JP3681962B2 - Pressure measuring element for vacuum insulated switchgear - Google Patents

Pressure measuring element for vacuum insulated switchgear Download PDF

Info

Publication number
JP3681962B2
JP3681962B2 JP2000210700A JP2000210700A JP3681962B2 JP 3681962 B2 JP3681962 B2 JP 3681962B2 JP 2000210700 A JP2000210700 A JP 2000210700A JP 2000210700 A JP2000210700 A JP 2000210700A JP 3681962 B2 JP3681962 B2 JP 3681962B2
Authority
JP
Japan
Prior art keywords
electrode
outer electrode
vacuum
insulated switchgear
pressure measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000210700A
Other languages
Japanese (ja)
Other versions
JP2002025398A (en
Inventor
雅薫 辻
歩 森田
拓也 三代
徹 谷水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000210700A priority Critical patent/JP3681962B2/en
Publication of JP2002025398A publication Critical patent/JP2002025398A/en
Application granted granted Critical
Publication of JP3681962B2 publication Critical patent/JP3681962B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、圧力検出用の測定装置を備えた真空絶縁開閉装置に関するものである。
【0002】
【従来の技術】
真空バルブの遮断性能及び耐電圧性能は圧力が10−4Torr以下になると急激に低下する。真空圧力変動の原因には、亀裂発生による真空漏れは勿論のこと、金属・絶縁物に吸着していた気体分子の放出、更には雰囲気ガスの透過などがある。真空バルブの高電圧化に伴って真空容器が大型化すると、吸着ガスの放出、雰囲気ガスの透過が無視できなくなる。また、特開平9−249076号公報に記載の絶縁開閉装置のように、単一真空バルブ内に遮断器・断路器・接地開閉器を集積した構造では、負荷或いは開閉装置本体を保守・点検する作業者の安全を確保する上で、操作時の真空圧力チェック機能、或いは圧力の常時監視機能を付加することが望まれる。
【0003】
これまで、圧力検出装置を備えた真空バルブには、電離真空計を取付けたもの、真空容器内に設けた微小ギャップに電圧を印加し放電して圧力を検出するもの、マグネトロン端子を備えたものなどが知られている。また、特開平11−329174号公報の真空絶縁開閉装置では接地真空容器より外部に突出する圧力測定素子が取付けられており、突出部を構成する外側電極と同軸電極の絶縁用絶縁物が直接接合されている。また、この公報では絶縁物のメタライズ面を電子供給源として積極的に利用して圧力測定素子の出力の増強を図っている。
【0004】
【発明が解決しようとする課題】
上記の従来技術では、パイプ状の外側電極とセラミックを直接接合している。真空炉内のロウ付け接合では、外側電極とセラミックの間にロウ材を挿入し、高温に熱することで、ロウ材を溶かし、両者を接合させる。接合した両部材の熱膨張率が異なるため、ロウ付け後、室温状態に戻すと、残留熱応力が生じ、セラミックを破損する危険がある。従って、外側電極には延性の高い銅系の材料を使用せざるを得ない。銅系のパイプを使用すると、(1)真空容器は耐電圧性能からステンレス鋼の使用が望まれ、ステンレス鋼と銅はロウ付けでしか接合できず、ロウ付け回数が増える。(2)腐食、経年劣化などの問題が生じる。
【0005】
本発明の目的は、外側電極を真空容器と同材質の部材を使用でき、且つ圧力測定感度を良くした真空絶縁開閉装置の圧力測定素子を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、真空容器と同材質の外側電極を真空容器に取付け、この外側電極と絶縁部との間に外側電極及び絶縁部の熱膨張率の差を吸収し、且つ電子を放出する金属ブロックを介してろう材により接合することを特徴とする。
【0007】
【発明の実施の形態】
本発明の実施例を図1ないし図3を用いて詳細に説明する。
【0008】
図1に示す真空絶縁開閉装置の真空バルブ1は真空容器2とこれに取付けた圧力測定端子30とから構成されている。接地したステンレス製の真空容器2はその周囲に2つのブッシング3,4、絶縁ロッド9、ベローズ10、圧力測定端子30により真空封止される。
【0009】
真空容器2の内部には、接離自在な固定電極5と可動電極6を配置し、可動電極6は外部に設けた操作機構によって、可動電極6を固定電極5に接離させ、可動電極6を固定電極5に投入及び遮断を行う。ブッシング3を貫通する固定側導体12に固定電極5を固定し、ブッシング4を貫通する可動側導体13と可動電極6の間にフレキシブル導体8を接続する。
【0010】
本実施例の真空バルブ1で電流は、固定側導体12−固定電極5−可動電極6−フレキシブル導体8−可動側導体13の経路で流れる。可動電極6は絶縁ロッド9と接続し、絶縁ロッド9はベローズ10を介して真空容器2に固定される。アークシールド11は遮断時にアークAが真空容器2に触れて生じる地絡事故を回避するためのものである。
【0011】
次に、真空バルブ1の動作について説明する。真空バルブ1を操作機構(図示せず)により絶縁ロッド9を上側方向に駆動し、可動電極6が固定電極5と接触して投入を行い。また絶縁ロッド9を下側方向に駆動し、可動電極6が固定電極5と離れて遮断を行う。
【0012】
真空容器2内の圧力は圧力測定端子30により測定する。圧力測定端子30は図2(a),(b)に示すマグネトロン方式の測定端子であり、同軸電極38とその周囲に配置した永久磁石37で構成する。永久磁石37には、磁界発生用のコイルを用いても良い。また、永久磁石37は常時備えておくのなではなく、圧力測定時(保守・点検時)にのみ取付けても良い。
【0013】
同軸電極38は円筒形の外側電極33とそれを貫通する内側電極34と、両者を絶縁する絶縁部材からなる絶縁部31と、絶縁部31と外側電極33によって挟持した金属部材の金属ブロック32とからなり、各々の部材は高温真空炉にてロウ付け接合する。ロウ材35の設置箇所は図2(a)に示す通りである。
【0014】
円筒状の外側電極33は真空容器2に真空容器内と連通すると共に、一端側の開放端に絶縁部31をろう材35、例えばAgろうにより接合し、絶縁部31の貫通穴31aには内側電極34が貫通している。外側電極33は真空容器2と同じ材料のステンレス鋼で製作し、真空容器2にはロウ付け、或いは溶接により取付けるが、真空容器2を製作時に、真空容器2の一部に円筒状の突起部を一体に成型し、この突起部を外側電極33として使用しても良い。
【0015】
金属ブロック32及び中心電極34は外側電極33よりも電子の放出性能が高いと共に、延性の高い材料Cu,CuAgなどで製作し、ロウ付後の残留応力によって絶縁部31が破損するのを防止する。絶縁部31には、高温ロウ付けに耐え得る部材例えばセラミックなどを用いる。図2(b)に示すように金属ブロック32の端部に外側電極33と内側電極34とが対向する側に延びる突起部32aと、金属ブロック32を貫通する貫通穴32bとを備えている。貫通穴32bと対向する突起部32aの端部には角部32cを形成してる。
【0016】
圧力測定端子30の作用について説明する。電源回路40によって外側電極33と内側電極34の間に直流電圧を印加する。印加電圧の極性は、内側電極34を陽極、外側電極33及び金属ブロック33を陰極とする。尚、印加電圧は交流電圧或いはパルス状の電圧であってもよい。
【0017】
金属ブロック32から放出された電子eは、電界Eと永久磁石37で印加した磁界Bによってローレンツ力を受け、内側電極34の周囲を回転運動する。回転運動する電子eが残留ガスGに衝突電離させ、発生した陽イオンIが外側電極33に流れ込む。このイオン電流jは残留ガス量、即ち圧力に依存するため、抵抗Rの両端に発生する電圧Vによって圧力を測定できる。
【0018】
圧力を常時監視する場合には、抵抗Rの両端の電圧Vによってリレーを動作させ、警報ランプを点灯、或るいは警音を発生させればよい。尚、図3のグラフに示すように、真空バルブ1の遮断性能及び絶縁性能は圧力Pが10−4Torr以上になると急激に低下する。本実施例で示した圧力測定端子30は、10−7Torr程度まで識別可能であり、圧力監視として十分有効である。
【0019】
次に本実施例の効果について説明する。本実施例では、外側電極33と絶縁部31の間に、外側電極33及び絶縁部31の材質に比べ延性が大きい金属ブロック32を挿入する。この金属ブロック32は、真空容器2と同材質の外側電極33と絶縁部31との間に挿入してあり、ろう付け後の外側電極33及び絶縁部31の熱膨張係数の差による残留熱応力を吸収するので、絶縁部31の破損を回避できる。
【0020】
また金属ブロック32の挿入によって、外側電極33は真空容器2と同材料のステンレス鋼で製作できるようになるため、腐食による経年変化が抑制され、信頼性が向上する。外側電極33は真空容器2と同材料のステンレス鋼で製作できるようになると、溶接による取付けが可能になり、高温真空炉にてロウ付け時の特殊な雇いが不要となり、高温真空炉によるロウ付け作業を簡素化することができる。また一部に突出部を設けた真空容器2を製作すれば、この突出部を外側電極として使用でき、一層低コストになる。
【0021】
更に、金属ブロック32は外側電極33と接続しているので、陰極となる。外側電極33及び金属ブロック32と内側電極34の間に直流電圧を印加すると、金属ブロック32から電子eが放出され、この電子eは、電界Eと永久磁石37で印加した磁界Bによってローレンツ力を受け、内側電極34の周囲を回転運動する。回転運動する電子eが残留ガスGに衝突電離させ、発生した陽イオンIが外側電極33に流れ込む。このイオン電流jは残留ガス量、即ち圧力に依存するため、抵抗Rの両端に発生する電圧Vによって圧力を測定できる。
【0022】
この実施例では、金属ブロック32と内側電極34との間隔が外側電極33の内径より狭いから、金属ブロック32の内側電極34と対向する角部32cに電界が集中し、より一層電子eの放出が盛んになる。それ故、電子eが残留ガスGに衝突電離する回数が角部32cを設けた分だけ盛んになり、イオン電流jの感度が良くなるため、図3のグラフで10−7Torr程度まで識別可能となり、圧力監視をしゃすくなった。更に金属ブロック32は仕事関数の小さい銅系の材料を用いるので、圧力測定として十分な電子を供給でき、出力の安定と感度をよくした信頼性のある圧力測定端子を提供できるようになった。また金属ブロック32は突起部32aを形成し、突起部32aにより一層電子eの放出が盛んになり、イオン電流の感度が良くなり、圧力を測定しゃすくした。
【0023】
【発明の効果】
以上のように、本発明によれば、外側電極を真空容器と同材料を使用し、腐食による経年変化を抑制すると共に、使用時に一層電子eの放出を盛んにして、圧力を測定しゃすくした。
【図面の簡単な説明】
【図1】本発明の実施例である真空バルブおよび圧力測定端子の模式断面図である。
【図2】図1の真空バルブに取付けた圧力測定端子の側断面図である。
【図3】圧力Pと絶縁性能との関係を表した特性図である。
【符号の説明】
1…真空バルブ、2…真空容器、3,4…ブッシング、5…固定電極、6…可動電極、9…絶縁ロッド、10…ベローズ、15…穴、16…絶縁筒、20…主軸、21…絶縁部、30…圧力測定端子、31…絶縁部、32…金属ブロック、33…外側電極、34…内側電極、35…ロウ材、36…コイル、37…永久磁石、38…同軸電極、40…電源回路、41…メガー、50…絶縁物、B…磁界、E…電界、P…圧力、R…抵抗、V…電圧、e…電子。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vacuum insulated switchgear provided with a measuring device for pressure detection.
[0002]
[Prior art]
Breaking performance and withstand voltage performance of the vacuum valve is rapidly reduced when the pressure is below 10- 4 Torr. Causes of fluctuations in the vacuum pressure include not only vacuum leakage due to cracking, but also the release of gas molecules adsorbed on the metal / insulator, and the permeation of atmospheric gas. When the vacuum vessel is enlarged with the increase in the voltage of the vacuum valve, the release of the adsorbed gas and the permeation of the atmospheric gas cannot be ignored. Further, in a structure in which a circuit breaker, a disconnecting switch, and a grounding switch are integrated in a single vacuum valve as in the insulated switchgear described in JP-A-9-249076, the load or the switchgear main body is maintained and inspected. In order to ensure the safety of the operator, it is desired to add a vacuum pressure check function during operation or a function for constantly monitoring pressure.
[0003]
Up to now, vacuum valves equipped with pressure detectors are equipped with ionization vacuum gauges, those that detect the pressure by applying a voltage to a small gap in the vacuum vessel, and those that have magnetron terminals Etc. are known. In addition, in the vacuum insulated switchgear disclosed in Japanese Patent Laid-Open No. 11-329174, a pressure measuring element protruding outside from the grounded vacuum vessel is attached, and the insulation for insulation between the outer electrode and the coaxial electrode constituting the protruding portion is directly joined. Has been. In this publication, the output of the pressure measuring element is enhanced by actively using the metallized surface of the insulator as an electron supply source.
[0004]
[Problems to be solved by the invention]
In the above prior art, the pipe-shaped outer electrode and the ceramic are directly joined. In brazing in a vacuum furnace, a brazing material is inserted between the outer electrode and the ceramic and heated to a high temperature to melt the brazing material and join them together. Since the thermal expansion coefficients of the joined members are different, if the temperature is returned to room temperature after brazing, there is a risk that residual thermal stress is generated and the ceramic is damaged. Accordingly, a copper material having high ductility must be used for the outer electrode. When copper-based pipes are used, (1) the vacuum vessel is preferably made of stainless steel because of its withstand voltage performance. Stainless steel and copper can be joined only by brazing, and the number of brazing increases. (2) Problems such as corrosion and aging occur.
[0005]
An object of the present invention is to provide a pressure measuring element of a vacuum insulated switchgear in which a member made of the same material as that of a vacuum vessel can be used for an outer electrode and pressure measurement sensitivity is improved.
[0006]
[Means for Solving the Problems]
The present invention attaches an outer electrode of the same material as the vacuum vessel to the vacuum vessel, absorbs the difference in thermal expansion coefficient between the outer electrode and the insulating portion, and emits electrons between the outer electrode and the insulating portion. It is characterized by joining with a brazing material via
[0007]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described in detail with reference to FIGS.
[0008]
A vacuum valve 1 of the vacuum insulated switchgear shown in FIG. 1 includes a vacuum vessel 2 and a pressure measuring terminal 30 attached to the vacuum vessel 2. The grounded stainless steel vacuum vessel 2 is vacuum-sealed by two bushings 3 and 4, an insulating rod 9, a bellows 10, and a pressure measuring terminal 30 around it.
[0009]
A fixed electrode 5 and a movable electrode 6 that can be freely contacted and separated are arranged inside the vacuum vessel 2. The movable electrode 6 is brought into contact with and separated from the fixed electrode 5 by an operating mechanism provided outside. Is inserted into and cut off from the fixed electrode 5. The fixed electrode 5 is fixed to the fixed conductor 12 that penetrates the bushing 3, and the flexible conductor 8 is connected between the movable electrode 13 that penetrates the bushing 4 and the movable electrode 6.
[0010]
In the vacuum valve 1 of the present embodiment, current flows through a path of the fixed side conductor 12 -the fixed electrode 5 -the movable electrode 6 -the flexible conductor 8 -the movable side conductor 13. The movable electrode 6 is connected to an insulating rod 9, and the insulating rod 9 is fixed to the vacuum vessel 2 through a bellows 10. The arc shield 11 is for avoiding a ground fault that occurs when the arc A touches the vacuum vessel 2 at the time of interruption.
[0011]
Next, the operation of the vacuum valve 1 will be described. The vacuum valve 1 is driven by an operating mechanism (not shown) to drive the insulating rod 9 upward, and the movable electrode 6 is brought into contact with the fixed electrode 5 for charging. Further, the insulating rod 9 is driven in the downward direction, and the movable electrode 6 is separated from the fixed electrode 5 to be cut off.
[0012]
The pressure in the vacuum vessel 2 is measured by a pressure measurement terminal 30. The pressure measurement terminal 30 is a magnetron type measurement terminal shown in FIGS. 2A and 2B, and includes a coaxial electrode 38 and a permanent magnet 37 disposed around the coaxial electrode 38. The permanent magnet 37 may be a magnetic field generating coil. The permanent magnet 37 is not always provided, but may be attached only at the time of pressure measurement (maintenance / inspection).
[0013]
The coaxial electrode 38 includes a cylindrical outer electrode 33, an inner electrode 34 penetrating the cylindrical outer electrode 33, an insulating portion 31 made of an insulating member that insulates both, and a metal block 32 of a metal member sandwiched between the insulating portion 31 and the outer electrode 33. Each member is brazed and joined in a high-temperature vacuum furnace. The installation location of the brazing material 35 is as shown in FIG.
[0014]
The cylindrical outer electrode 33 communicates with the inside of the vacuum vessel 2 in the vacuum vessel 2, and the insulating portion 31 is joined to the open end on one end side by a brazing material 35, for example, Ag brazing. The electrode 34 penetrates. The outer electrode 33 is made of stainless steel made of the same material as the vacuum vessel 2 and is attached to the vacuum vessel 2 by brazing or welding. When the vacuum vessel 2 is produced, a cylindrical projection is formed on a part of the vacuum vessel 2. May be integrally molded, and this protrusion may be used as the outer electrode 33.
[0015]
The metal block 32 and the center electrode 34 have higher electron emission performance than the outer electrode 33 and are made of a highly ductile material such as Cu or CuAg to prevent the insulating portion 31 from being damaged by residual stress after brazing. . A member that can withstand high temperature brazing, such as ceramic, is used for the insulating portion 31. As shown in FIG. 2B, the end portion of the metal block 32 is provided with a protruding portion 32 a extending to the side where the outer electrode 33 and the inner electrode 34 face each other, and a through hole 32 b penetrating the metal block 32. A corner 32c is formed at the end of the protrusion 32a facing the through hole 32b.
[0016]
The operation of the pressure measurement terminal 30 will be described. A DC voltage is applied between the outer electrode 33 and the inner electrode 34 by the power supply circuit 40. The polarity of the applied voltage is such that the inner electrode 34 is an anode and the outer electrode 33 and the metal block 33 are cathodes. The applied voltage may be an alternating voltage or a pulsed voltage.
[0017]
The electrons e emitted from the metal block 32 receive a Lorentz force by the electric field E and the magnetic field B applied by the permanent magnet 37 and rotate around the inner electrode 34. The rotating electrons e collide and ionize the residual gas G, and the generated cations I flow into the outer electrode 33. Since the ion current j depends on the residual gas amount, that is, the pressure, the pressure can be measured by the voltage V generated across the resistor R.
[0018]
When the pressure is constantly monitored, the relay may be operated by the voltage V across the resistor R to turn on the alarm lamp or generate a warning sound. As shown in the graph of FIG. 3, interruption performance and insulation performance of the vacuum valve 1 is rapidly reduced when the pressure P becomes equal to or higher than 10- 4 Torr. Pressure measuring terminal 30 indicated in the present embodiment is identifiable to about 10- 7 Torr, it is effective enough as a pressure monitor.
[0019]
Next, the effect of the present embodiment will be described. In this embodiment, a metal block 32 having a greater ductility than the material of the outer electrode 33 and the insulating part 31 is inserted between the outer electrode 33 and the insulating part 31. This metal block 32 is inserted between the outer electrode 33 made of the same material as the vacuum vessel 2 and the insulating portion 31, and the residual thermal stress due to the difference in thermal expansion coefficient between the outer electrode 33 and the insulating portion 31 after brazing. Is absorbed, so that damage to the insulating portion 31 can be avoided.
[0020]
Further, since the outer electrode 33 can be made of stainless steel made of the same material as the vacuum vessel 2 by inserting the metal block 32, secular change due to corrosion is suppressed, and reliability is improved. When the outer electrode 33 can be made of stainless steel of the same material as the vacuum vessel 2, it can be attached by welding, and no special employment is required when brazing in a high temperature vacuum furnace, and brazing in a high temperature vacuum furnace. Work can be simplified. Further, if the vacuum container 2 provided with a protruding portion in part is manufactured, this protruding portion can be used as an outer electrode, and the cost is further reduced.
[0021]
Furthermore, since the metal block 32 is connected to the outer electrode 33, it becomes a cathode. When a DC voltage is applied between the outer electrode 33 and the metal block 32 and the inner electrode 34, electrons e are emitted from the metal block 32, and the electrons e generate a Lorentz force by the electric field E and the magnetic field B applied by the permanent magnet 37. Receiving and rotating around the inner electrode 34. The rotating electrons e collide and ionize the residual gas G, and the generated cations I flow into the outer electrode 33. Since the ion current j depends on the residual gas amount, that is, the pressure, the pressure can be measured by the voltage V generated across the resistor R.
[0022]
In this embodiment, since the distance between the metal block 32 and the inner electrode 34 is narrower than the inner diameter of the outer electrode 33, the electric field concentrates on the corner 32c facing the inner electrode 34 of the metal block 32, and more electrons e are emitted. Will flourish. Therefore, only became popular amount that the number of times that the electrons e collide ionized residual gas G is provided a corner 32c, the sensitivity of the ion current j is improved, can be identified up to about 10- 7 Torr in the graph of FIG. 3 Then, it became difficult to monitor the pressure. Furthermore, since the metal block 32 uses a copper-based material having a small work function, it is possible to supply a sufficient pressure electron for pressure measurement, and to provide a reliable pressure measurement terminal with improved output stability and sensitivity. In addition, the metal block 32 formed a protrusion 32a, and the protrusion 32a further increased the emission of electrons e, improved the sensitivity of the ionic current, and measured the pressure.
[0023]
【The invention's effect】
As described above, according to the present invention, the outer electrode is made of the same material as that of the vacuum vessel, and the secular change due to corrosion is suppressed. .
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a vacuum valve and a pressure measurement terminal according to an embodiment of the present invention.
FIG. 2 is a side sectional view of a pressure measurement terminal attached to the vacuum valve of FIG.
FIG. 3 is a characteristic diagram showing the relationship between pressure P and insulation performance.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Vacuum valve, 2 ... Vacuum container, 3, 4 ... Bushing, 5 ... Fixed electrode, 6 ... Movable electrode, 9 ... Insulating rod, 10 ... Bellows, 15 ... Hole, 16 ... Insulating cylinder, 20 ... Main shaft, 21 ... Insulating part, 30 ... pressure measuring terminal, 31 ... insulating part, 32 ... metal block, 33 ... outer electrode, 34 ... inner electrode, 35 ... brazing material, 36 ... coil, 37 ... permanent magnet, 38 ... coaxial electrode, 40 ... Power circuit 41 ... Meger 50 ... Insulator B ... Magnetic field E ... Electric field P ... Pressure R ... Resistance V ... Voltage e ... Electron

Claims (5)

接地された真空容器内に固定電極を配置し、この固定電極と接離する可動電極を配置し、前記真空容器内と連通すると共に、一端側に開放端を有する管状の外側電極を前記真空容器に取付け、前記外側電極の外周側に磁界を発生する磁界発生部を配置し、前記外側電極の開放端に絶縁部をろう材により接合し、前記絶縁部を貫通し、かつ前記外側電極の内周面と対向して内側電極を配置し、前記内側電極と外側電極との間に電圧を印加し、前記外側電極から発生する電子を前記磁界により回転させ、この電子を真空容器内の残留ガスに衝突電離して発生するイオン電流により、前記真空容器内の圧力を測定する素子において、前記外側電極の材質を前記真空容器と同材質とし、前記外側電極と前記絶縁部との間にろう付け時の残留熱応力を吸収し、且つ前記外側電極よりも電子の放出性能の高い金属ブロックを挿入することを特徴とする真空絶縁開閉装置の圧力測定素子。A fixed electrode is disposed in a grounded vacuum container, a movable electrode that is in contact with and away from the fixed electrode is disposed, and a tubular outer electrode that communicates with the inside of the vacuum container and has an open end on one end side is disposed in the vacuum container. A magnetic field generating part for generating a magnetic field is arranged on the outer peripheral side of the outer electrode, an insulating part is joined to the open end of the outer electrode with a brazing material, penetrates the insulating part, and the inner part of the outer electrode An inner electrode is arranged facing the peripheral surface, a voltage is applied between the inner electrode and the outer electrode, electrons generated from the outer electrode are rotated by the magnetic field, and the electrons are left in the residual gas in the vacuum vessel. In an element for measuring the pressure in the vacuum vessel by ion current generated by impact ionization, the outer electrode is made of the same material as the vacuum vessel and brazed between the outer electrode and the insulating portion. To absorb residual thermal stress And, and the pressure measuring element of the vacuum insulated switchgear, characterized by inserting a metal having high block of emission performance of the electrons than the outer electrode. 前記金属ブロックはろう付け時の前記外側電極及び前記絶縁部の伸縮を吸収し、且つ電子を放出する部材であることを特徴とする請求項1に記載の真空絶縁開閉装置の圧力測定素子。The pressure measuring element of a vacuum insulated switchgear according to claim 1, wherein the metal block is a member that absorbs expansion and contraction of the outer electrode and the insulating portion during brazing and emits electrons. 前記金属ブロックは無酸素銅であることを特徴とする請求項1に記載の真空絶縁開閉装置の圧力測定素子。The pressure measuring element of a vacuum insulated switchgear according to claim 1, wherein the metal block is oxygen-free copper. 前記金属ブロックの端部に前記外側電極と前記内側電極とが対向する側に延びる突起部と、前記突起部及び前記金属ブロックに前記内側電極が貫通する貫通穴とを備えていることを特徴とする請求項1に記載の真空絶縁開閉装置の圧力測定素子。The metal block is provided with a protrusion extending on the side where the outer electrode and the inner electrode face each other, and a through hole through which the inner electrode penetrates the protrusion and the metal block. The pressure measuring element of the vacuum insulated switchgear according to claim 1. 前記真空容器及び前記外側電極にステンレス鋼を使用することを特徴とする請求項1に記載の真空絶縁開閉装置の圧力測定素子。The pressure measuring element of the vacuum insulated switchgear according to claim 1, wherein stainless steel is used for the vacuum vessel and the outer electrode.
JP2000210700A 2000-07-06 2000-07-06 Pressure measuring element for vacuum insulated switchgear Expired - Fee Related JP3681962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000210700A JP3681962B2 (en) 2000-07-06 2000-07-06 Pressure measuring element for vacuum insulated switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000210700A JP3681962B2 (en) 2000-07-06 2000-07-06 Pressure measuring element for vacuum insulated switchgear

Publications (2)

Publication Number Publication Date
JP2002025398A JP2002025398A (en) 2002-01-25
JP3681962B2 true JP3681962B2 (en) 2005-08-10

Family

ID=18706929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000210700A Expired - Fee Related JP3681962B2 (en) 2000-07-06 2000-07-06 Pressure measuring element for vacuum insulated switchgear

Country Status (1)

Country Link
JP (1) JP3681962B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4905704B2 (en) * 2007-06-08 2012-03-28 株式会社アルバック Ignition aid and cold cathode ionization gauge equipped with the same
JP6111129B2 (en) * 2013-04-18 2017-04-05 有限会社真空実験室 Reverse magnetron type cold cathode ionization vacuum device

Also Published As

Publication number Publication date
JP2002025398A (en) 2002-01-25

Similar Documents

Publication Publication Date Title
KR100546032B1 (en) Vacuum Insulated Switchgear
US6529009B2 (en) Vacuum switch including vacuum-measurement devices, switchgear using the vacuum switch, and operation method thereof
JP3681962B2 (en) Pressure measuring element for vacuum insulated switchgear
RU2634749C2 (en) Coil of axial magnetic field for vacuum interrupter
Okawa et al. Reliability and field experience of vacuum interrupters
JP3395698B2 (en) Vacuum insulated switchgear
JP3930208B2 (en) Vacuum insulated switchgear
JP4529769B2 (en) Circuit breaker
US3411118A (en) Vacuum relay with improved armature mounting and movable contact
WO1997002919A1 (en) Plasma torch
JP2023183522A (en) vacuum valve
JP2001110286A5 (en)
JPH1019711A (en) Cold cathode ionization gauge
JP2023082297A (en) vacuum valve
EP1383148B1 (en) Vacuum switchgear
JP3668925B2 (en) Current lead device for rotor of superconducting rotating electrical machine
JP4564660B2 (en) RF feedthrough, semiconductor manufacturing system, and method of providing RF current and coolant into a semiconductor processing chamber
JP3349642B2 (en) Inspection method for ion beam processing equipment
JP2007155669A (en) Cold cathode ionization gauge
JP2002334638A (en) Vacuum valve
JP2020144980A (en) Vacuum valve pressure monitoring device and pressure monitoring method
JPH0425654B2 (en)
JPS63193416A (en) Manufacture of vacuum relay
JPS6155833A (en) Breaker

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees