JP3679749B2 - Hydraulic device - Google Patents

Hydraulic device Download PDF

Info

Publication number
JP3679749B2
JP3679749B2 JP2001356727A JP2001356727A JP3679749B2 JP 3679749 B2 JP3679749 B2 JP 3679749B2 JP 2001356727 A JP2001356727 A JP 2001356727A JP 2001356727 A JP2001356727 A JP 2001356727A JP 3679749 B2 JP3679749 B2 JP 3679749B2
Authority
JP
Japan
Prior art keywords
control valve
hydraulic
drive source
value
detecting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001356727A
Other languages
Japanese (ja)
Other versions
JP2003130006A (en
Inventor
鈴木  茂
浩一 青山
悟 島田
純子 関
孝彦 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yukigaya Institute Co Ltd
Original Assignee
Yukigaya Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yukigaya Institute Co Ltd filed Critical Yukigaya Institute Co Ltd
Priority to JP2001356727A priority Critical patent/JP3679749B2/en
Priority to TW091122205A priority patent/TW539812B/en
Priority to CA002473966A priority patent/CA2473966C/en
Priority to MXPA04003557A priority patent/MXPA04003557A/en
Priority to PCT/JP2002/010849 priority patent/WO2003036100A1/en
Priority to EP02775375A priority patent/EP1439310A4/en
Priority to CNB028252535A priority patent/CN100404881C/en
Priority to AU2002344002A priority patent/AU2002344002B8/en
Priority to US10/492,978 priority patent/US7043906B2/en
Publication of JP2003130006A publication Critical patent/JP2003130006A/en
Application granted granted Critical
Publication of JP3679749B2 publication Critical patent/JP3679749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/165Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for adjusting the pump output or bypass in response to demand
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20569Type of pump capable of working as pump and motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/212Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/265Control of multiple pressure sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30505Non-return valves, i.e. check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3116Neutral or centre positions the pump port being open in the centre position, e.g. so-called open centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/3157Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line
    • F15B2211/31594Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line having multiple pressure sources and multiple output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50518Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/615Filtering means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6336Electronic controllers using input signals representing a state of the output member, e.g. position, speed or acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7058Rotary output members

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

【技術分野】
【0001】
慣性を具備した駆動源により駆動される油圧ポンプの油圧により駆動される負荷と、制御弁の切替動作により発生する圧力が上昇した作動油を供給する装置と、フライホイールあるいは油圧蓄積装置に代表されるエネルギ蓄積装置との間で油圧作動流体を媒体として、エネルギの供給または回収を行うことにより、負荷が要求するエネルギ量を制御する油圧装置に関する。
【背景技術】
【0002】
低圧油圧源を持つ油圧装置においては、負荷が必要とする作動油量が変化する場合には、吐出される作動油が一定のため、余剰作動油が発生してしまう。したがって、負荷が必要とする作動油のみを供給する制御を行わなければならない。そのために油圧源の回転数を変えるか、絞り弁や減圧弁等で流量調整することが行われている。駆動源、油圧ポンプにおいて、全ての回転領域で高効率を維持することは困難であり、回転数を変えることは効率を悪化させる要因となる。また、流量調整することも熱エネルギとして損失させながら消費しているに過ぎず効率を悪化させる要因となっている。
【0003】
また、上記問題を解決するために可変吐出量ポンプが使用されているが、このポンプは構造が複雑で高価である。また、駆動源である熱機関または電動機等の原動機の軸出力を必要に応じて変化させなければならず、全ての領域で高効率を維持することは困難である。さらに、吐出圧力、油量の変更、調整を適時行うことは多大な制御設備が必要であり、コスト面でも不利となっている。
【0004】
ポンプをモータとして広範囲の回転数で動作させることは、定吐出量ポンプでは可能であるが、可変吐出量ポンプでは困難である。よって車両等の駆動系として可変吐出量ポンプを搭載した場合は、可逆的な制御を行うことはできない。
【発明の開示】
【発明が解決しようとする課題】
【0005】
本発明では、駆動源である熱機関または電動機等の原動機を最も効率の良い回転数付近で使用し、定吐出量、可変吐出量ポンプのようなポンプの形式を問わず、常に効率の良い回転数で動作させた状態において、外部の制御弁を要求される動作に応じて切り替えることによって、高圧小流量から低圧大流量の作動油を高効率で負荷へ供給することを課題とする。
【0006】
また、制御弁の開閉切替動作により、定吐出量ポンプで可変吐出量ポンプのような制御をすることを課題とする。
【課題を解決するための手段】
【0007】
上記課題を解決するために本発明においては、所要量の慣性を内在または付加により具備した駆動源と、この駆動源によって駆動される油圧ポンプと、この油圧ポンプの吐出側に接続された第1の制御弁と、この第1の制御弁の通過側を作動油タンクへ導く流路と、前記油圧ポンプの吐出側に入力側を向けた逆止弁と、この逆止弁の出力側に管路を介して設けられた第1のエネルギ蓄積装置と、この第1のエネルギ蓄積装置と前記逆止弁との間の管路から分岐された管路に接続された負荷を、前記第1の制御弁の開閉動作の切り替えを行う制御回路とを備え、前記駆動源41が発生するトルクをQm、前記第1の制御弁が阻止側に切り替えられた状態にある場合の油圧ポンプのトルクをQp、前記駆動源の軸周りの慣性モーメントを1、角速度をω、および前記駆動源が有する慣性トルクをI・dω/dtとしたときに、Qp=Qm−I・dω/dtの関係式において、Qpの値がQmの値を超える値にあり、前記制御回路により前記第1の制御弁を通過側、阻止側の状態に切り替える動作を反復させ、前記駆動源の角速度ωの値を自励振動動作させることで、前記駆動源の回転数が減速することで得られる慣性トルクが、前記駆動源の出力トルクに付加されたトルクで前記油圧ポンプを駆動したときに圧力上昇した作動油を前記負荷に連続的に供給することを特徴とする油圧装置を手段として用いる。
【0008】
他の実施例においては、前記駆動源の回転数を検知する回転検知手段を備え、前記回転検知手段の値が下限設定値まで減少したとき前記制御回路により前記第1の開閉弁を通過側の状態に切り替え、前記回転検知手段の値が上限設定値まで増大したとき前記制御回路により前記第1の制御弁を阻止側の状態に切り替え、これらの動作を反復させることを特徴とする請求項1記載の油圧装置を手段として用いる。
【0009】
他の実施例においては、前記駆動源の回転数を検知する回転検知手段を備え、前記回転検知手段の値に応じて前記第1の制御弁の反復切り替えを行うタイミングを決定する前記制御回路により、前記第1の制御弁が通過側、阻止側の状態に反復切り替えさせることを特徴とする請求項1記載の油圧装置を手段として用いる。
【0010】
他の実施例においては、前記逆止弁の出力側に設けられた圧力検知手段を備え、この圧力検知手段の値が上限設定値まで増大したとき前記制御回路により前記第1の制御弁1を通過側の状態に切り替え、前記圧力検知手段の値が下限設定値まで減少したとき前記制御回路により前記第1の制御弁を阻止側の状態に切り替え、これらの動作を反復させることを特徴とする請求項1記載の油圧装置を手段として用いる。
【0011】
他の実施例においては、前記逆止弁の出力側に設けられた圧力検知手段を備え、この圧力検知手段の値に応じて前記第1の制御弁の反復切り替えを行うタイミングを決定する前記制御回路により、前記第1の制御弁が通過側、阻止側の状態に反復切り替えさせることを特徴とする請求項1記載の油圧装置を手段として用いる。
【0012】
前記第1のエネルギ蓄積装置と前記逆止弁との間の管路から分岐された管路に接続され、下流側に前記負荷が設けられた第2の制御弁と、この第2の制御弁と前記負荷との間の管路から分岐した管路に作動油タンクへ入力側を向けた逆止弁とを備え、前記第2の制御弁を通過側、阻止側の状態に切り替える動作を反復させ、前記負荷の必要油量が油圧ポンプの供給油量より多いとき、間欠的に前記負荷を加速することを特徴とする請求項1から5記載のうちいずれか1項に記載の油圧装置を手段として用いる。
【発明の効果】
【0013】
本発明では、定圧油圧源から吐出される作動油を、制御弁を要求される負荷に応じて切り替えることによって、高圧小流量から低圧大流量まで、効率良く負荷へ供給できるので、駆動源である熱機関または電動機等の原動機を最も効率の良い回転数付近で使用することができ、また、駆動される油圧ポンプも、定吐出量、可変吐出量ポンプのような形式を問わず、常に効率の良い回転数で動作させることができるので、従来の素子を能率良く動作させることができ、システム全体の効率をより高くすることができる。
【0014】
また、この動作によれば、従来の定吐出量ポンプで余剰として捨てていたエネルギの損失もなくなるため、作動油の温度上昇や劣化を防止することができ、可変吐出量ポンプとしての動作も、ポンプで容量を可変することなく実現できるので、高価な可変吐出量ポンプを使用せずに定吐出量ポンプで可変吐出量ポンプと同じ機能を実現できる。
【0015】
また、本発明の油圧装置を車両等の駆動装置として使用した場合は、走行する車両等が持つ運動エネルギを回収することで回生制動を実現したり、駆動源である原動機をエンジンブレーキとして機能させたりと、ポンプモータの可逆的動作が自在となり、効率が高い運転が可能である。また、回生しない場合には作動油の温度上昇を防ぐことができる。
【発明を実施するための最良の形態】
【0016】
図1は、本発明の油圧装置の構成要素と、それらを結合する流路による油圧回路を示す図である。図1において、41は駆動源であって、主として熱機関であるが、他の形式のものでも採用できる。駆動源41の軸201には慣性体、具体的にはフライホイール45が取り付けられ、さらに軸202により油圧ポンプ11を駆動する。駆動源自体が大きな慣性モーメントを有する場合、慣性が内在されている場合には、外付けのフライホイール45は省略することができる。図1は、油圧装置のシステム全体を示しており、複数の異なる機能、動作を担当する部分が有機的に結合されている。なお、油圧ポンプ11は、後述するが本油圧装置において、モータの機能も兼ねる第3のポンプモータをも構成する。
【0017】
油圧ポンプ11の吐出側には管路105が接続されており、管路105には分岐した管路106が連通し、各請求項の第1の制御弁を構成する制御弁1を介して作動油タンク21へ導く管路107が接続されている。駆動源41を始動し、油圧ポンプ11があらかじめ設定された回転数、すなわち設定回転数で運転している状態において、作動油は作動油タンク21から管路101、フィルタ22、管路102、逆止弁23を経由して油圧ポンプ11の流入側の管路104に至る流路で油圧ポンプ11へ吸入される。
【0018】
吸入された作動油は、油圧ポンプ11により吐出され、吐出側の管路105から、管路106、制御弁1の通過側1a、管路107を通過して作動油タンク21に流れる。制御弁1が通過側1aに切り替えられている状態では、管路106以降はアンロード流路を形成する。
【0019】
この状態で、制御弁1を通過側1aから阻止側1bに切り替えると、駆動源41で駆動される油圧ポンプ11によって衝撃的に圧力上昇した作動油が、管路105、108を通って入力側を向けて接続された逆止弁24を通過し、逆止弁24の出力側に接続された負荷に供給される。このように、制御弁1の通過側1aから阻止側1bの切り替え時には、駆動源41により設定回転数で運転される油圧ポンプ11が連続的に発生できる吐出圧力、すなわち油圧ポンプ11の通常運転時に吐出する圧よりも高い圧力が発生する。
【0020】
駆動源41は熱機関または電動機等の原動機で、発生可能なトルクがQmであるとき、駆動源により駆動される油圧ポンプ11のトルクをQpとすると、損失を無視した場合には、Qm=Qpの関係が成立することは明らかである。ここで駆動源41の慣性モーメントをI、角速度をωとすると、駆動源が加速または減速する際に要する慣性トルクはI・dω/dtで表せる。なお、I・dω/dtは加速時には+、減速時には−の値をもつことになる。
【0021】
本発明の装置は、制御弁1が通過側1aの状態にある場合には、駆動源41は設定された回転を維持するように制御される。制御弁1が阻止側1bに切り替えられたときは、駆動源41の慣性トルクI・dω/dtがQmに加算されることとなり、Qp=Qm−I・dω/dtの関係が成立する。よって、減速による慣性のトルクが付加されることにより、通常運転時の油圧ポンプ11の入力トルクQmよりも大きい出力トルクが得られ、その結果圧力が上昇した作動油を負荷に供給することができる。
【0022】
これまでの説明は、制御弁1を通過側1aから阻止側1bに切り替える動作を1回だけ行った場合についてのみであったが、阻止側1bから通過側1aに切り替え、再び阻止側1bに切り替える動作(切替動作)を反復することにより、上記のように高い圧力の作動油を負荷に連続的に供給することができる。
【0023】
このように、本発明では、より小さい駆動源で高い油圧を供給できるので、負荷が必要とする最大負荷トルクに合わせた出力トルクを持つ駆動源を設けることなく、駆動させることが可能であり、経済的にも大きなメリットがある。発生できる最大圧力は、駆動源41の慣性モーメントIと角加速度dω/dtの大きさによって設定することができる。
【0024】
制御弁1の切替動作は、次のように行われる。図1において、フライホイール45には回転計49が設けられ、駆動源41の回転数は、この回転計49によって検出される。また、逆止弁24の出力側には圧力センサ33が設けられている。前記油圧ポンプ11の負荷トルクが駆動源41の出力トルクを越え、その結果回転数が低下して回転数の下限設定値にまで減少したことは、回転計49によって検出できる。
【0025】
回転数が下限設定値以下になったら、制御弁1を通過側1aに切り替えて、アンロード状態、すなわち油圧ポンプ11の負荷を除去した状態とする。その結果、駆動源41にかかる負荷トルクが減少して、その回転数が次第に増加し、上限設定値以上になる。このとき再び、制御弁1を阻止側1bに切り替える動作を行う。この切替動作は、上限設定値に達した瞬間でも後でも設定値に達することを予測して達する若干前でも可能であるのは言うまでもない。このようにして、制御弁1は切替動作を繰り返し実行して自励動作を持続させる。油圧ポンプ11の回転数変化、すなわち作動油吐出量の変化の速さは油圧ポンプ11の軸の周りの慣性モーメントに依存する。
【0026】
また、圧力センサ33は、逆止弁24の出力側の圧力状態を測定する。圧力センサ33の測定値が所定の設定値に到達したら、制御弁1を阻止側1bから通過側1aに切り替えて、油圧ポンプ11から吐出された作動油を作動油タンク21へ戻す。この動作により原動機の負荷がアンロード状態となり、回転数が増加する。このように切り替えのタイミングを決定するために使用するセンサは、圧力センサ33や回転計49のような各請求項を構成する検知手段や、負荷の状態を監視するセンサ、あらかじめ切り替えるタイミングが分かっている場合等は状態を監視することなく外部からのクロックタイミングに応じて行うことも可能である。
【0027】
逆止弁24の出力側には、管路109,110を介して設けられた第1のエネルギ蓄積装置31と、この第1のエネルギ蓄積装置31と逆止弁24との間の管路115,116に設けられた各請求項の第2の制御弁を構成する制御弁2と、制御弁2の下流側に設けられた負荷12とが備わっている。この負荷12は、実施例においては、第2のエネルギ蓄積装置42を設けた油圧モータ12であり、第2のエネルギ蓄積装置42の具体的な装置としては、油圧モータ12に取り付けられたフライホイールである。なお、油圧モータ12は、後述するが本油圧装置においてポンプの機能も兼ねる各請求項の第2のポンプモータをも構成する。
【0028】
制御弁2が通過側2aに切り替えられている時、駆動源41によって駆動される油圧ポンプ11とエネルギ蓄積装置としてのアキュムレータ31から作動油が油圧モータ12に流入し、吐出側の管路124から分岐した作動油タンク21へ通じる管路途中の制御弁4を経由して作動油タンク21へ戻される。この動作により油圧モータ12に設けられたフライホイール42は加速される。
【0029】
制御弁2と油圧モータ12との間には、作動油タンク21へ入力側を向けて接続した逆止弁26が設けられた管路120,121,122が設けられている。その理由について図2を参照して説明する。この図2は図1から説明のための主要な要素を抜き出したものである。油圧モータ12の回転数が増加し、油圧モータ12の必要油量が油圧ポンプ11の供給油量より多くなった場合には、油圧モータ12を加速することができなくなる。
【0030】
このとき、制御弁2を通過側2aから阻止側2bに切り替える。この動作により、アキュムレータ31には作動油が蓄積され、油圧モータ12は逆止弁26によりフリーホイリング状態となる。アキュムレータに所定量の作動油が蓄積されたら制御弁2を再び通過側2aに切り替えると、蓄積された作動油が油圧モータ12に流入し、油圧モータ12は加速されることになる。このように、制御弁2の切替動作を反復することで油圧モータ12の必要油量が油圧ポンプ11の供給油量より多いときでも間欠的に加速をすることができる。よって加速平均圧力は低いが、大流量を負荷へ供給することが可能になる。
【0031】
次に本発明の油圧装置を車両の駆動装置として使用する場合について説明する。図1において、油圧モータ12の吐出側には管路を通じて入力側を向けて接続された逆止弁27、この出力側にはアキュムレータ34および制御弁5が設けられている。逆止弁27の出力側にも圧力センサ36が設けられている。逆止弁27の出力側の管路128,129間には油圧ポンプ11の流入側の管路103,104に連通した制御弁6を持つ管路160,161が分岐して連通されている。なお、制御弁6は、フライホイール42があらかじめ設定された回転数で動作している場合、開閉動作を行うことでポンプモータ12によりポンプモータ11へ作動油を供給し、駆動源41を起動させる等の動作を行うために使用する。
【0032】
制御弁5の下流側にある13,14は第1のポンプモータを構成するポンプモータであり、ポンプモータ13,14に接続された43,44は、これらによって駆動される車両等の車輪を簡略化して示したものである。これらポンプモータ13,14が接続される制御弁7は車両の進行方向を制御するものである。制御弁5と制御弁7間の管路136,138には、駆動源41から車両を直接駆動するために設けられた管路117,118、制御弁3および管路137が接続されている。
【0033】
ポンプモータ13,14の吐出側には、吐出される作動油を作動油タンク21へ戻すため管路155、第3の制御弁を構成する制御弁8および管路157が接続されている。管路155に接続された管路158には逆止弁30が入力側を向けて接続されている。
【0034】
このように構成された車両において、まず発進と加速動作を説明する。発進は加速する初速度が零の場合であり、加速は走行中に加速力を与えるものであるから、今後は両者を単に加速として説明する。車両を加速する場合には、駆動源41のみを利用する場合、あらかじめ設定された回転数で動作しているフライホイール42のみを利用する場合および駆動源41とフライホイール42との両方を利用する場合の3つのケースがある。
【0035】
駆動源41のみで車両の加速を行う場合の制御動作は、制御弁2,5,6および、逆止弁30の出力側から管路161へのバイパス管路途中の制御弁9を阻止側に、制御弁8を通過側8aに切り替えた状態で、制御弁3を通過側3aに固定し、制御弁1を通過側1a、阻止側1bに状況に応じて繰り返し切替動作を行う場合と、制御弁1を阻止側1bに固定し、制御弁3を通過側3a、阻止側3bに状況に応じて繰り返し切替動作を行う場合、および制御弁1,3の双方を必要に応じて切替動作を行う場合の、さらに3つのケースがある。ただし制御弁5は状況に応じて切替を可能とする。また、図には記載しない制御弁を管路138部に配置し、上記内容と同様な操作を行っても加速動作は可能である。
【0036】
フライホイール42のみで加速する場合は、予め設定された範囲内で動作しているフライホイール42が駆動側となり、これによって被駆動側である車両の加速を行う場合の制御動作は、少なくとも制御弁3,6および9を阻止側に、制御弁8を通過側8aとした状態で、制御弁5を通過側5aに固定し、制御弁4を通過側4a、阻止側4bに状況に応じて繰り返し切替動作を行う場合と、制御弁4を阻止側4bに固定し、制御弁5を繰り返し切替動作を行う場合、および制御弁4、5の双方を繰り返し切替動作を行う場合の、前欄と同様3つのケースがある。
【0037】
また、駆動源41、フライホイール42の双方で車両を加速する場合でも、上記のように制御弁を状況に応じて繰り返し切替動作を行うことで可能となる。
【0038】
ここで、制御弁の状況に応じた切替動作について説明する。車両の速度に応じて作動油の量は変化するが、その量は被駆動側のポンプモータ13,14の回転数等の状態を検知することにより判断でき、供給できる油量も同様に駆動側ポンプモータ11または12の回転数等を検知することで判断できる。それぞれの状態を検知する手段は、回転状態を検知する場合は、フライホイール42に設けられたセンサ46,ポンプモータ13,14に設けられたセンサ47,48およびフライホイール45に設けられたセンサ49等で行う。また、作動油の状態を検知する場合は、センサ33,36等によって行われる。これらの検知された値に応じて切替動作が行われることとする。なお、流量の測定は流量センサ等でも可能である。
【0039】
例えば、センサ36が予め設定された上限圧力に達したら、制御弁4を通過側4aに切り替え、予め設定された下限圧力に達したら、再度制御弁4を阻止側4bへ切り替え、この切替動作の反復により加速を行う。このように、上限、下限圧力設定値を変えることで、加速度を制御できる。なお、予め駆動側、被駆動側の状態が把握できている場合は、別途設けられた制御回路から出力される制御信号やクロックにより制御弁を切替えることも可能である。
【0040】
車両を加速させる作動油は、図1において油圧ポンプ11から制御弁3を通過してポンプモータ13,14に流入し、制御弁8の通過側8aを経由して作動油タンク21へ排出される。また、油圧モータ12に取り付けられたフライホイール42が回転している状態では、ポンプモータ12を油圧ポンプとして動作させて、作動油タンク21から吐出側の管路を経由してアキュムレータ34を蓄積し、その作動油を用いて駆動することもできる。
【0041】
次に車両を惰行状態とする場合を説明する。この場合は、少なくとも制御弁3、5および6は阻止側で、制御弁8を通過側8aに切り替えた状態であれば、管路138,142間に連通した、作動油タンク21へ入力側を向けて接続した逆止弁29が設けられた管路139、140、141がポンプモータ13、14のフリーホイリング回路となり、作動油は制御弁7,8を経由して、作動油タンク21へ戻される。この状態で車両は惰行状態となる。なお、制御弁7を図1に記載されたタイプ以外のものを使用し、ポンプモータ13、14管路部を閉回路として構成することで、惰行させることも可能である。
【0042】
最後に車両を減速する場合を説明する。減速動作には、回生を伴う減速動作と回生が伴わない減速動作の2つのパターンがある。まず回生の伴う減速動作について説明する。ポンプモータ13,14の吐出側に入力側を向けて接続された逆止弁30の出力側が制御弁2の入力側に接続されている。これによって駆動側は、ポンプモータ13,14となり、被駆動側は、フライホイール42が駆動される第2のポンプモータ12となってフライホイール42が加速されることによりこれが負荷となり車両の減速を行う。なお、制御動作については、フライホイール42から車両を加速する場合と同様で、切り替える制御弁5と制御弁4はそれぞれ制御弁2と制御弁8になって同様の動作を行うことで説明できる。
【0043】
次に回生を伴わない減速動作について説明する。図3は車両の持つ運動エネルギの回生を伴わないで減速させるために必要な回路構成を図1から抜き出したものである。この構成において動作を説明すると、車両が減速する場合、ポンプモータ13,14から吐出した作動油は、モータとして動作するポンプモータ11に流入する。ポンプモータ11は駆動源41に連結されているから、いわゆるエンジンブレーキとして動作し、車両を減速させる。なお、制御動作は、前述したフライホイール42から車両を加速する場合と同様で、切り替える制御弁5と制御弁4は、それぞれ制御弁9と制御弁8になって同様の動作を行うことで説明できる。
【0044】
車両の減速時における回生動作については、前述したエネルギ蓄積装置またはフライホイール等で行うことが可能である。特に回生を必要としない場合でも、ポンプモータ13,14から吐出される作動油は、ポンプモータ11に流入されることで、ポンプモータ11が連結した原動機が負荷となりエネルギが消費されるため、リリーフ弁等で熱エネルギとして消費させることなく減速できるから、作動油の温度上昇や劣化を防止することができる。
【0045】
本発明によれば、ポンプモータ11,12,13および14は、定吐出量ポンプによっても動作させることが可能であり、可変吐出量ポンプでは実現できない可逆動作も可能となることで、駆動側の原動機等のエンジンブレーキ作用を利用することができるようになる。
【0046】
なお、本発明を実施形態に基づき具体的に説明したが、本発明は上記実施形態に限定されるものでなく、本発明で要求される機能を満足する素子であれば、置き換えが可能である。
【図面の簡単な説明】
【図1】 本発明の油圧装置の構成要素および油圧回路を示す図である。
【図2】 本発明の油圧ポンプを低圧大流量で動作させる装置の構成を図1から抜き出して示す図である。
【図3】 本発明を車両等の減速に運用した構成要素および油圧回路を図1から抜き出して示す図である。
【符号の説明】
1乃至9…制御弁、11,12,13,14…ポンプモータ、31,34…エネルギ蓄積装置またはアキュムレータ、33…圧力センサ、41…駆動源あるいは原動機、42…フライホイール、45…内在または外部付加の慣性体、46乃至49…回転計
【Technical field】
[0001]
A load driven by the hydraulic pressure of a hydraulic pump driven by a drive source having inertia, a device for supplying hydraulic fluid with an increased pressure generated by a control valve switching operation, a flywheel or a hydraulic storage device The present invention relates to a hydraulic device that controls the amount of energy required by a load by supplying or recovering energy using a hydraulic working fluid as a medium with the energy storage device.
[Background]
[0002]
In a hydraulic device having a low-pressure hydraulic source, when the amount of hydraulic oil required by the load changes, surplus hydraulic oil is generated because the discharged hydraulic oil is constant. Therefore, it is necessary to perform control to supply only the hydraulic oil required by the load. For this purpose, the rotational speed of the hydraulic pressure source is changed or the flow rate is adjusted by a throttle valve, a pressure reducing valve, or the like. In a drive source and a hydraulic pump, it is difficult to maintain high efficiency in all rotation regions, and changing the number of rotations becomes a factor that deteriorates efficiency. In addition, adjusting the flow rate is only consumed while losing heat energy, and is a factor of deteriorating efficiency.
[0003]
In order to solve the above problem, a variable discharge pump is used, but this pump has a complicated structure and is expensive. Further, the shaft output of a prime mover such as a heat engine or electric motor as a drive source must be changed as necessary, and it is difficult to maintain high efficiency in all regions. In addition, timely change and adjustment of the discharge pressure and oil amount require a large amount of control equipment, which is disadvantageous in terms of cost.
[0004]
Although it is possible with a constant discharge pump to operate the pump as a motor at a wide range of rotation speeds, it is difficult with a variable discharge pump. Therefore, when a variable discharge pump is mounted as a drive system for a vehicle or the like, reversible control cannot be performed.
DISCLOSURE OF THE INVENTION
[Problems to be solved by the invention]
[0005]
In the present invention, a prime mover such as a heat engine or an electric motor as a driving source is used in the vicinity of the most efficient rotation speed, and the rotation is always efficient regardless of the type of pump such as a constant discharge amount or variable discharge amount pump. It is an object to supply high-efficiency low-flow-rate and high-flow-rate hydraulic oil to a load with high efficiency by switching an external control valve in accordance with a required operation in a state where the operation is performed by a number.
[0006]
It is another object of the present invention to perform control like a variable discharge pump with a constant discharge pump by opening / closing switching operation of a control valve.
[Means for Solving the Problems]
[0007]
In order to solve the above-mentioned problems, in the present invention, a drive source having a required amount of inertia inherently or added thereto, a hydraulic pump driven by the drive source, and a first connected to the discharge side of the hydraulic pump. A control valve, a flow path leading the passage side of the first control valve to the hydraulic oil tank, a check valve with the input side facing the discharge side of the hydraulic pump, and a pipe on the output side of the check valve A first energy storage device provided via a path, and a load connected to a pipeline branched from the pipeline between the first energy storage device and the check valve, A control circuit for switching the opening / closing operation of the control valve, Qm is the torque generated by the drive source 41, and the torque of the hydraulic pump when the first control valve is switched to the blocking side Qp, the moment of inertia around the axis of the drive source is 1, angular velocity Is ω, and the inertial torque of the drive source is I · dω / dt, the value of Qp exceeds the value of Qm in the relational expression of Qp = Qm−I · dω / dt, By repeating the operation of switching the first control valve between the passing side and the blocking side by the control circuit and causing the value of the angular velocity ω of the driving source to perform a self-excited oscillation operation, the rotational speed of the driving source is reduced. A hydraulic device that continuously supplies hydraulic fluid whose pressure has increased when the hydraulic pump is driven with a torque added to an output torque of the drive source to the load. Use as a means.
[0008]
In another embodiment, a rotation detecting means for detecting the number of rotations of the drive source is provided, and when the value of the rotation detecting means decreases to a lower limit set value, the control circuit causes the first on-off valve to pass through the first on-off valve. 2. The state is switched, and when the value of the rotation detecting means increases to an upper limit set value, the control circuit switches the first control valve to a blocking side state and repeats these operations. The described hydraulic device is used as means.
[0009]
In another embodiment, the control circuit includes a rotation detection unit that detects the number of rotations of the drive source, and determines the timing for repeatedly switching the first control valve according to the value of the rotation detection unit. 2. The hydraulic apparatus according to claim 1, wherein the first control valve is repeatedly switched between a passing side and a blocking side.
[0010]
In another embodiment, pressure detecting means provided on the output side of the check valve is provided, and when the value of the pressure detecting means increases to an upper limit set value, the control circuit controls the first control valve 1. When the value of the pressure detection means decreases to a lower limit set value, the first control valve is switched to the blocking state by the control circuit and these operations are repeated. The hydraulic device according to claim 1 is used as means.
[0011]
In another embodiment, the control includes pressure detecting means provided on the output side of the check valve, and determines the timing for repeatedly switching the first control valve according to the value of the pressure detecting means. 2. The hydraulic apparatus according to claim 1, wherein the first control valve is repeatedly switched between a passing side and a blocking side by a circuit.
[0012]
A second control valve connected to a pipe branched from a pipe between the first energy storage device and the check valve and provided with the load on the downstream side; and the second control valve And a check valve with the input side directed to the hydraulic oil tank in a pipe branched from the pipe between the load and the load, and repeatedly switching the second control valve between the passing side and blocking state 6. The hydraulic device according to claim 1, wherein the load is intermittently accelerated when the required oil amount of the load is greater than a supply oil amount of a hydraulic pump. Use as a means.
【The invention's effect】
[0013]
In the present invention, the hydraulic oil discharged from the constant pressure hydraulic power source can be efficiently supplied from the high pressure small flow rate to the low pressure large flow rate by switching the control valve according to the required load. A prime mover such as a heat engine or electric motor can be used in the vicinity of the most efficient rotational speed, and the driven hydraulic pump is always efficient regardless of the type, such as a constant discharge amount or variable discharge amount pump. Since it can be operated at a good rotational speed, the conventional element can be operated efficiently, and the efficiency of the entire system can be further increased.
[0014]
In addition, according to this operation, energy loss that has been discarded as surplus in the conventional constant discharge pump is also eliminated, so temperature rise and deterioration of the hydraulic oil can be prevented, and the operation as a variable discharge pump Since the pump can be realized without changing the capacity, the same function as the variable discharge pump can be realized by the constant discharge pump without using an expensive variable discharge pump.
[0015]
In addition, when the hydraulic device of the present invention is used as a drive device for a vehicle or the like, regenerative braking is realized by collecting the kinetic energy of a traveling vehicle or the like, or the prime mover that is a drive source functions as an engine brake. In the meantime, the reversible operation of the pump motor becomes free and high-efficiency operation is possible. Moreover, when it does not regenerate, the temperature rise of hydraulic fluid can be prevented.
BEST MODE FOR CARRYING OUT THE INVENTION
[0016]
FIG. 1 is a diagram showing a hydraulic circuit including components of a hydraulic device according to the present invention and a flow path connecting them. In FIG. 1, reference numeral 41 denotes a drive source, which is mainly a heat engine, but other types can also be adopted. An inertial body, specifically, a flywheel 45 is attached to the shaft 201 of the drive source 41, and the hydraulic pump 11 is driven by the shaft 202. If the drive source itself has a large moment of inertia, the external flywheel 45 can be omitted if the inertia is inherent. FIG. 1 shows the entire system of a hydraulic system, and a plurality of parts responsible for different functions and operations are organically coupled. Incidentally, the hydraulic pump 11 will be described later in the present hydraulic device, also constitutes a third pump motor Ru also functions of the motor.
[0017]
A pipe line 105 is connected to the discharge side of the hydraulic pump 11, and a branched pipe line 106 communicates with the pipe line 105 and operates via the control valve 1 constituting the first control valve of each claim. A conduit 107 leading to the oil tank 21 is connected. In the state where the drive source 41 is started and the hydraulic pump 11 is operating at a preset rotation speed, that is, at the set rotation speed, the hydraulic oil is supplied from the hydraulic oil tank 21 to the pipeline 101, the filter 22, the pipeline 102, and the reverse. The air is sucked into the hydraulic pump 11 through the stop valve 23 through a flow path that reaches the inflow side pipe 104 of the hydraulic pump 11.
[0018]
The suctioned hydraulic oil is discharged by the hydraulic pump 11, and flows from the discharge side pipe line 105 to the hydraulic oil tank 21 through the pipe line 106, the passage side 1 a of the control valve 1, and the pipe line 107. In a state where the control valve 1 is switched to the passage side 1a, an unload flow path is formed after the pipe line 106.
[0019]
In this state, when the control valve 1 is switched from the passage side 1a to the blocking side 1b, the hydraulic oil whose pressure has been increased by the hydraulic pump 11 driven by the drive source 41 passes through the pipelines 105 and 108 on the input side. Is passed through the check valve 24 that is connected so that the load is connected to the output side of the check valve 24. As described above, when the control valve 1 is switched from the passage side 1a to the blocking side 1b, the discharge pressure that can be continuously generated by the hydraulic pump 11 operated by the drive source 41 at the set rotational speed, that is, during the normal operation of the hydraulic pump 11 A pressure higher than the discharge pressure is generated.
[0020]
The drive source 41 is a prime mover such as a heat engine or an electric motor. When the torque that can be generated is Qm, if the torque of the hydraulic pump 11 driven by the drive source is Qp, Qm = Qp It is clear that this relationship holds. Here, if the inertia moment of the drive source 41 is I and the angular velocity is ω, the inertia torque required when the drive source accelerates or decelerates can be expressed by I · dω / dt. Note that I · dω / dt has a value of + when accelerating and − when decelerating.
[0021]
In the apparatus of the present invention, when the control valve 1 is in the state of the passing side 1a, the drive source 41 is controlled to maintain the set rotation. When the control valve 1 is switched to the blocking side 1b, the inertia torque I · dω / dt of the drive source 41 is added to Qm, and the relationship of Qp = Qm−I · dω / dt is established. Therefore, by adding inertia torque due to deceleration, an output torque larger than the input torque Qm of the hydraulic pump 11 during normal operation can be obtained, and as a result, hydraulic oil whose pressure has increased can be supplied to the load. .
[0022]
The description so far has been made only when the operation of switching the control valve 1 from the passing side 1a to the blocking side 1b is performed only once, but switching from the blocking side 1b to the passing side 1a and switching back to the blocking side 1b again. By repeating the operation (switching operation), high-pressure hydraulic oil can be continuously supplied to the load as described above.
[0023]
In this way, in the present invention, since a high hydraulic pressure can be supplied with a smaller drive source, it is possible to drive without providing a drive source having an output torque that matches the maximum load torque required by the load, There is a big economic advantage. The maximum pressure that can be generated can be set according to the moment of inertia I of the drive source 41 and the magnitude of the angular acceleration dω / dt.
[0024]
The switching operation of the control valve 1 is performed as follows. In FIG. 1, the flywheel 45 is provided with a tachometer 49, and the rotation speed of the drive source 41 is detected by this tachometer 49. A pressure sensor 33 is provided on the output side of the check valve 24. It can be detected by the tachometer 49 that the load torque of the hydraulic pump 11 exceeds the output torque of the drive source 41, and as a result, the rotational speed has decreased to the lower limit set value of the rotational speed.
[0025]
When the rotational speed becomes equal to or lower than the lower limit set value, the control valve 1 is switched to the passing side 1a to set the unload state, that is, the state where the load of the hydraulic pump 11 is removed. As a result, the load torque applied to the drive source 41 decreases, and the rotational speed gradually increases to the upper limit set value or more. At this time, the operation of switching the control valve 1 to the blocking side 1b is performed again. Needless to say, this switching operation can be performed at the moment when the set value is predicted to be reached either at the moment when the upper limit set value is reached or at a later time. In this way, the control valve 1 repeatedly performs the switching operation to maintain the self-excited operation. The speed of change of the rotational speed of the hydraulic pump 11, that is, the speed of change of the hydraulic oil discharge amount depends on the moment of inertia around the axis of the hydraulic pump 11.
[0026]
The pressure sensor 33 measures the pressure state on the output side of the check valve 24. When the measured value of the pressure sensor 33 reaches a predetermined set value, the control valve 1 is switched from the blocking side 1b to the passing side 1a, and the hydraulic oil discharged from the hydraulic pump 11 is returned to the hydraulic oil tank 21. By this operation, the load on the prime mover is unloaded, and the rotational speed increases. As described above, the sensor used for determining the switching timing is the detection means that constitutes each claim such as the pressure sensor 33 and the tachometer 49, the sensor that monitors the load state, and the switching timing is known in advance. In such a case, it is also possible to carry out according to the external clock timing without monitoring the state.
[0027]
On the output side of the check valve 24, a first energy storage device 31 provided via lines 109 and 110, and a pipe line 115 between the first energy storage device 31 and the check valve 24. , 116 and the control valve 2 constituting the second control valve of each claim, and a load 12 provided on the downstream side of the control valve 2. In the embodiment, the load 12 is the hydraulic motor 12 provided with the second energy storage device 42. As a specific device of the second energy storage device 42, a flywheel attached to the hydraulic motor 12 is used. It is. As will be described later, the hydraulic motor 12 also constitutes a second pump motor of each claim that also serves as a pump in the hydraulic apparatus.
[0028]
When the control valve 2 is switched to the passage side 2a, hydraulic fluid flows into the hydraulic motor 12 from the hydraulic pump 11 driven by the drive source 41 and the accumulator 31 as an energy storage device, and from the discharge-side pipe 124. The oil is returned to the hydraulic oil tank 21 via the control valve 4 in the middle of the pipe line leading to the branched hydraulic oil tank 21. By this operation, the flywheel 42 provided in the hydraulic motor 12 is accelerated.
[0029]
Between the control valve 2 and the hydraulic motor 12, pipes 120, 121, 122 provided with a check valve 26 connected to the hydraulic oil tank 21 with the input side directed are provided. The reason will be described with reference to FIG. FIG. 2 shows the main elements for explanation extracted from FIG. When the rotation speed of the hydraulic motor 12 increases and the required oil amount of the hydraulic motor 12 becomes larger than the supply oil amount of the hydraulic pump 11, the hydraulic motor 12 cannot be accelerated.
[0030]
At this time, the control valve 2 is switched from the passage side 2a to the blocking side 2b. By this operation, the hydraulic oil is accumulated in the accumulator 31, and the hydraulic motor 12 enters the freewheeling state by the check valve 26. When a predetermined amount of hydraulic oil is accumulated in the accumulator, when the control valve 2 is switched to the passage side 2a again, the accumulated hydraulic oil flows into the hydraulic motor 12, and the hydraulic motor 12 is accelerated. In this way, by repeating the switching operation of the control valve 2, even when the required oil amount of the hydraulic motor 12 is larger than the supplied oil amount of the hydraulic pump 11, acceleration can be intermittently performed. Therefore, although the acceleration average pressure is low, a large flow rate can be supplied to the load.
[0031]
Next, the case where the hydraulic device of the present invention is used as a vehicle drive device will be described. In FIG. 1, a check valve 27 connected to the discharge side of the hydraulic motor 12 with the input side directed through a pipe line is provided, and an accumulator 34 and a control valve 5 are provided on the output side. A pressure sensor 36 is also provided on the output side of the check valve 27. Between the pipes 128 and 129 on the output side of the check valve 27, pipes 160 and 161 having the control valve 6 communicating with the pipes 103 and 104 on the inflow side of the hydraulic pump 11 are branched and communicated. In addition, when the flywheel 42 is operating at a preset rotation speed, the control valve 6 supplies hydraulic oil to the pump motor 11 by the pump motor 12 by performing an opening / closing operation, and starts the drive source 41. Used to perform operations such as
[0032]
The 13 and 14 located downstream of the control valve 5 is a pump motor which constitutes the first pump motor, 43 and 44 connected to the pump motor 13 and 14, a simplified vehicle wheels or the like driven by these It is shown in the form. The control valve 7 to which the pump motors 13 and 14 are connected controls the traveling direction of the vehicle. Connected to the pipes 136 and 138 between the control valve 5 and the control valve 7 are pipes 117 and 118 provided to directly drive the vehicle from the drive source 41, the control valve 3 and the pipe 137.
[0033]
On the discharge side of the pump motors 13 and 14, a conduit 155 , a control valve 8 constituting a third control valve, and a conduit 157 are connected to return the discharged hydraulic oil to the hydraulic oil tank 21. A check valve 30 is connected to the pipe line 158 connected to the pipe line 155 with the input side directed.
[0034]
In the vehicle configured as described above, the start and acceleration operations will be described first. Since starting is when the initial speed of acceleration is zero, and acceleration gives acceleration force during running, both will be described simply as acceleration in the future. When accelerating the vehicle, only the drive source 41 is used, only the flywheel 42 operating at a preset number of revolutions is used, and both the drive source 41 and the flywheel 42 are used. There are three cases of cases.
[0035]
When the vehicle is accelerated only by the drive source 41, the control valves 2, 5, and 6 and the control valve 9 in the middle of the bypass line from the output side of the check valve 30 to the line 161 are set to the blocking side. When the control valve 8 is switched to the pass side 8a, the control valve 3 is fixed to the pass side 3a, and the control valve 1 is repeatedly switched to the pass side 1a and the blocking side 1b depending on the situation, When the valve 1 is fixed to the blocking side 1b, the control valve 3 is switched to the passage side 3a and the blocking side 3b repeatedly according to the situation, and both the control valves 1 and 3 are switched as necessary. There are three more cases. However, the control valve 5 can be switched according to the situation. Further, an acceleration operation can be performed even if a control valve not shown in the figure is arranged in the pipe line 138 and the same operation as described above is performed.
[0036]
When accelerating only with the flywheel 42, the flywheel 42 operating within a preset range becomes the driving side, and thereby the control operation when accelerating the vehicle on the driven side is at least a control valve 3 and 6 and 9 are set to the blocking side and the control valve 8 is set to the passing side 8a, the control valve 5 is fixed to the passing side 5a, and the control valve 4 is repeatedly set to the passing side 4a and the blocking side 4b depending on the situation. Same as the previous column when switching operation is performed, when the control valve 4 is fixed to the blocking side 4b and the control valve 5 is repeatedly switched operation, and when both the control valves 4 and 5 are repeatedly switched operation There are three cases.
[0037]
Further, even when the vehicle is accelerated by both the drive source 41 and the flywheel 42, it is possible by repeatedly switching the control valve according to the situation as described above.
[0038]
Here, the switching operation according to the state of the control valve will be described. Although the amount of hydraulic oil changes according to the speed of the vehicle, the amount can be determined by detecting the state of the driven pump motors 13, 14 and the like, and the amount of oil that can be supplied is also the driving side. This can be determined by detecting the rotational speed of the pump motor 11 or 12 or the like. When detecting the rotation state, the means for detecting each state includes a sensor 46 provided on the flywheel 42, sensors 47 and 48 provided on the pump motors 13 and 14, and a sensor 49 provided on the flywheel 45. Etc. Moreover, when detecting the state of hydraulic fluid, it is performed by the sensors 33, 36, etc. The switching operation is performed according to these detected values. The flow rate can be measured with a flow rate sensor or the like.
[0039]
For example, when the sensor 36 reaches a preset upper limit pressure, the control valve 4 is switched to the passing side 4a, and when the preset lower limit pressure is reached, the control valve 4 is switched again to the blocking side 4b, and this switching operation is performed. Accelerate by iteration. Thus, the acceleration can be controlled by changing the upper limit and lower limit pressure set values. In addition, when the states of the driving side and the driven side can be grasped in advance, the control valve can be switched by a control signal or a clock output from a separately provided control circuit.
[0040]
The hydraulic oil for accelerating the vehicle passes through the control valve 3 from the hydraulic pump 11 in FIG. 1 and flows into the pump motors 13 and 14, and is discharged to the hydraulic oil tank 21 via the passage side 8 a of the control valve 8. . In a state where the flywheel 42 attached to the hydraulic motor 12 is rotating, the pump motor 12 is operated as a hydraulic pump, and the accumulator 34 is accumulated from the hydraulic oil tank 21 via the discharge side pipe line. The hydraulic oil can be used for driving.
[0041]
Next, a case where the vehicle is in a coasting state will be described. In this case, if at least the control valves 3, 5 and 6 are on the blocking side and the control valve 8 is switched to the passing side 8a, the input side to the hydraulic oil tank 21 communicating between the pipelines 138 and 142 is connected. Pipe lines 139, 140, 141 provided with a check valve 29 connected in the direction serve as a freewheeling circuit for the pump motors 13, 14, and the hydraulic oil passes through the control valves 7, 8 to the hydraulic oil tank 21. Returned. In this state, the vehicle is in a coasting state. It is also possible to coast by using a control valve 7 other than the type shown in FIG. 1 and configuring the pump motors 13 and 14 as closed circuits.
[0042]
Finally, a case where the vehicle is decelerated will be described. There are two patterns of deceleration operations: a deceleration operation with regeneration and a deceleration operation without regeneration. First, the deceleration operation accompanied by regeneration will be described. The output side of the check valve 30 connected to the discharge side of the pump motors 13, 14 is connected to the input side of the control valve 2. As a result, the drive side becomes the pump motors 13 and 14, and the driven side becomes the second pump motor 12 that drives the flywheel 42, and the flywheel 42 is accelerated, which becomes a load and reduces the speed of the vehicle. Do. The control operation is the same as that when accelerating the vehicle from the flywheel 42. The control valve 5 and the control valve 4 to be switched become the control valve 2 and the control valve 8, respectively, and can be explained by performing the same operation.
[0043]
Next, the deceleration operation without regeneration will be described. FIG. 3 shows a circuit configuration necessary for decelerating the vehicle without regenerating kinetic energy, which is extracted from FIG. The operation in this configuration will be described. When the vehicle decelerates, the hydraulic oil discharged from the pump motors 13 and 14 flows into the pump motor 11 that operates as a motor. Since the pump motor 11 is connected to the drive source 41, it operates as a so-called engine brake and decelerates the vehicle. The control operation is the same as that in the case of accelerating the vehicle from the flywheel 42 described above, and the control valve 5 and the control valve 4 to be switched become the control valve 9 and the control valve 8, respectively, and perform the same operation. it can.
[0044]
The regenerative operation at the time of deceleration of the vehicle can be performed by the energy storage device or the flywheel described above. Even when regeneration is not particularly required, the hydraulic oil discharged from the pump motors 13 and 14 flows into the pump motor 11 and the prime mover connected to the pump motor 11 becomes a load and energy is consumed. Since it can decelerate without making it consume as heat energy with a valve etc., the temperature rise and deterioration of hydraulic fluid can be prevented.
[0045]
According to the present invention, the pump motors 11, 12, 13 and 14 can be operated by a constant discharge pump, and a reversible operation that cannot be realized by a variable discharge pump is also possible. The engine braking action of a prime mover etc. can be utilized now.
[0046]
Although the present invention has been specifically described based on the embodiments, the present invention is not limited to the above-described embodiments, and can be replaced as long as the elements satisfy the functions required by the present invention. .
[Brief description of the drawings]
FIG. 1 is a diagram showing components and a hydraulic circuit of a hydraulic device according to the present invention.
FIG. 2 is a diagram extracted from FIG. 1 and showing the configuration of an apparatus for operating the hydraulic pump of the present invention at a low pressure and a high flow rate.
FIG. 3 is a diagram extracted from FIG. 1 showing components and a hydraulic circuit in which the present invention is operated for deceleration of a vehicle or the like.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 thru | or 9 ... Control valve, 11, 12, 13, 14 ... Pump motor, 31, 34 ... Energy storage device or accumulator, 33 ... Pressure sensor, 41 ... Drive source or prime mover, 42 ... Flywheel, 45 ... Internal or external Additional inertial body, 46 to 49 ... tachometer

Claims (6)

所要量の慣性を内在または付加により具備した駆動源41と、
この駆動源41によって駆動される油圧ポンプ11と、
この油圧ポンプ11の吐出側に接続された第1の制御弁1と、
この第1の制御弁1の通過側1aを作動油タンク21へ導く流路と、
前記油圧ポンプ11の吐出側に入力側を向けた逆止弁24と、
この逆止弁24の出力側に管路109,110を介して設けられた第1のエネルギ蓄積装置31と、
この第1のエネルギ蓄積装置31と前記逆止弁24との間の管路から分岐された管路に接続された負荷と、
前記第1の制御弁1の開閉動作の切り替えを行う制御回路とを備え、
前記駆動源41が発生するトルクをQm、
前記第1の制御弁1が阻止側1bに切り替えられた状態にある場合の油圧ポンプ11のトルクをQp、
前記駆動源41の軸周りの慣性モーメントをI、角速度をω、
および前記駆動源41が有する慣性トルクをI・dω/dtとしたときに、
Qp=Qm−I・dω/dtの関係式において、
Qpの値がQmの値を超える値にあり、
前記制御回路により前記第1の制御弁1を通過側1a、阻止側1bの状態に切り替える動作を反復させ、
前記駆動源41の角速度ωの値を自励振動動作させることで、
前記駆動源41の回転数が減速することで得られる慣性トルクが、
前記駆動源41の出力トルクに付加されたトルクで前記油圧ポンプ11を駆動したときに圧力上昇した作動油を前記負荷に連続的に供給することを特徴とする油圧装置。
A drive source 41 having the required amount of inertia inherently or in addition;
A hydraulic pump 11 driven by the drive source 41;
A first control valve 1 connected to the discharge side of the hydraulic pump 11;
A flow path for guiding the passage side 1a of the first control valve 1 to the hydraulic oil tank 21,
A check valve 24 with the input side facing the discharge side of the hydraulic pump 11,
A first energy storage device 31 provided on the output side of the check valve 24 via lines 109 and 110 ;
A load connected to a pipe branched from the pipe between the first energy storage device 31 and the check valve 24;
A control circuit for switching the opening and closing operation of the first control valve 1,
The torque generated by the drive source 41 is Qm,
The torque of the hydraulic pump 11 when the first control valve 1 is switched to the blocking side 1b is Qp,
The moment of inertia around the axis of the drive source 41 is I, the angular velocity is ω,
When the inertia torque of the drive source 41 is I · dω / dt,
In the relational expression of Qp = Qm−I · dω / dt,
The value of Qp is above the value of Qm,
The operation of switching the first control valve 1 to the state of the passing side 1a and the blocking side 1b by the control circuit is repeated,
By causing the value of the angular velocity ω of the drive source 41 to perform a self-excited vibration operation,
The inertia torque obtained by reducing the rotational speed of the drive source 41 is
A hydraulic apparatus characterized by continuously supplying hydraulic fluid whose pressure has increased when the hydraulic pump 11 is driven with a torque added to an output torque of the drive source 41 to the load.
前記駆動源41の回転数を検知する回転検知手段49を備え、
前記回転検知手段49の値が下限設定値まで減少したとき前記制御回路により前記第1の制御弁1を通過側1aの状態に切り替え、
前記回転検知手段49の値が上限設定値まで増大したとき前記制御回路により前記第1の制御弁1を阻止側1bの状態に切り替え、
これらの動作を反復させることを特徴とする請求項1記載の油圧装置。
A rotation detecting means 49 for detecting the rotation speed of the drive source 41;
When the value of the rotation detecting means 49 decreases to the lower limit set value, the control circuit switches the first control valve 1 to the state of the passing side 1a,
When the value of the rotation detecting means 49 increases to the upper limit set value, the control circuit switches the first control valve 1 to the blocking side 1b state,
The hydraulic apparatus according to claim 1, wherein these operations are repeated.
前記駆動源41の回転数を検知する回転検知手段49を備え、
前記回転検知手段49の値に応じて前記第1の制御弁1の反復切り替えを行うタイミングを決定する前記制御回路により、
前記第1の制御弁1が通過側1a、阻止側1bの状態に反復切り替えさせることを特徴とする請求項1記載の油圧装置。
A rotation detecting means 49 for detecting the rotation speed of the drive source 41;
By the control circuit that determines the timing for performing the repeated switching of the first control valve 1 according to the value of the rotation detecting means 49,
The hydraulic apparatus according to claim 1, wherein the first control valve (1) repeatedly switches between a passing side (1a) and a blocking side (1b).
前記逆止弁24の出力側に設けられた圧力検知手段33を備え、
この圧力検知手段33の値が上限設定値まで増大したとき前記制御回路により前記第1の制御弁1を通過側1aの状態に切り替え、
前記圧力検知手段33の値が下限設定値まで減少したとき前記制御回路により前記第1の制御弁1を阻止側1bの状態に切り替え、
これらの動作を反復させることを特徴とする請求項1記載の油圧装置。
Pressure detecting means 33 provided on the output side of the check valve 24 ,
When the value of the pressure detecting means 33 increases to the upper limit set value, the control circuit switches the first control valve 1 to the state of the passing side 1a,
When the value of the pressure detecting means 33 decreases to the lower limit set value, the control circuit switches the first control valve 1 to the blocking side 1b state,
The hydraulic apparatus according to claim 1, wherein these operations are repeated.
前記逆止弁24の出力側に設けられた圧力検知手段33を備え、
前記圧力検知手段33の値に応じて前記第1の制御弁1の反復切り替えを行うタイミングを決定する前記制御回路により、
前記第1の制御弁1が通過側1a、阻止側1bの状態に反復切り替えさせることを特徴とする請求項1記載の油圧装置。
Pressure detecting means 33 provided on the output side of the check valve 24,
By the control circuit for determining the timing for performing the repeated switching of the first control valve 1 according to the value of the pressure detection means 33,
The hydraulic apparatus according to claim 1, wherein the first control valve (1) repeatedly switches between a passing side (1a) and a blocking side (1b).
前記第1のエネルギ蓄積装置31と前記逆止弁24との間の管路109、110から分岐された管路に接続され、下流側に前記負荷12が設けられた第2の制御弁2と、
この第2の制御弁2と前記負荷12との間の管路から分岐した管路に作動油タンク21へ入力側を向けた逆止弁26とを備え、
前記第2の制御弁2を通過側2a、阻止側2bの状態に切り替える動作を反復させ、
前記負荷12の必要油量が前記油圧ポンプ11の供給油量より多いとき、
間欠的に前記負荷12を加速することを特徴とする請求項1から5記載のうちいずれか1項に記載の油圧装置。
A second control valve 2 connected to a pipe branched from pipes 109 and 110 between the first energy storage device 31 and the check valve 24 and provided with the load 12 on the downstream side ; ,
A check valve 26 having an input side directed to the hydraulic oil tank 21 in a pipe branched from the pipe between the second control valve 2 and the load 12,
The operation of switching the second control valve 2 to the state of the passing side 2a and the blocking side 2b is repeated,
When the required oil amount of the load 12 is larger than the supply oil amount of the hydraulic pump 11,
The hydraulic apparatus according to any one of claims 1 to 5 , wherein the load 12 is intermittently accelerated.
JP2001356727A 2001-10-19 2001-10-19 Hydraulic device Expired - Fee Related JP3679749B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2001356727A JP3679749B2 (en) 2001-10-19 2001-10-19 Hydraulic device
TW091122205A TW539812B (en) 2001-10-19 2002-09-26 Hydraulic equipment
MXPA04003557A MXPA04003557A (en) 2001-10-19 2002-10-18 Hydraulic equipment.
PCT/JP2002/010849 WO2003036100A1 (en) 2001-10-19 2002-10-18 Hydraulic equipment
CA002473966A CA2473966C (en) 2001-10-19 2002-10-18 Hydraulic apparatus
EP02775375A EP1439310A4 (en) 2001-10-19 2002-10-18 Hydraulic equipment
CNB028252535A CN100404881C (en) 2001-10-19 2002-10-18 Hydraulic equipment
AU2002344002A AU2002344002B8 (en) 2001-10-19 2002-10-18 Hydraulic equipment
US10/492,978 US7043906B2 (en) 2001-10-19 2002-10-18 Hydraulic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001356727A JP3679749B2 (en) 2001-10-19 2001-10-19 Hydraulic device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004298199A Division JP4126303B2 (en) 2004-09-11 2004-09-11 Hydraulic device

Publications (2)

Publication Number Publication Date
JP2003130006A JP2003130006A (en) 2003-05-08
JP3679749B2 true JP3679749B2 (en) 2005-08-03

Family

ID=19168195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001356727A Expired - Fee Related JP3679749B2 (en) 2001-10-19 2001-10-19 Hydraulic device

Country Status (9)

Country Link
US (1) US7043906B2 (en)
EP (1) EP1439310A4 (en)
JP (1) JP3679749B2 (en)
CN (1) CN100404881C (en)
AU (1) AU2002344002B8 (en)
CA (1) CA2473966C (en)
MX (1) MXPA04003557A (en)
TW (1) TW539812B (en)
WO (1) WO2003036100A1 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3979917B2 (en) * 2002-10-18 2007-09-19 サクサ株式会社 Hydraulic device
DE202007011783U1 (en) * 2007-08-23 2008-12-24 Liebherr-France Sas, Colmar Hydraulic drive, in particular an excavator, in particular for a slewing gear
DE102009025707B4 (en) * 2009-06-20 2021-06-02 Robert Bosch Gmbh Device for controlling a system with hydraulic circuits
KR101652112B1 (en) * 2009-12-23 2016-08-29 두산인프라코어 주식회사 Hybrid Excavator Boom Actuator System and its Control Method
KR20110127773A (en) * 2010-05-20 2011-11-28 두산산업차량 주식회사 Energy reclaiming system for an electric forklift truck
KR101390078B1 (en) * 2010-12-24 2014-05-30 두산인프라코어 주식회사 Hybrid excavator boom actuator system and control method thereof
CN102108948B (en) * 2010-12-28 2012-11-28 山河智能装备股份有限公司 Renewable energy power generating system applicable to electrocar for loading, unloading and transporting
CN103717808A (en) * 2011-08-12 2014-04-09 伊顿公司 Method and apparatus for recovering inertial energy
CN102384120A (en) * 2011-10-24 2012-03-21 江苏谷登工程机械装备有限公司 Volume speed-regulation hydraulic system of unit head of core drill
KR102046673B1 (en) * 2011-12-23 2019-11-19 제이씨 뱀포드 엑스카베이터즈 리미티드 A hydraulic system including a kinetic energy storage device
CN102797713B (en) * 2011-12-29 2015-01-21 南京工程学院 Rotating disc type variable flywheel
CN102797728B (en) * 2011-12-29 2015-02-04 南京工程学院 Variable flywheel-based energy-saving hydraulic vibration system and working mode thereof
KR101956959B1 (en) 2012-01-09 2019-03-11 이턴 코포레이션 Method for obtaining a full range of lift speeds using a single input
KR101908135B1 (en) * 2012-01-30 2018-10-15 두산인프라코어 주식회사 Boom Actuating System of Hybrid Excavator and Control Method
US9982690B2 (en) * 2012-02-28 2018-05-29 Eaton Intelligent Power Limited Digital hydraulic transformer and method for recovering energy and leveling hydraulic system loads
WO2015171692A1 (en) 2014-05-06 2015-11-12 Eaton Corporation Hydraulic hybrid propel circuit with hydrostatic option and method of operation
US9667098B2 (en) * 2014-07-11 2017-05-30 Bassem Soueidan Hydraulically-driven extended-runtime flywheel uninterruptible power supply
US9879700B1 (en) 2014-07-22 2018-01-30 Boston Dynamics, Inc. Robotic hydraulic system
JP6806409B2 (en) 2014-10-27 2021-01-06 イートン コーポレーションEaton Corporation Flood hybrid propulsion circuit with static pressure option and its operation method
CN105697474B (en) * 2014-12-11 2020-10-16 罗伯特·博世有限公司 Hydraulic device for a work machine and method for a hydraulic device
CN104831774B (en) * 2015-04-16 2017-07-07 湖南网大科技有限公司 A kind of loading machine walking Brake energy recovery auxiliary drive and control method
JP6506146B2 (en) * 2015-09-14 2019-04-24 株式会社神戸製鋼所 Hydraulic drive of work machine
AT517070B1 (en) 2015-10-08 2016-11-15 Engel Austria Gmbh Hydraulic drive device for a molding machine
EP3258137A1 (en) * 2016-06-13 2017-12-20 DANA ITALIA S.r.l. Hydraulic driveline with a secondary module
US10480159B2 (en) 2017-06-05 2019-11-19 Caterpillar Inc. Kinetic energy recovery system for a machine
JP7037290B2 (en) * 2017-06-27 2022-03-16 川崎重工業株式会社 Hydraulic drive system
CN107965479B (en) * 2017-11-27 2020-07-07 徐州工业职业技术学院 Quick compensation mechanism of mechanical-hydraulic composite energy and energy-saving electro-hydraulic system
CN108915021B (en) * 2018-07-27 2021-02-05 徐州工业职业技术学院 Multi-mode rotary electrohydraulic control system for hydraulic excavator
CN108978773B (en) * 2018-08-29 2020-10-16 徐州工业职业技术学院 Multi-element hybrid power system for excavator
CN109797797B (en) * 2018-12-27 2021-03-23 徐州工业职业技术学院 Torque coupling type excavator movable arm potential energy recycling and reusing system
CN110778537A (en) * 2019-11-05 2020-02-11 宁波路佳机械科技有限公司 Energy-saving hydraulic station
CN114508512A (en) * 2022-02-23 2022-05-17 农业农村部南京农业机械化研究所 Energy-saving hydraulic system for driving chassis

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5160876A (en) 1974-11-25 1976-05-27 Hitachi Construction Machinery FURAIHOIRUKUDOSHIKYUATSUKUDOSOCHI
JPS52119777A (en) 1976-03-31 1977-10-07 Inasaka Haguruma Seisakushiyo Operating means of hydraulic cylinder and the like
JPS5535773A (en) 1978-09-05 1980-03-12 Oiru Doraibu Kogyo Kk Hydraulic elevator
JPH01303302A (en) 1988-06-01 1989-12-07 Tochigi Fuji Ind Co Ltd Pressure supplying device
JP3064574B2 (en) 1991-09-27 2000-07-12 株式会社小松製作所 Working oil amount switching control device for hydraulic excavator
JP3508955B2 (en) * 1995-03-24 2004-03-22 株式会社小松製作所 Hydraulic motor drive
JPH0972313A (en) 1995-09-06 1997-03-18 Tokimec Inc Hydraulic device system
JPH0988906A (en) * 1995-09-25 1997-03-31 Daiichi Denki Kk Fluid hydraulic drive device with fly wheel
US5733095A (en) * 1996-10-01 1998-03-31 Caterpillar Inc. Ride control system
JP3437758B2 (en) * 1998-03-31 2003-08-18 住友重機械工業株式会社 Crank press
JP4761410B2 (en) * 1999-09-13 2011-08-31 パスカルエンジニアリング株式会社 Die cushion device
US6467264B1 (en) * 2001-05-02 2002-10-22 Husco International, Inc. Hydraulic circuit with a return line metering valve and method of operation

Also Published As

Publication number Publication date
JP2003130006A (en) 2003-05-08
EP1439310A4 (en) 2005-07-27
EP1439310A1 (en) 2004-07-21
WO2003036100A1 (en) 2003-05-01
CN100404881C (en) 2008-07-23
MXPA04003557A (en) 2004-07-30
US20050042121A1 (en) 2005-02-24
US7043906B2 (en) 2006-05-16
CA2473966C (en) 2008-06-17
CN1604995A (en) 2005-04-06
AU2002344002B2 (en) 2006-02-16
CA2473966A1 (en) 2003-05-01
TW539812B (en) 2003-07-01
AU2002344002B8 (en) 2006-02-23

Similar Documents

Publication Publication Date Title
JP3679749B2 (en) Hydraulic device
JP4057651B2 (en) Continuously smooth transmission
US6971463B2 (en) Energy recovery system for work vehicle including hydraulic drive circuit and method of recovering energy
JPH0882367A (en) Gear shifter for hydraulic type drive device and gear shift control method therefor
JPH11350539A (en) Traveling aid hydraulic circuit of hydraulic drive working vehicle
US20220307595A1 (en) Hydraulic circuit architecture with enhanced operation efficency
JP2006521513A (en) Power transmission system for driving automobiles
JP4126303B2 (en) Hydraulic device
JP4088192B2 (en) Hydraulic device
JP2003264903A (en) Device for driving wheel work vehicle
JP2009024747A (en) Hydraulic travel driving apparatus
JP2004239391A (en) Hydraulic apparatus
JP3167526B2 (en) Vehicle hydraulic drive system
JP2899919B2 (en) Driving method of cooling fan
JP2004211779A (en) Fluid supply device and oil supply device for transmission
JP3243054B2 (en) Vehicle control device
EP4425764A1 (en) Hydraulically brakeable electrical machine
JPH10250402A (en) Hydraulic controller of automatic transmission with regenerative function and regeneration method thereof
JP3742941B2 (en) Braking energy regeneration device
JPH11227590A (en) Anti-lock brake device for vehicle
JP3545111B2 (en) Constant pressure control hydraulic drive
JPH06156220A (en) Braking energy regeneration device
JPH11344115A (en) Method for controlling power recovery of vehicle and method for controlling power regeneration
JPH11311327A (en) Power recovery control method for vehicle
JPH07137615A (en) Braking energy regenerative device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050513

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees