type plasma heating characterized by comprising.
(4) A transition type plasma torch for supplying a direct current to a molten metal in a container and heating the molten metal while generating Ar plasma, comprising an anode made of a conductive metal having an internal water cooling structure, A metal protector having an internal water cooling structure with a constant interval on the outside, and a first gas supply means for supplying a gas containing Ar to the gap between the anode and the protector, 2. A transition type plasma heating anode, comprising: 2 gas supply means, wherein the second gas supply means has a function of blowing gas from the outer surface of the anode tip.
(5) The transition type plasma heating anode as described in (1), wherein the central portion and the whole of the outer surface of the anode tip are recessed inward.
(6) The transition type plasma heating anode according to any one of (1), (2), and (5), wherein the anode tip cooling surface has a rib.
(7) A second gas supply means is provided inside the anode, and the second gas supply means has a function of blowing gas from the outer surface of the anode tip. (1), (2), (3 ), (5) or (6) The transition type plasma heating anode described in any one of (6).
(8) The entire outer surface and / or central portion of the anode tip outer surface is recessed, and one or more permanent magnets that are rotatable in the circumferential direction are provided inside the anode tip (1). ) To (7), the transition type plasma heating anode.
(9) The anode for transitional plasma heating according to any one of (1) to (8), wherein the anode tip material is a copper alloy containing Cr or Zr.
It is.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
As described above, what causes damage to the center of the anode tip is current concentration due to the pinch effect applied to the plasma, convex deformation of the anode tip that accelerates current concentration, and formation of an anode spot. In the present invention, in order to prevent such current concentration, convex deformation and anode spot formation, the anode tip shape is changed, a high strength alloy is applied to the anode tip, and a disturbance generating device for preventing anode spot formation Is installed.
In order to prevent current concentration at the center of the outer surface of the anode tip from the plasma pinch effect, it is conceivable to increase the effective area of the anode. However, there are cases where the effective area of the anode cannot be made sufficiently large, such as a problem in connection with equipment and a problem of the limit of the torch holding equipment because the mass of the torch increases by increasing the anode. Therefore, it is necessary to prevent current concentration at the center of the outer surface of the anode tip by making the anode part into an appropriate shape. An example of the present invention according to (1) having such a shape is shown in FIG. In FIG. 6, the anode tip outer surface central portion 17 is recessed. In FIG. 7, since the electric field 32 is perpendicularly incident on the conductor surface, the electric flux density at the central part of the outer surface of the anode tip is lowered by denting the central part of the outer surface of the anode tip as compared with the comparative example shown in FIG. Current concentration can be prevented.
[0010]
The area of the recess is preferably a circle having a radius of 1/5 to 3/4 of the anode tip radius Ra from the center of the anode tip to secure a current concentration prevention region. The center height Hd of the recess is preferably 1/3 to 2/1 of the recess region radius Rd in order to secure the current spreading effect. In the present invention, the gas supplied from the gas supply means may be Ar 100%, or Ar 75% or more, containing 0.1 to 25% N 2 for increasing the voltage, and the remainder may be inevitable impurities.
[0011]
FIG. 8 shows an example of the outer shape of the outer surface of the anode tip for preventing convex deformation of the anode tip in the present invention according to (2). In FIG. 8, in order to cancel the convex deformation due to the water pressure and thermal stress applied to the anode tip, a recess (crown) is formed on the entire outer surface 33 of the anode tip. The height Hc of the crown is preferably 100 to 500 μm because the outer surface of the anode tip is kept horizontal by deformation during plasma heating.
[0012]
In the present invention according to (5), current concentration can be further prevented by combining the present invention according to (1) and (2).
[0013]
In order to prevent convex deformation of the anode tip, it is necessary to keep the rigidity of the anode tip high even at a high temperature at the anode tip. As one aspect of the present invention according to the above (3) or (6), a rib is provided on the anode tip cooling surface side as one of the techniques for maintaining high rigidity. FIG. 9 is a cross-sectional view of an anode in which ribs 34 are provided on the outer peripheral portion on the anode tip cooling surface side. One or more ribs are installed in the circumferential direction, preferably four or more ribs at equal intervals.
The rib height Hr, radial length Lr, and width Dr are respectively 1/5 to 2/3 of the anode tip radius Ra in order to maintain high rigidity and prevent the flow of cooling water, and the anode tip. It is preferable that the radius Ra is 1/5 to 2/3 and the anode tip cooling water channel width Dc is 1/4 to 1/1. However, when installing a rib in the cooling surface, it is necessary to change the shape of the cooling water channel and the partition plate, so in order to maintain high rigidity, such as Cr-Cu, Zr-Cu or Cr-Zr-Cu It is desirable to apply a high strength material.
[0014]
From the above, current concentration at the center of the outer surface of the anode tip can be prevented. However, as described above, when the anode spot is formed, further current concentration occurs at the anode spot. Even if an anode spot is formed, current concentration may still occur in the anode spot. An example of a disturbance generator for preventing anode spot formation is shown in FIGS.
[0015]
In FIG. 10 showing the example of the present invention according to (4) above, the second gas supply means 43 for blowing out the plasma working gas from the anode tip outer surface 26 and causing disturbance or swirl in the gas flow in the vicinity of the anode tip outer surface. By providing, the anode spot 31 can be moved. The second gas supply means 43 is preferably a cylindrical tube penetrating the outer surface of the anode tip, and the outer diameter of the cylindrical tube is set to 1 mm to 5 mm so that gas can be reliably supplied without obstructing the flow of cooling water. The material is preferably stainless steel, copper or copper plated with corrosion prevention to prevent corrosion. Further, even one effect can be obtained. Preferably, as shown in FIG. 10, one is provided at the center of the anode and 4 inside the cooling water channel partition plate 9 installed inside the anode at equal intervals in the circumferential direction. It is preferable to install 10 to 10.
[0016]
In FIG. 11 showing the example of the present invention according to (8) above, a permanent magnet 36 is embedded in the anode, and the permanent magnet is rotated to form an external magnetic field 38 (FIG. 19) that varies with time, thereby forming an anode spot. Can be moved. As shown in FIG. 13, the wings connected to the permanent magnets are provided in the cooling water passage, and the permanent magnets can be rotated by the flow of the cooling water.
[0017]
As one means for maintaining high rigidity, in the present invention according to (9), a copper alloy capable of maintaining high strength is applied to the tip of the anode. However, in order to keep the anode tip outer surface temperature low, the thermal conductivity of the copper alloy needs to be about the same as or higher than that of oxygen-free copper which is a conventional material. Examples of copper alloys that satisfy such conditions include Cr—Cu, Zr—Cu, and Cr—Zr—Cu. For example, in Cr—Zr—Cu, there are commercially available Cr of 0.5 to 1.5%, Zr of 0.08 to 0.30%, and the remaining copper.
[0018]
【Example】
Examples of the present invention will be described below.
12, 13, 17 and 18 are cross-sectional views showing an embodiment of the present invention.
The features of the anode shown in FIGS. 12 and 17 are as follows (1) to (5). FIG. 12 is a vertical sectional view of the present invention, and FIG. 17 is a horizontal sectional view of the present invention.
(1) The anode tip radius Ra = 25 mm and the anode tip thickness Da = 3 mm.
(2) The dent (crown) on the entire outer surface of the anode tip is a spherical surface with a curvature Rc = 1041 mm, and the height at the tip center is Hc = 300 μm. With this crown, the outer surface of the anode tip during plasma heating operation becomes substantially flat due to thermal stress deformation.
[0019]
(3) A spherical concave portion 40 having a radius of curvature Rd = 15 mm in a range of radius rd = 10 mm formed in the anode tip outer surface central portion 17 is installed. The height of the recess 40 at the center of the tip is Hd = 4 mm. As shown in FIG. 16, the electric field 32 incident on the central portion 17 of the outer surface of the anode tip is dispersed and the current density is reduced as compared with the conventional type having no recess 40. However, the boundary 41 between the concave portion on the outer surface of the anode tip and the outside thereof needs to be smoothly connected so as not to form a large convex portion. The curvature of the boundary 41 is desirably Rb = 30 mm or more. In this embodiment, Rb = 50 mm.
[0020]
(4) Since the outer surface of the tip of the anode is exposed to a high temperature of 500 ° C. or more, the conventional anode using oxygen-free copper may be deformed by creep. In particular, when damage to the outer surface of the anode tip progresses and the tip thickness decreases, the creep deformation increases and the anode tip deforms into a convex shape. Therefore, a copper alloy containing 0.08% Cr and 0.15% Zr was applied to the anode material. FIG. 14 shows the creep deformation amount (hc [mm] shown in FIG. 15) at the center with respect to the plate thickness of a copper (or copper alloy) disk having a radius of 25 mm. In contrast to the oxygen-free copper indicated by the straight line 49 in the figure, the Cr-Zr-Cu indicated by the straight line 50 in the figure has a small creep deformation, and is especially three orders of magnitude smaller at the anode tip thickness of 1.5 mm. That is, Cr—Zr—Cu is less susceptible to creep deformation than oxygen-free copper and can suppress convex deformation at the tip of the anode.
[0021]
(5a) Eight outlets 42a to 42h for blowing out working gas to the outer surface of the anode tip are arranged on the circumference of the outer surface of the anode tip, and one outlet 42i (not shown) is the center of the outer surface of the anode tip. The inner pipes 43a to 43h for passing the working gas connected to the outlets 42a to 42h are installed inside the partition plate 9, and the inner pipe connected to the outlet 42i (not shown) is arranged on the central axis of the anode. Have. Moreover, in order to cause the swirling of the working gas, the inner pipes 42a to 42h are inclined below the anode. The anode spot can be moved by swirling the flow of the working gas in the vicinity of the outer surface of the anode tip by the working gas blown out from the blowing ports 42a to 42i.
Compared to the conventional transfer plasma heating anode shown in FIG. 2, the lifetime of the transfer plasma heating anode according to the present invention is increased by 1.5 to 2 times.
13 and 18 have the same features as (1) to (4) of the anode shown in FIGS. 12 and 17, and the fifth feature has the following features, and the fifth feature has the following features. FIG. 13 is a vertical sectional view of the present invention, and FIG. 18 is a horizontal sectional view of the present invention.
[0022]
(5b) Two permanent magnets 36 are provided in the partition plate 9 inside the anode. The two permanent magnets 36a and 36b are installed at positions symmetric with respect to the axis of symmetry of the anode and are connected by a connecting rod 44. The connecting rod 44 is a rotary shaft installed 5 mm vertically above the center of the anode tip cooling side. 45, and the permanent magnets 36a and 36b are rotatable in the circumferential direction around the rotation axis. Further, by installing the wings 46 fixed to the connecting rod 44 in the cooling water channel 47, the permanent magnets 36a and 36b are rotated in the circumferential direction by the flow 48 of the cooling water. In the vicinity of the outer surface of the anode tip, the magnetic field 38 (see FIG. 19) formed by the permanent magnets 36a and 36b periodically varies with time as the permanent magnets 36a and 36b rotate. Since the charged particles moving with the magnetic field interact, the movement of ions and electrons in the plasma is also affected by the fluctuation by the magnetic field 38 that fluctuates over time. Therefore, even if an anode spot is formed on the outer surface of the anode tip, the charged particles can be moved by the disturbance due to the magnetic field that varies with time.
Compared with the conventional transfer plasma heating anode shown in FIG. 2, the lifetime of the transfer plasma heating anode according to the present invention is increased by 1.5 to 2 times.
[0023]
【The invention's effect】
According to the present invention, the damage speed of the anode tip of the direct current twin torch type plasma heating apparatus can be delayed and the life can be extended.
[Brief description of the drawings]
FIG. 1 is a schematic view of a tundish and a plasma torch.
FIG. 2 is a schematic view of a transitional plasma anode for heating molten steel in a tundish according to the prior art.
FIG. 3 is an explanatory diagram of a pinch effect of plasma.
FIG. 4 is an explanatory diagram of current concentration due to a convex deformation of the anode tip.
FIG. 5 is an explanatory diagram of current concentration due to anode spot formation.
FIG. 6 is a vertical sectional view of an example of a transfer plasma heating anode according to the present invention.
7 is a schematic diagram of an electric field that emerges from the tip of one example of the transition type plasma heating anode shown in FIG. 6;
FIG. 8 is a vertical sectional view of an example of a transfer plasma heating anode according to the present invention.
FIG. 9 is a vertical sectional view of an example of a transfer plasma heating anode according to the present invention.
FIG. 10 is a vertical sectional view of an example of a transfer plasma heating anode according to the present invention.
FIG. 11 is a vertical sectional view of an example of a transfer plasma heating anode according to the present invention.
FIG. 12 is a vertical sectional view of an example of a transfer plasma heating anode according to the present invention.
FIG. 13 is a vertical sectional view of an example of a transfer type plasma heating anode according to the present invention.
FIG. 14 shows material comparison of creep deformation amount.
15 is an explanatory diagram of the graph shown in FIG.
16 is a schematic diagram of an electric field that emerges from the tip of the transfer plasma heating anode according to the prior art shown in FIG.
17 is a horizontal cross-sectional view of the transition type plasma heating anode shown in FIG.
18 is a horizontal sectional view of the transition type plasma heating anode shown in FIG.
19 is a schematic diagram of a magnetic field in the present invention shown in FIG.
20 is a horizontal sectional view of the transition type plasma heating anode shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Tundish 3 Anode 5 Molten steel 6 Plasma arc 7 Electron flow 9 Partition plate 17 Anode tip outer surface central part 19 Current 21 Electron in plasma 23 Anode tip convex deformation part 26 Anode tip outer surface 31 Anode spot 29 Anode tip outer surface Crown 32 Electric field 34 Ribs 36, 36a, 36b Permanent magnet 38 Magnetic field 40 Anode tip recess 42 Working gas blowing port 43 Second gas supply means (small tube for working gas blowing)

Claims (9)

直流電流を容器内の溶融金属に通電し、Arプラズマを発生させながら溶融金属を加熱する移行型プラズマトーチであって、内部水冷構造を有する導電性金属からなる陽極と、前記陽極の外側に一定の間隔を設け内部水冷構造を有する金属製保護体と、前記陽極と前記保護体の間隙にArを含有する気体を供給する気体供給手段を有し、前記陽極先端外表面の中心部が内側に凹んでいることを特徴とする移行型プラズマ加熱用陽極。A transfer type plasma torch for heating a molten metal while supplying a direct current to the molten metal in a vessel and generating Ar plasma, and an anode made of a conductive metal having an internal water cooling structure, and a constant outside the anode And a gas supply means for supplying a gas containing Ar to the gap between the anode and the protective body, and the central portion of the outer surface of the anode tip is on the inner side. Transition type plasma heating anode characterized by being recessed. 直流電流を容器内の溶融金属に通電し、Arプラズマを発生させながら溶融金属を加熱する移行型プラズマトーチであって、内部水冷構造を有する導電性金属からなる陽極と、前記陽極の外側に一定の間隔を設け内部水冷構造を有する金属製保護体と、前記陽極と前記保護体の間隙にArを含有する気体を供給する気体供給手段を有し、前記陽極先端外表面の全体が内側に凹んでいることを特徴とする移行型プラズマ加熱用陽極。A transfer type plasma torch for heating a molten metal while supplying a direct current to the molten metal in a vessel and generating Ar plasma, and an anode made of a conductive metal having an internal water cooling structure, and a constant outside the anode A metal protective body having an internal water cooling structure and a gas supply means for supplying a gas containing Ar to the gap between the anode and the protective body, and the entire outer surface of the anode tip is recessed inward. A transition type plasma heating anode characterized by the above. 直流電流を容器内の溶融金属に通電し、Arプラズマを発生させながら溶融金属を加熱する移行型プラズマトーチであって、内部水冷構造を有する導電性金属からなる陽極と、前記陽極の外側に一定の間隔を設け内部水冷構造を有する金属製保護体と、前記陽極と前記保護体の間隙にArを含有する気体を供給する気体供給手段を有し、前記陽極先端冷却面にリブを有することを特徴とする移行型プラズマ加熱用陽極。A transfer type plasma torch for heating a molten metal while supplying a direct current to the molten metal in a vessel and generating Ar plasma, and an anode made of a conductive metal having an internal water cooling structure, and a constant outside the anode A metal protector having an internal water cooling structure, a gas supply means for supplying a gas containing Ar to the gap between the anode and the protector, and a rib on the anode tip cooling surface. A transition type plasma heating anode. 直流電流を容器内の溶融金属に通電し、Arプラズマを発生させながら溶融金属を加熱する移行型プラズマトーチであって、内部水冷構造を有する導電性金属からなる陽極と、前記陽極の外側に一定の間隔を設け内部水冷構造を有する金属製保護体と、前記陽極と前記保護体の間隙にArを含有する気体を供給する第1の気体供給手段を有し、前記陽極内部に第2の気体供給手段を有し、前記第2の気体供給手段は陽極先端外表面より気体を吹き出す機能を有することを特徴とする移行型プラズマ加熱用陽極。A transfer type plasma torch for heating a molten metal while supplying a direct current to the molten metal in a container and generating Ar plasma, and an anode made of a conductive metal having an internal water cooling structure, and a constant outside the anode And a first gas supply means for supplying a gas containing Ar into the gap between the anode and the protective body, and a second gas inside the anode. A transition type plasma heating anode comprising a supply means, wherein the second gas supply means has a function of blowing gas from the outer surface of the anode tip. 陽極先端外表面の中心部及び全体が内側に凹んでいることを特徴とする請求項1に記載の移行型プラズマ加熱用陽極。2. The transition type plasma heating anode according to claim 1, wherein the central part and the whole of the outer surface of the anode tip are recessed inward. 陽極先端冷却面にリブを有することを特徴とする請求項1,2又は5のいずれか1項に記載の移行型プラズマ加熱用陽極。6. The transition type plasma heating anode according to claim 1, wherein the anode tip cooling surface has a rib. 陽極内部に第2の気体供給手段を有し、前記第2の気体供給手段は陽極先端外表面より気体を吹き出す機能を有することを特徴とする請求項1,2,3,5又は6のいずれか1項に記載の移行型プラズマ加熱用陽極。The second gas supply means is provided inside the anode, and the second gas supply means has a function of blowing out gas from the outer surface of the anode tip. 2. The transition type plasma heating anode according to claim 1. 陽極先端外表面の全体及び/又は中心部が凹んでおり、かつ、前記陽極先端の内側に円周方向に回転自在な1又は2以上の永久磁石を有することを特徴とする請求項1から7のいずれか1項に記載の移行型プラズマ加熱用陽極。8. The outer surface of the anode tip and / or the central portion is recessed, and one or more permanent magnets that are rotatable in the circumferential direction are provided inside the anode tip. The anode for transfer type plasma heating of any one of these. 少なくとも陽極先端材質をCr又はZrを含む銅合金とする請求項1から8のいずれかに記載の移行型プラズマ加熱用陽極。The transition type plasma heating anode according to claim 1, wherein at least the anode tip material is a copper alloy containing Cr or Zr.
JP35377299A 1999-12-13 1999-12-13 Transition type plasma heating anode Expired - Fee Related JP3682192B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP35377299A JP3682192B2 (en) 1999-12-13 1999-12-13 Transition type plasma heating anode
TW089126456A TW469757B (en) 1999-12-13 2000-12-12 A transferred plasma heating anode
BRPI0008795-5B1A BR0008795B1 (en) 1999-12-13 2000-12-13 TRANSFERED PLASMA HEATING ANODE
AU18886/01A AU762693B2 (en) 1999-12-13 2000-12-13 Transfer-type plasma heating anode
US09/913,342 US6649860B2 (en) 1999-12-13 2000-12-13 Transfer type plasma heating anode
KR10-2001-7010216A KR100480964B1 (en) 1999-12-13 2000-12-13 Transfer-type plasma heating anode
EP00981694A EP1154678A4 (en) 1999-12-13 2000-12-13 Transfer-type plasma heating anode
PCT/JP2000/008828 WO2001043511A1 (en) 1999-12-13 2000-12-13 Transfer-type plasma heating anode
CA002362657A CA2362657C (en) 1999-12-13 2000-12-13 A transferred plasma heating anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35377299A JP3682192B2 (en) 1999-12-13 1999-12-13 Transition type plasma heating anode

Publications (2)

Publication Number Publication Date
JP2001170760A JP2001170760A (en) 2001-06-26
JP3682192B2 true JP3682192B2 (en) 2005-08-10

Family

ID=18433121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35377299A Expired - Fee Related JP3682192B2 (en) 1999-12-13 1999-12-13 Transition type plasma heating anode

Country Status (1)

Country Link
JP (1) JP3682192B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307160A (en) * 2001-04-11 2002-10-22 Nippon Steel Corp Transferable anode for plasma heating
US11511298B2 (en) 2014-12-12 2022-11-29 Oerlikon Metco (Us) Inc. Corrosion protection for plasma gun nozzles and method of protecting gun nozzles

Also Published As

Publication number Publication date
JP2001170760A (en) 2001-06-26

Similar Documents

Publication Publication Date Title
JP6469023B2 (en) Optimized thermal nozzle and method of using the same
JP2640707B2 (en) Plasma torch for cutting
US20070034501A1 (en) Cathode-arc source of metal/carbon plasma with filtration
FI91477B (en) A method for melting and / or purifying metals and a cooling device for a graphite electrode used herein
JP6484242B2 (en) Lined long life plasma nozzle
JP3682192B2 (en) Transition type plasma heating anode
JP3595475B2 (en) Transition type plasma heating anode
JP6652689B1 (en) Ion gun
KR100480964B1 (en) Transfer-type plasma heating anode
JP4653348B2 (en) Plasma torch for heating molten steel
EP0371128B1 (en) Cathode structure of a plasma torch
JP2001040467A (en) Arc evaporating source, vacuum deposition device and vacuum deposition method
JP2001241858A (en) Guide tube structure for electromagnetic flux concentration
JP3832568B2 (en) Intermediate electrode structure of pressure gradient plasma generator
CN108966473A (en) A kind of miniaturization magnetic device for direct-current arc constraint control
JPS60115370A (en) Powder build-up welding method
JP2001179426A (en) Anode plasma torch for heating molten steel in tundish
JPH07178559A (en) Plasma torch for cutting and plasma cutting method
JP2002307160A (en) Transferable anode for plasma heating
WO2021049175A1 (en) Ion gun
JPH04139384A (en) Moving type plasma torch
JPS61128500A (en) Shift type plasma torch
JPH0395900A (en) Migration type plasma torch
JPS593490Y2 (en) Ion source cooling device
CN115216741A (en) Equipment for improving deposition rate

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050520

R151 Written notification of patent or utility model registration

Ref document number: 3682192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees