JP3681769B2 - Method for removing nitrous oxide in exhaust gas and catalyst for removal - Google Patents

Method for removing nitrous oxide in exhaust gas and catalyst for removal Download PDF

Info

Publication number
JP3681769B2
JP3681769B2 JP19990594A JP19990594A JP3681769B2 JP 3681769 B2 JP3681769 B2 JP 3681769B2 JP 19990594 A JP19990594 A JP 19990594A JP 19990594 A JP19990594 A JP 19990594A JP 3681769 B2 JP3681769 B2 JP 3681769B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
nitrous oxide
removal
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19990594A
Other languages
Japanese (ja)
Other versions
JPH0857262A (en
Inventor
尚美 今田
泰良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP19990594A priority Critical patent/JP3681769B2/en
Publication of JPH0857262A publication Critical patent/JPH0857262A/en
Application granted granted Critical
Publication of JP3681769B2 publication Critical patent/JP3681769B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Description

【0001】
【産業上の利用分野】
本発明は、排ガス中の亜酸化窒素の除去方法および除去用触媒に係り、特に耐久性に優れた低温で高活性の排ガス中の亜酸化窒素除去方法および除去用触媒に関する。
【0002】
【従来の技術】
近年、大気中の二酸化炭素(CO2 )の増加に伴う地球温暖化現象、窒素酸化物(NOx)や硫黄酸化物(SO2 )による酸性雨に基づく森林の被害等、地球レベルでの環境破壊が顕在化し、その対策が人類の緊急課題となりつつある。これら地球レベルでの環境破壊の1つとしてオゾン層の破壊があり、フロン、メタンなどのほかに、亜酸化窒素(N2 O)がその原因物質の1つに挙げられている。特に近年は、各種燃焼器から排出される酸性雨の原因物質であるNOxを低レベルで押さえるため、低温燃焼が行われることが多くなっており、その場合にN2 Oの排出量が増加することが知られている。
【0003】
2 Oの除去方法としては高温下で触媒を用いて熱分解する方法が一般に知られており、亜鉛を初めとする各種元素の酸化物を触媒にしたものが研究されている。これとは別に本発明者らはモルデナイト、クリノプチライト、ホージャサイト、ゼオライトYまたはペンタシル型ゼオライトにFeを置換した触媒でアンモニアによりN2 Oを還元するN2 O除去触媒とそのプロセスを提案(特公平4−17083、特願平5−213088)している。この除去プロセスは、図2に示すように、燃焼器1から排出されたN2 Oを含有する各種排ガスの流路に設けられた反応器2中にN2 O除去触媒5を充填し、その上流で排ガス中にアンモニア6を注入し、温度400℃以上の温度域でN2 Oをアンモニア還元するものである。
【0004】
【発明が解決しようとする課題】
上記N2 Oの除去に関する先行技術のうち、亜鉛等の酸化物を触媒とする熱分解法は反応温度が高いことと、使用する触媒が排ガス中のSOxにより劣化するという問題を有していた。これに対し、Fe置換ゼオライトを使用してアンモニアにより還元する方法は、亜鉛等の酸化物を触媒とする熱分解法よりも低温活性に優れている。しかしながら、その低温活性は充分とはいえず、450℃以上の高温の排ガス温度域でなければ実質的な除去性能は得られず、そのため耐熱性の点で問題を生じ、また排ガス中のSOxとゼオライトとの反応による劣化を無視できないなどの問題もあった。
【0005】
本発明の目的は、上記従来技術の欠点である耐熱性およびSOxと触媒との反応による劣化を防止し、より低温度から高いN2 O除去活性を示す排ガス中の亜酸化窒素の除去方法および除去用触媒を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するため本願で特許請求される発明は以下のとおりである。
(1)排ガス中の亜酸化窒素の除去方法において、亜酸化窒素含有排ガスにアンモニアを混合し、β型ゼオライトに鉄を担持した触媒と350〜500℃の温度域で接触させて排ガス中の亜酸化窒素を還元除去することを特徴とする排ガス中の亜酸化窒素の除去方法。
【0007】
(2)排ガス中の亜酸化窒素のアンモニアによる還元除去用触媒において、β型ゼオライトに鉄を担持したことを特徴とする排ガス中の亜酸化窒素の除去用触媒。
(3)(2)において、β型ゼオライトに対する鉄の担持量が0.1〜6wt%であることを特徴とする排ガス中の亜酸化窒素の除去用触媒。
【0008】
【作用】
本発明者らの研究によれば、前述した従来触媒の問題点である耐熱性および耐SOx性の低さは以下の理由によることが判明した。すなわち、熱劣化は活性成分を支持している担体であるゼオライトの熱または脱アルミニウムによる結晶構造の破壊により生じる。さらに、SOxによる劣化は、触媒活性成分である金属酸化物の触媒作用によって排ガス中のSOxの主成分であるSO2 がSO3 に酸化され、このSO3 がゼオライトの結晶骨格中に存在するアルミニウムと反応し、比表面積の低下や細孔の閉塞を引き起こすことによって起こる。このようにゼオライトの耐熱性および耐SOx性は、ゼオライトの結晶骨格構造に大きく依存する。
【0009】
以上のような考察をもとに鋭意検討した結果、本発明者らはβ型ゼオライトを担体とし、これに活性成分としてFeを担持した触媒が、従来の触媒よりも優れた活性および耐久性を有することを見出した。
本発明による触媒が高い耐久性を有するのは次のように推定される。すなわち、本発明による触媒で担体として用いられているβ型ゼオライトは、ZEOLITES,Vol 8,November,446−452(1998)に記してあるように、非常に複雑な空孔構造を有するゼオライトである。従来触媒に担体として用いているモルデナイト、ホージャサイト等が一方方向に整列した直線的な空孔のみを有すのに対して、本発明で用いているβ型ゼオライトは一方方向に整列した直線的な空孔に加えて、それに交わるねじ曲がった空孔を有する。このような複雑な空孔構造ゆえに、当該β型ゼオライトは熱による構造破壊が生じにくく安定性が高い。またSO3 のような大きな分子が空孔内に入りにくいためアルミニウムがSO3 による攻撃を受けにくく、アルミニウムの硫酸塩化による空孔の破壊を生じにくい。このような特徴を持つβ型ゼオライトをFeと組合わせることにより従来にない耐熱性および耐SOx性の高い高活性な触媒を得ることが可能になる。
【0010】
【実施例】
以下、本発明を実施例を用いて詳細に説明する。
実施例1
β型ゼオライト(東ソー社製、SiO2 /Al2 3 比=25.6)50gを硝酸鉄III (Fe2 (NO3 )3・9H2 O)18gを含む水溶液100ml中に投入後、砂浴上150℃で攪拌しながら蒸発乾固した。得られたFe担持ゼオライトを、電気炉中550℃で2時間焼成した。得られた粉末を油圧プレスを用い3ton/cm2 でペレット状に成形し、さらにこれを破砕して10〜20メッシュの触媒を得た。
実施例2
実施例1の硝酸鉄III を酢酸鉄(Fe(OH)(CH3 COO)2 )8.5gに変更して、他は同様にして触媒を調製した。
実施例3〜5
実施例1における硝酸鉄III 18gをそれぞれ0.6g、6gおよび36gに変更して、他は同様にして触媒を調製した。
比較例1〜3
実施例1のゼオライトを、モルデナイト(東ソー社製、SiO2 /Al2 3 比=23)、モルデナイト(東ソー社製、SiO2 /Al2 3 比=30)、ゼオライトY(東ソー社製、SiO2 /Al2 3 比=5.6)にそれぞれ替えて、同様にして触媒を調製した。
【0011】
実施例1〜5および比較例1〜3の触媒に対し、表1の条件でN2 O除去率を測定した。
【0012】
【表1】

Figure 0003681769
図1は、実施例1および比較例1の触媒のN2 O除去率の温度依存性を示したものである。本図から明らかなように、本発明による触媒は従来の触媒よりも低温度での活性が高いことがわかる。
【0013】
また、表2に実施例1〜5の触媒における450℃でのN2 O除去率を示した。
【0014】
【表2】
Figure 0003681769
本表より、本発明の触媒はFe原料の種類が変わっても同様に高活性であり、またFe担持量は0.1wt%以上、好ましくは0.5wt%以上必要であることがわかる。Feの最適な担持量はゼオライトのSiO2 /Al2 3 比によって異なるが、0.1wt%以上、6wt%以下がよい。担持量が少ない場合は充分な活性が得られず、特に低温での活性が低下する。担持量がイオン交換容量の大過剰になると、ゼオライトの細孔を閉塞させて活性を低下させるので好ましくない。このため通常はFe担持量を0.1wt%以上、3wt%未満に選択すると好結果を与える。
【0015】
さらに、実施例1および比較例1、2および3の触媒を用い、表1に示した組成のガス中にSO2 をその濃度が200ppmになるように添加し、450℃で500時間の耐久テストを行った。得られた結果を表3に示す。
【0016】
【表3】
Figure 0003681769
表3から本発明による触媒は、SO2 含有ガス中での性能変化が従来の触媒と較べてきわめて小さく、耐熱性および耐SOx性に優れたものであることがわかる。
【0017】
【発明の効果】
本発明によれば、低温域における活性が高く、耐SOx性および耐熱性に優れた亜酸化窒素除去用触媒が得られるので、オゾン層の破壊物質であるN2 Oを、例えばSOxを含有する燃焼排ガス中であっても350〜500℃の温度域で長時間連続的に除去することが可能である。
【図面の簡単な説明】
【図1】実施例1および比較例1の触媒のN2 O除去活性の温度依存性を示す図。
【図2】本発明の触媒を用いてN2 Oを除去するプロセスを示すフロー図。
【符号の説明】
1…燃焼器、2…反応器、3…熱交換器、4…煙突、5…N2 O除去用触媒。[0001]
[Industrial application fields]
The present invention relates to a method and catalyst for removing nitrous oxide in exhaust gas, and particularly to a method and catalyst for removing nitrous oxide in exhaust gas having excellent durability and low temperature.
[0002]
[Prior art]
In recent years, global warming due to an increase in carbon dioxide (CO 2 ) in the atmosphere, forest damage due to acid rain caused by nitrogen oxides (NOx) and sulfur oxides (SO 2 ), etc. As a result, countermeasures are becoming an urgent issue for humankind. One of these environmental destructions at the global level is the destruction of the ozone layer. In addition to chlorofluorocarbon and methane, nitrous oxide (N 2 O) is listed as one of the causative substances. Particularly in recent years, low-temperature combustion is often performed to suppress NOx, which is a cause of acid rain discharged from various combustors, at a low level. In this case, N 2 O emissions increase. It is known.
[0003]
As a method for removing N 2 O, a method of thermally decomposing using a catalyst at a high temperature is generally known, and studies using oxides of various elements such as zinc as a catalyst have been studied. Apart from this, the present inventors have proposed an N 2 O removal catalyst for reducing N 2 O with ammonia by a catalyst obtained by substituting Fe for mordenite, clinoptilolite, faujasite, zeolite Y or pentasil type zeolite and its process ( Japanese Patent Publication No. 4-17083 and Japanese Patent Application No. 5-213088). As shown in FIG. 2, this removal process is performed by filling a reactor 2 provided in a flow path of various exhaust gases containing N 2 O discharged from the combustor 1 with an N 2 O removal catalyst 5. Ammonia 6 is injected into the exhaust gas upstream, and N 2 O is ammonia reduced in a temperature range of 400 ° C. or higher.
[0004]
[Problems to be solved by the invention]
Among the prior arts related to the removal of N 2 O, the thermal decomposition method using an oxide such as zinc as a catalyst has a problem that the reaction temperature is high and the catalyst used is deteriorated by SOx in the exhaust gas. . On the other hand, the method of reducing with ammonia using Fe-substituted zeolite is superior in low-temperature activity than the thermal decomposition method using an oxide such as zinc as a catalyst. However, its low-temperature activity is not sufficient, and substantial removal performance cannot be obtained unless it is in a high temperature exhaust gas temperature range of 450 ° C. or higher, which causes problems in terms of heat resistance. There was also a problem that deterioration due to reaction with zeolite could not be ignored.
[0005]
An object of the present invention is to provide a method for removing nitrous oxide in exhaust gas, which prevents the heat resistance and degradation due to the reaction between SOx and a catalyst, which are disadvantages of the above-mentioned prior art, and exhibits high N 2 O removal activity from a lower temperature, and The object is to provide a catalyst for removal.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the invention claimed in the present application is as follows.
(1) In the method for removing nitrous oxide in exhaust gas, ammonia is mixed with the exhaust gas containing nitrous oxide, and contacted with a catalyst supporting iron on β-type zeolite in a temperature range of 350 to 500 ° C. A method for removing nitrous oxide in exhaust gas, characterized by reducing and removing nitrogen oxides.
[0007]
(2) A catalyst for removing nitrous oxide in exhaust gas, characterized in that iron is supported on β-type zeolite in a catalyst for reducing and removing nitrous oxide in exhaust gas with ammonia.
(3) A catalyst for removing nitrous oxide in exhaust gas, wherein the amount of iron supported on β-type zeolite is 0.1 to 6 wt% in (2).
[0008]
[Action]
According to the study by the present inventors, it has been found that the low heat resistance and low SOx resistance, which are the problems of the conventional catalyst described above, are due to the following reasons. That is, the thermal deterioration is caused by the destruction of the crystal structure due to heat or dealumination of zeolite which is a carrier supporting the active ingredient. Furthermore, aluminum degradation due SOx is, SO 2 which is the main component of SOx in the exhaust gas by the catalytic action of the metal oxide is a catalytically active component is oxidized to SO 3, this SO 3 is present in the crystalline framework of the zeolite It reacts with and causes a decrease in specific surface area and pore clogging. As described above, the heat resistance and SOx resistance of zeolite greatly depend on the crystal framework structure of the zeolite.
[0009]
As a result of intensive studies based on the above considerations, the present inventors have found that a catalyst having β-type zeolite as a carrier and supporting Fe as an active component has superior activity and durability over conventional catalysts. Found to have.
It is presumed that the catalyst according to the present invention has high durability as follows. That is, the β-type zeolite used as a support in the catalyst according to the present invention is a zeolite having a very complicated pore structure as described in ZEOLITES, Vol 8, November, 446-452 (1998). . Whereas conventional mordenite, faujasite, etc. used as supports in catalysts have only linear vacancies aligned in one direction, β-type zeolite used in the present invention is linear in one direction. In addition to a vacant hole, it has a twisted hole that intersects it. Due to such a complex pore structure, the β-type zeolite is less susceptible to structural breakage due to heat and has high stability. In addition, since large molecules such as SO 3 do not easily enter the vacancies, aluminum is not easily attacked by SO 3 , and vacancies are not easily destroyed by sulfation of aluminum. By combining the β-type zeolite having such characteristics with Fe, it becomes possible to obtain a highly active catalyst having high heat resistance and high SOx resistance, which has not been conventionally obtained.
[0010]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples.
Example 1
After putting 50 g of β-type zeolite (manufactured by Tosoh Corporation, SiO 2 / Al 2 O 3 ratio = 25.6) into 100 ml of an aqueous solution containing 18 g of iron nitrate III (Fe 2 (NO 3 ) 3.9H 2 O), sand The mixture was evaporated to dryness with stirring at 150 ° C. on a bath. The obtained Fe-supported zeolite was calcined at 550 ° C. for 2 hours in an electric furnace. The obtained powder was formed into a pellet at 3 ton / cm 2 using a hydraulic press, and further crushed to obtain a 10-20 mesh catalyst.
Example 2
A catalyst was prepared in the same manner except that iron nitrate III in Example 1 was changed to 8.5 g of iron acetate (Fe (OH) (CH 3 COO) 2 ).
Examples 3-5
A catalyst was prepared in the same manner except that 18 g of iron nitrate III in Example 1 was changed to 0.6 g, 6 g and 36 g, respectively.
Comparative Examples 1-3
The zeolite of Example 1 was mordenite (manufactured by Tosoh Corporation, SiO 2 / Al 2 O 3 ratio = 23), mordenite (manufactured by Tosoh Corporation, SiO 2 / Al 2 O 3 ratio = 30), zeolite Y (manufactured by Tosoh Corporation, A catalyst was prepared in the same manner, except that the ratio was SiO 2 / Al 2 O 3 = 5.6).
[0011]
The N 2 O removal rate was measured under the conditions shown in Table 1 for the catalysts of Examples 1 to 5 and Comparative Examples 1 to 3.
[0012]
[Table 1]
Figure 0003681769
FIG. 1 shows the temperature dependence of the N 2 O removal rate of the catalysts of Example 1 and Comparative Example 1. As is apparent from the figure, the catalyst according to the present invention has higher activity at a lower temperature than the conventional catalyst.
[0013]
Table 2 shows the N 2 O removal rate at 450 ° C. for the catalysts of Examples 1 to 5.
[0014]
[Table 2]
Figure 0003681769
From this table, it can be seen that the catalyst of the present invention is similarly highly active even if the type of Fe raw material is changed, and the Fe loading is required to be 0.1 wt% or more, preferably 0.5 wt% or more. The optimum loading amount of Fe varies depending on the SiO 2 / Al 2 O 3 ratio of the zeolite, but is preferably 0.1 wt% or more and 6 wt% or less. When the supported amount is small, sufficient activity cannot be obtained, and the activity particularly at low temperatures is lowered. If the loading amount is excessively large in the ion exchange capacity, it is not preferable because the pores of the zeolite are blocked to lower the activity. For this reason, normally, when the Fe loading is selected to be 0.1 wt% or more and less than 3 wt%, good results are obtained.
[0015]
Further, using the catalysts of Example 1 and Comparative Examples 1, 2, and 3, SO 2 was added to the gas having the composition shown in Table 1 so that its concentration was 200 ppm, and the durability test was performed at 450 ° C. for 500 hours. Went. The obtained results are shown in Table 3.
[0016]
[Table 3]
Figure 0003681769
From Table 3, it can be seen that the performance of the catalyst according to the present invention in the SO 2 -containing gas is extremely small compared to the conventional catalyst, and is excellent in heat resistance and SOx resistance.
[0017]
【The invention's effect】
According to the present invention, a catalyst for removing nitrous oxide having high activity in a low temperature range and excellent SOx resistance and heat resistance can be obtained. Therefore, N 2 O that is a depleting substance of the ozone layer is contained, for example, SOx. Even in the combustion exhaust gas, it can be removed continuously for a long time in the temperature range of 350 to 500 ° C.
[Brief description of the drawings]
1 is a graph showing the temperature dependence of N 2 O removal activity of catalysts of Example 1 and Comparative Example 1. FIG.
FIG. 2 is a flowchart showing a process of removing N 2 O using the catalyst of the present invention.
[Explanation of symbols]
1 ... combustor, 2 ... reactor, 3 ... heat exchanger, 4 ... chimney, 5 ... N 2 O removing catalyst.

Claims (3)

排ガス中の亜酸化窒素の除去方法において、亜酸化窒素含有排ガスにアンモニアを混合し、β型ゼオライトに鉄を担持した触媒と350〜500℃の温度域で接触させて排ガス中の亜酸化窒素を還元除去することを特徴とする排ガス中の亜酸化窒素の除去方法。In the method for removing nitrous oxide in exhaust gas, ammonia is mixed with nitrous oxide-containing exhaust gas, and the catalyst is supported in a temperature range of 350 to 500 ° C. with a catalyst in which iron is supported on β-type zeolite. A method for removing nitrous oxide in exhaust gas, which comprises reducing and removing. 排ガス中の亜酸化窒素のアンモニアによる還元除去用触媒において、β型ゼオライトに鉄を担持したことを特徴とする排ガス中の亜酸化窒素の除去用触媒。A catalyst for removing nitrous oxide in exhaust gas, wherein iron is supported on β-type zeolite in a catalyst for reducing and removing nitrous oxide in exhaust gas with ammonia. 請求項2において、β型ゼオライトに対する鉄の担持量が0.1〜6wt%であることを特徴とする排ガス中の亜酸化窒素の除去用触媒。The catalyst for removing nitrous oxide in exhaust gas according to claim 2, wherein the amount of iron supported on β-type zeolite is 0.1 to 6 wt%.
JP19990594A 1994-08-24 1994-08-24 Method for removing nitrous oxide in exhaust gas and catalyst for removal Expired - Fee Related JP3681769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19990594A JP3681769B2 (en) 1994-08-24 1994-08-24 Method for removing nitrous oxide in exhaust gas and catalyst for removal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19990594A JP3681769B2 (en) 1994-08-24 1994-08-24 Method for removing nitrous oxide in exhaust gas and catalyst for removal

Publications (2)

Publication Number Publication Date
JPH0857262A JPH0857262A (en) 1996-03-05
JP3681769B2 true JP3681769B2 (en) 2005-08-10

Family

ID=16415561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19990594A Expired - Fee Related JP3681769B2 (en) 1994-08-24 1994-08-24 Method for removing nitrous oxide in exhaust gas and catalyst for removal

Country Status (1)

Country Link
JP (1) JP3681769B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4044984B2 (en) 1997-01-08 2008-02-06 日本碍子株式会社 Adsorbent
NL1008746C2 (en) * 1998-03-30 1999-10-01 Stichting Energie Method for converting nitrous oxide.
FR2789911B1 (en) 1999-02-18 2001-05-04 Grande Paroisse Sa PROCESS FOR SIMULTANEOUSLY KILLING NITRIC OXIDES AND NITROGEN PROTOXIDE IN THE GASES CONTAINING THE SAME
JP4629967B2 (en) * 2003-10-27 2011-02-09 カンケンテクノ株式会社 Method and apparatus for treating N2O-containing exhaust gas
US7501105B2 (en) 2004-07-29 2009-03-10 N.E. Chemcat Corporation NOx reduction catalyst having excellent low-temperature characteristics
JP5459965B2 (en) 2008-02-05 2014-04-02 メタウォーター株式会社 Method for removing N2O in exhaust gas
US10780395B2 (en) * 2017-12-04 2020-09-22 Ricardo Inc. Pollutant treatment process and apparatus
CN111346504A (en) * 2018-12-20 2020-06-30 富利康科技股份有限公司 Device for removing particulate matter and nitrous oxide integrally

Also Published As

Publication number Publication date
JPH0857262A (en) 1996-03-05

Similar Documents

Publication Publication Date Title
EP1475149B1 (en) CATALYST CONTAINING PLATINUM ON A SUPPORT CONSISTING OF MAGNESIUM OXIDE AND CERIUM OXIDE FOR THE REDUCTION OF NO TO N2 WITH HYDROGEN UNDER NOx OXIDATION CONDITIONS
EP0719580A1 (en) Exhaust gas cleaner and method for cleaning exhaust gas
KR100870483B1 (en) Catalyst Carrier and Catalyst Using the Same
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
US5141906A (en) Catalyst for purifying exhaust gas
JP3681769B2 (en) Method for removing nitrous oxide in exhaust gas and catalyst for removal
US20040184978A1 (en) Method for catalytic reduction of nitrogen oxides and catalyst for use therein
EP1721655B1 (en) Hydrogen sulfide generation-suppressed catalyst
JPH06106065A (en) Catalyst for purification of exhaust gas
EP4039365A1 (en) Scr catalyst having excellent sulfur tolerance
JPH0760126A (en) Catalyst for removal of nitrous oxide in waste gas
KR101251499B1 (en) Zeolite catalyst for removing nitrogen oxides, method for preparing the same, and removing method of nitrogen oxides using the same
US20050207957A1 (en) Catalyst and method for clarifying exhaust gas
US7137249B2 (en) Thermally stable lean nox trap
JPH06126177A (en) Catalyst for removing nitrous oxide in exhaust gas
JPH10156183A (en) Catalyst for purification of exhaust gas and method for purifying exhaust gas
JPH09239276A (en) Exhaust gas cleaning catalyst
JP3234237B2 (en) Catalyst for removing nitrous oxide in exhaust gas and method for producing the same
KR100558695B1 (en) Hybrid catalyst for removing NOx and method for removing NOx using the same
KR100486069B1 (en) Catalyst for removal of nitrogen oxide and carbon monooxide and purifying method using ethanol as a reductant over the same
KR102569570B1 (en) Oxidation catalyst including oxygen storage composition and manufacturing method thereof
JP4895090B2 (en) NOX selective reduction catalyst
KR100429825B1 (en) Catalyst for purifying exhaust gas of automobil and method for manufacturing the same
KR100523287B1 (en) Cu/ZEOLITE CATALYST FOR REMOVAL OF NITROGEN OXIDES AND PROCESS OF PREPARING SAME
KR20000008359A (en) Catalyst for purifying vehicle exhaust gas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050519

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees