JP3677959B2 - Preceding vehicle tracking control device - Google Patents

Preceding vehicle tracking control device Download PDF

Info

Publication number
JP3677959B2
JP3677959B2 JP23065197A JP23065197A JP3677959B2 JP 3677959 B2 JP3677959 B2 JP 3677959B2 JP 23065197 A JP23065197 A JP 23065197A JP 23065197 A JP23065197 A JP 23065197A JP 3677959 B2 JP3677959 B2 JP 3677959B2
Authority
JP
Japan
Prior art keywords
vehicle
inter
gain
speed
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23065197A
Other languages
Japanese (ja)
Other versions
JPH1159222A (en
Inventor
章 東又
健 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP23065197A priority Critical patent/JP3677959B2/en
Priority to US09/049,100 priority patent/US5959572A/en
Priority to DE19814186A priority patent/DE19814186B4/en
Priority to KR1019980011007A priority patent/KR100275436B1/en
Priority to GB9806915A priority patent/GB2324283B/en
Publication of JPH1159222A publication Critical patent/JPH1159222A/en
Application granted granted Critical
Publication of JP3677959B2 publication Critical patent/JP3677959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0022Gains, weighting coefficients or weighting functions

Description

【0001】
【発明の属する技術分野】
本発明は、先行車を認識して一定の車間距離を保ちつつ追従する先行車追従制御装置に関する。
【0002】
【従来の技術】
自車速Vと、車間距離偏差ΔLと、車速Vの関数であるゲインGVと、車間距離偏差ΔLの関数であるゲインGRと、相対速度ΔVの関数であるゲインGDとに基づいて、次式により車間距離が目標車間距離を保つような目標車速VTを算出し、
【数1】

Figure 0003677959
この目標車速VTとなるように車速を制御する先行車追従制御装置が知られている(例えば、特開平6−227280号公報参照)。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の先行車追従制御装置では、各種ゲインGV、GR、GDが経験的に設定されるので、あらゆる走行環境に対して最適な応答特性を得ることが難しいという問題がある。
【0004】
本発明の目的は、あらゆる走行環境に対して最適な応答特性が得られる先行車追従制御装置を提供することにある。
【0005】
【課題を解決するための手段】
(1) 請求項1の発明は、車間距離を検出する車間距離検出手段と、車間距離検出値に基づいて先行車と自車との相対速度を演算する相対速度演算手段と、自車速を検出する車速検出手段と、自車速検出値と相対速度とに基づいて先行車車速を演算する先行車速度演算手段と、車間距離検出値と目標車間距離との偏差に第1のゲインを乗じた値と、相対速度演算値に第2のゲインを乗じた値と、先行車車速とに基づいて、車間距離検出値を目標車間距離とするための目標車速を演算する車速演算手段と、車間距離検出値に応じて第1のゲインと第2のゲインを変更するゲイン変更手段と、自車速検出値が目標車速となるように車両の制駆動力を制御する車速制御手段とを備え、ゲイン変更手段は、車間距離検出値が長い場合は第1のゲインを小さくして第2のゲインを大きくし、車間距離検出値が短い場合は第1のゲインを大きくして第2のゲインを小さくする。
(2) 請求項2の先行車追従制御装置は、車速制御手段を目標車速に対して自車速が一次遅れとなる線形伝達関数で近似し、車間距離検出値を目標車間距離へ、相対速度演算値を0へそれぞれ収束させる収束特性が任意の特性となるように、第1のゲインと第2のゲインを設定するようにしたものである。
【0006】
【発明の効果】
(1) 請求項1の発明によれば、車間距離検出値と目標車間距離との偏差に第1ゲインを乗じた値と、相対速度に第2ゲインを乗じた値と、先行車車速とに基づいて、車間距離検出値を目標車間距離とするための目標車速を演算し、自車速検出値が目標車速となるように車両の制駆動力を制御する際に、車間距離検出値が長い場合は第1ゲインを小さくして第2ゲインを大きくし、車間距離検出値が短い場合は第1ゲインを大きくして第2ゲインを小さくするようにしたので、先行車に遠方から接近する場合や、追従制御中に他車に割り込まれた場合など、あらゆる走行環境に対して追従制御の最適な応答特性が得られる。さらに、先行車に遠方から接近する場合には遅い応答特性に設定され、その結果、先行車を捕捉してからすぐに減速を開始してゆっくりと目標車間距離に収束させることができ、車両の減速度が小さく、乗員に与える衝撃も少ない。また、追従中に他車に割り込まれた場合には速い応答特性に設定され、その結果、割り込まれた直後から減速を開始し、先行車に接近し過ぎるようなことがなく、すぐに目標車間距離に収束させることができる。
(2) 請求項2の発明によれば、車速制御手段を目標車速に対して自車速が一次遅れとなる線形伝達関数で近似し、車間距離検出値を目標車間距離へ、相対速度演算値を0へそれぞれ収束させる収束特性が任意の特性となるように、第1ゲインと第2ゲインを設定するようにしたので、意図する収束特性が得られる。
【0007】
【発明の実施の形態】
図1は一実施の形態の構成を示す図である。
車間距離センサーヘッド1は、レーザー光を掃射して先行車からの反射光を受光するレーダー方式のセンサーヘッドである。なお、電波や超音波を利用して車間距離を計測してもよい。車速センサー2は変速機の出力軸に取り付けられ、その回転速度に応じた周期のパルス列を出力する。スロットルアクチュエータ3は、スロットル開度信号に応じてスロットルバルブを開閉し、エンジンの吸入空気量を変えてエンジン出力を調節する。自動変速機4は、車速とスロットル開度に応じて変速比を変える。制動装置6は車両に制動力を発生させる装置である。
【0008】
追従制御コントローラー5はマイクロコンピュータとその周辺部品を備え、車間距離と車速の検出値に基づいて目標車速を演算し、スロットルアクチュエータ3、自動変速機4および制動装置6を制御する。
【0009】
追従制御コントローラー5は、マイクロコンピュータのソフトウエア形態により図2に示す制御ブロック11、21、50、51を構成する。
測距信号処理部11は、車間距離センサーヘッド1によりレーザー光を掃射してから先行車の反射光を受光するまでの時間を計測し、先行車との車間距離Lを演算する。なお、前方に複数の先行車がいる場合は追従すべき先行車を特定して車間距離を演算する。車速信号処理部21は、車速センサー2からの車速パルスの周期を計測し、自車両の速度Vを検出する。
【0010】
先行車追従制御部50は、相対速度演算部501、車間距離制御部502および目標車間距離設定部503を備え、車間距離Lと自車速Vとに基づいて目標車間距離L*と目標車速V*を演算する。相対速度演算部501は、測距信号処理部11により検出された車間距離Lに基づいて先行車との相対速度ΔVを演算する。車間距離制御部502は、相対速度ΔVを考慮して車間距離Lを目標車間距離L*に一致させるための目標車速V*を演算する。目標車間距離設定部503は、先行車の車速VTまたは自車速Vに応じた目標車間距離L*を設定する。
【0011】
また、車速制御部51は、自車速Vが目標車速V*となるようにスロットルアクチュエータ3のスロットル開度と、自動変速機4の変速比と、制動装置6の制動力を制御する。
【0012】
図3に制御系全体の構成を示す。
まず、車間距離Lをその目標値L*に保ちながら追従走行するための目標車速V*を演算する。図3に示すように、目標車間距離L*と車間距離Lとの偏差ΔLにゲインfdを乗じた値と、相対速度ΔVにゲインfvを乗じた値との和により、目標相対速度ΔV*を求める。なお、ゲインfdが上述した第1のゲインに相当し、ゲインfvが上述した第2のゲインに相当する。
【数2】
Figure 0003677959
ゲインfdとfvは追従制御性能を決定するパラメーターである。次に、先行車車速VTから目標相対速度ΔV*を減じて目標車速V*を求める。
【数3】
Figure 0003677959
また、車間距離検出値LをバンドパスフィルターB.P.S.を通すことによって相対速度ΔVを求め、さらに先行車車速VTを演算する。
【数4】
Figure 0003677959
したがって、目標車速V*は数式2、数式3および数式4により次のように表される。
【数5】
Figure 0003677959
【0013】
次に、車間距離制御系について説明する。このシステムは車間距離と相対速度の2つの目標値を1つの入力(目標車速)で制御する1入力2出力系であることから、状態フィードバック(レギュレーター)を用いて制御系を設計する。システムの状態変数をx1、x2を次式で定義する。
【数6】
Figure 0003677959
数式6において、VTは先行車の車速、Vは自車速である。
【数7】
Figure 0003677959
また、制御入力(コントローラーの出力)をV*として次式で定義する。
【数8】
Figure 0003677959
車間距離Lは次式で表される。
【数9】
Figure 0003677959
数式9において、Loは車間距離の初期値である。
【0014】
車速サーボ系は、例えば次式のように目標車速に対して実際の車速が一次遅れとなる線形伝達関数で近似できる。
【数10】
Figure 0003677959
先行車車速VT=一定と仮定すると、数式6、数式8および数式10により、
【数11】
Figure 0003677959
さらに、目標車間距離L*=一定とすると、数式7および数式9により、
【数12】
Figure 0003677959
したがって、システムの状態方程式は次のように記述できる。
【数13】
Figure 0003677959
【0015】
制御入力uを次式で与える。
【数14】
Figure 0003677959
状態フィードバックが施された全体システムの状態方程式は次式で表される。
【数15】
Figure 0003677959
【数16】
Figure 0003677959
したがって、全体システムの特性方程式は次のようになる。
【数17】
Figure 0003677959
上述した車速サーボ系の伝達特性に基づき、車間距離Lがその目標値L*に、相対速度ΔVが0へそれぞれ収束する特性が設計者の意図する特性となるようにゲインfd、fvを設定する。
【数18】
Figure 0003677959
【数19】
Figure 0003677959
【数20】
Figure 0003677959
【0016】
状態フィードバックが施された追従制御系は、数式17で表されるようにその収束特性が二次系で近似される。例えば、車速サーボ系の時定数τv=0.5sとし、極配置法によりシステムの極を▲1▼遅い収束特性の極、▲2▼速い収束特性の極に設定すると、各ゲインfd、fvは数式19、数式20からそれぞれ次のように求められる。
▲1▼重根:−0.1(ωn=0.2、ζ=1.0)→fd=0.02、fv=0.8
▲2▼重根:−0.4(ωn=0.4、ζ=1.0)→fd=0.08、fv=0.6
【0017】
図4、図5は120m遠方の先行車に相対速度20km/sで接近した場合のシステムのシミュレーション結果を示し、図4が▲1▼のゲイン設定、図5が▲2▼のゲイン設定の場合を示す。これらの図において、(a)が自車速Vと目標車速V*を示し、(b)が車間距離Lと目標車間距離L*を示し、(c)が相対速度ΔVと相対速度推定値ΔVsを示し、(d)が車両の加減速度を示す。
先行車に接近する場合に、▲1▼の遅い極設定では車間距離が長い時点から制御を開始し、ゆっくりと目標車間距離に収束する。この時の車両の減速度は最大でもおよそ0.5m/ssである。一方、▲2▼の速い極設定では車間距離がある程度縮まってから制御を開始し、速い応答で収束するために車両の減速度はおよそ1m/ssとなり、遅い極の場合よりも大きくなる。
【0018】
図6、図7は100km/h、車間距離40mで追従中に相対速度15km/hの車両に車間距離30mの位置に割り込まれた場合のシステムのシミュレーション結果を示し、図6が▲1▼のゲイン設定、図7が▲2▼のゲイン設定の場合を示す。これらの図において、(a)が自車速Vと目標車速V*を示し、(b)が車間距離Lと目標車間距離L*を示し、(c)が相対速度ΔVと相対速度推定値ΔVsを示し、(d)が車両の加減速度を示す。
図7に示すように追従走行中に割り込まれた場合に、▲2▼の速い極設定では素早く減速し、最小車間距離がおよそ25mと、割り込み車両への接近も少ない。一方、図6に示すように▲1▼の遅い極設定では、応答がゆっくりしているためにいったん割り込み車両に20mまで接近した後、目標車間距離に収束している。
【0019】
このように、遠方から接近する場合と、追従中に割り込まれる場合とでは相反する応答特性が要求され、一意に決定した応答特性で両方の応答性を満足させることは困難である。そこで、この実施の形態では制御中の車間距離に注目し、系全体の応答特性が、車間距離が長い時は遅い収束特性、車間距離が短い時は速い収束特性となるように極を設定し、各ゲインfd、fvを決定する。そして、車間距離に応じてゲインfd、fvを変更する。
【0020】
車間距離に基づくゲインの変更方法について説明する。上述したように、この制御系の応答特性は二次系で近似できるため、例えばωnを車間距離に対して図8に示すように設定する。この例では車間距離が40m以下の短い場合はωnを0.4として速い応答にし、車間距離が80m以上の長い場合はωnを0.2として遅い応答にする。また、車間距離が40mから80mの間はゲインの切り替わりをスムーズにするために補間する。このωnをもとに各ゲインを算出すると図9に示すようになる。図9に示すように、車間距離が長い場合は、車間距離偏差ΔLに乗ずる第1のゲインfdを小さくし、相対速度ΔVに乗ずる第2のゲインfvを大きくする。逆に、車間距離が短い場合は、車間距離偏差ΔLに乗ずる第1のゲインfdを大きくし、相対速度ΔVに乗ずる第2のゲインfvを小さくする。
【0021】
図10は120m遠方の先行車に相対速度20km/sで接近した場合のこの実施の形態のシミュレーション結果を示し、図11は100km/h、車間距離40mで追従中に相対速度15km/hの車両に車間距離30mの位置に割り込まれた場合のこの実施の形態のシミュレーション結果を示す。これらの図において、(a)が自車速Vと目標車速V*を示し、(b)が車間距離Lと目標車間距離L*を示し、(c)が相対速度ΔVと相対速度推定値ΔVsを示し、(d)が車両の加減速度を示す。
図10に示すように、遠方から先行車に接近した場合には、遅い応答特性に設定されているため、先行車を捕捉した後、およそ車間距離70mのところから減速を開始し、ゆっくりと目標車間距離に収束する。当然に車両の減速度は小さく、乗員に与える衝撃も少ない。
また、図11に示すように、追従中の車間距離が40mであるため、速い応答特性に設定される。したがって、割り込まれた直後から減速を開始し、先行車に接近し過ぎるようなことがなく、すぐに目標車間距離に収束する。
【0022】
このように、追従中の割り込みなど、車間距離が短い場合は素早く応答させ、遠方の先行車に接近するような場合にはゆっくり応答させることにより、乗員のフィーリングに合った特性が得られる。
【0023】
上述した実施の形態では、制動装置6による自動ブレーキ制御を有する例を示し、いかなる車速指令値に対しても実車速が追従する、すなわち車両の減速度は理想的に実現できるものとした。しかし、自動ブレーキ制御のない場合には、エンジンブレーキだけで要求減速度を達成できない場合があり、先行車に接近し過ぎるおそれがある。つまり、自動ブレーキ制御のない車両に対しては、従来のようにゲインfv、fdを固定にすることはできず、上述した実施の形態のように車間距離に応じてゲインfv、fdを切り換えることによって常に最適な応答特性が得られる。
【0024】
なお、上述した実施の形態ではゲインスケジューリングとした例を示したが、車間距離に応じて2段階あるいは数段階にゲインを切り換えるようにしてもよい。
【0025】
以上の一実施の形態の構成において、車間距離センサー1および測距信号処理部11が車間距離検出手段を、相対速度演算部501が相対速度演算手段を、目標車間距離設定部503および車間距離制御部502が車速演算手段およびゲイン変更手段を、車速センサー2および車速信号処理部21が車速検出手段を、車速制御部51が車速制御手段をそれぞれ構成する。
【図面の簡単な説明】
【図1】一実施の形態の構成を示す図である。
【図2】一実施の形態の制御系の構成を示すブロック図である。
【図3】一実施の形態の制御系を示す図である。
【図4】120m遠方の先行車に相対速度20km/sで接近した場合の、遅いゲイン設定によるシステムのシミュレーション結果を示す図である。
【図5】120m遠方の先行車に相対速度20km/sで接近した場合の、速いゲイン設定によるシステムのシミュレーション結果を示す図である。
【図6】100km/h、車間距離40mで追従中に相対速度15km/hの車両に車間距離30mの位置に割り込まれた場合の、遅いゲイン設定のシステムのシミュレーション結果を示す図である。
【図7】100km/h、車間距離40mで追従中に相対速度15km/hの車両に車間距離30mの位置に割り込まれた場合の、速いゲイン設定のシステムのシミュレーション結果を示す図である。
【図8】車間距離に対するωnの設定例を示す図である。
【図9】車間距離に対するゲインfv、fdを示す図である。
【図10】120m遠方の先行車に相対速度20km/sで接近した場合の、一実施の形態のシミュレーション結果を示す図である。
【図11】100km/h、車間距離40mで追従中に相対速度15km/hの車両に車間距離30mの位置に割り込まれた場合の、一実施の形態のシミュレーション結果を示す図である。
【符号の説明】
1 車間距離センサーヘッド
2 車速センサー
3 スロットルアクチュエーター
4 自動変速機
5 追従制御コントローラー
6 制動装置
11 測距信号処理部
21 車速信号処理部
50 先行車追従制御部
51 車速制御部
501 相対速度演算部
502 車間距離制御部
503 目標車間距離設定部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a preceding vehicle follow-up control device that recognizes a preceding vehicle and follows the vehicle while maintaining a constant inter-vehicle distance.
[0002]
[Prior art]
Based on the own vehicle speed V, the inter-vehicle distance deviation ΔL, the gain GV that is a function of the vehicle speed V, the gain GR that is a function of the inter-vehicle distance deviation ΔL, and the gain GD that is a function of the relative speed ΔV, Calculate the target vehicle speed VT so that the inter-vehicle distance maintains the target inter-vehicle distance,
[Expression 1]
Figure 0003677959
A preceding vehicle follow-up control device that controls the vehicle speed so as to achieve the target vehicle speed VT is known (see, for example, JP-A-6-227280).
[0003]
[Problems to be solved by the invention]
However, in the conventional preceding vehicle follow-up control device, since various gains GV, GR, and GD are set empirically, there is a problem that it is difficult to obtain an optimum response characteristic for every traveling environment.
[0004]
An object of the present invention is to provide a preceding vehicle follow-up control device that can obtain an optimal response characteristic in any driving environment.
[0005]
[Means for Solving the Problems]
(1) The invention according to claim 1 detects an inter-vehicle distance detecting means for detecting an inter-vehicle distance, a relative speed calculating means for calculating a relative speed between the preceding vehicle and the own vehicle based on the detected inter-vehicle distance, and detecting the own vehicle speed. A vehicle speed detecting means for performing the calculation, a preceding vehicle speed calculating means for calculating the preceding vehicle speed based on the own vehicle speed detection value and the relative speed, and a value obtained by multiplying a deviation between the detected inter-vehicle distance and the target inter-vehicle distance by a first gain. A vehicle speed calculation means for calculating a target vehicle speed for setting the inter-vehicle distance detection value as the target inter-vehicle distance based on the value obtained by multiplying the relative speed calculation value by the second gain and the preceding vehicle speed, and inter-vehicle distance detection comprising a gain changing means for changing the first gain and second gain according to the value, and a vehicle speed control means for vehicle speed detection value to control the braking and driving force of the vehicle so that the target vehicle speed, the gain changing means If the detected distance between vehicles is long, the first gain is By reducing a larger second gain, when the inter-vehicle distance detection value is short reduce the second gain by increasing the first gain.
(2) In the preceding vehicle follow-up control device according to claim 2, the vehicle speed control means is approximated by a linear transfer function in which the host vehicle speed is first-order lag with respect to the target vehicle speed, and the detected inter-vehicle distance is calculated as a relative inter-vehicle distance. The first gain and the second gain are set so that the convergence characteristics for converging the values to 0 are arbitrary characteristics.
[0006]
【The invention's effect】
(1) According to the invention of claim 1, the value obtained by multiplying the deviation between the detected inter-vehicle distance and the target inter-vehicle distance by the first gain, the value obtained by multiplying the relative speed by the second gain, and the preceding vehicle speed. When the target vehicle speed for calculating the target inter-vehicle distance as the target inter-vehicle distance is calculated and the braking / driving force of the vehicle is controlled so that the own vehicle speed detection value becomes the target vehicle speed, the inter-vehicle distance detection value is long Since the first gain is decreased and the second gain is increased, and when the detected distance between the vehicles is short, the first gain is increased and the second gain is decreased. The optimal response characteristic of the follow-up control can be obtained for any driving environment such as when the vehicle is interrupted during the follow-up control. Furthermore, when approaching the preceding vehicle from a distance, a slow response characteristic is set. As a result, it is possible to start the deceleration immediately after capturing the preceding vehicle and slowly converge to the target inter-vehicle distance. The deceleration is small and there is little impact on the passenger. In addition, if the other vehicle is interrupted while following, it will be set to a fast response characteristic.As a result, the vehicle will start decelerating immediately after being interrupted and will not be too close to the preceding vehicle. Can converge to distance.
(2) According to the invention of claim 2, the vehicle speed control means is approximated by a linear transfer function in which the host vehicle speed is a first-order lag with respect to the target vehicle speed, the detected inter-vehicle distance is set to the target inter-vehicle distance, and the calculated relative speed is calculated. Since the first gain and the second gain are set so that the convergence characteristics converged to 0 are arbitrary characteristics, the intended convergence characteristics can be obtained.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a diagram showing a configuration of an embodiment.
The inter-vehicle distance sensor head 1 is a radar-type sensor head that sweeps laser light and receives reflected light from a preceding vehicle. The inter-vehicle distance may be measured using radio waves or ultrasonic waves. The vehicle speed sensor 2 is attached to the output shaft of the transmission and outputs a pulse train having a period corresponding to the rotational speed. The throttle actuator 3 opens and closes the throttle valve according to the throttle opening signal, and adjusts the engine output by changing the intake air amount of the engine. The automatic transmission 4 changes the gear ratio according to the vehicle speed and the throttle opening. The braking device 6 is a device that generates a braking force on the vehicle.
[0008]
The follow-up controller 5 includes a microcomputer and its peripheral components, calculates a target vehicle speed based on detected values of the inter-vehicle distance and the vehicle speed, and controls the throttle actuator 3, the automatic transmission 4, and the braking device 6.
[0009]
The follow-up control controller 5 constitutes control blocks 11, 21, 50 and 51 shown in FIG. 2 according to the software form of the microcomputer.
The ranging signal processing unit 11 measures the time from when the inter-vehicle distance sensor head 1 sweeps the laser light to receiving the reflected light of the preceding vehicle, and calculates the inter-vehicle distance L with respect to the preceding vehicle. When there are a plurality of preceding vehicles ahead, the preceding vehicle to be followed is specified and the inter-vehicle distance is calculated. The vehicle speed signal processing unit 21 measures the cycle of the vehicle speed pulse from the vehicle speed sensor 2 and detects the speed V of the host vehicle.
[0010]
The preceding vehicle follow-up control unit 50 includes a relative speed calculation unit 501, an inter-vehicle distance control unit 502, and a target inter-vehicle distance setting unit 503, and based on the inter-vehicle distance L and the own vehicle speed V, the target inter-vehicle distance L * and the target vehicle speed V *. Is calculated. The relative speed calculation unit 501 calculates a relative speed ΔV with respect to the preceding vehicle based on the inter-vehicle distance L detected by the ranging signal processing unit 11. The inter-vehicle distance control unit 502 calculates a target vehicle speed V * for making the inter-vehicle distance L coincide with the target inter-vehicle distance L * in consideration of the relative speed ΔV. The target inter-vehicle distance setting unit 503 sets a target inter-vehicle distance L * corresponding to the vehicle speed VT or the host vehicle speed V of the preceding vehicle.
[0011]
Further, the vehicle speed control unit 51 controls the throttle opening of the throttle actuator 3, the gear ratio of the automatic transmission 4, and the braking force of the braking device 6 so that the host vehicle speed V becomes the target vehicle speed V *.
[0012]
FIG. 3 shows the configuration of the entire control system.
First, the target vehicle speed V * for following the vehicle while calculating the inter-vehicle distance L at the target value L * is calculated. As shown in FIG. 3, the target relative speed ΔV * is calculated by the sum of a value obtained by multiplying the deviation ΔL between the target inter-vehicle distance L * and the inter-vehicle distance L by the gain fd and a value obtained by multiplying the relative speed ΔV by the gain fv. Ask. The gain fd corresponds to the first gain described above, and the gain fv corresponds to the second gain described above.
[Expression 2]
Figure 0003677959
The gains fd and fv are parameters that determine the follow-up control performance. Next, the target vehicle speed V * is obtained by subtracting the target relative speed ΔV * from the preceding vehicle speed VT.
[Equation 3]
Figure 0003677959
Further, the relative speed ΔV is obtained by passing the inter-vehicle distance detection value L through the band pass filter BPS, and further the preceding vehicle speed VT is calculated.
[Expression 4]
Figure 0003677959
Therefore, the target vehicle speed V * is expressed by the following formulas 2, 3, and 4 as follows.
[Equation 5]
Figure 0003677959
[0013]
Next, the inter-vehicle distance control system will be described. Since this system is a 1-input 2-output system that controls two target values of inter-vehicle distance and relative speed with one input (target vehicle speed), a control system is designed using state feedback (regulator). System state variables x1 and x2 are defined by the following equations.
[Formula 6]
Figure 0003677959
In Formula 6, VT is the vehicle speed of the preceding vehicle, and V is the vehicle speed.
[Expression 7]
Figure 0003677959
Further, the control input (controller output) is defined as V * by the following equation.
[Equation 8]
Figure 0003677959
The inter-vehicle distance L is expressed by the following equation.
[Equation 9]
Figure 0003677959
In Equation 9, Lo is an initial value of the inter-vehicle distance.
[0014]
The vehicle speed servo system can be approximated by a linear transfer function in which the actual vehicle speed is a first order lag with respect to the target vehicle speed, for example, as in the following equation.
[Expression 10]
Figure 0003677959
Assuming that the preceding vehicle vehicle speed VT is constant, Equation 6, Equation 8, and Equation 10
[Expression 11]
Figure 0003677959
Further, assuming that the target inter-vehicle distance L * = constant, Equation 7 and Equation 9
[Expression 12]
Figure 0003677959
Therefore, the state equation of the system can be described as follows.
[Formula 13]
Figure 0003677959
[0015]
The control input u is given by the following equation.
[Expression 14]
Figure 0003677959
The state equation of the entire system to which state feedback is applied is expressed by the following equation.
[Expression 15]
Figure 0003677959
[Expression 16]
Figure 0003677959
Therefore, the characteristic equation of the whole system is as follows.
[Expression 17]
Figure 0003677959
Based on the transmission characteristics of the vehicle speed servo system described above, the gains fd and fv are set so that the characteristics in which the inter-vehicle distance L converges to the target value L * and the relative speed ΔV converges to 0 are characteristics intended by the designer. .
[Expression 18]
Figure 0003677959
[Equation 19]
Figure 0003677959
[Expression 20]
Figure 0003677959
[0016]
The tracking control system to which the state feedback is applied has a convergence characteristic approximated by a secondary system as expressed by Expression 17. For example, when the time constant τv of the vehicle speed servo system is set to 0.5 s and the system poles are set to (1) the pole of the slow convergence characteristic and (2) the pole of the fast convergence characteristic by the pole placement method, the gains fd and fv are It is calculated | required as follows from Numerical formula 19 and Numerical formula 20, respectively.
(1) Double root: -0.1 (ωn = 0.2, ζ = 1.0) → fd = 0.02, fv = 0.8
(2) Double root: -0.4 (ωn = 0.4, ζ = 1.0) → fd = 0.08, fv = 0.6
[0017]
4 and 5 show the simulation results of the system when approaching a preceding vehicle at a distance of 120 m at a relative speed of 20 km / s. FIG. 4 shows the gain setting (1) and FIG. 5 shows the gain setting (2). Indicates. In these drawings, (a) shows the own vehicle speed V and the target vehicle speed V *, (b) shows the inter-vehicle distance L and the target inter-vehicle distance L *, and (c) shows the relative speed ΔV and the relative speed estimated value ΔVs. (D) shows the acceleration / deceleration of the vehicle.
When approaching the preceding vehicle, the control is started from the point where the inter-vehicle distance is long with the slow pole setting of (1), and slowly converges to the target inter-vehicle distance. The deceleration of the vehicle at this time is about 0.5 m / ss at maximum. On the other hand, in the fast pole setting of {circle around (2)}, the control is started after the inter-vehicle distance is reduced to some extent, and the vehicle deceleration is about 1 m / ss in order to converge with a fast response, which is larger than in the case of the slow pole.
[0018]
FIGS. 6 and 7 show the simulation results of the system when a vehicle having a relative speed of 15 km / h is interrupted at a distance of 30 m between vehicles while following at 100 km / h and an inter-vehicle distance of 40 m. FIG. FIG. 7 shows the case of gain setting and gain setting of (2) in FIG. In these drawings, (a) shows the own vehicle speed V and the target vehicle speed V *, (b) shows the inter-vehicle distance L and the target inter-vehicle distance L *, and (c) shows the relative speed ΔV and the relative speed estimated value ΔVs. (D) shows the acceleration / deceleration of the vehicle.
As shown in FIG. 7, when the vehicle is interrupted during follow-up, the vehicle quickly decelerates at the fast pole setting of (2), and the minimum inter-vehicle distance is about 25 m, and there is little approach to the interrupting vehicle. On the other hand, as shown in FIG. 6, in the slow pole setting (1), since the response is slow, the vehicle approaches the target inter-vehicle distance after approaching the interrupting vehicle to 20 m once.
[0019]
Thus, the opposite response characteristics are required when approaching from a distance and when interrupted during tracking, and it is difficult to satisfy both responsiveness with the uniquely determined response characteristics. Therefore, in this embodiment, paying attention to the inter-vehicle distance under control, the poles are set so that the response characteristic of the entire system is a slow convergence characteristic when the inter-vehicle distance is long and a fast convergence characteristic when the inter-vehicle distance is short. The gains fd and fv are determined. Then, the gains fd and fv are changed according to the inter-vehicle distance.
[0020]
A method for changing the gain based on the inter-vehicle distance will be described. As described above, since the response characteristic of this control system can be approximated by a secondary system, for example, ωn is set with respect to the inter-vehicle distance as shown in FIG. In this example, when the inter-vehicle distance is as short as 40 m or less, ωn is set to 0.4, and a fast response is obtained. When the inter-vehicle distance is long, such as 80 m or more, ωn is set as 0.2 and a slow response is obtained. Further, when the inter-vehicle distance is between 40 m and 80 m, interpolation is performed in order to smoothly switch the gain. When each gain is calculated based on this ωn, it is as shown in FIG. As shown in FIG. 9, when the inter-vehicle distance is long, the first gain fd multiplied by the inter-vehicle distance deviation ΔL is reduced, and the second gain fv multiplied by the relative speed ΔV is increased. Conversely, when the inter-vehicle distance is short, the first gain fd multiplied by the inter-vehicle distance deviation ΔL is increased, and the second gain fv multiplied by the relative speed ΔV is decreased.
[0021]
FIG. 10 shows a simulation result of this embodiment when approaching a preceding vehicle at a distance of 120 m at a relative speed of 20 km / s. FIG. 11 shows a vehicle having a relative speed of 15 km / h during tracking at a distance of 100 km / h and an inter-vehicle distance of 40 m. Fig. 6 shows the simulation result of this embodiment when the vehicle is interrupted at a distance of 30m between the vehicles. In these drawings, (a) shows the own vehicle speed V and the target vehicle speed V *, (b) shows the inter-vehicle distance L and the target inter-vehicle distance L *, and (c) shows the relative speed ΔV and the relative speed estimated value ΔVs. (D) shows the acceleration / deceleration of the vehicle.
As shown in FIG. 10, when approaching the preceding vehicle from a distance, the response characteristics are set to be slow. Therefore, after capturing the preceding vehicle, the vehicle starts decelerating at a distance of about 70 m from the vehicle, and slowly Converge to the distance between cars. Naturally, the deceleration of the vehicle is small and the impact on the occupant is small.
Further, as shown in FIG. 11, since the inter-vehicle distance during tracking is 40 m, a fast response characteristic is set. Therefore, the vehicle starts decelerating immediately after being interrupted and does not approach the preceding vehicle too much, and immediately converges to the target inter-vehicle distance.
[0022]
As described above, characteristics such as an interrupt during tracking can be obtained quickly when the distance between the vehicles is short, and when the vehicle approaches a distant preceding vehicle, the response can be obtained slowly.
[0023]
In the above-described embodiment, an example in which automatic braking control is performed by the braking device 6 is shown, and the actual vehicle speed follows any vehicle speed command value, that is, the vehicle deceleration can be ideally realized. However, in the absence of automatic brake control, the required deceleration may not be achieved with only engine braking, and there is a risk that the vehicle will be too close to the preceding vehicle. That is, for vehicles without automatic brake control, the gains fv and fd cannot be fixed as in the prior art, and the gains fv and fd are switched according to the inter-vehicle distance as in the above-described embodiment. Therefore, an optimum response characteristic can always be obtained.
[0024]
In the above-described embodiment, an example of gain scheduling has been described. However, the gain may be switched in two steps or several steps according to the inter-vehicle distance.
[0025]
In the configuration of the above embodiment, the inter-vehicle distance sensor 1 and the ranging signal processing unit 11 are the inter-vehicle distance detecting means, the relative speed calculating unit 501 is the relative speed calculating means, the target inter-vehicle distance setting unit 503 and the inter-vehicle distance control. The unit 502 constitutes vehicle speed calculation means and gain changing means, the vehicle speed sensor 2 and the vehicle speed signal processing unit 21 constitute vehicle speed detection means, and the vehicle speed control unit 51 constitutes vehicle speed control means.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of an embodiment.
FIG. 2 is a block diagram illustrating a configuration of a control system according to an embodiment.
FIG. 3 is a diagram illustrating a control system according to an embodiment;
FIG. 4 is a diagram showing a simulation result of a system with a slow gain setting when approaching a preceding vehicle 120 m away at a relative speed of 20 km / s.
FIG. 5 is a diagram showing a simulation result of a system with fast gain setting when approaching a preceding vehicle 120 m away at a relative speed of 20 km / s.
FIG. 6 is a diagram showing a simulation result of a slow gain setting system when a vehicle having a relative speed of 15 km / h is interrupted at a position of a distance of 30 m while following at 100 km / h and a distance of 40 m.
FIG. 7 is a diagram showing a simulation result of a system for setting a fast gain when a vehicle having a relative speed of 15 km / h is interrupted at a position of an inter-vehicle distance of 30 m while following at 100 km / h and an inter-vehicle distance of 40 m.
FIG. 8 is a diagram illustrating a setting example of ωn with respect to the inter-vehicle distance.
FIG. 9 is a diagram showing gains fv and fd with respect to the inter-vehicle distance.
FIG. 10 is a diagram showing a simulation result of an embodiment when approaching a preceding vehicle at a distance of 120 m at a relative speed of 20 km / s.
FIG. 11 is a diagram showing a simulation result of an embodiment in the case where a vehicle having a relative speed of 15 km / h is interrupted at a position of an inter-vehicle distance of 30 m while following at 100 km / h and an inter-vehicle distance of 40 m.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Inter-vehicle distance sensor head 2 Vehicle speed sensor 3 Throttle actuator 4 Automatic transmission 5 Follow-up control controller 6 Braking device 11 Ranging signal processing unit 21 Vehicle speed signal processing unit 50 Leading vehicle follow-up control unit 51 Vehicle speed control unit 501 Relative speed calculation unit 502 Distance control unit 503 Target inter-vehicle distance setting unit

Claims (2)

車間距離を検出する車間距離検出手段と、
車間距離検出値に基づいて先行車と自車との相対速度を演算する相対速度演算手段と、
自車速を検出する車速検出手段と、
自車速検出値と相対速度とに基づいて先行車車速を演算する先行車速度演算手段と、
車間距離検出値と目標車間距離との偏差に第1のゲインを乗じた値と、相対速度演算値に第2のゲインを乗じた値と、先行車車速とに基づいて、車間距離検出値を目標車間距離とするための目標車速を演算する車速演算手段と、
車間距離検出値に応じて前記第1のゲインと前記第2のゲインを変更するゲイン変更手段と、
自車速検出値が目標車速となるように車両の制駆動力を制御する車速制御手段とを備え
前記ゲイン変更手段は、車間距離検出値が長い場合は前記第1のゲインを小さくして前記第2のゲインを大きくし、車間距離検出値が短い場合は前記第1のゲインを大きくして前記第2のゲインを小さくすることを特徴とする先行車追従制御装置。
An inter-vehicle distance detecting means for detecting an inter-vehicle distance;
Relative speed calculation means for calculating the relative speed between the preceding vehicle and the host vehicle based on the inter-vehicle distance detection value;
Vehicle speed detecting means for detecting the own vehicle speed;
Preceding vehicle speed calculation means for calculating the preceding vehicle speed based on the own vehicle speed detection value and the relative speed;
Based on the value obtained by multiplying the deviation between the detected inter-vehicle distance and the target inter-vehicle distance by the first gain, the value obtained by multiplying the relative speed calculation value by the second gain, and the preceding vehicle speed, the inter-vehicle distance detection value is obtained. Vehicle speed calculation means for calculating a target vehicle speed for the target inter-vehicle distance;
Gain changing means for changing the first gain and the second gain according to a detected inter-vehicle distance;
Vehicle speed control means for controlling the braking / driving force of the vehicle so that the vehicle speed detection value becomes the target vehicle speed ,
The gain changing means reduces the first gain to increase the second gain when the inter-vehicle distance detection value is long, and increases the first gain when the inter-vehicle distance detection value is short. preceding vehicle to be Rukoto characterized reduced second gain cruise control system.
請求項に記載の先行車追従制御装置において、
前記車速制御手段を目標車速に対して自車速が一次遅れとなる線形伝達関数で近似し、車間距離検出値を目標車間距離へ、相対速度演算値を0へそれぞれ収束させる収束特性が任意の特性となるように、前記第1のゲインと前記第2のゲインを設定することを特徴とする先行車追従制御装置。
In the preceding vehicle follow-up control device according to claim 1 ,
The vehicle speed control means is approximated by a linear transfer function in which the host vehicle speed is first-order lag with respect to the target vehicle speed, and a convergence characteristic for converging the detected inter-vehicle distance value to the target inter-vehicle distance and the relative speed calculation value to 0 is an arbitrary characteristic. The preceding vehicle follow-up control device is characterized in that the first gain and the second gain are set so that
JP23065197A 1997-03-31 1997-08-27 Preceding vehicle tracking control device Expired - Fee Related JP3677959B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP23065197A JP3677959B2 (en) 1997-08-27 1997-08-27 Preceding vehicle tracking control device
US09/049,100 US5959572A (en) 1997-03-31 1998-03-27 Vehicle follow-up control apparatus
DE19814186A DE19814186B4 (en) 1997-03-31 1998-03-30 Vehicle tracking control apparatus
KR1019980011007A KR100275436B1 (en) 1997-03-31 1998-03-30 Vehicle follow-up control apparatus
GB9806915A GB2324283B (en) 1997-03-31 1998-03-31 Vehicle follow-up control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23065197A JP3677959B2 (en) 1997-08-27 1997-08-27 Preceding vehicle tracking control device

Publications (2)

Publication Number Publication Date
JPH1159222A JPH1159222A (en) 1999-03-02
JP3677959B2 true JP3677959B2 (en) 2005-08-03

Family

ID=16911146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23065197A Expired - Fee Related JP3677959B2 (en) 1997-03-31 1997-08-27 Preceding vehicle tracking control device

Country Status (1)

Country Link
JP (1) JP3677959B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3661495B2 (en) 1998-08-26 2005-06-15 日産自動車株式会社 Preceding vehicle tracking control device
JP3606070B2 (en) * 1998-11-10 2005-01-05 日産自動車株式会社 Relative speed detection device for vehicle

Also Published As

Publication number Publication date
JPH1159222A (en) 1999-03-02

Similar Documents

Publication Publication Date Title
JP3690185B2 (en) Preceding vehicle tracking control device
EP0982172B1 (en) Automatic velocity and spacing control apparatus for automotive vehicle
US6470257B1 (en) Adaptive cruise control system for automotive vehicles
US5959572A (en) Vehicle follow-up control apparatus
JP3627582B2 (en) Vehicle tracking control device
US6226593B1 (en) Method and appliance for braking a motor vehicle in the immediate vicinity of an obstacle
JP3661496B2 (en) Preceding vehicle tracking control device
JP3518286B2 (en) Leading vehicle follow-up control device
US20090118958A1 (en) Vehicle travel control device and vehicle travel control method
JP3926925B2 (en) Preceding vehicle tracking control device
JP3788240B2 (en) Vehicle tracking control device
JP2002052952A (en) Traveling control device for vehicle
JP3873858B2 (en) Follow-up control device
JP2002067734A (en) Following travelling control device for vehicle
JP3677959B2 (en) Preceding vehicle tracking control device
JP4161822B2 (en) Follow-up control device
JP3649108B2 (en) Vehicle tracking control device
JP4371001B2 (en) Travel control device
JP3675168B2 (en) Preceding vehicle tracking control device
JP3767353B2 (en) Vehicle tracking control device
JPH1120503A (en) Control device for following-up preceding car
JPH07160995A (en) Automatic steering device for vehicle
JP3814997B2 (en) Preceding vehicle tracking control device
JP2002029284A (en) Follow-up travel control device for vehicle
JP4622414B2 (en) Travel control device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees