JP3679750B2 - Power supply device for electric vehicle provided with leakage detection circuit - Google Patents

Power supply device for electric vehicle provided with leakage detection circuit Download PDF

Info

Publication number
JP3679750B2
JP3679750B2 JP2001367974A JP2001367974A JP3679750B2 JP 3679750 B2 JP3679750 B2 JP 3679750B2 JP 2001367974 A JP2001367974 A JP 2001367974A JP 2001367974 A JP2001367974 A JP 2001367974A JP 3679750 B2 JP3679750 B2 JP 3679750B2
Authority
JP
Japan
Prior art keywords
detection circuit
leakage detection
circuit
leakage
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001367974A
Other languages
Japanese (ja)
Other versions
JP2003169401A (en
Inventor
政樹 湯郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001367974A priority Critical patent/JP3679750B2/en
Publication of JP2003169401A publication Critical patent/JP2003169401A/en
Application granted granted Critical
Publication of JP3679750B2 publication Critical patent/JP3679750B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/20Inrush current reduction, i.e. avoiding high currents when connecting the battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ハイブリッドカーや電気自動車等の電動車両を走行させるモーターを駆動する電源装置であって、漏電を正確に検出する漏電検出回路を備える電源装置に関する。
【0002】
【従来の技術】
電動車両を走行させる電源装置は、出力を大きくするために電圧を高くする必要がある。出力が電圧と電流の積に比例するからである。たとえば、ハイブリッドカーや電気自動車を走行させる電源装置の出力電圧は200V以上と極めて高い。高電圧の電源装置は、漏電による弊害が大きいので、安全性を考慮してアースには接続されない。アースに接続されない電源装置は、漏電を防止するために、漏電抵抗を検出する必要がある。漏電抵抗は、電源装置とアースとの間の抵抗である。図1は、電源装置の漏電抵抗を検出する検出回路を示す。この図に示す漏電検出回路50は、漏電検出抵抗51と漏電検出スイッチ52と漏電検出抵抗51に発生する電圧を検出する電圧検出回路53とを備える。漏電抵抗Rrがあると、漏電検出スイッチ52をオンにする状態で、漏電検出抵抗51に電流が流れる。したがって、漏電検出抵抗51の電圧を検出して漏電を検出できる。
【0003】
【発明が解決しようとする課題】
さらに、電動車両の電源装置は、電圧が高いので感電を防止するために、図2に示すように、出力端子64と電池60との間にメインリレー65を接続している。メインリレー65は、電源装置を使用するときにのみオンに切り換えられる。メインリレー65をオフにすると、出力端子64が電池60から切り離されるので、感電等の事故を防止できる。メインリレー65には、極めて大きな負荷電流が流れる。電動車両の負荷電流は、数百Aにも達することがある。このため、メインリレー65の接点が溶着されてオフに切り換えできなくなることも推測される。この状態になると、電源装置を使用しないときにおいても出力端子64が電池60に接続され、出力端子64が高電圧となる。感電を確実に防止するために、メインリレー65の溶着を検出する必要がある。従来の電源装置は、メインリレーの溶着を検出するために専用の回路を設けている。このため回路構成が複雑になる欠点があった。
【0004】
さらに、電動車両の電源装置は、電池に過大な電流が流れるのを防止すると共に、外部ショートによる過大な放電電流を防止する等、より安全性を向上することを目的として、電池60と直列にヒューズ67を接続している。ヒューズ67は、電池60に設定電流よりも大きな電流が流れ、あるいは電池から大きな放電電流が流れると溶断して、電流を遮断する。ヒューズ67が切れると電源装置を使用できなくなる。このため、ヒューズ67が切れたことを検出する必要がある。従来の電源装置は、ヒューズの溶断を検出する専用の回路を備えているので、この回路が複雑になる欠点があった。
【0005】
さらにまた、電動車両の電源装置は、メインリレー65をオンにした瞬間に過大な電流が流れるのを防止するために、メインリレー65と並列にプリチャージ回路61を接続している。メインリレー65をオンにした瞬間に大電流が流れるのは、電源装置と並列に大容量のコンデンサー69を接続しているからである。メインリレー65をオンに切り換えた瞬間にコンデンサー69の充電電流が流れる。コンデンサー69の充電電流は最初に極めて大きな電流となり、コンデンサー69が充電されるにしたがって次第に減少する。プリチャージ回路61は、コンデンサー69の充電電流を制限する回路である。この回路は、プリチャージ抵抗62とプリチャージスイッチ63を直列に接続した回路で構成される。電源装置の使用を開始するとき、+側メインリレー65Aをオンに切り換えるのに先だって−側メインリレー65B及びプリチャージスイッチ63がオンに切り換えられる。オン状態のプリチャージスイッチ63は、プリチャージ抵抗62を介してコンデンサー69を充電する。プリチャージ抵抗62は、コンデンサー69の充電電流を制限して小さくする。コンデンサー69が充電された後、+側メインリレー65Aをオンに切り換えて、正常に使用できる状態とする。
【0006】
この電源装置は、コンデンサー69に充電されたことを検出して、いいかえると+側メインリレー65Aをオンに切り換えても過大な電流が流れないことを検出して、+側メインリレー65Aをオンに切り換える。したがって、コンデンサー69が充電されたことを検出する回路を必要とし、このことによって回路構成が複雑になる欠点があった。
【0007】
本発明は、このような欠点を一挙に解決することを目的に開発されたものである。本発明の重要な目的は、漏電検出回路を漏電検出のみでなく、メインリレーの溶着とヒューズの溶断とコンデンサーの充電状態の検出に併用することにより、回路構成を極めて簡単にできる漏電検出回路を備える電動車両の電源装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明の電源装置は、漏電を検出する漏電検出回路20を備えると共に、電池10と直列に接続しているメインリレー15を介して出力端子14を接続している。電源装置は、メインリレー15の出力端子14側を、互いに直列に接続している溶着検出抵抗31と溶着検出スイッチ32からなる溶着検出回路30を介してアースライン36に接続している。この電源装置は、溶着検出回路30の溶着検出スイッチ32をオンにして、漏電検出回路20でもってメインリレー15の溶着を検出する。
【0009】
溶着検出回路30は、好ましくは、+側の出力端子14に接続している+側メインリレー15Aの出力端子14側に接続している第1溶着検出回路30Aと、−側の出力端子14に接続している−側メインリレー15Bの出力端子14側に接続している第2溶着検出回路30Bとを備える。第1溶着検出回路30Aは、互いに直列に接続してなる第1溶着検出抵抗31Aと第1溶着検出スイッチ32Aを備え、第2溶着検出回路30Bは、互いに直列に接続してなる第2溶着検出抵抗31Bと第2溶着検出スイッチ32Bを備える。溶着検出抵抗31の抵抗値は、1〜10MΩとすることができる。
【0010】
漏電検出回路20は、互いに直列に接続してなる漏電検出抵抗23と漏電検出スイッチ24からなる直列接続回路21と、漏電検出抵抗23に発生する電圧を検出する電圧検出回路22とで構成し、直列接続回路21を電池10とアースライン26との間に接続することができる。さらに、漏電検出回路20は、互いに直列に接続される基準電源25と漏電検出抵抗23と漏電検出スイッチ24とからなる直列接続回路21と、漏電検出抵抗23に発生する電圧を検出する電圧検出回路22とで構成し、直列接続回路21を電池10とアースライン26との間に接続することもできる。
【0011】
本発明の請求項6の電源装置は、電池10と直列に接続しているヒューズ17と、漏電を検出する漏電検出回路20を備える。漏電検出回路20は、ヒューズ17の一方の端子を接続している電池10に接続している第1漏電検出回路20Aと、ヒューズ17の他方の端子を接続している電池10に接続している第2漏電検出回路20Bとを備える。第1漏電検出回路20Aは、互いに直列に接続している第1漏電検出抵抗23Aと第1漏電検出スイッチ24Aとからなる第1直列接続回路21Aと、第1漏電検出抵抗23Aに発生する電圧を検出する第1電圧検出回路22Aとを備える。第2漏電検出回路20Bは、互いに直列に接続している第2漏電検出抵抗23Bと第2漏電検出スイッチ24Bとからなる第2直列接続回路21Bと、第2漏電検出抵抗23Bに発生する電圧を検出する第2電圧検出回路22Bを備える。漏電検出回路20は、第1漏電検出スイッチ24Aと第2漏電検出スイッチ24Bをオン状態に切り換えてヒューズ17を含む閉回路を形成し、第1電圧検出回路22Aと第2電圧検出回路22Bの両方または一方でヒューズ17の溶断を検出する。
【0012】
本発明の請求項7の電源装置は、電池10と直列に接続しているヒューズ17と、漏電を検出する漏電検出回路20を備える。漏電検出回路20は、ヒューズ17の一方の端子を接続している電池10に接続している第1漏電検出回路20Aと、ヒューズ17の他方の端子を接続している電池10に接続している第2漏電検出回路20Bとを備える。第1漏電検出回路20Aは、互いに直列に接続される第1基準電源25Aと第1漏電検出抵抗23Aと第1漏電検出スイッチ24Aとからなる第1直列接続回路21Aと、この第1漏電検出抵抗23Aに発生する電圧を検出する第1電圧検出回路22Aとを備える。第2漏電検出回路20Bは、互いに直列に接続される第2基準電源25Bと第2漏電検出抵抗23Bと第2漏電検出スイッチ24Bとからなる第2直列接続回路21Bと、この第2漏電検出抵抗23Bに発生する電圧を検出する第2電圧検出回路22Bとを備える。漏電検出回路20は、第1漏電検出スイッチ24Aと第2漏電検出スイッチ24Bをオン状態に切り換えてヒューズ17を含む閉回路を形成し、第1電圧検出回路22Aと第2電圧検出回路22Bの両方または一方でヒューズ17の溶断を検出する。
【0013】
本発明の請求項8の電源装置は、漏電を検出する漏電検出回路20を備えると共に、電池10と直列に接続しているメインリレー15を介して出力端子14を接続している。+側メインリレー15Aには、プリチャージ抵抗41とプリチャージスイッチ42を直列に接続しているプリチャージ回路40を並列に接続している。漏電検出回路20は、互いに直列に接続してなる漏電検出抵抗23と漏電検出スイッチ24とからなる直列接続回路21と、この漏電検出抵抗23に発生する電圧を検出する電圧検出回路22とを備え、直列接続回路21を電池10とアースライン26との間に接続している。さらに、電源装置は、メインリレー15の出力端子14側を、互いに直列に接続している溶着検出抵抗31と溶着検出スイッチ32からなる溶着検出回路30を介してアースライン26に接続している。この電源装置は、+側メインリレー15Aをオフ、−側メインリレー15Bをオン、プリチャージスイッチ42をオンにする状態で、溶着検出回路30の溶着検出スイッチ32をオンにして、漏電検出回路20の電圧検出回路22でもって、プリチャージ回路40の電流または電圧を検出する。
【0014】
本発明の請求項10の電源装置は、漏電を検出する漏電検出回路20を備えると共に、電池10と直列に接続しているメインリレー15を介して出力端子14を接続している。+側メインリレー15Aには、プリチャージ抵抗41とプリチャージスイッチ42を直列に接続しているプリチャージ回路40を並列に接続している。漏電検出回路20は、互いに直列に接続してなる基準電源25と漏電検出抵抗23と漏電検出スイッチ24とからなる直列接続回路21と、漏電検出抵抗23に発生する電圧を検出する電圧検出回路22とを備え、直列接続回路21を電池10とアースライン26との間に接続している。さらに、電源装置は、メインリレー15の出力端子14側を、互いに直列に接続している溶着検出抵抗31と溶着検出スイッチ32からなる溶着検出回路30を介してアースライン26に接続している。この電源装置は、+側メインリレー15Aをオフ、−側メインリレー15Bをオン、、プリチャージスイッチ42をオンにする状態で、溶着検出回路30の溶着検出スイッチ32をオンにして、漏電検出回路20の電圧検出回路22でもって、プリチャージ回路40の電流または電圧を検出する。
【0015】
本発明の電源装置は、−側メインリレー15Bに、プリチャージ回路40を並列に接続することもできる。この電源装置は、+側メインリレー15Aをオン、−側メインリレー15Bをオフ、プリチャージスイッチ42をオンにする状態で、溶着検出回路30の溶着検出スイッチ32をオンにして、漏電検出回路20の電圧検出回路22でもって、プリチャージ回路40の電流または電圧を検出する。
【0016】
さらに、本発明の電源装置は、互いに直列に接続している基準電源25と漏電検出抵抗23と漏電検出スイッチ24からなる漏電検出抵抗23の直列接続回路21を、メインリレー15の電池10側とアースライン26との間に接続することができる。
【0017】
さらに、本発明の電源装置は、複数の電池モジュールを直列に接続している電池10を備えると共に、この電池10を構成する電池モジュールの電圧を検出する電圧検出回路70を備え、この電圧検出回路70を漏電検出回路20の電圧検出回路22、あるいは第1電圧検出回路22A、あるいはまた第2電圧検出回路22Bに併用することができる。この電源装置は、電池電圧を検出する電圧検出回路70を、漏電検出回路20の電圧検出に併用するので、漏電検出回路20の回路構成を簡単にできる。
【0018】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための電源装置を例示するものであって、本発明は電源装置を以下のものに特定しない。
【0019】
さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲の欄」、および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。
【0020】
図3は、電動車両に搭載されて電動車両を走行させるモーター12にインバータ11を介して電力を供給し、さらにインバータ11を介して発電機13で充電される電源装置を示す。この電源装置は、電池10と、電池10やリード線の漏電を検出する漏電検出回路20と、電池10と出力端子14との間に接続している一対のメインリレー15と、一方のメインリレー15と並列に接続しているプリチャージ回路40と、メインリレー15の溶着を検出する溶着検出回路30と、漏電検出回路20とメインリレー15とプリチャージ回路40と溶着検出回路30とを制御する制御回路16とを備える。
【0021】
図の電源装置の電池10は、第1電池ホルダー10Aと第2電池ホルダー10Bをヒューズ17を介して直列に接続している。第1電池ホルダー10Aと第2電池ホルダー10Bは、直列に接続している複数の二次電池18を内蔵している。二次電池18は、ニッケル−水素電池である。ただ、二次電池は、リチウムイオン二次電池やニッケル−カドミウム電池など、充電できる全ての二次電池を使用できる。この電源装置は、複数の電池ホルダーを直列に接続しているが、本発明の電源装置は、ひとつの電池ホルダーとし、電池ホルダーに内蔵している二次電池の間に直列にヒューズを接続し、あるいは電池ホルダーの出力側に直列にヒューズを接続することもできる。
【0022】
漏電検出回路20は、互いに直列に接続してなる漏電検出抵抗23と漏電検出スイッチ24からなる直列接続回路21と、この漏電検出抵抗23に発生する電圧を検出する電圧検出回路22とを備える。互いに直列に接続している漏電検出抵抗23と漏電検出スイッチ24は、電池10とアースライン26との間に接続される。図3の漏電検出回路20は、電源装置の電池10の一部を電源に利用して漏電を検出する。漏電検出回路は、図4の回路図に示すように、専用の基準電源425を設けて漏電を検出することもできる。この漏電検出回路420は、基準電源425と漏電検出抵抗423と漏電検出スイッチ424とを直列に接続してなる直列接続回路421を、電池410とアースライン426との間に接続する。なお、図4の電源装置において、図3に示す電源装置と同じ構成用件については、上1桁を除く下桁に同じ符号を付して、その説明を省略する。
【0023】
さらに、図3に示す電源装置の漏電検出回路20は、ヒューズ17の溶断を検出するために、第1漏電検出回路20Aと第2漏電検出回路20Bとを備える。第1漏電検出回路20Aは、互いに直列に接続している第1漏電検出抵抗23Aと第1漏電検出スイッチ24Aとからなる第1直列接続回路21Aと、第1漏電検出抵抗23Aに発生する電圧を検出する第1電圧検出回路22Aとを備えている。図に示す第1直列接続回路21Aは、第1漏電検出抵抗23Aを、互いに直列に接続された第1基準抵抗23Aaと第1接地抵抗23Abとで構成している。第1電圧検出回路22Aは、第1基準抵抗23Aaに発生する電圧を検出している。複数の抵抗を直列に接続している第1漏電検出抵抗は、これらの抵抗の接続点電圧や端部電圧を測定することもできる。第1直列接続回路21Aは、ヒューズ17の一方の端子を接続している電池10である第1電池ホルダー10A内の二次電池18とアースライン26との間に接続している。第1電池ホルダー10Aの二次電池18を電源に使用して漏電を検出するためである。第2漏電検出回路20Bは、互いに直列に接続している第2漏電検出抵抗23Bと第2漏電検出スイッチ24Bとからなる第2直列接続回路21Bと、第2漏電検出抵抗23Bに発生する電圧を検出する第2電圧検出回路22Bを備えている。図に示す第2直列接続回路21Bは、第2漏電検出抵抗23Bを、互いに直列に接続された第2基準抵抗23Baと第2接地抵抗23Bbとで構成している。第2電圧検出回路22Bは、第2基準抵抗23Baに発生する電圧を検出している。複数の抵抗を直列に接続している第2漏電検出抵抗は、これらの抵抗の接続点電圧や端部電圧を測定することもできる。第2直列接続回路21Bは、ヒューズ17の他方の端子を接続している電池10である第2電池ホルダー10B内の二次電池18とアースライン26との間に接続している。第2電池ホルダー10Bに内蔵している二次電池18を電源に使用して漏電を検出できる。ただ、漏電検出抵抗は、必ずしも互いに直列に接続された基準抵抗と接地抵抗とで構成する必要はなく、ひとつの抵抗とすることも、3つ以上の抵抗で構成することもできる。
【0024】
図4に示す電源装置は、第1直列接続回路421Aに第1基準電源425Aを直列に接続しており、第2直列接続回路421Bに第2基準電源425Bを直列に接続している。この図の直列接続回路421は、基準電源425を直列接続しているので、電池ホルダーに内蔵している二次電池418を漏電を検出するための電源として使用する必要がない。したがって、第1直列接続回路421Aと第2直列接続回路421Bは、電池410の出力側とアースライン426との間に接続している。
【0025】
さらに、電源装置は、図5に示すように、電池510の電圧を検出する電圧検出回路570を、漏電検出回路520の電圧検出回路に併用することもできる。この電源装置は、複数の二次電池518をブロックに分けて複数の電池モジュールとすると共に、これらの電池モジュールを直列に接続して電池510を構成している。さらに、この電源装置は、各々の電池モジュールの電圧を検出する電圧検出回路570を備える。電圧検出回路570は、隣接して配設している電池モジュールの出力端子間の電圧を、順番に切り換えてA/Dコンバータ572に出力する切換回路であるマルチプレクサ571と、マルチプレクサ571から入力されるアナログ電圧をデジタル値に変換するA/Dコンバータ572とを備える。さらに、この電圧検出回路570は、漏電検出回路520の漏電検出抵抗523の電圧を検出する電圧検出回路にも併用される。図に示す電圧検出回路570は、第1漏電検出回路520Aの第1漏電検出抵抗523Aの電圧と、第2漏電検出回路520Bの第2漏電検出抵抗523Bの電圧をそれぞれ検出している。この電源装置は、電池電圧を検出する電圧検出回路570を、漏電検出回路520の電圧検出回路に併用するので、漏電検出回路520の回路構成を簡単にして、漏電検出抵抗523の電圧を検出できる。なお、図5の電源装置において、図3に示す電源装置と同じ構成用件については、上1桁を除く下桁に同じ符号を付して、その説明を省略する。
【0026】
一対のメインリレー15は、制御回路16でもって別々にオンオフに制御される。図の電源装置は、一方の+側メインリレー15Aを、第1電池ホルダー10Aの出力側と出力端子14との間に接続しており、他方の−側メインリレー15Bを第2電池ホルダー10Bの出力側と出力端子14との間に接続している。一対のメインリレー15は、電池10からインバータ11に電力を供給し、あるいはインバータ11の出力で電池10を充電するときにオン、電源装置を使用しないときにオフに切り換えられる。+側メインリレー15Aは、インバータ11に接続しているコンデンサー19の充電が完了した後、オフからオンに切り換えられる。
【0027】
プリチャージ回路40は、電池10の+側に接続している+側メインリレー15Aと並列に接続される。プリチャージ回路40は、互いに直列に接続しているプリチャージ抵抗41とプリチャージスイッチ42からなる。プリチャージ抵抗41は、インバータ11の入力側に接続しているコンデンサー19を充電する瞬間電流を小さくする。プリチャージ抵抗41の抵抗値を大きくすると、コンデンサー19の充電電流は小さくなる。ただ、コンデンサー19を充電する時間が長くなる。したがって、プリチャージ抵抗41は、コンデンサー19の充電時間と充電電流を考慮して最適値とする。プリチャージ回路40は、+側メインリレー15Aをオンに切り換えるに先だって、オンに切り換えられてコンデンサー19を充電する。コンデンサー19が充電されて充電電流が減少した後、+側メインリレー15Aがオンに切り換えられる。図に示す電源装置は、プリチャージ回路40を、+側メインリレー15Aと並列に接続している。図示しないが、電源装置は、プリチャージ回路を、電池の−側に接続している−側メインリレーと並列に接続することもできる。さらに、電源装置は、プリチャージ回路を、+側メインリレーと−側メインリレーの両方に、それぞれ接続することもできる。
【0028】
溶着検出回路30は、互いに直列に接続している溶着検出抵抗31と溶着検出スイッチ32からなる。溶着検出抵抗31は、電池10の出力端子14をアースライン36に接続するので、その抵抗値を1〜10MΩと大きくする。溶着検出抵抗31が小さいと、出力端子14をアースライン36に接続する状態で感電する危険性が高くなるからである。図の電源装置は、溶着検出回路30として、第1溶着検出回路30Aと第2溶着検出回路30Bを備える。第1溶着検出回路30Aは、互いに直列に接続している第1溶着検出抵抗31Aと第1溶着検出スイッチ32Aを備える。第1溶着検出回路30Aは、+側の出力端子14に接続している+側メインリレー15Aの出力端子14側とアースライン36との間に接続される。第2溶着検出回路30Bは、互いに直列に接続してなる第2溶着検出抵抗31Bと第2溶着検出スイッチ32Bを備える。第2溶着検出回路30Bは、−側の出力端子14に接続している−側メインリレー15Bの出力端子14側とアースライン36との間に接続される。
【0029】
制御回路16は、以下のようにメインリレー15とプリチャージスイッチ42と漏電検出スイッチ24と溶着検出スイッチ32とをオンオフに制御して、漏電と、メインリレー15の溶着と、ヒューズ17の切断と、コンデンサー19の充電状態とを検出する。
【0030】
[+側の漏電検出]
図6に示すように、制御回路16は、以下のように各々のスイッチを制御する。
(1) +側メインリレー15A…………ON
(2) −側メインリレー15B…………ON
(3) 第1漏電検出スイッチ24A……ON
(4) 第2漏電検出スイッチ24B……OFF
(5) 第1溶着検出スイッチ32A……OFF
(6) 第2溶着検出スイッチ32B……OFF
(7) プリチャージスイッチ42………OFF
この状態でスイッチを切り換えるとき、+側で漏電していると、図の鎖線で示すように、漏電抵抗により第1漏電検出抵抗23Aに電流が流れる。第1漏電検出抵抗23Aに電流が流れると、両端に電圧が発生し、この電圧が第1電圧検出回路22Aに検出される。したがって、第1電圧検出回路22Aが電圧を検出すると漏電していることが判る。このとき、第1電圧検出回路22Aの検出電圧が高いと、漏電抵抗が小さくなっていると判定できる。第1電圧検出回路22Aの検出電圧が0であると、漏電抵抗は無限大となり漏電していないと判定できる。
【0031】
[−側の漏電検出]
図7に示すように、制御回路16は、以下のように各々のスイッチを制御する。
(1) +側メインリレー15A…………ON
(2) −側メインリレー15B…………ON
(3) 第1漏電検出スイッチ24A……OFF
(4) 第2漏電検出スイッチ24B……ON
(5) 第1溶着検出スイッチ32A……OFF
(6) 第2溶着検出スイッチ32B……OFF
(7) プリチャージスイッチ42………OFF
この状態でスイッチを切り換えるとき、−側で漏電していると、図の鎖線で示すように、漏電抵抗により第2漏電検出抵抗23Bに電流が流れる。第2漏電検出抵抗23Bに電流が流れると、両端に電圧が発生し、この電圧が第2電圧検出回路22Bに検出される。したがって、第2電圧検出回路22Bが電圧を検出すると漏電していることが判る。このとき、第2電圧検出回路22Bの検出電圧が高いと、漏電抵抗が小さくなっていると判定できる。第2電圧検出回路22Bの検出電圧が0であると、漏電抵抗は無限大となり漏電していないと判定できる。
【0032】
[+側メインリレーの溶着検出]
図8に示すように、制御回路16は、以下のように各々のスイッチを制御する。ただし、+側メインリレー15Aが溶着していると、制御回路16がOFFに制御しても、現実にはON状態となっている。
(1) +側メインリレー15A…………OFF
(2) −側メインリレー15B…………OFF
(3) 第1漏電検出スイッチ24A……ON
(4) 第2漏電検出スイッチ24B……OFF
(5) 第1溶着検出スイッチ32A……ON
(6) 第2溶着検出スイッチ32B……OFF
(7) プリチャージスイッチ42………OFF
この状態で、制御回路16からの信号で、+側メインリレー15Aが正常にOFF状態にあるとき、第1漏電検出抵抗23Aには電流が流れない。したがって、第1漏電検出抵抗23Aの両端に電圧は発生せず、第1電圧検出回路22Aの検出電圧は0Vとなる。しかしながら、+側メインリレー15Aが溶着してON状態にあると、図の鎖線で示すループで電流が流れる。この電流は、第1漏電検出抵抗23Aの両端に電圧を発生させる。したがって、第1電圧検出回路22Aが電圧を検出して、+側メインリレー15Aの溶着を検出できる。
【0033】
[−側メインリレーの溶着検出]
図9に示すように、制御回路16は、以下のように各々のスイッチを制御する。ただし、−側メインリレー15Bが溶着していると、制御回路16がOFFに制御しても現実にはON状態となっている。
(1) +側メインリレー15A…………OFF
(2) −側メインリレー15B…………OFF
(3) 第1漏電検出スイッチ24A……OFF
(4) 第2漏電検出スイッチ24B……ON
(5) 第1溶着検出スイッチ32A……OFF
(6) 第2溶着検出スイッチ32B……ON
(7) プリチャージスイッチ42………OFF
この状態で、制御回路16からの信号で、−側メインリレー15Bが正常にOFF状態にあるとき、第2漏電検出抵抗23Bには電流が流れない。したがって、第2漏電検出抵抗23Bの両端に電圧は発生せず、第2電圧検出回路22Bの検出電圧は0Vとなる。しかしながら、−側メインリレー15Bが溶着してON状態にあると、図の鎖線で示すループで電流が流れる。この電流は、第2漏電検出抵抗23Bの両端に電圧を発生させる。したがって、第2電圧検出回路22Bが電圧を検出して、−側メインリレー15Bの溶着を検出できる。
【0034】
[ヒューズの切断検出]
図10に示すように、制御回路16は、以下のように各々のスイッチを制御する。
(1) +側メインリレー15A…………OFF
(2) −側メインリレー15B…………OFF
(3) 第1漏電検出スイッチ24A……ON
(4) 第2漏電検出スイッチ24B……ON
(5) 第1溶着検出スイッチ32A……OFF
(6) 第2溶着検出スイッチ32B……OFF
(7) プリチャージスイッチ42………OFF
このようにスイッチを切り換えると、ヒューズ17が切断されていないときには、図の鎖線で示すように、ヒューズ17を含む閉回路が形成される。したがって、ヒューズ17が切れていないときは閉回路に電流が流れて、第1漏電検出抵抗23Aと第2漏電検出抵抗23Bに電圧が発生する。第1漏電検出抵抗23Aと第2漏電検出抵抗23Bに発生する電圧は、第1電圧検出回路22Aと第2電圧検出回路22Bに検出される。このため、第1電圧検出回路22Aと第2電圧検出回路22Bのいずれかまたは両方が電圧を検出するとき、ヒューズ17が切れてしないと判定できる。ヒューズ17が切れると閉回路が形成されず、第1漏電検出抵抗23Aと第2漏電検出抵抗23Bに電流が流れず、両抵抗の電圧が発生しなくなる。したがって、第1電圧検出回路22Aと第2電圧検出回路22Bの両方またはいずれかが電圧を検出しないとき、ヒューズ17が切断したと判定できる。
【0035】
[プリチャージの検出]
図11に示すように、制御回路16は、以下のように各々のスイッチを制御する。
(1) +側メインリレー15A…………OFF
(2) −側メインリレー15B…………ON
(3) 第1漏電検出スイッチ24A……ON
(4) 第2漏電検出スイッチ24B……OFF
(5) 第1溶着検出スイッチ32A……ON
(6) 第2溶着検出スイッチ32B……OFF
スイッチを以上の状態として、プリチャージスイッチ42をONに切り換えると、プリチャージ抵抗41にコンデンサー19の充電電流が流れる。コンデンサー19の充電電流は、プリチャージ抵抗41の両端に電圧(Vpre)を誘導する。この誘導電圧(Vpre)は、第1漏電検出抵抗23Aと第1溶着検出抵抗31Aと電池10(Vm1)とからなる閉ループに印加される。プリチャージ抵抗41の誘導電圧(Vpre)は、電池電圧(Vm1)と逆向きとなる。したがって、この閉ループの回路に流れる電流を(I)、第1漏電検出抵抗23Aの第1基準抵抗23Aaの抵抗値を(R1)、第1漏電検出抵抗23Aの第1接地抵抗23Abの抵抗値を(R2)、第1溶着検出抵抗31Aの抵抗値を(Rweld)とすると、以下の式が成立する。
Vm1−Vpre=(R1+R2+Rweld)×I…(1)
(1)の式は、以下の式(2)に変換できる。
Vpre=Vm1−(R1+R2+Rweld)×I…(2)
閉ループの回路に流れる電流(I)は、第1漏電検出抵抗23Aの端部電圧である(Vleak)と(Vref)から以下の式で計算される。
I=(Vleak−Vref)/R1
したがって、式(2)は、以下の式(3)に変換できる。
Vpre=Vm1−(R1+R2+Rweld)×(Vleak−Vref)/R1…(3)
この式において、Vm1は電池電圧であり、電池電圧の検出により既知になると共に、R1、R2、Rweldは変化しない定数である。VleakとVrefは、第1電圧検出回路22Aの検出電圧であって、コンデンサー19の充電が進行するにしたがって変化する。したがって、第1電圧検出回路22Aの検出電圧から、プリチャージ抵抗41の誘導電圧(Vpre)を計算できる。コンデンサー19の充電が進行して、充電電流が少なくなるにしたがって、プリチャージ抵抗41に誘導される誘導電圧(Vpre)は小さくなる。制御回路16は、プリチャージ抵抗41の誘導電圧(Vpre)が設定値よりも小さくなったことを検出して、+側メインリレー15AをOFFからONに切り換える。このとき、コンデンサー19はすでに充電されているので、+側メインリレー15Aには過大な充電電流が流れず、メインリレー15の寿命を長くできる。
【0036】
【発明の効果】
本発明の請求項1の電源装置は、極めて簡単な回路構成として、メインリレーの溶着を確実に検出できる特長がある。それは、この電源装置が、メインリレーの出力端子側を、互いに直列に接続している溶着検出抵抗と溶着検出スイッチからなる溶着検出回路を介してアースラインに接続しており、溶着検出回路の溶着検出スイッチをオンにして、漏電検出回路でもってメインリレーの溶着を検出しているからである。この構造の電源装置は、メインリレーの溶着を検出する専用の回路を設けることなく、漏電検出回路を用いて簡単な回路構成で確実に検出できる。
【0037】
とくに、本発明の請求項2の電源装置は、溶着検出回路が、+側メインリレーの出力端子側に接続している第1溶着検出回路と、−側メインリレーの出力端子側に接続している第2溶着検出回路とを備えるので、+側メインリレーと−側メインリレーの溶着を個別に検出できる。
【0038】
さらに、本発明の請求項6と請求項7の電源装置は、極めて簡単な回路構成として、ヒューズの溶断を検出できる特長がある。それは、これらの電源装置が、電池と直列に接続しているヒューズと、第1漏電検出回路と第2漏電検出回路からなる漏電検出回路とを備え、第1漏電検出回路の第1漏電検出スイッチと第2漏電検出回路の第2漏電検出スイッチをオン状態に切り換えてヒューズを含む閉回路を形成し、第1漏電検出回路の第1電圧検出回路と第2漏電検出回路の第2電圧検出回路の両方または一方でヒューズの溶断を検出しているからである。この構造の電源装置は、ヒューズの溶断を検出する専用の回路を設けることなく、漏電検出回路を用いて簡単な回路構成で確実に検出できる。
【0039】
さらに、本発明の請求項8ないし11の電源装置は、極めて簡単な回路構成として、コンデンサーの充電状態を正確に検出できる特長がある。それは、これらの電源装置が、電池と直列に接続しているメインリレーにプリチャージ回路を並列に接続しており、漏電検出回路が、漏電検出抵抗と漏電検出スイッチとからなる直列接続回路を電池とアースラインとの間に接続すると共に、メインリレーの出力端子側を溶着検出回路を介してアースラインに接続しており、プリチャージ回路を接続しているメインリレーをオフ、プリチャージ回路を接続していないメインリレーをオン、プリチャージスイッチをオンにする状態で、溶着検出回路の溶着検出スイッチをオンにして、漏電検出回路の電圧検出回路でもって、プリチャージ回路の電流または電圧を検出しているからである。この構造の電源装置は、漏電検出回路をコンデンサーの充電状態の検出に併用するので、簡単な回路構成でプリチャージを正確に検出できる。
【0040】
以上のように、本発明の電源装置は、専用の回路を設けることなく、漏電検出回路を併用することによって、メインリレーの溶着やヒューズの溶断やコンデンサーの充電状態を検出するので、装置全体の回路構成を極めて簡単にして、製造コストを低減できる。このように、本発明の電源装置は、従来の電源装置が有する課題を一挙に解決でき、電動車両の電源装置として優れた特長が実現できる。
【図面の簡単な説明】
【図1】従来の電源装置の漏電検出回路を示す回路図
【図2】従来の電動車両の電源装置の一例を示す回路図
【図3】本発明の一実施例にかかる電源装置の回路図
【図4】本発明の他の実施例にかかる電源装置の回路図
【図5】本発明の他の実施例にかかる電源装置の回路図
【図6】図3に示す電源装置の+側の漏電を検出する状態を示す回路図
【図7】図3に示す電源装置の−側の漏電を検出する状態を示す回路図
【図8】図3に示す電源装置の+側メインリレーの溶着を検出する状態を示す回路図
【図9】図3に示す電源装置の−側メインリレーの溶着を検出する状態を示す回路図
【図10】図3に示す電源装置のヒューズの切断を検出する状態を示す回路図
【図11】図3に示す電源装置のプリチャージを検出する状態を示す回路図
【符号の説明】
10…電池 10A…第1電池ホルダー
10B…第2電池ホルダー
11…インバータ
12…モーター
13…発電機
14…出力端子
15…メインリレー 15A…+側メインリレー
15B…−側メインリレー
16…制御回路
17…ヒューズ
18…二次電池
19…コンデンサー
20…漏電検出回路 20A…第1漏電検出回路
20B…第2漏電検出回路
21…直列接続回路 21A…第1直列接続回路
21B…第2直列接続回路
22…電圧検出回路 22A…第1電圧検出回路
22B…第2電圧検出回路
23…漏電検出抵抗 23A…第1漏電検出抵抗
23Aa…第1基準抵抗
23Ab…第1接地抵抗
23B…第2漏電検出抵抗
23Ba…第2基準抵抗
23Bb…第2接地抵抗
24…漏電検出スイッチ 24A…第1漏電検出スイッチ
24B…第2漏電検出スイッチ
25…基準電源 25A…第1基準電源
25B…第2基準電源
26…アースライン
30…溶着検出回路 30A…第1溶着検出回路
30B…第2溶着検出回路
31…溶着検出抵抗 31A…第1溶着検出抵抗
31B…第2溶着検出抵抗
32…溶着検出スイッチ 32A…第1溶着検出スイッチ
32B…第2溶着検出スイッチ
36…アースライン
40…プリチャージ回路
41…プリチャージ抵抗
42…プリチャージスイッチ
50…漏電検出回路
51…漏電検出抵抗
52…漏電検出スイッチ
53…電圧検出回路
60…電池
61…プリチャージ回路
62…プリチャージ抵抗
63…プリチャージスイッチ
64…出力端子
65…メインリレー 65A…+側メインリレー
65B…−側メインリレー
67…ヒューズ
69…コンデンサー
70…電圧検出回路
71…マルチプレクサ
72…A/Dコンバータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power supply device that drives a motor that drives an electric vehicle such as a hybrid car or an electric vehicle, and relates to a power supply device that includes a leakage detection circuit that accurately detects leakage.
[0002]
[Prior art]
A power supply device for running an electric vehicle needs to increase the voltage in order to increase the output. This is because the output is proportional to the product of voltage and current. For example, the output voltage of a power supply device that runs a hybrid car or an electric vehicle is as extremely high as 200V or more. The high-voltage power supply apparatus is not connected to the ground in consideration of safety because it has a great negative effect due to electric leakage. A power supply device that is not connected to the ground needs to detect a leakage resistance in order to prevent leakage. The earth leakage resistance is a resistance between the power supply device and the ground. FIG. 1 shows a detection circuit for detecting a leakage resistance of a power supply device. The leakage detection circuit 50 shown in this figure includes a leakage detection resistor 51, a leakage detection switch 52, and a voltage detection circuit 53 that detects a voltage generated in the leakage detection resistor 51. If there is a leakage resistance Rr, a current flows through the leakage detection resistor 51 with the leakage detection switch 52 turned on. Therefore, the leakage can be detected by detecting the voltage of the leakage detection resistor 51.
[0003]
[Problems to be solved by the invention]
Further, since the power supply device for the electric vehicle has a high voltage, a main relay 65 is connected between the output terminal 64 and the battery 60 as shown in FIG. 2 in order to prevent electric shock. The main relay 65 is switched on only when the power supply device is used. Since the output terminal 64 is disconnected from the battery 60 when the main relay 65 is turned off, accidents such as electric shock can be prevented. A very large load current flows through the main relay 65. The load current of an electric vehicle can reach several hundred A. For this reason, it is estimated that the contact of the main relay 65 is welded and cannot be switched off. In this state, the output terminal 64 is connected to the battery 60 even when the power supply device is not used, and the output terminal 64 becomes a high voltage. In order to reliably prevent electric shock, it is necessary to detect welding of the main relay 65. The conventional power supply apparatus is provided with a dedicated circuit for detecting the welding of the main relay. For this reason, there is a drawback that the circuit configuration becomes complicated.
[0004]
Furthermore, the power supply device for the electric vehicle prevents the excessive current from flowing through the battery, and prevents the excessive discharge current due to the external short circuit, so that the safety can be further improved. A fuse 67 is connected. The fuse 67 is blown when a current larger than the set current flows through the battery 60 or when a large discharge current flows from the battery, thereby cutting off the current. When the fuse 67 is blown, the power supply device cannot be used. For this reason, it is necessary to detect that the fuse 67 has been blown. Since the conventional power supply device has a dedicated circuit for detecting the blow of the fuse, there is a drawback that this circuit becomes complicated.
[0005]
Furthermore, the power supply device for the electric vehicle has a precharge circuit 61 connected in parallel with the main relay 65 in order to prevent an excessive current from flowing at the moment when the main relay 65 is turned on. The reason why a large current flows at the moment when the main relay 65 is turned on is that a large-capacity capacitor 69 is connected in parallel with the power supply device. The charging current of the capacitor 69 flows at the moment when the main relay 65 is switched on. The charging current of the capacitor 69 first becomes a very large current, and gradually decreases as the capacitor 69 is charged. The precharge circuit 61 is a circuit that limits the charging current of the capacitor 69. This circuit is configured by a circuit in which a precharge resistor 62 and a precharge switch 63 are connected in series. When starting to use the power supply device, the -side main relay 65B and the precharge switch 63 are turned on before the + side main relay 65A is turned on. The precharge switch 63 in the on state charges the capacitor 69 via the precharge resistor 62. The precharge resistor 62 limits and reduces the charging current of the capacitor 69. After the capacitor 69 is charged, the + side main relay 65A is switched on so that it can be used normally.
[0006]
This power supply device detects that the capacitor 69 is charged. In other words, it detects that an excessive current does not flow even if the + side main relay 65A is switched on, and turns on the + side main relay 65A. Switch. Therefore, a circuit for detecting that the capacitor 69 has been charged is required, which has the disadvantage that the circuit configuration becomes complicated.
[0007]
The present invention has been developed for the purpose of solving such drawbacks all at once. An important object of the present invention is to provide a leakage detection circuit capable of making the circuit configuration extremely simple by using the leakage detection circuit not only for leakage detection but also for welding the main relay, fusing the fuse, and detecting the charged state of the capacitor. It is in providing the power supply device of the electric vehicle provided.
[0008]
[Means for Solving the Problems]
The power supply device of the present invention includes a leakage detection circuit 20 that detects leakage, and an output terminal 14 is connected via a main relay 15 connected in series with the battery 10. In the power supply device, the output terminal 14 side of the main relay 15 is connected to the earth line 36 via a welding detection circuit 30 including a welding detection resistor 31 and a welding detection switch 32 connected in series. This power supply device turns on the welding detection switch 32 of the welding detection circuit 30 and detects the welding of the main relay 15 with the leakage detection circuit 20.
[0009]
The welding detection circuit 30 is preferably connected to the first welding detection circuit 30A connected to the output terminal 14 side of the + side main relay 15A connected to the + side output terminal 14 and the output terminal 14 on the − side. And a second welding detection circuit 30B connected to the output terminal 14 side of the connected negative-side main relay 15B. The first welding detection circuit 30A includes a first welding detection resistor 31A and a first welding detection switch 32A that are connected in series to each other, and the second welding detection circuit 30B is a second welding detection that is connected in series to each other. A resistor 31B and a second welding detection switch 32B are provided. The resistance value of the welding detection resistor 31 can be set to 1 to 10 MΩ.
[0010]
The leakage detection circuit 20 comprises a series connection circuit 21 including a leakage detection resistor 23 and a leakage detection switch 24 connected in series to each other, and a voltage detection circuit 22 that detects a voltage generated in the leakage detection resistor 23. The series connection circuit 21 can be connected between the battery 10 and the earth line 26. Furthermore, the leakage detection circuit 20 includes a series connection circuit 21 including a reference power supply 25, a leakage detection resistor 23, and a leakage detection switch 24 connected in series, and a voltage detection circuit that detects a voltage generated in the leakage detection resistor 23. 22 and the series connection circuit 21 can be connected between the battery 10 and the earth line 26.
[0011]
The power supply device according to claim 6 of the present invention includes a fuse 17 connected in series with the battery 10 and a leakage detection circuit 20 for detecting leakage. The leakage detection circuit 20 is connected to the first leakage detection circuit 20A connected to the battery 10 connected to one terminal of the fuse 17 and the battery 10 connected to the other terminal of the fuse 17. A second leakage detection circuit 20B. The first leakage detection circuit 20A includes a first series connection circuit 21A composed of a first leakage detection resistor 23A and a first leakage detection switch 24A connected in series with each other, and a voltage generated in the first leakage detection resistor 23A. And a first voltage detection circuit 22A for detection. The second leakage detection circuit 20B generates a voltage generated in the second leakage detection resistor 23B and the second leakage current detection resistor 23B, which are connected in series with each other, and the second leakage detection resistor 23B. A second voltage detection circuit 22B for detection is provided. The leakage detection circuit 20 switches the first leakage detection switch 24A and the second leakage detection switch 24B to the on state to form a closed circuit including the fuse 17, and both the first voltage detection circuit 22A and the second voltage detection circuit 22B. Alternatively, the blow of the fuse 17 is detected.
[0012]
The power supply device according to claim 7 of the present invention includes a fuse 17 connected in series with the battery 10 and a leakage detection circuit 20 for detecting leakage. The leakage detection circuit 20 is connected to the first leakage detection circuit 20A connected to the battery 10 connected to one terminal of the fuse 17 and the battery 10 connected to the other terminal of the fuse 17. A second leakage detection circuit 20B. The first leakage detection circuit 20A includes a first series connection circuit 21A including a first reference power supply 25A, a first leakage detection resistor 23A, and a first leakage detection switch 24A connected in series to each other, and the first leakage detection resistor. And a first voltage detection circuit 22A for detecting a voltage generated at 23A. The second leakage detection circuit 20B includes a second reference power supply 25B, a second leakage detection resistor 23B, and a second leakage detection switch 24B connected in series with each other, and a second leakage detection resistor. And a second voltage detection circuit 22B for detecting a voltage generated at 23B. The leakage detection circuit 20 switches the first leakage detection switch 24A and the second leakage detection switch 24B to an on state to form a closed circuit including the fuse 17, and both the first voltage detection circuit 22A and the second voltage detection circuit 22B. Alternatively, the blow of the fuse 17 is detected.
[0013]
The power supply apparatus according to claim 8 of the present invention includes a leakage detection circuit 20 that detects leakage, and is connected to an output terminal 14 via a main relay 15 that is connected in series with the battery 10. A precharge circuit 40 in which a precharge resistor 41 and a precharge switch 42 are connected in series is connected in parallel to the + side main relay 15A. The leakage detection circuit 20 includes a series connection circuit 21 including a leakage detection resistor 23 and a leakage detection switch 24 connected in series with each other, and a voltage detection circuit 22 that detects a voltage generated in the leakage detection resistor 23. The series connection circuit 21 is connected between the battery 10 and the earth line 26. Further, the power supply device connects the output terminal 14 side of the main relay 15 to the earth line 26 via a welding detection circuit 30 including a welding detection resistor 31 and a welding detection switch 32 connected in series. This power supply device turns on the welding detection switch 32 of the welding detection circuit 30 in a state where the + side main relay 15A is turned off, the − side main relay 15B is turned on, and the precharge switch 42 is turned on. The voltage detection circuit 22 detects the current or voltage of the precharge circuit 40.
[0014]
The power supply device according to claim 10 of the present invention includes a leakage detection circuit 20 that detects leakage, and is connected to an output terminal 14 via a main relay 15 that is connected in series with the battery 10. A precharge circuit 40 in which a precharge resistor 41 and a precharge switch 42 are connected in series is connected in parallel to the + side main relay 15A. The leakage detection circuit 20 includes a reference power supply 25, a leakage detection resistor 23, and a leakage detection switch 24 connected in series with each other, and a voltage detection circuit 22 that detects a voltage generated in the leakage detection resistor 23. The series connection circuit 21 is connected between the battery 10 and the earth line 26. Further, the power supply device connects the output terminal 14 side of the main relay 15 to the earth line 26 via a welding detection circuit 30 including a welding detection resistor 31 and a welding detection switch 32 connected in series. This power supply device turns on the welding detection switch 32 of the welding detection circuit 30 in a state where the + side main relay 15A is turned off, the -side main relay 15B is turned on, and the precharge switch 42 is turned on. The current or voltage of the precharge circuit 40 is detected by the 20 voltage detection circuits 22.
[0015]
In the power supply device of the present invention, the precharge circuit 40 can be connected in parallel to the negative side main relay 15B. This power supply device turns on the welding detection switch 32 of the welding detection circuit 30 in a state where the + side main relay 15A is turned on, the − side main relay 15B is turned off, and the precharge switch 42 is turned on. The voltage detection circuit 22 detects the current or voltage of the precharge circuit 40.
[0016]
Furthermore, the power supply device according to the present invention includes a series connection circuit 21 including a reference power supply 25, a leakage detection resistor 23, and a leakage detection switch 24, which are connected in series with each other, connected to the battery 10 side of the main relay 15. It can be connected to the earth line 26.
[0017]
Furthermore, the power supply device of the present invention includes a battery 10 in which a plurality of battery modules are connected in series, and a voltage detection circuit 70 that detects the voltage of the battery module that constitutes the battery 10, and this voltage detection circuit 70 can be used in combination with the voltage detection circuit 22 of the leakage detection circuit 20, the first voltage detection circuit 22A, or the second voltage detection circuit 22B. In this power supply device, since the voltage detection circuit 70 that detects the battery voltage is used in combination with the voltage detection of the leakage detection circuit 20, the circuit configuration of the leakage detection circuit 20 can be simplified.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. However, the embodiments described below exemplify a power supply device for embodying the technical idea of the present invention, and the present invention does not specify the power supply device as follows.
[0019]
Further, in this specification, in order to facilitate understanding of the scope of claims, the numbers corresponding to the members shown in the examples are referred to as “the scope of claims” and “the means for solving the problems”. It is added to the member shown by. However, the members shown in the claims are not limited to the members in the embodiments.
[0020]
FIG. 3 shows a power supply device that is mounted on an electric vehicle and supplies electric power to a motor 12 that runs the electric vehicle via an inverter 11 and is further charged by a generator 13 via the inverter 11. The power supply device includes a battery 10, a leakage detection circuit 20 that detects leakage of the battery 10 and the lead wire, a pair of main relays 15 connected between the battery 10 and the output terminal 14, and one main relay. 15, a precharge circuit 40 connected in parallel with the main relay 15, a welding detection circuit 30 that detects welding of the main relay 15, a leakage detection circuit 20, a main relay 15, a precharge circuit 40, and a welding detection circuit 30. And a control circuit 16.
[0021]
The battery 10 of the illustrated power supply apparatus has a first battery holder 10 </ b> A and a second battery holder 10 </ b> B connected in series via a fuse 17. The first battery holder 10A and the second battery holder 10B contain a plurality of secondary batteries 18 connected in series. The secondary battery 18 is a nickel-hydrogen battery. However, as the secondary battery, any rechargeable secondary battery such as a lithium ion secondary battery or a nickel-cadmium battery can be used. This power supply device has a plurality of battery holders connected in series. The power supply device of the present invention is a single battery holder, and a fuse is connected in series between secondary batteries built in the battery holder. Alternatively, a fuse can be connected in series with the output side of the battery holder.
[0022]
The leakage detection circuit 20 includes a series connection circuit 21 including a leakage detection resistor 23 and a leakage detection switch 24 connected in series with each other, and a voltage detection circuit 22 that detects a voltage generated in the leakage detection resistor 23. The leakage detection resistor 23 and the leakage detection switch 24 connected in series with each other are connected between the battery 10 and the earth line 26. The leakage detection circuit 20 in FIG. 3 detects leakage by using a part of the battery 10 of the power supply device as a power source. As shown in the circuit diagram of FIG. 4, the leakage detection circuit can also detect a leakage by providing a dedicated reference power source 425. This leakage detection circuit 420 connects between a battery 410 and a ground line 426 a series connection circuit 421 formed by connecting a reference power source 425, a leakage detection resistor 423, and a leakage detection switch 424 in series. In the power supply device of FIG. 4, the same reference numerals are given to the lower digits except the first digit for the same configuration requirements as those of the power supply device shown in FIG.
[0023]
Furthermore, the leakage detection circuit 20 of the power supply device shown in FIG. 3 includes a first leakage detection circuit 20A and a second leakage detection circuit 20B in order to detect the melting of the fuse 17. The first leakage detection circuit 20A includes a first series connection circuit 21A composed of a first leakage detection resistor 23A and a first leakage detection switch 24A connected in series with each other, and a voltage generated in the first leakage detection resistor 23A. A first voltage detection circuit 22A for detection. In the first series connection circuit 21A shown in the figure, the first leakage detection resistor 23A is composed of a first reference resistor 23Aa and a first ground resistor 23Ab connected in series. The first voltage detection circuit 22A detects a voltage generated in the first reference resistor 23Aa. The first leakage detection resistor in which a plurality of resistors are connected in series can also measure the connection point voltage and end voltage of these resistors. The first series connection circuit 21 </ b> A is connected between the secondary battery 18 and the ground line 26 in the first battery holder 10 </ b> A which is the battery 10 to which one terminal of the fuse 17 is connected. This is because the secondary battery 18 of the first battery holder 10A is used as a power source to detect electric leakage. The second leakage detection circuit 20B generates a voltage generated in the second leakage detection resistor 23B and the second leakage current detection resistor 23B, which are connected in series with each other, and the second leakage detection resistor 23B. A second voltage detection circuit 22B for detection is provided. In the second series connection circuit 21B shown in the figure, the second leakage detection resistor 23B is composed of a second reference resistor 23Ba and a second ground resistor 23Bb connected in series. The second voltage detection circuit 22B detects a voltage generated in the second reference resistor 23Ba. The second leakage detection resistor in which a plurality of resistors are connected in series can also measure the connection point voltage and end voltage of these resistors. The second series connection circuit 21B is connected between the secondary battery 18 in the second battery holder 10B, which is the battery 10 to which the other terminal of the fuse 17 is connected, and the earth line 26. The secondary battery 18 built in the second battery holder 10B can be used as a power source to detect leakage. However, the leakage detection resistor does not necessarily need to be constituted by a reference resistor and a ground resistor connected in series with each other, and can be constituted by one resistor or three or more resistors.
[0024]
The power supply device shown in FIG. 4 has a first reference power supply 425A connected in series to a first series connection circuit 421A, and a second reference power supply 425B connected in series to a second series connection circuit 421B. Since the reference power supply 425 is connected in series in the series connection circuit 421 in this figure, it is not necessary to use the secondary battery 418 built in the battery holder as a power supply for detecting leakage. Therefore, the first series connection circuit 421A and the second series connection circuit 421B are connected between the output side of the battery 410 and the ground line 426.
[0025]
Furthermore, as shown in FIG. 5, the power supply device can also use a voltage detection circuit 570 that detects the voltage of the battery 510 in combination with the voltage detection circuit of the leakage detection circuit 520. In this power supply device, a plurality of secondary batteries 518 are divided into blocks to form a plurality of battery modules, and these battery modules are connected in series to form a battery 510. Furthermore, the power supply device includes a voltage detection circuit 570 that detects the voltage of each battery module. The voltage detection circuit 570 is input from the multiplexer 571 and the multiplexer 571 that are switching circuits that sequentially switch the voltage between the output terminals of the battery modules disposed adjacent to the A / D converter 572. And an A / D converter 572 for converting an analog voltage into a digital value. Further, the voltage detection circuit 570 is used in combination with a voltage detection circuit that detects the voltage of the leakage detection resistor 523 of the leakage detection circuit 520. The voltage detection circuit 570 shown in the figure detects the voltage of the first leakage detection resistor 523A of the first leakage detection circuit 520A and the voltage of the second leakage detection resistor 523B of the second leakage detection circuit 520B, respectively. In this power supply device, since the voltage detection circuit 570 for detecting the battery voltage is used in combination with the voltage detection circuit of the leakage detection circuit 520, the circuit configuration of the leakage detection circuit 520 can be simplified and the voltage of the leakage detection resistor 523 can be detected. . In the power supply device of FIG. 5, the same reference numerals are assigned to the lower digits except the first digit for the same configuration requirements as those of the power supply device shown in FIG.
[0026]
The pair of main relays 15 are separately controlled on and off by the control circuit 16. In the illustrated power supply apparatus, one + side main relay 15A is connected between the output side of the first battery holder 10A and the output terminal 14, and the other side negative relay 15B is connected to the second battery holder 10B. It is connected between the output side and the output terminal 14. The pair of main relays 15 are switched on when supplying power from the battery 10 to the inverter 11 or charging the battery 10 with the output of the inverter 11 and off when not using the power supply device. The + side main relay 15A is switched from OFF to ON after the charging of the capacitor 19 connected to the inverter 11 is completed.
[0027]
The precharge circuit 40 is connected in parallel to the + side main relay 15 </ b> A connected to the + side of the battery 10. The precharge circuit 40 includes a precharge resistor 41 and a precharge switch 42 connected in series with each other. The precharge resistor 41 reduces the instantaneous current that charges the capacitor 19 connected to the input side of the inverter 11. When the resistance value of the precharge resistor 41 is increased, the charging current of the capacitor 19 is decreased. However, the time for charging the capacitor 19 becomes longer. Therefore, the precharge resistor 41 is set to an optimum value in consideration of the charging time and the charging current of the capacitor 19. The precharge circuit 40 is turned on to charge the capacitor 19 before the + main relay 15A is turned on. After the capacitor 19 is charged and the charging current decreases, the + side main relay 15A is switched on. In the power supply device shown in the figure, the precharge circuit 40 is connected in parallel with the + side main relay 15A. Although not shown, the power supply device can also connect the precharge circuit in parallel with the negative side main relay connected to the negative side of the battery. Furthermore, the power supply device can connect the precharge circuit to both the + side main relay and the − side main relay.
[0028]
The welding detection circuit 30 includes a welding detection resistor 31 and a welding detection switch 32 that are connected in series with each other. Since the welding detection resistor 31 connects the output terminal 14 of the battery 10 to the ground line 36, the resistance value is increased to 1 to 10 MΩ. This is because if the welding detection resistance 31 is small, there is a high risk of electric shock when the output terminal 14 is connected to the ground line 36. The power supply apparatus shown in the figure includes a first welding detection circuit 30 </ b> A and a second welding detection circuit 30 </ b> B as the welding detection circuit 30. The first welding detection circuit 30A includes a first welding detection resistor 31A and a first welding detection switch 32A that are connected in series with each other. The first welding detection circuit 30 </ b> A is connected between the output terminal 14 side of the + side main relay 15 </ b> A connected to the + side output terminal 14 and the ground line 36. The second welding detection circuit 30B includes a second welding detection resistor 31B and a second welding detection switch 32B that are connected in series with each other. The second welding detection circuit 30 </ b> B is connected between the output terminal 14 side of the −side main relay 15 </ b> B connected to the −side output terminal 14 and the earth line 36.
[0029]
The control circuit 16 controls the main relay 15, the precharge switch 42, the leakage detection switch 24, and the welding detection switch 32 to be turned on and off as described below, thereby causing leakage, welding of the main relay 15, and disconnection of the fuse 17. The charging state of the capacitor 19 is detected.
[0030]
[+ Side leakage detection]
As shown in FIG. 6, the control circuit 16 controls each switch as follows.
(1) + main relay 15A ………… ON
(2) -side main relay 15B ………… ON
(3) First leakage detection switch 24A ...... ON
(4) Second leakage detection switch 24B ...... OFF
(5) First welding detection switch 32A ...... OFF
(6) Second welding detection switch 32B OFF
(7) Precharge switch 42 ………… OFF
When the switch is switched in this state, if there is a leakage on the + side, a current flows through the first leakage detection resistor 23A due to the leakage resistance as shown by the chain line in the figure. When a current flows through the first leakage detection resistor 23A, a voltage is generated at both ends, and this voltage is detected by the first voltage detection circuit 22A. Therefore, it can be seen that the first voltage detection circuit 22A detects a voltage leakage. At this time, if the detection voltage of the first voltage detection circuit 22A is high, it can be determined that the leakage resistance is small. When the detection voltage of the first voltage detection circuit 22A is 0, the leakage resistance becomes infinite and it can be determined that there is no leakage.
[0031]
[-Side leakage detection]
As shown in FIG. 7, the control circuit 16 controls each switch as follows.
(1) + main relay 15A ………… ON
(2) -side main relay 15B ………… ON
(3) First leakage detection switch 24A ...... OFF
(4) Second leakage detection switch 24B ON
(5) First welding detection switch 32A ...... OFF
(6) Second welding detection switch 32B OFF
(7) Precharge switch 42 ………… OFF
When the switch is switched in this state, if there is a leakage on the negative side, a current flows through the second leakage detection resistor 23B due to the leakage resistance, as indicated by the chain line in the figure. When a current flows through the second leakage detection resistor 23B, a voltage is generated at both ends, and this voltage is detected by the second voltage detection circuit 22B. Therefore, it can be seen that the second voltage detection circuit 22B detects a leakage when detecting the voltage. At this time, if the detection voltage of the second voltage detection circuit 22B is high, it can be determined that the leakage resistance is small. If the detection voltage of the second voltage detection circuit 22B is 0, the leakage resistance becomes infinite and it can be determined that there is no leakage.
[0032]
[+ Main relay welding detection]
As shown in FIG. 8, the control circuit 16 controls each switch as follows. However, if the + side main relay 15A is welded, it is actually in the ON state even if the control circuit 16 is controlled to be OFF.
(1) + main relay 15A ………… OFF
(2) Negative side main relay 15B ………… OFF
(3) First leakage detection switch 24A ...... ON
(4) Second leakage detection switch 24B ...... OFF
(5) First welding detection switch 32A ...... ON
(6) Second welding detection switch 32B OFF
(7) Precharge switch 42 ………… OFF
In this state, when the + side main relay 15A is normally in an OFF state by a signal from the control circuit 16, no current flows through the first leakage detection resistor 23A. Therefore, no voltage is generated across the first leakage detection resistor 23A, and the detection voltage of the first voltage detection circuit 22A is 0V. However, when the + side main relay 15A is welded and is in the ON state, a current flows in a loop indicated by a chain line in the figure. This current generates a voltage across the first leakage detection resistor 23A. Therefore, the first voltage detection circuit 22A can detect the voltage and detect the welding of the + side main relay 15A.
[0033]
[-Side main relay welding detection]
As shown in FIG. 9, the control circuit 16 controls each switch as follows. However, if the minus side main relay 15B is welded, the control circuit 16 is actually turned on even if the control circuit 16 is turned off.
(1) + main relay 15A ………… OFF
(2) Negative side main relay 15B ………… OFF
(3) First leakage detection switch 24A ...... OFF
(4) Second leakage detection switch 24B ON
(5) First welding detection switch 32A ...... OFF
(6) Second welding detection switch 32B ...... ON
(7) Precharge switch 42 ………… OFF
In this state, when the negative side main relay 15B is normally in the OFF state by a signal from the control circuit 16, no current flows through the second leakage detection resistor 23B. Accordingly, no voltage is generated across the second leakage detection resistor 23B, and the detection voltage of the second voltage detection circuit 22B is 0V. However, when the negative side main relay 15B is welded and is in the ON state, a current flows in a loop indicated by a chain line in the figure. This current generates a voltage across the second leakage detection resistor 23B. Therefore, the second voltage detection circuit 22B can detect the voltage and detect the welding of the negative side main relay 15B.
[0034]
[Fuse blow detection]
As shown in FIG. 10, the control circuit 16 controls each switch as follows.
(1) + main relay 15A ………… OFF
(2) Negative side main relay 15B ………… OFF
(3) First leakage detection switch 24A ...... ON
(4) Second leakage detection switch 24B ON
(5) First welding detection switch 32A ...... OFF
(6) Second welding detection switch 32B OFF
(7) Precharge switch 42 ………… OFF
When the switch is switched in this way, when the fuse 17 is not cut, a closed circuit including the fuse 17 is formed as shown by a chain line in the figure. Therefore, when the fuse 17 is not blown, a current flows in the closed circuit, and a voltage is generated in the first leakage detection resistor 23A and the second leakage detection resistor 23B. The voltage generated in the first leakage detection resistor 23A and the second leakage detection resistor 23B is detected by the first voltage detection circuit 22A and the second voltage detection circuit 22B. Therefore, when one or both of the first voltage detection circuit 22A and the second voltage detection circuit 22B detect the voltage, it can be determined that the fuse 17 is not blown. When the fuse 17 is blown, a closed circuit is not formed, current does not flow through the first leakage detection resistor 23A and the second leakage detection resistor 23B, and the voltages of both resistors are not generated. Therefore, it can be determined that the fuse 17 has been blown when both or any one of the first voltage detection circuit 22A and the second voltage detection circuit 22B does not detect a voltage.
[0035]
[Detect precharge]
As shown in FIG. 11, the control circuit 16 controls each switch as follows.
(1) + main relay 15A ………… OFF
(2) -side main relay 15B ………… ON
(3) First leakage detection switch 24A ...... ON
(4) Second leakage detection switch 24B ...... OFF
(5) First welding detection switch 32A ...... ON
(6) Second welding detection switch 32B OFF
When the precharge switch 42 is turned on with the switch in the above state, the charging current of the capacitor 19 flows through the precharge resistor 41. The charging current of the capacitor 19 induces a voltage (Vpre) across the precharge resistor 41. The induced voltage (Vpre) is applied to a closed loop including the first leakage detection resistor 23A, the first welding detection resistor 31A, and the battery 10 (Vm1). The induced voltage (Vpre) of the precharge resistor 41 is opposite to the battery voltage (Vm1). Therefore, the current flowing through the closed loop circuit is (I), the resistance value of the first reference resistor 23Aa of the first leakage detection resistor 23A is (R1), and the resistance value of the first grounding resistor 23Ab of the first leakage detection resistor 23A is When the resistance value of the first welding detection resistor 31A is (Rweld) (R2), the following equation is established.
Vm1−Vpre = (R1 + R2 + Rweld) × I (1)
The expression (1) can be converted into the following expression (2).
Vpre = Vm1− (R1 + R2 + Rweld) × I (2)
The current (I) flowing in the closed loop circuit is calculated by the following equation from (Vleak) and (Vref) which are end voltages of the first leakage detection resistor 23A.
I = (Vleak-Vref) / R1
Therefore, the equation (2) can be converted into the following equation (3).
Vpre = Vm1− (R1 + R2 + Rweld) × (Vleak−Vref) / R1 (3)
In this equation, Vm1 is the battery voltage, which is known by detecting the battery voltage, and R1, R2, and Rweld are constants that do not change. Vleak and Vref are detection voltages of the first voltage detection circuit 22A, and change as the capacitor 19 is charged. Therefore, the induced voltage (Vpre) of the precharge resistor 41 can be calculated from the detection voltage of the first voltage detection circuit 22A. As the charging of the capacitor 19 proceeds and the charging current decreases, the induced voltage (Vpre) induced in the precharge resistor 41 decreases. The control circuit 16 detects that the induced voltage (Vpre) of the precharge resistor 41 has become smaller than the set value, and switches the + side main relay 15A from OFF to ON. At this time, since the capacitor 19 is already charged, an excessive charging current does not flow through the + side main relay 15A, and the life of the main relay 15 can be extended.
[0036]
【The invention's effect】
The power supply device according to claim 1 of the present invention has an advantage that the welding of the main relay can be reliably detected as an extremely simple circuit configuration. This is because the power supply device connects the output terminal side of the main relay to the ground line via a welding detection circuit comprising a welding detection resistor and a welding detection switch connected in series with each other. This is because the detection switch is turned on and the welding of the main relay is detected by the leakage detection circuit. The power supply device having this structure can be reliably detected with a simple circuit configuration using the leakage detection circuit without providing a dedicated circuit for detecting the welding of the main relay.
[0037]
In particular, in the power supply device according to claim 2 of the present invention, the welding detection circuit is connected to the first welding detection circuit connected to the output terminal side of the + side main relay and the output terminal side of the − side main relay. Since the second welding detection circuit is provided, the welding of the + side main relay and the − side main relay can be detected individually.
[0038]
Further, the power supply device according to claims 6 and 7 of the present invention has an advantage that the fusing of the fuse can be detected as an extremely simple circuit configuration. The power supply device includes a fuse connected in series with a battery, a leakage detection circuit including a first leakage detection circuit and a second leakage detection circuit, and a first leakage detection switch of the first leakage detection circuit. And the second leakage detection switch of the second leakage detection circuit is turned on to form a closed circuit including a fuse, and the first voltage detection circuit of the first leakage detection circuit and the second voltage detection circuit of the second leakage detection circuit This is because the fusing of the fuse is detected. The power supply device having this structure can be reliably detected with a simple circuit configuration using a leakage detection circuit without providing a dedicated circuit for detecting fusing of the fuse.
[0039]
Further, the power supply device according to claims 8 to 11 of the present invention has an advantage that the state of charge of the capacitor can be accurately detected as an extremely simple circuit configuration. This is because these power supply devices have a precharge circuit connected in parallel to the main relay connected in series with the battery, and the leakage detection circuit has a series connection circuit consisting of a leakage detection resistor and a leakage detection switch. And the output terminal side of the main relay is connected to the ground line via the welding detection circuit, the main relay connecting the precharge circuit is turned off, and the precharge circuit is connected With the main relay not turned on and the precharge switch turned on, the welding detection switch of the welding detection circuit is turned on to detect the current or voltage of the precharge circuit with the voltage detection circuit of the leakage detection circuit. Because. In the power supply device having this structure, since the leakage detection circuit is used for detecting the charge state of the capacitor, the precharge can be accurately detected with a simple circuit configuration.
[0040]
As described above, the power supply device of the present invention detects the welding of the main relay, the fusing of the fuse and the charged state of the capacitor by using the leakage detection circuit together without providing a dedicated circuit. The circuit configuration can be greatly simplified and the manufacturing cost can be reduced. Thus, the power supply device of the present invention can solve the problems of the conventional power supply device all at once, and can realize excellent features as a power supply device for an electric vehicle.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a leakage detection circuit of a conventional power supply device.
FIG. 2 is a circuit diagram showing an example of a conventional power supply device for an electric vehicle.
FIG. 3 is a circuit diagram of a power supply device according to an embodiment of the present invention.
FIG. 4 is a circuit diagram of a power supply device according to another embodiment of the present invention.
FIG. 5 is a circuit diagram of a power supply device according to another embodiment of the present invention.
6 is a circuit diagram showing a state of detecting a leakage on the + side of the power supply device shown in FIG. 3;
7 is a circuit diagram showing a state of detecting a negative side electric leakage of the power supply device shown in FIG. 3;
8 is a circuit diagram showing a state in which welding of the + side main relay of the power supply device shown in FIG. 3 is detected.
9 is a circuit diagram showing a state in which welding of the negative side main relay of the power supply device shown in FIG. 3 is detected.
10 is a circuit diagram showing a state in which a blown fuse of the power supply device shown in FIG. 3 is detected.
11 is a circuit diagram showing a state in which precharge of the power supply device shown in FIG. 3 is detected.
[Explanation of symbols]
10 ... battery 10A ... first battery holder
10B ... Second battery holder
11 ... Inverter
12 ... Motor
13 ... Generator
14 ... Output terminal
15 ... Main relay 15A ... + side main relay
15B ...- side main relay
16 ... Control circuit
17 ... Fuse
18 ... Secondary battery
19 ... Condenser
20 ... Earth leakage detection circuit 20A ... First earth leakage detection circuit
20B ... Second leakage detection circuit
21 ... Series connection circuit 21A ... First series connection circuit
21B ... Second series connection circuit
22 ... Voltage detection circuit 22A ... First voltage detection circuit
22B ... Second voltage detection circuit
23 ... Leakage detection resistor 23A ... First leakage detection resistor
23Aa ... 1st reference resistance
23Ab ... 1st grounding resistance
23B ... Second leakage detection resistor
23Ba ... Second reference resistance
23Bb ... Second ground resistance
24 ... Earth leakage detection switch 24A ... First earth leakage detection switch
24B ... Second leakage detection switch
25 ... Reference power supply 25A ... First reference power supply
25B ... Second reference power supply
26 ... Earth line
30 ... Welding detection circuit 30A ... First welding detection circuit
30B ... Second welding detection circuit
31 ... Welding detection resistance 31A ... First welding detection resistance
31B ... Second welding detection resistance
32 ... Weld detection switch 32A ... First weld detection switch
32B ... Second welding detection switch
36 ... Earth line
40. Precharge circuit
41 ... Precharge resistor
42 ... Precharge switch
50 ... Leakage detection circuit
51 ... Leakage detection resistance
52 ... Electrical leakage detection switch
53. Voltage detection circuit
60 ... Battery
61. Precharge circuit
62: Precharge resistor
63 ... Precharge switch
64 ... Output terminal
65 ... main relay 65A ... + side main relay
65B ...- side main relay
67 ... Fuse
69 ... Condenser
70: Voltage detection circuit
71: Multiplexer
72 ... A / D converter

Claims (15)

漏電を検出する漏電検出回路(20)を備えると共に、電池(10)と直列に接続しているメインリレー(15)を介して出力端子(14)を接続している電源装置であって、
メインリレー(15)の出力端子(14)側を、互いに直列に接続している溶着検出抵抗(31)と溶着検出スイッチ(32)からなる溶着検出回路(30)を介してアースライン(36)に接続しており、溶着検出回路(30)の溶着検出スイッチ(32)をオンにして、漏電検出回路(20)でもってメインリレー(15)の溶着を検出するようにしてなる漏電検出回路を備える電動車両の電源装置。
A power supply device including a leakage detection circuit (20) for detecting a leakage and connecting an output terminal (14) via a main relay (15) connected in series with a battery (10),
The ground line (36) is connected to the output terminal (14) side of the main relay (15) via a welding detection circuit (30) consisting of a welding detection resistor (31) and a welding detection switch (32) connected in series with each other. The leakage detection circuit is configured to detect welding of the main relay (15) with the leakage detection circuit (20) by turning on the welding detection switch (32) of the welding detection circuit (30). A power supply device for an electric vehicle.
溶着検出回路(30)が、+側の出力端子(14)に接続している+側メインリレー(15A)の出力端子(14)側に接続している第1溶着検出回路(30A)と、−側の出力端子(14)に接続している−側メインリレー(15B)の出力端子(14)側に接続している第2溶着検出回路(30B)とを備え、第1溶着検出回路(30A)は、互いに直列に接続してなる第1溶着検出抵抗(31A)と第1溶着検出スイッチ(32A)を備え、第2溶着検出回路(30B)は、互いに直列に接続してなる第2溶着検出抵抗(31B)と第2溶着検出スイッチ(32B)を備える請求項1に記載の漏電検出回路を備える電動車両の電源装置。A first welding detection circuit (30A) connected to the output terminal (14) side of the + side main relay (15A), wherein the welding detection circuit (30) is connected to the + side output terminal (14); A second welding detection circuit (30B) connected to the output terminal (14) side of the-side main relay (15B) connected to the-side output terminal (14), and a first welding detection circuit ( 30A) includes a first welding detection resistor (31A) and a first welding detection switch (32A) connected in series with each other, and a second welding detection circuit (30B) is connected to each other in series. The power supply device of an electric vehicle provided with the leakage detection circuit according to claim 1, comprising a welding detection resistor (31B) and a second welding detection switch (32B). 溶着検出抵抗(31)の抵抗値が1〜10MΩである請求項1に記載の漏電検出回路を備える電動車両の電源装置。The power supply device for an electric vehicle provided with the leakage detection circuit according to claim 1, wherein a resistance value of the welding detection resistor (31) is 1 to 10 MΩ. 漏電検出回路(20)が、互いに直列に接続してなる漏電検出抵抗(23)と漏電検出スイッチ(24)からなる直列接続回路(21)と、漏電検出抵抗(23)に発生する電圧を検出する電圧検出回路(22)とを備え、直列接続回路(21)を電池(10)とアースライン(26)との間に接続している請求項1に記載の漏電検出回路を備える電動車両の電源装置。The leakage detection circuit (20) detects the voltage generated in the leakage detection resistor (23) and the series connection circuit (21) consisting of the leakage detection resistor (23) and leakage detection switch (24) connected in series. An electric vehicle equipped with a leakage detection circuit according to claim 1, further comprising a voltage detection circuit (22) configured to connect the series connection circuit (21) between the battery (10) and the ground line (26). Power supply. 漏電検出回路(20)が、互いに直列に接続される基準電源(25)と漏電検出抵抗(23)と漏電検出スイッチ(24)とからなる直列接続回路(21)と、漏電検出抵抗(23)に発生する電圧を検出する電圧検出回路(22)とを備え、直列接続回路(21)を電池(10)とアースライン(26)との間に接続している請求項1に記載の漏電検出回路を備える電動車両の電源装置。The leakage detection circuit (20) includes a reference power supply (25), a leakage detection resistor (23), and a leakage detection switch (24) connected in series with each other, and a leakage detection resistor (23). 2. A leakage detection according to claim 1, further comprising a voltage detection circuit (22) for detecting a voltage generated in the battery, wherein the series connection circuit (21) is connected between the battery (10) and the earth line (26). A power supply device for an electric vehicle including a circuit. 電池(10)と直列に接続しているヒューズ(17)と、漏電を検出する漏電検出回路(20)を備える電源装置であって、
漏電検出回路(20)が、ヒューズ(17)の一方の端子を接続している電池(10)に接続している第1漏電検出回路(20A)と、ヒューズ(17)の他方の端子を接続している電池(10)に接続している第2漏電検出回路(20B)とを備え、第1漏電検出回路(20A)は、互いに直列に接続している第1漏電検出抵抗(23A)と第1漏電検出スイッチ(24A)とからなる第1直列接続回路(21A)と、第1漏電検出抵抗(23A)に発生する電圧を検出する第1電圧検出回路(22A)とを備えており、第2漏電検出回路(20B)は、互いに直列に接続している第2漏電検出抵抗(23B)と第2漏電検出スイッチ(24B)とからなる第2直列接続回路(21B)と、第2漏電検出抵抗(23B)に発生する電圧を検出する第2電圧検出回路(22B)を備えており、
第1漏電検出スイッチ(24A)と第2漏電検出スイッチ(24B)をオン状態に切り換えてヒューズ(17)を含む閉回路を形成し、第1電圧検出回路(22A)と第2電圧検出回路(22B)の両方または一方でヒューズ(17)の溶断を検出するようにしてなる漏電検出回路を備える電動車両の電源装置。
A power supply device comprising a fuse (17) connected in series with a battery (10) and a leakage detection circuit (20) for detecting leakage,
The leakage detection circuit (20) connects the first leakage detection circuit (20A) connected to the battery (10) connected to one terminal of the fuse (17) and the other terminal of the fuse (17). A second leakage detection circuit (20B) connected to the battery (10), and the first leakage detection circuit (20A) includes a first leakage detection resistor (23A) connected in series with each other. A first series connection circuit (21A) including a first leakage detection switch (24A) and a first voltage detection circuit (22A) for detecting a voltage generated in the first leakage detection resistor (23A); The second leakage detection circuit (20B) includes a second leakage current detection resistor (23B) and a second leakage detection switch (24B) connected in series to each other, a second series connection circuit (21B), and a second leakage current. A second voltage detection circuit (22B) for detecting a voltage generated in the detection resistor (23B);
The first leakage detection switch (24A) and the second leakage detection switch (24B) are turned on to form a closed circuit including the fuse (17), and the first voltage detection circuit (22A) and the second voltage detection circuit ( 22B) A power supply device for an electric vehicle provided with a leakage detection circuit configured to detect fusing of the fuse (17) in both or one of them.
電池(10)と直列に接続しているヒューズ(17)と、漏電を検出する漏電検出回路(20)を備える電源装置であって、
漏電検出回路(20)が、ヒューズ(17)の一方の端子を接続している電池(10)に接続している第1漏電検出回路(20A)と、ヒューズ(17)の他方の端子を接続している電池(10)に接続している第2漏電検出回路(20B)とを備え、第1漏電検出回路(20A)は、互いに直列に接続される第1基準電源(25A)と第1漏電検出抵抗(23A)と第1漏電検出スイッチ(24A)とからなる第1直列接続回路(21A)と、この第1漏電検出抵抗(23A)に発生する電圧を検出する第1電圧検出回路(22A)とを備えており、第2漏電検出回路(20B)は、互いに直列に接続される第2基準電源(25B)と第2漏電検出抵抗(23B)と第2漏電検出スイッチ(24B)とからなる第2直列接続回路(21B)と、この第2漏電検出抵抗(23B)に発生する電圧を検出する第2電圧検出回路(22B)とを備えており、
第1漏電検出スイッチ(24A)と第2漏電検出スイッチ(24B)をオン状態に切り換えてヒューズ(17)を含む閉回路を形成し、第1電圧検出回路(22A)と第2電圧検出回路(22B)の両方または一方でヒューズ(17)の溶断を検出するようにしてなる漏電検出回路を備える電動車両の電源装置。
A power supply device comprising a fuse (17) connected in series with a battery (10) and a leakage detection circuit (20) for detecting leakage,
The leakage detection circuit (20) connects the first leakage detection circuit (20A) connected to the battery (10) connected to one terminal of the fuse (17) and the other terminal of the fuse (17). A second leakage detection circuit (20B) connected to the battery (10), and the first leakage detection circuit (20A) is connected to the first reference power supply (25A) and the first A first series connection circuit (21A) composed of a leakage detection resistor (23A) and a first leakage detection switch (24A), and a first voltage detection circuit for detecting a voltage generated in the first leakage detection resistor (23A) ( The second leakage detection circuit (20B) includes a second reference power source (25B), a second leakage detection resistor (23B), and a second leakage detection switch (24B) connected in series to each other. A second series connection circuit (21B) comprising a second voltage detection circuit (22B) for detecting a voltage generated in the second leakage detection resistor (23B),
The first leakage detection switch (24A) and the second leakage detection switch (24B) are turned on to form a closed circuit including the fuse (17), and the first voltage detection circuit (22A) and the second voltage detection circuit ( 22B) A power supply device for an electric vehicle provided with a leakage detection circuit configured to detect fusing of the fuse (17) in both or one of them.
漏電を検出する漏電検出回路(20)を備えると共に、電池(10)と直列に接続しているメインリレー(15)を介して出力端子(14)を接続しており、さらに+側メインリレー(15A)には、プリチャージ抵抗(41)とプリチャージスイッチ(42)を直列に接続しているプリチャージ回路(40)を並列に接続している電源装置であって、
漏電検出回路(20)が、互いに直列に接続してなる漏電検出抵抗(23)と漏電検出スイッチ(24)とからなる直列接続回路(21)と、この漏電検出抵抗(23)に発生する電圧を検出する電圧検出回路(22)とを備え、直列接続回路(21)を電池(10)とアースライン(26)との間に接続しており、
メインリレー(15)の出力端子(14)側を、互いに直列に接続している溶着検出抵抗(31)と溶着検出スイッチ(32)からなる溶着検出回路(30)を介してアースライン(36)に接続しており、+側メインリレー(15A)をオフ、−側メインリレー(15B)をオン、プリチャージスイッチ(42)をオンにする状態で、溶着検出回路(30)の溶着検出スイッチ(32)をオンにして、漏電検出回路(20)の電圧検出回路(22)でもって、プリチャージ回路(40)の電流または電圧を検出する漏電検出回路を備える電動車両の電源装置。
In addition to a leakage detection circuit (20) that detects leakage, the output terminal (14) is connected via the main relay (15) connected in series with the battery (10), and the + side main relay ( 15A) is a power supply device connected in parallel with a precharge circuit (40) in which a precharge resistor (41) and a precharge switch (42) are connected in series,
The leakage detection circuit (20) is connected in series with each other, the leakage detection resistor (23) and the leakage detection switch (24), the series connection circuit (21), and the voltage generated in the leakage detection resistor (23). And a voltage detection circuit (22) for detecting the series connection circuit (21) between the battery (10) and the ground line (26),
The ground line (36) is connected to the output terminal (14) side of the main relay (15) via a welding detection circuit (30) consisting of a welding detection resistor (31) and a welding detection switch (32) connected in series with each other. With the + side main relay (15A) turned off, the-side main relay (15B) turned on, and the precharge switch (42) turned on. A power supply device for an electric vehicle, comprising: a leakage detection circuit that detects a current or voltage of the precharge circuit (40) with the voltage detection circuit (22) of the leakage detection circuit (20) turned on.
漏電を検出する漏電検出回路(20)を備えると共に、電池(10)と直列に接続しているメインリレー(15)を介して出力端子(14)を接続しており、さらに−側メインリレー(15B)には、プリチャージ抵抗(41)とプリチャージスイッチ(42)を直列に接続しているプリチャージ回路(40)を並列に接続している電源装置であって、
漏電検出回路(20)が、互いに直列に接続してなる漏電検出抵抗(23)と漏電検出スイッチ(24)とからなる直列接続回路(21)と、この漏電検出抵抗(23)に発生する電圧を検出する電圧検出回路(22)とを備え、直列接続回路(21)を電池(10)とアースライン(26)との間に接続しており、
メインリレー(15)の出力端子(14)側を、互いに直列に接続している溶着検出抵抗(31)と溶着検出スイッチ(32)からなる溶着検出回路(30)を介してアースライン(36)に接続しており、+側メインリレー(15A)をオン、−側メインリレー(15B)をオフ、プリチャージスイッチ(42)をオンにする状態で、溶着検出回路(30)の溶着検出スイッチ(32)をオンにして、漏電検出回路(20)の電圧検出回路(22)でもって、プリチャージ回路(40)の電流または電圧を検出する漏電検出回路を備える電動車両の電源装置。
A leakage detection circuit (20) for detecting leakage is provided, and an output terminal (14) is connected via a main relay (15) connected in series with the battery (10). 15B) is a power supply device connected in parallel with a precharge circuit (40) in which a precharge resistor (41) and a precharge switch (42) are connected in series,
The leakage detection circuit (20) is connected in series with each other, the leakage detection resistor (23) and the leakage detection switch (24), the series connection circuit (21), and the voltage generated in the leakage detection resistor (23). And a voltage detection circuit (22) for detecting the series connection circuit (21) between the battery (10) and the ground line (26),
The ground line (36) is connected to the output terminal (14) side of the main relay (15) via a welding detection circuit (30) consisting of a welding detection resistor (31) and a welding detection switch (32) connected in series with each other. In the state where the + side main relay (15A) is on, the-side main relay (15B) is off, and the precharge switch (42) is on, the welding detection switch (30) A power supply device for an electric vehicle, comprising: a leakage detection circuit that detects a current or voltage of the precharge circuit (40) with the voltage detection circuit (22) of the leakage detection circuit (20) turned on.
漏電を検出する漏電検出回路(20)を備えると共に、電池(10)と直列に接続しているメインリレー(15)を介して出力端子(14)を接続しており、さらに+側メインリレー(15A)には、プリチャージ抵抗(41)とプリチャージスイッチ(42)を直列に接続しているプリチャージ回路(40)を並列に接続している電源装置であって、
漏電検出回路(20)が、互いに直列に接続してなる基準電源(25)と漏電検出抵抗(23)と漏電検出スイッチ(24)とからなる直列接続回路(21)と、漏電検出抵抗(23)に発生する電圧を検出する電圧検出回路(22)とを備え、直列接続回路(21)を電池(10)とアースライン(26)との間に接続しており、
メインリレー(15)の出力端子(14)側を、互いに直列に接続している溶着検出抵抗(31)と溶着検出スイッチ(32)からなる溶着検出回路(30)を介してアースライン(36)に接続しており、+側メインリレー(15A)をオフ、−側メインリレー(15B)をオン、プリチャージスイッチ(42)をオンにする状態で、溶着検出回路(30)の溶着検出スイッチ(32)をオンにして、漏電検出回路(20)の電圧検出回路(22)でもって、プリチャージ回路(40)の電流または電圧を検出する漏電検出回路を備える電動車両の電源装置。
In addition to a leakage detection circuit (20) that detects leakage, the output terminal (14) is connected via the main relay (15) connected in series with the battery (10), and the + side main relay ( 15A) is a power supply device connected in parallel with a precharge circuit (40) in which a precharge resistor (41) and a precharge switch (42) are connected in series,
An earth leakage detection circuit (20) is connected in series with each other in a series connection circuit (21) composed of a reference power source (25), an earth leakage detection resistor (23) and an earth leakage detection switch (24), and an earth leakage detection resistor (23 ) And a voltage detection circuit (22) for detecting the voltage generated in the battery, and a series connection circuit (21) is connected between the battery (10) and the earth line (26),
The ground line (36) is connected to the output terminal (14) side of the main relay (15) via a welding detection circuit (30) consisting of a welding detection resistor (31) and a welding detection switch (32) connected in series with each other. With the + side main relay (15A) turned off, the-side main relay (15B) turned on, and the precharge switch (42) turned on. A power supply device for an electric vehicle, comprising: a leakage detection circuit that detects a current or voltage of the precharge circuit (40) with the voltage detection circuit (22) of the leakage detection circuit (20) turned on.
漏電を検出する漏電検出回路(20)を備えると共に、電池(10)と直列に接続しているメインリレー(15)を介して出力端子(14)を接続しており、さらに−側メインリレー(15B)には、プリチャージ抵抗(41)とプリチャージスイッチ(42)を直列に接続しているプリチャージ回路(40)を並列に接続している電源装置であって、
漏電検出回路(20)が、互いに直列に接続してなる基準電源(25)と漏電検出抵抗(23)と漏電検出スイッチ(24)とからなる直列接続回路(21)と、漏電検出抵抗(23)に発生する電圧を検出する電圧検出回路(22)とを備え、直列接続回路(21)を電池(10)とアースライン(26)との間に接続しており、
メインリレー(15)の出力端子(14)側を、互いに直列に接続している溶着検出抵抗(31)と溶着検出スイッチ(32)からなる溶着検出回路(30)を介してアースライン(36)に接続しており、+側メインリレー(15A)をオン、−側メインリレー(15B)をオフ、プリチャージスイッチ(42)をオンにする状態で、溶着検出回路(30)の溶着検出スイッチ(32)をオンにして、漏電検出回路(20)の電圧検出回路(22)でもって、プリチャージ回路(40)の電流または電圧を検出する漏電検出回路を備える電動車両の電源装置。
A leakage detection circuit (20) for detecting leakage is provided, and an output terminal (14) is connected via a main relay (15) connected in series with the battery (10). 15B) is a power supply device connected in parallel with a precharge circuit (40) in which a precharge resistor (41) and a precharge switch (42) are connected in series,
An earth leakage detection circuit (20) is connected in series with each other in a series connection circuit (21) composed of a reference power source (25), an earth leakage detection resistor (23) and an earth leakage detection switch (24), and an earth leakage detection resistor (23 ) And a voltage detection circuit (22) for detecting the voltage generated in the battery, and a series connection circuit (21) is connected between the battery (10) and the earth line (26),
The ground line (36) is connected to the output terminal (14) side of the main relay (15) via a welding detection circuit (30) consisting of a welding detection resistor (31) and a welding detection switch (32) connected in series with each other. In the state where the + side main relay (15A) is on, the-side main relay (15B) is off, and the precharge switch (42) is on, the welding detection switch (30) A power supply device for an electric vehicle, comprising: a leakage detection circuit that detects a current or voltage of the precharge circuit (40) with the voltage detection circuit (22) of the leakage detection circuit (20) turned on.
互いに直列に接続している基準電源(25)と漏電検出抵抗(23)と漏電検出スイッチ(24)からなる漏電検出抵抗(23)の直列接続回路(21)を、メインリレー(15)の電池(10)側とアースライン(26)との間に接続している請求項10または11に記載の漏電検出回路を備える電動車両の電源装置。A series connection circuit (21) consisting of a reference power supply (25), a leakage detection resistor (23) and a leakage detection switch (24) connected in series with each other is connected to the battery of the main relay (15). A power supply device for an electric vehicle comprising the leakage detection circuit according to claim 10 or 11 connected between the (10) side and the ground line (26). 複数の電池モジュールを直列に接続している電池(10)を備えると共に、この電池(10)を構成する電池モジュールの電圧を検出する電圧検出回路(70)を備え、この電圧検出回路(70)を漏電検出回路(20)の電圧検出回路(22)に併用する請求項4、5、8ないし11のいずれかに記載の漏電検出回路を備える電動車両の電源装置。A battery (10) having a plurality of battery modules connected in series, and a voltage detection circuit (70) for detecting the voltage of the battery module constituting the battery (10), the voltage detection circuit (70) A power supply device for an electric vehicle comprising the leakage detection circuit according to any one of claims 4, 5, 8 to 11, which is used in combination with the voltage detection circuit (22) of the leakage detection circuit (20). 複数の電池モジュールを直列に接続している電池(10)を備えると共に、この電池(10)を構成する電池モジュールの電圧を検出する電圧検出回路(70)を備え、この電圧検出回路(70)を漏電検出回路(20)の第1電圧検出回路(22A)に併用する請求項6または7に記載の漏電検出回路を備える電動車両の電源装置。A battery (10) having a plurality of battery modules connected in series, and a voltage detection circuit (70) for detecting the voltage of the battery module constituting the battery (10), the voltage detection circuit (70) A power supply device for an electric vehicle comprising the leakage detection circuit according to claim 6 or 7, wherein the leakage detection circuit is used together with the first voltage detection circuit (22A) of the leakage detection circuit (20). 複数の電池モジュールを直列に接続している電池(10)を備えると共に、この電池(10)を構成する電池モジュールの電圧を検出する電圧検出回路(70)を備え、この電圧検出回路(70)を漏電検出回路(20)の第2電圧検出回路(22B)に併用する請求項6または7に記載の漏電検出回路を備える電動車両の電源装置。A battery (10) having a plurality of battery modules connected in series, and a voltage detection circuit (70) for detecting the voltage of the battery module constituting the battery (10), the voltage detection circuit (70) A power supply device for an electric vehicle comprising the leakage detection circuit according to claim 6 or 7, wherein the leakage detection circuit is used together with the second voltage detection circuit (22B) of the leakage detection circuit (20).
JP2001367974A 2001-11-30 2001-11-30 Power supply device for electric vehicle provided with leakage detection circuit Expired - Fee Related JP3679750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001367974A JP3679750B2 (en) 2001-11-30 2001-11-30 Power supply device for electric vehicle provided with leakage detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001367974A JP3679750B2 (en) 2001-11-30 2001-11-30 Power supply device for electric vehicle provided with leakage detection circuit

Publications (2)

Publication Number Publication Date
JP2003169401A JP2003169401A (en) 2003-06-13
JP3679750B2 true JP3679750B2 (en) 2005-08-03

Family

ID=19177640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001367974A Expired - Fee Related JP3679750B2 (en) 2001-11-30 2001-11-30 Power supply device for electric vehicle provided with leakage detection circuit

Country Status (1)

Country Link
JP (1) JP3679750B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101470098B1 (en) * 2012-12-18 2014-12-05 현대자동차주식회사 Fault diagnosis system and method for relay of vehicle

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4293942B2 (en) 2004-05-28 2009-07-08 三洋電機株式会社 Electric vehicle leakage detection circuit and electric vehicle leakage detection method
JP4326415B2 (en) * 2004-07-06 2009-09-09 三洋電機株式会社 Power supply for vehicle
JP4543844B2 (en) * 2004-09-10 2010-09-15 トヨタ自動車株式会社 Power supply circuit control device
JP4599260B2 (en) * 2004-09-28 2010-12-15 プライムアースEvエナジー株式会社 POWER CONTROL DEVICE, POWER CONTROL METHOD, PROGRAM, AND RECORDING MEDIUM
JP4963827B2 (en) * 2005-11-29 2012-06-27 三洋電機株式会社 Battery leakage detection circuit and leakage detection method
JP4749190B2 (en) * 2006-03-24 2011-08-17 三洋電機株式会社 Welding detection method for discriminating welding of power supply device for vehicle and contactor of this power supply device
JP4785627B2 (en) 2006-06-08 2011-10-05 三洋電機株式会社 Electric vehicle leakage detection circuit and electric vehicle leakage detection method
JP4989205B2 (en) * 2006-12-05 2012-08-01 三洋電機株式会社 Electric leakage detection method for electric vehicle
JP4942602B2 (en) * 2007-09-26 2012-05-30 三洋電機株式会社 Power supply for vehicle
US7966110B2 (en) * 2008-03-05 2011-06-21 GM Global Technology Operations LLC High-voltage vehicle fault detection method and apparatus
KR101063771B1 (en) * 2008-11-27 2011-09-08 주식회사 케피코 Leakage detection device for electric vehicles
JP5240462B2 (en) * 2009-01-28 2013-07-17 三菱自動車工業株式会社 Electric vehicle charging relay welding judgment device
JP5087064B2 (en) * 2009-11-20 2012-11-28 パナソニック株式会社 Power supply control device
JP5450144B2 (en) * 2010-02-10 2014-03-26 三洋電機株式会社 Power supply device for vehicle and vehicle equipped with this power supply device
JP5519403B2 (en) * 2010-05-24 2014-06-11 日立建機株式会社 Drive circuit abnormality detection device
JP2012005174A (en) * 2010-06-14 2012-01-05 Toyota Motor Corp Electric power supply apparatus of vehicle
KR101236606B1 (en) * 2010-11-26 2013-02-25 주식회사 현대케피코 Detecting Apparatus Of Leakage Current For Electric Car
FR2976085B1 (en) * 2011-06-01 2014-02-28 Commissariat Energie Atomique DEVICE FOR DETECTING AN ISOLATION FAULT
EP2570289B1 (en) * 2011-09-16 2018-08-15 Samsung SDI Co., Ltd. Device for determining the insulation resistance of a high-voltage battery system
US9404956B2 (en) * 2011-12-19 2016-08-02 Ford Global Technologies, Llc Vehicle with selectable battery pack isolation detection circuitry using precision resistors
US20140301000A1 (en) * 2011-12-27 2014-10-09 Hitachi, Ltd. Battery System and Ground Fault Detecting Device
JP5945804B2 (en) * 2012-03-29 2016-07-05 パナソニックIpマネジメント株式会社 Relay welding diagnostic device
JP5920469B2 (en) * 2012-08-14 2016-05-18 日産自動車株式会社 Power supply
JP6308486B2 (en) * 2012-09-13 2018-04-11 パナソニックIpマネジメント株式会社 Relay welding detector
US9297860B2 (en) * 2012-12-03 2016-03-29 Lg Chem, Ltd. High voltage service disconnect assembly and method for determining an isolation resistance fault of a battery pack
US10536029B2 (en) 2013-04-24 2020-01-14 Panasonic Intellectual Property Management Co., Ltd. Power conversion system and connector
KR102052956B1 (en) * 2013-05-21 2019-12-09 엘지이노텍 주식회사 Relay checking device of battery pack and Battery control system
JP6140568B2 (en) * 2013-08-08 2017-05-31 株式会社Soken Welding inspection system
DE102013217748B4 (en) * 2013-09-05 2015-04-02 Continental Automotive Gmbh Multifunctional monitoring of electrical systems in a motor vehicle
DE102014223274A1 (en) * 2014-11-14 2016-05-19 Robert Bosch Gmbh Device and method for monitoring a switch of a battery and battery module, battery, battery system, vehicle, computer program and computer program product
JP6512072B2 (en) * 2015-11-10 2019-05-15 株式会社デンソー Failure inspection system
JP2017112006A (en) * 2015-12-17 2017-06-22 株式会社デンソー Short circuit detection system
GB2534314B (en) * 2016-03-18 2020-02-12 Johnson Matthey Battery Systems Ltd Battery system and method
US10017071B2 (en) * 2016-10-13 2018-07-10 GM Global Technology Operations LLC Method and system for diagnosing contactor health in a high-voltage electrical system
JP6725440B2 (en) * 2017-02-28 2020-07-15 トヨタ自動車株式会社 Battery system
JP2018196285A (en) * 2017-05-19 2018-12-06 パナソニックIpマネジメント株式会社 Power supply control device, welding detection method and relay welding detection device
CN108039743B (en) * 2017-11-17 2021-07-23 蔚来(安徽)控股有限公司 Charging station and charging system, method and device
JP6534020B2 (en) * 2018-03-02 2019-06-26 パナソニックIpマネジメント株式会社 Relay welding detection device
CN113453942A (en) * 2019-02-19 2021-09-28 三洋电机株式会社 Electric leakage detection device and power supply system for vehicle
CN110277924A (en) * 2019-07-03 2019-09-24 上海鼎充新能源技术有限公司 A kind of economical isolated high-voltage DC switching circuit
PT117569A (en) * 2021-11-10 2023-05-10 Inst Politecnico De Leiria AUTONOMY EXTENSION SYSTEM OF ELECTRICITY STORAGE AND SUPPLY DEVICES FOR ELECTRIC OR HYBRID VEHICLES

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101470098B1 (en) * 2012-12-18 2014-12-05 현대자동차주식회사 Fault diagnosis system and method for relay of vehicle

Also Published As

Publication number Publication date
JP2003169401A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
JP3679750B2 (en) Power supply device for electric vehicle provided with leakage detection circuit
US6828757B2 (en) Circuit for adjusting charging rate of cells in combination
US8487590B2 (en) Cell controller having a unit cell voltage detecting section
JP5911673B2 (en) Power supply
JP5274110B2 (en) Power supply for vehicle
JP2012034515A (en) Power supply device for vehicle
JPWO2011148926A1 (en) Power supply
JP2010127722A (en) Battery system
EP3566894B1 (en) Battery pack for vehicle
CN101459267A (en) Battery pack
US20120001640A1 (en) Power supply device capable of detecting disconnection of ground line
JP3395601B2 (en) Battery charging / discharging device
JP4167924B2 (en) Storage battery pack and storage battery charge / discharge circuit
JPWO2012043590A1 (en) Power supply
JP2006280171A (en) Power supply device for vehicles
JP5362428B2 (en) Disconnection detector
JP2002010501A (en) Capacity equalizing apparatus for capacitor
JP2022517404A (en) Switch turn-on operation control device and method included in the parallel multi-battery pack
KR20180028239A (en) Battery pack
JP3458740B2 (en) Battery charging and discharging devices
JP2019110648A (en) Changeover device, power unit with the same, and power system with the same
JP2012084443A (en) Power supply device
US20220166227A1 (en) Battery system
JP2010220377A (en) Electric storage device
JP5219653B2 (en) Power supply

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees