JPH1159222A - Preceding car following control device - Google Patents

Preceding car following control device

Info

Publication number
JPH1159222A
JPH1159222A JP9230651A JP23065197A JPH1159222A JP H1159222 A JPH1159222 A JP H1159222A JP 9230651 A JP9230651 A JP 9230651A JP 23065197 A JP23065197 A JP 23065197A JP H1159222 A JPH1159222 A JP H1159222A
Authority
JP
Japan
Prior art keywords
vehicle
gain
inter
distance
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9230651A
Other languages
Japanese (ja)
Other versions
JP3677959B2 (en
Inventor
Akira Higashimata
章 東又
Takeshi Ito
健 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP23065197A priority Critical patent/JP3677959B2/en
Priority to US09/049,100 priority patent/US5959572A/en
Priority to KR1019980011007A priority patent/KR100275436B1/en
Priority to DE19814186A priority patent/DE19814186B4/en
Priority to GB9806915A priority patent/GB2324283B/en
Publication of JPH1159222A publication Critical patent/JPH1159222A/en
Application granted granted Critical
Publication of JP3677959B2 publication Critical patent/JP3677959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0022Gains, weighting coefficients or weighting functions

Abstract

PROBLEM TO BE SOLVED: To provide a response characteristic most suitable for all running environments. SOLUTION: This control device calculates a target car speed V* to make a detected inter-vehicle distance value L be a target inter-vehicle distance value L* by changing a first gain fd and a second gain fv according to the detected inter-vehicle distance value L and based on the value obtained by multiplying the deviation ΔL of the inter-vehicle distance value L from the target inter- vehicle distance value L* by the first gain fd and the value obtained by multiplying a relative speed calculation value ΔV by the second gain fv. Then, vehicle control drive force is controlled so that an own-car speed detection value V becomes a target car speed V*. This constitution provides a follow-up control response characteristic most suitable for all running environments such as approaching a preceding car from a long way and being cut in by other car during follow-up control.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、先行車を認識して
一定の車間距離を保ちつつ追従する先行車追従制御装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a preceding vehicle follow-up control device that recognizes a preceding vehicle and follows the preceding vehicle while maintaining a constant inter-vehicle distance.

【0002】[0002]

【従来の技術】自車速Vと、車間距離偏差ΔLと、車速
Vの関数であるゲインGVと、車間距離偏差ΔLの関数
であるゲインGRと、相対速度ΔVの関数であるゲイン
GDとに基づいて、次式により車間距離が目標車間距離
を保つような目標車速VTを算出し、
2. Description of the Related Art A vehicle speed V, an inter-vehicle distance deviation .DELTA.L, a gain GV which is a function of the inter-vehicle distance V, a gain GR which is a function of an inter-vehicle distance deviation .DELTA.L, and a gain GD which is a function of a relative speed .DELTA.V. Then, the following formula is used to calculate a target vehicle speed VT such that the following distance keeps the target following distance.

【数1】 この目標車速VTとなるように車速を制御する先行車追
従制御装置が知られている(例えば、特開平6−227
280号公報参照)。
(Equation 1) A preceding vehicle following control device that controls the vehicle speed so as to attain the target vehicle speed VT is known (for example, Japanese Patent Application Laid-Open No. 6-227).
280).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
先行車追従制御装置では、各種ゲインGV、GR、GDが
経験的に設定されるので、あらゆる走行環境に対して最
適な応答特性を得ることが難しいという問題がある。
However, in the conventional preceding vehicle follow-up control device, since various gains GV, GR, and GD are set empirically, it is possible to obtain an optimum response characteristic in any traveling environment. There is a problem that is difficult.

【0004】本発明の目的は、あらゆる走行環境に対し
て最適な応答特性が得られる先行車追従制御装置を提供
することにある。
[0004] It is an object of the present invention to provide a preceding vehicle follow-up control device capable of obtaining an optimum response characteristic in any traveling environment.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

(1) 請求項1の発明は、車間距離を検出する車間距
離検出手段と、車間距離検出値に基づいて先行車と自車
との相対速度を演算する相対速度演算手段と、車間距離
検出値と目標車間距離との偏差に第1のゲインを乗じた
値と、相対速度演算値に第2のゲインを乗じた値とに基
づいて、車間距離検出値を目標車間距離とするための目
標車速を演算する車速演算手段と、車間距離検出値に応
じて第1のゲインと第2のゲインを変更するゲイン変更
手段と、自車速を検出する車速検出手段と、自車速検出
値が目標車速となるように車両の制駆動力を制御する車
速制御手段とを備える。 (2) 請求項2の先行車追従制御装置は、ゲイン変更
手段によって、車間距離検出値が長い場合は第1のゲイ
ンを小さくして第2のゲインを大きくし、車間距離検出
値が短い場合は第1のゲインを大きくして第2のゲイン
を小さくするようにしたものである。 (3) 請求項3の先行車追従制御装置は、車速制御系
を線形伝達関数で近似して先行車追従制御系を構築し、
車間距離検出値を目標車間距離へ、相対速度演算値を0
へそれぞれ収束させる収束特性が任意の特性となるよう
に、第1のゲインと第2のゲインを設定するようにした
ものである。 (4) 請求項4の先行車追従制御装置は、先行車追従
制御系の伝達関数の固有振動数を車間距離検出値の関数
として与えることにより、第1のゲインと第2のゲイン
を設定するようにしたものである。
(1) The invention of claim 1 is an inter-vehicle distance detecting means for detecting an inter-vehicle distance, a relative speed calculating means for calculating a relative speed between the preceding vehicle and the own vehicle based on the inter-vehicle distance detection value, and an inter-vehicle distance detected value Target vehicle speed for obtaining a detected inter-vehicle distance as a target inter-vehicle distance based on a value obtained by multiplying a deviation between the target speed and a target inter-vehicle distance by a first gain and a value obtained by multiplying a calculated relative speed value by a second gain. , A gain changing means for changing the first gain and the second gain in accordance with the inter-vehicle distance detection value, a vehicle speed detection means for detecting the own vehicle speed, and a self-vehicle speed detection value for the target vehicle speed. Vehicle speed control means for controlling the braking / driving force of the vehicle. (2) The preceding vehicle following control device according to claim 2, wherein the gain changing means decreases the first gain and increases the second gain when the inter-vehicle distance detection value is long and reduces the inter-vehicle distance detection value. Is such that the first gain is increased and the second gain is decreased. (3) The preceding vehicle following control device according to claim 3 constructs a preceding vehicle following control system by approximating the vehicle speed control system with a linear transfer function,
Set the detected inter-vehicle distance to the target inter-vehicle distance and set the relative speed calculation value to 0.
The first gain and the second gain are set such that the convergence characteristics for converging to the respective values become arbitrary characteristics. (4) The preceding vehicle following control device sets the first gain and the second gain by giving the natural frequency of the transfer function of the preceding vehicle following control system as a function of the inter-vehicle distance detection value. It is like that.

【0006】[0006]

【発明の効果】【The invention's effect】

(1) 請求項1の発明によれば、車間距離検出値に応
じて第1のゲインと第2のゲインを変更し、車間距離検
出値と目標車間距離との偏差に第1のゲインを乗じた値
と、相対速度演算値に第2のゲインを乗じた値とに基づ
いて、車間距離検出値を目標車間距離とするための目標
車速を演算する。そして、自車速検出値が目標車速とな
るように車両の制駆動力を制御するようにしたので、先
行車に遠方から接近する場合や、追従制御中に他車に割
り込まれた場合など、あらゆる走行環境に対して追従制
御の最適な応答特性が得られる。 (2) 請求項2の発明によれば、車間距離検出値が長
い場合は第1のゲインを小さくして第2のゲインを大き
くし、車間距離検出値が短い場合は第1のゲインを大き
くして第2のゲインを小さくするようにしたので、先行
車に遠方から接近する場合には遅い応答特性に設定され
る。その結果、先行車を捕捉してからすぐに減速を開始
してゆっくりと目標車間距離に収束させることができ、
車両の減速度が小さく、乗員に与える衝撃も少ない。ま
た、追従中に他車に割り込まれた場合には速い応答特性
に設定される。その結果、割り込まれた直後から減速を
開始し、先行車に接近し過ぎるようなことがなく、すぐ
に目標車間距離に収束させることができる。 (3) 請求項3および請求項4の発明によれば、車速
制御系を線形伝達関数で近似して先行車追従制御系を構
築し、車間距離検出値を目標車間距離へ、相対速度演算
値を0へそれぞれ収束させる収束特性が任意の特性とな
るように、第1のゲインと第2のゲインを設定するよう
にしたので、意図する収束特性が得られる。 (4) 請求項4の発明によれば、先行車追従制御系の
伝達関数の固有振動数を車間距離検出値の関数として与
えることにより、第1のゲインと第2のゲインを設定す
るようにしたので、簡便な手法により意図する収束特性
を得ることができる。
(1) According to the first aspect of the present invention, the first gain and the second gain are changed according to the inter-vehicle distance detection value, and the deviation between the inter-vehicle distance detection value and the target inter-vehicle distance is multiplied by the first gain. A target vehicle speed for calculating the detected inter-vehicle distance as the target inter-vehicle distance is calculated based on the calculated value and the value obtained by multiplying the calculated relative speed by the second gain. Then, since the braking / driving force of the vehicle is controlled so that the detected value of the own vehicle speed becomes the target vehicle speed, when the vehicle approaches the preceding vehicle from a distance or is interrupted by another vehicle during the following control, the An optimum response characteristic of the following control with respect to the traveling environment can be obtained. (2) According to the second aspect of the invention, when the inter-vehicle distance detection value is long, the first gain is decreased and the second gain is increased, and when the inter-vehicle distance detection value is short, the first gain is increased. As a result, the second gain is reduced, so that when the vehicle approaches the preceding vehicle from a distance, the response characteristics are set to be slow. As a result, it is possible to start deceleration immediately after capturing the preceding vehicle and slowly converge to the target inter-vehicle distance,
The deceleration of the vehicle is small and the impact on the occupants is small. In addition, when the vehicle is interrupted by another vehicle while following the vehicle, a fast response characteristic is set. As a result, deceleration is started immediately after the interruption, and the vehicle can immediately converge to the target inter-vehicle distance without excessively approaching the preceding vehicle. (3) According to the third and fourth aspects of the present invention, the preceding vehicle following control system is constructed by approximating the vehicle speed control system with a linear transfer function, and the detected inter-vehicle distance is converted to the target inter-vehicle distance, and the relative speed calculation value is calculated. Are set so that the convergence characteristics for converging to 0 each become an arbitrary characteristic, so that the intended convergence characteristics can be obtained. (4) According to the invention of claim 4, the first gain and the second gain are set by giving the natural frequency of the transfer function of the preceding vehicle following control system as a function of the inter-vehicle distance detection value. Therefore, the intended convergence characteristics can be obtained by a simple method.

【0007】[0007]

【発明の実施の形態】図1は一実施の形態の構成を示す
図である。車間距離センサーヘッド1は、レーザー光を
掃射して先行車からの反射光を受光するレーダー方式の
センサーヘッドである。なお、電波や超音波を利用して
車間距離を計測してもよい。車速センサー2は変速機の
出力軸に取り付けられ、その回転速度に応じた周期のパ
ルス列を出力する。スロットルアクチュエータ3は、ス
ロットル開度信号に応じてスロットルバルブを開閉し、
エンジンの吸入空気量を変えてエンジン出力を調節す
る。自動変速機4は、車速とスロットル開度に応じて変
速比を変える。制動装置6は車両に制動力を発生させる
装置である。
FIG. 1 is a diagram showing the configuration of an embodiment. The inter-vehicle distance sensor head 1 is a radar-type sensor head that sweeps laser light and receives reflected light from a preceding vehicle. The inter-vehicle distance may be measured using radio waves or ultrasonic waves. The vehicle speed sensor 2 is attached to the output shaft of the transmission, and outputs a pulse train having a cycle according to the rotation speed. The throttle actuator 3 opens and closes a throttle valve according to a throttle opening signal,
Adjust the engine output by changing the intake air volume of the engine. The automatic transmission 4 changes the gear ratio according to the vehicle speed and the throttle opening. The braking device 6 is a device that generates a braking force on the vehicle.

【0008】追従制御コントローラー5はマイクロコン
ピュータとその周辺部品を備え、車間距離と車速の検出
値に基づいて目標車速を演算し、スロットルアクチュエ
ータ3、自動変速機4および制動装置6を制御する。
The follow-up controller 5 includes a microcomputer and peripheral components, calculates a target vehicle speed based on the detected inter-vehicle distance and vehicle speed, and controls the throttle actuator 3, the automatic transmission 4, and the braking device 6.

【0009】追従制御コントローラー5は、マイクロコ
ンピュータのソフトウエア形態により図2に示す制御ブ
ロック11、21、50、51を構成する。測距信号処
理部11は、車間距離センサーヘッド1によりレーザー
光を掃射してから先行車の反射光を受光するまでの時間
を計測し、先行車との車間距離Lを演算する。なお、前
方に複数の先行車がいる場合は追従すべき先行車を特定
して車間距離を演算する。車速信号処理部21は、車速
センサー2からの車速パルスの周期を計測し、自車両の
速度Vを検出する。
The follow-up controller 5 comprises control blocks 11, 21, 50 and 51 shown in FIG. 2 in the form of microcomputer software. The ranging signal processing unit 11 measures the time from when the inter-vehicle distance sensor head 1 sweeps the laser beam to when the reflected light of the preceding vehicle is received, and calculates the inter-vehicle distance L to the preceding vehicle. When there are a plurality of preceding vehicles ahead, the preceding vehicle to be followed is specified and the inter-vehicle distance is calculated. The vehicle speed signal processing unit 21 measures the cycle of the vehicle speed pulse from the vehicle speed sensor 2 and detects the speed V of the own vehicle.

【0010】先行車追従制御部50は、相対速度演算部
501、車間距離制御部502および目標車間距離設定
部503を備え、車間距離Lと自車速Vとに基づいて目
標車間距離L*と目標車速V*を演算する。相対速度演算
部501は、測距信号処理部11により検出された車間
距離Lに基づいて先行車との相対速度ΔVを演算する。
車間距離制御部502は、相対速度ΔVを考慮して車間
距離Lを目標車間距離L*に一致させるための目標車速
V*を演算する。目標車間距離設定部503は、先行車
の車速VTまたは自車速Vに応じた目標車間距離L*を設
定する。
The preceding vehicle following control unit 50 includes a relative speed calculating unit 501, an inter-vehicle distance control unit 502, and a target inter-vehicle distance setting unit 503. Based on the inter-vehicle distance L and the own vehicle speed V, the target inter-vehicle distance L * Calculate the vehicle speed V *. The relative speed calculation unit 501 calculates a relative speed ΔV with respect to the preceding vehicle based on the inter-vehicle distance L detected by the distance measurement signal processing unit 11.
The inter-vehicle distance control unit 502 calculates a target vehicle speed V * for making the inter-vehicle distance L equal to the target inter-vehicle distance L * in consideration of the relative speed ΔV. The target inter-vehicle distance setting unit 503 sets a target inter-vehicle distance L * according to the vehicle speed VT of the preceding vehicle or the own vehicle speed V.

【0011】また、車速制御部51は、自車速Vが目標
車速V*となるようにスロットルアクチュエータ3のス
ロットル開度と、自動変速機4の変速比と、制動装置6
の制動力を制御する。
The vehicle speed control unit 51 also controls the throttle opening of the throttle actuator 3, the gear ratio of the automatic transmission 4, and the braking device 6 so that the vehicle speed V becomes the target vehicle speed V *.
To control the braking force.

【0012】図3に制御系全体の構成を示す。まず、車
間距離Lをその目標値L*に保ちながら追従走行するた
めの目標車速V*を演算する。図3に示すように、目標
車間距離L*と車間距離Lとの偏差ΔLにゲインfdを乗
じた値と、相対速度ΔVにゲインfvを乗じた値との和
により、目標相対速度ΔV*を求める。なお、ゲインfd
が上述した第1のゲインに相当し、ゲインfvが上述し
た第2のゲインに相当する。
FIG. 3 shows the configuration of the entire control system. First, a target vehicle speed V * for following the vehicle while maintaining the inter-vehicle distance L at the target value L * is calculated. As shown in FIG. 3, the target relative speed ΔV * is determined by the sum of a value obtained by multiplying the deviation fL between the target inter-vehicle distance L * and the inter-vehicle distance L by the gain fd and a value obtained by multiplying the relative speed ΔV by the gain fv. Ask. Note that the gain fd
Corresponds to the above-described first gain, and the gain fv corresponds to the above-described second gain.

【数2】 ゲインfdとfvは追従制御性能を決定するパラメーター
である。次に、先行車車速VTから目標相対速度ΔV*を
減じて目標車速V*を求める。
(Equation 2) The gains fd and fv are parameters that determine the tracking control performance. Next, the target vehicle speed V * is obtained by subtracting the target relative speed ΔV * from the preceding vehicle speed VT.

【数3】 また、車間距離検出値LをバンドパスフィルターB.P.S.
を通すことによって相対速度ΔVを求め、さらに先行車
車速VTを演算する。
(Equation 3) Also, the inter-vehicle distance detection value L is converted to a bandpass filter BPS.
To determine the relative speed ΔV, and further calculate the preceding vehicle speed VT.

【数4】 したがって、目標車速V*は数式2、数式3および数式
4により次のように表される。
(Equation 4) Therefore, the target vehicle speed V * is expressed as follows by Expressions 2, 3 and 4.

【数5】 (Equation 5)

【0013】次に、車間距離制御系について説明する。
このシステムは車間距離と相対速度の2つの目標値を1
つの入力(目標車速)で制御する1入力2出力系である
ことから、状態フィードバック(レギュレーター)を用
いて制御系を設計する。システムの状態変数をx1、x2
を次式で定義する。
Next, an inter-vehicle distance control system will be described.
This system sets two target values, ie, inter-vehicle distance and relative speed, as 1
Since it is a one-input, two-output system controlled by two inputs (target vehicle speed), a control system is designed using state feedback (regulator). The system state variables are x1, x2
Is defined by the following equation.

【数6】 数式6において、VTは先行車の車速、Vは自車速であ
る。
(Equation 6) In Equation 6, VT is the vehicle speed of the preceding vehicle, and V is the own vehicle speed.

【数7】 また、制御入力(コントローラーの出力)をV*として
次式で定義する。
(Equation 7) The control input (output of the controller) is defined by the following equation as V *.

【数8】 車間距離Lは次式で表される。(Equation 8) The following distance L is represented by the following equation.

【数9】 数式9において、Loは車間距離の初期値である。(Equation 9) In Expression 9, Lo is an initial value of the inter-vehicle distance.

【0014】車速サーボ系は、例えば次式のように目標
車速に対して実際の車速が一次遅れとなる線形伝達関数
で近似できる。
The vehicle speed servo system can be approximated by a linear transfer function in which the actual vehicle speed has a first-order delay with respect to the target vehicle speed as shown in the following equation.

【数10】 先行車車速VT=一定と仮定すると、数式6、数式8お
よび数式10により、
(Equation 10) Assuming that the preceding vehicle speed VT is constant, Equations 6, 8, and 10 give:

【数11】 さらに、目標車間距離L*=一定とすると、数式7およ
び数式9により、
[Equation 11] Further, assuming that the target inter-vehicle distance L * = constant, Equations 7 and 9 give

【数12】 したがって、システムの状態方程式は次のように記述で
きる。
(Equation 12) Therefore, the state equation of the system can be described as:

【数13】 (Equation 13)

【0015】制御入力uを次式で与える。The control input u is given by the following equation.

【数14】 状態フィードバックが施された全体システムの状態方程
式は次式で表される。
[Equation 14] The state equation of the entire system to which the state feedback has been applied is represented by the following equation.

【数15】 (Equation 15)

【数16】 したがって、全体システムの特性方程式は次のようにな
る。
(Equation 16) Therefore, the characteristic equation of the whole system is as follows.

【数17】 上述した車速サーボ系の伝達特性に基づき、車間距離L
がその目標値L*に、相対速度ΔVが0へそれぞれ収束
する特性が設計者の意図する特性となるようにゲインf
d、fvを設定する。
[Equation 17] Based on the transmission characteristics of the vehicle speed servo system described above, the following distance L
The gain f is set so that the characteristic in which the relative velocity ΔV converges to 0 becomes the characteristic intended by the designer.
Set d and fv.

【数18】 (Equation 18)

【数19】 [Equation 19]

【数20】 (Equation 20)

【0016】状態フィードバックが施された追従制御系
は、数式17で表されるようにその収束特性が二次系で
近似される。例えば、車速サーボ系の時定数τv=0.
5sとし、極配置法によりシステムの極を遅い収束特
性の極、速い収束特性の極に設定すると、各ゲインf
d、fvは数式19、数式20からそれぞれ次のように求
められる。 重根:−0.1(ωn=0.2、ζ=1.0)→fd=
0.02、fv=0.8 重根:−0.4(ωn=0.4、ζ=1.0)→fd=
0.08、fv=0.6
The convergence characteristic of the follow-up control system to which the state feedback is applied is approximated by a secondary system as represented by Expression 17. For example, the time constant τv = 0.
When the poles of the system are set to a pole having a slow convergence characteristic and a pole having a fast convergence characteristic by the pole arrangement method, each gain f
d and fv are obtained from Expressions 19 and 20, respectively, as follows. Double root: -0.1 (ωn = 0.2, ζ = 1.0) → fd =
0.02, fv = 0.8 Double root: -0.4 (ωn = 0.4, ζ = 1.0) → fd =
0.08, fv = 0.6

【0017】図4、図5は120m遠方の先行車に相対
速度20km/sで接近した場合のシステムのシミュレ
ーション結果を示し、図4がのゲイン設定、図5が
のゲイン設定の場合を示す。これらの図において、
(a)が自車速Vと目標車速V*を示し、(b)が車間
距離Lと目標車間距離L*を示し、(c)が相対速度Δ
Vと相対速度推定値ΔVsを示し、(d)が車両の加減
速度を示す。先行車に接近する場合に、の遅い極設定
では車間距離が長い時点から制御を開始し、ゆっくりと
目標車間距離に収束する。この時の車両の減速度は最大
でもおよそ0.5m/ssである。一方、の速い極設
定では車間距離がある程度縮まってから制御を開始し、
速い応答で収束するために車両の減速度はおよそ1m/
ssとなり、遅い極の場合よりも大きくなる。
FIGS. 4 and 5 show simulation results of the system when approaching a preceding vehicle at a relative speed of 20 km / s at a distance of 120 m. FIG. 4 shows the case of the gain setting, and FIG. 5 shows the case of the gain setting. In these figures,
(A) shows own vehicle speed V and target vehicle speed V *, (b) shows inter-vehicle distance L and target inter-vehicle distance L *, and (c) shows relative speed Δ.
V and the relative speed estimated value ΔVs, and (d) shows the acceleration / deceleration of the vehicle. When approaching the preceding vehicle, the control is started from a point at which the inter-vehicle distance is long with a slow pole setting, and slowly converges to the target inter-vehicle distance. The deceleration of the vehicle at this time is about 0.5 m / ss at the maximum. On the other hand, in the fast pole setting, control starts after the inter-vehicle distance is reduced to some extent,
The deceleration of the vehicle is about 1m /
ss, which is larger than the slow pole case.

【0018】図6、図7は100km/h、車間距離4
0mで追従中に相対速度15km/hの車両に車間距離
30mの位置に割り込まれた場合のシステムのシミュレ
ーション結果を示し、図6がのゲイン設定、図7が
のゲイン設定の場合を示す。これらの図において、
(a)が自車速Vと目標車速V*を示し、(b)が車間
距離Lと目標車間距離L*を示し、(c)が相対速度Δ
Vと相対速度推定値ΔVsを示し、(d)が車両の加減
速度を示す。図7に示すように追従走行中に割り込まれ
た場合に、の速い極設定では素早く減速し、最小車間
距離がおよそ25mと、割り込み車両への接近も少な
い。一方、図6に示すようにの遅い極設定では、応答
がゆっくりしているためにいったん割り込み車両に20
mまで接近した後、目標車間距離に収束している。
FIGS. 6 and 7 show 100 km / h and an inter-vehicle distance of 4 km.
FIG. 6 shows a simulation result of a system in a case where a vehicle having a relative speed of 15 km / h is interrupted by a vehicle having a relative speed of 15 km / h while following at 0 m, and FIG. 6 shows a case of a gain setting and FIG. In these figures,
(A) shows own vehicle speed V and target vehicle speed V *, (b) shows inter-vehicle distance L and target inter-vehicle distance L *, and (c) shows relative speed Δ.
V and the relative speed estimated value ΔVs, and (d) shows the acceleration / deceleration of the vehicle. As shown in FIG. 7, when the vehicle is interrupted during follow-up running, the vehicle decelerates quickly with the fast pole setting, and the minimum inter-vehicle distance is about 25 m, so that there is little approach to the interrupting vehicle. On the other hand, in the case of the slow pole setting as shown in FIG.
m, and converges to the target inter-vehicle distance.

【0019】このように、遠方から接近する場合と、追
従中に割り込まれる場合とでは相反する応答特性が要求
され、一意に決定した応答特性で両方の応答性を満足さ
せることは困難である。そこで、この実施の形態では制
御中の車間距離に注目し、系全体の応答特性が、車間距
離が長い時は遅い収束特性、車間距離が短い時は速い収
束特性となるように極を設定し、各ゲインfd、fvを決
定する。そして、車間距離に応じてゲインfd、fvを変
更する。
As described above, when the vehicle approaches from a long distance, and when the vehicle is interrupted while following the vehicle, conflicting response characteristics are required, and it is difficult to satisfy both the responsiveness with the uniquely determined response characteristics. Therefore, in this embodiment, attention is paid to the inter-vehicle distance under control, and the poles are set so that the response characteristics of the entire system have a slow convergence characteristic when the inter-vehicle distance is long and a fast convergence characteristic when the inter-vehicle distance is short. , And determine the gains fd and fv. Then, the gains fd and fv are changed according to the inter-vehicle distance.

【0020】車間距離に基づくゲインの変更方法につい
て説明する。上述したように、この制御系の応答特性は
二次系で近似できるため、例えばωnを車間距離に対し
て図8に示すように設定する。この例では車間距離が4
0m以下の短い場合はωnを0.4として速い応答に
し、車間距離が80m以上の長い場合はωnを0.2と
して遅い応答にする。また、車間距離が40mから80
mの間はゲインの切り替わりをスムーズにするために補
間する。このωnをもとに各ゲインを算出すると図9に
示すようになる。図9に示すように、車間距離が長い場
合は、車間距離偏差ΔLに乗ずる第1のゲインfdを小
さくし、相対速度ΔVに乗ずる第2のゲインfvを大き
くする。逆に、車間距離が短い場合は、車間距離偏差Δ
Lに乗ずる第1のゲインfdを大きくし、相対速度ΔV
に乗ずる第2のゲインfvを小さくする。
A method of changing the gain based on the following distance will be described. As described above, since the response characteristics of this control system can be approximated by a secondary system, for example, ωn is set with respect to the inter-vehicle distance as shown in FIG. In this example, the distance between vehicles is 4
When the distance is shorter than 0 m, ωn is set to 0.4 to provide a fast response, and when the inter-vehicle distance is 80 m or longer, ωn is set to 0.2 to provide a slow response. Also, the distance between vehicles is 40m to 80m
During m, interpolation is performed to make the gain switching smooth. When each gain is calculated based on this ωn, the result is as shown in FIG. As shown in FIG. 9, when the inter-vehicle distance is long, the first gain fd for multiplying the inter-vehicle distance deviation ΔL is reduced, and the second gain fv for multiplying the relative speed ΔV is increased. Conversely, if the inter-vehicle distance is short, the inter-vehicle distance deviation Δ
The first gain fd multiplied by L is increased, and the relative speed ΔV
The second gain fv multiplied by is reduced.

【0021】図10は120m遠方の先行車に相対速度
20km/sで接近した場合のこの実施の形態のシミュ
レーション結果を示し、図11は100km/h、車間
距離40mで追従中に相対速度15km/hの車両に車
間距離30mの位置に割り込まれた場合のこの実施の形
態のシミュレーション結果を示す。これらの図におい
て、(a)が自車速Vと目標車速V*を示し、(b)が
車間距離Lと目標車間距離L*を示し、(c)が相対速
度ΔVと相対速度推定値ΔVsを示し、(d)が車両の
加減速度を示す。図10に示すように、遠方から先行車
に接近した場合には、遅い応答特性に設定されているた
め、先行車を捕捉した後、およそ車間距離70mのとこ
ろから減速を開始し、ゆっくりと目標車間距離に収束す
る。当然に車両の減速度は小さく、乗員に与える衝撃も
少ない。また、図11に示すように、追従中の車間距離
が40mであるため、速い応答特性に設定される。した
がって、割り込まれた直後から減速を開始し、先行車に
接近し過ぎるようなことがなく、すぐに目標車間距離に
収束する。
FIG. 10 shows a simulation result of this embodiment when the vehicle approaches a preceding vehicle at a distance of 120 m at a relative speed of 20 km / s. FIG. 11 shows a relative speed of 15 km / h while following at a distance of 100 km / h and an inter-vehicle distance of 40 m. The simulation result of this embodiment in the case where the vehicle h is interrupted at the position of the inter-vehicle distance of 30 m is shown. In these figures, (a) shows own vehicle speed V and target vehicle speed V *, (b) shows inter-vehicle distance L and target inter-vehicle distance L *, and (c) shows relative speed ΔV and estimated relative speed ΔVs. (D) shows the acceleration / deceleration of the vehicle. As shown in FIG. 10, when approaching the preceding vehicle from a distance, the response characteristics are set to be slow. Therefore, after capturing the preceding vehicle, the vehicle starts decelerating at a distance of about 70 m between the vehicles, and slowly moves to the target. It converges to the following distance. Naturally, the deceleration of the vehicle is small and the impact on the occupants is small. In addition, as shown in FIG. 11, since the inter-vehicle distance during following is 40 m, fast response characteristics are set. Accordingly, deceleration is started immediately after the interruption, and the vehicle immediately converges to the target inter-vehicle distance without excessively approaching the preceding vehicle.

【0022】このように、追従中の割り込みなど、車間
距離が短い場合は素早く応答させ、遠方の先行車に接近
するような場合にはゆっくり応答させることにより、乗
員のフィーリングに合った特性が得られる。
As described above, when the inter-vehicle distance is short, such as when interrupting the vehicle following the vehicle, the vehicle responds quickly when the vehicle approaches a distant preceding vehicle. can get.

【0023】上述した実施の形態では、制動装置6によ
る自動ブレーキ制御を有する例を示し、いかなる車速指
令値に対しても実車速が追従する、すなわち車両の減速
度は理想的に実現できるものとした。しかし、自動ブレ
ーキ制御のない場合には、エンジンブレーキだけで要求
減速度を達成できない場合があり、先行車に接近し過ぎ
るおそれがある。つまり、自動ブレーキ制御のない車両
に対しては、従来のようにゲインfv、fdを固定にする
ことはできず、上述した実施の形態のように車間距離に
応じてゲインfv、fdを切り換えることによって常に最
適な応答特性が得られる。
In the above-described embodiment, an example is shown in which the automatic braking control by the braking device 6 is performed, and the actual vehicle speed follows any vehicle speed command value, that is, the deceleration of the vehicle can be ideally realized. did. However, when there is no automatic brake control, the required deceleration may not be achieved only by the engine brake, and the vehicle may approach the preceding vehicle too much. That is, for vehicles without automatic brake control, the gains fv and fd cannot be fixed as in the related art, and the gains fv and fd are switched according to the following distance as in the above-described embodiment. As a result, optimal response characteristics are always obtained.

【0024】なお、上述した実施の形態ではゲインスケ
ジューリングとした例を示したが、車間距離に応じて2
段階あるいは数段階にゲインを切り換えるようにしても
よい。
In the above-described embodiment, an example has been described in which gain scheduling is performed.
The gain may be switched in stages or several stages.

【0025】以上の一実施の形態の構成において、車間
距離センサー1および測距信号処理部11が車間距離検
出手段を、相対速度演算部501が相対速度演算手段
を、目標車間距離設定部503および車間距離制御部5
02が車速演算手段およびゲイン変更手段を、車速セン
サー2および車速信号処理部21が車速検出手段を、車
速制御部51が車速制御手段をそれぞれ構成する。
In the configuration of the above embodiment, the following distance sensor 1 and the ranging signal processing section 11 serve as the following distance detecting means, the relative speed calculating section 501 provides the relative speed calculating means, the target following distance setting section 503 and Inter-vehicle distance control unit 5
02 denotes a vehicle speed calculating unit and a gain changing unit, the vehicle speed sensor 2 and the vehicle speed signal processing unit 21 constitute a vehicle speed detecting unit, and the vehicle speed control unit 51 constitutes a vehicle speed controlling unit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施の形態の構成を示す図である。FIG. 1 is a diagram showing a configuration of an embodiment.

【図2】一実施の形態の制御系の構成を示すブロック図
である。
FIG. 2 is a block diagram illustrating a configuration of a control system according to an embodiment.

【図3】一実施の形態の制御系を示す図である。FIG. 3 is a diagram illustrating a control system according to an embodiment.

【図4】120m遠方の先行車に相対速度20km/s
で接近した場合の、遅いゲイン設定によるシステムのシ
ミュレーション結果を示す図である。
FIG. 4 shows a relative speed of 20 km / s to a preceding vehicle at a distance of 120 m.
FIG. 9 is a diagram illustrating a simulation result of a system with a slow gain setting when approaching at a distance.

【図5】120m遠方の先行車に相対速度20km/s
で接近した場合の、速いゲイン設定によるシステムのシ
ミュレーション結果を示す図である。
FIG. 5 shows a relative speed of 20 km / s for a preceding vehicle at a distance of 120 m.
FIG. 10 is a diagram showing a simulation result of a system with a fast gain setting when approaching with a.

【図6】100km/h、車間距離40mで追従中に相
対速度15km/hの車両に車間距離30mの位置に割
り込まれた場合の、遅いゲイン設定のシステムのシミュ
レーション結果を示す図である。
FIG. 6 is a diagram illustrating a simulation result of a system with a slow gain setting when a vehicle having a relative speed of 15 km / h is interrupted by a vehicle having a relative speed of 15 km / h while following at 100 km / h and a vehicle distance of 40 m.

【図7】100km/h、車間距離40mで追従中に相
対速度15km/hの車両に車間距離30mの位置に割
り込まれた場合の、速いゲイン設定のシステムのシミュ
レーション結果を示す図である。
FIG. 7 is a diagram showing a simulation result of a system with a fast gain setting when a vehicle having a relative speed of 15 km / h is interrupted by a vehicle having a relative speed of 30 km / h while following at 100 km / h and an inter-vehicle distance of 40 m.

【図8】車間距離に対するωnの設定例を示す図であ
る。
FIG. 8 is a diagram showing a setting example of ωn with respect to the inter-vehicle distance.

【図9】車間距離に対するゲインfv、fdを示す図であ
る。
FIG. 9 is a diagram showing gains fv and fd with respect to an inter-vehicle distance.

【図10】120m遠方の先行車に相対速度20km/
sで接近した場合の、一実施の形態のシミュレーション
結果を示す図である。
FIG. 10 shows a relative speed of 20 km /
FIG. 14 is a diagram illustrating a simulation result of one embodiment when approaching at s.

【図11】100km/h、車間距離40mで追従中に
相対速度15km/hの車両に車間距離30mの位置に
割り込まれた場合の、一実施の形態のシミュレーション
結果を示す図である。
FIG. 11 is a diagram showing simulation results of an embodiment when a vehicle having a relative speed of 15 km / h is interrupted at a position of 30 m between vehicles while following at 100 km / h and 40 m between vehicles.

【符号の説明】[Explanation of symbols]

1 車間距離センサーヘッド 2 車速センサー 3 スロットルアクチュエーター 4 自動変速機 5 追従制御コントローラー 6 制動装置 11 測距信号処理部 21 車速信号処理部 50 先行車追従制御部 51 車速制御部 501 相対速度演算部 502 車間距離制御部 503 目標車間距離設定部 REFERENCE SIGNS LIST 1 inter-vehicle distance sensor head 2 vehicle speed sensor 3 throttle actuator 4 automatic transmission 5 tracking controller 6 braking device 11 ranging signal processing unit 21 vehicle speed signal processing unit 50 preceding vehicle following control unit 51 vehicle speed control unit 501 relative speed calculation unit 502 Distance control unit 503 Target inter-vehicle distance setting unit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 車間距離を検出する車間距離検出手段
と、 車間距離検出値に基づいて先行車と自車との相対速度を
演算する相対速度演算手段と、 車間距離検出値と目標車間距離との偏差に第1のゲイン
を乗じた値と、相対速度演算値に第2のゲインを乗じた
値とに基づいて、車間距離検出値を目標車間距離とする
ための目標車速を演算する車速演算手段と、 車間距離検出値に応じて前記第1のゲインと前記第2の
ゲインを変更するゲイン変更手段と、 自車速を検出する車速検出手段と、 自車速検出値が目標車速となるように車両の制駆動力を
制御する車速制御手段とを備えることを特徴とする先行
車追従制御装置。
An inter-vehicle distance detecting means for detecting an inter-vehicle distance; a relative speed calculating means for calculating a relative speed between the preceding vehicle and the own vehicle based on the inter-vehicle distance detection value; Speed calculation for calculating a target vehicle speed for making the inter-vehicle distance detection value the target inter-vehicle distance based on a value obtained by multiplying the deviation of the vehicle by the first gain and a value obtained by multiplying the calculated relative speed by the second gain. Means, gain changing means for changing the first gain and the second gain in accordance with the inter-vehicle distance detection value, vehicle speed detection means for detecting the own vehicle speed, so that the own vehicle speed detection value becomes the target vehicle speed. A preceding vehicle following control device, comprising: vehicle speed control means for controlling the braking / driving force of the vehicle.
【請求項2】 請求項1に記載の先行車追従制御装置に
おいて、 前記ゲイン変更手段は、車間距離検出値が長い場合は前
記第1のゲインを小さくして前記第2のゲインを大きく
し、車間距離検出値が短い場合は前記第1のゲインを大
きくして前記第2のゲインを小さくすることを特徴とす
る先行車追従制御装置。
2. The preceding vehicle following control device according to claim 1, wherein the gain changing means decreases the first gain and increases the second gain when the detected inter-vehicle distance is long, A preceding vehicle following control device characterized in that when the inter-vehicle distance detection value is short, the first gain is increased and the second gain is decreased.
【請求項3】 請求項1または請求項2に記載の先行車
追従制御装置において、 車速制御系を線形伝達関数で近似して先行車追従制御系
を構築し、車間距離検出値を目標車間距離へ、相対速度
演算値を0へそれぞれ収束させる収束特性が任意の特性
となるように、前記第1のゲインと前記第2のゲインを
設定することを特徴とする先行車追従制御装置。
3. The preceding vehicle following control device according to claim 1, wherein the preceding vehicle following control system is constructed by approximating the vehicle speed control system with a linear transfer function, and the detected following distance is used as the target following distance. A preceding vehicle follow-up control device, wherein the first gain and the second gain are set such that convergence characteristics for converging the calculated relative speed value to 0 become arbitrary characteristics.
【請求項4】 請求項3に記載の先行車追従制御装置に
おいて、 前記先行車追従制御系の伝達関数の固有振動数を車間距
離検出値の関数として与えることにより、前記第1のゲ
インと前記第2のゲインを設定することを特徴とする先
行車追従制御装置。
4. The preceding vehicle following control device according to claim 3, wherein the natural frequency of a transfer function of the preceding vehicle following control system is given as a function of an inter-vehicle distance detection value, so that the first gain and the aforementioned A preceding vehicle following control device, wherein a second gain is set.
JP23065197A 1997-03-31 1997-08-27 Preceding vehicle tracking control device Expired - Fee Related JP3677959B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP23065197A JP3677959B2 (en) 1997-08-27 1997-08-27 Preceding vehicle tracking control device
US09/049,100 US5959572A (en) 1997-03-31 1998-03-27 Vehicle follow-up control apparatus
KR1019980011007A KR100275436B1 (en) 1997-03-31 1998-03-30 Vehicle follow-up control apparatus
DE19814186A DE19814186B4 (en) 1997-03-31 1998-03-30 Vehicle tracking control apparatus
GB9806915A GB2324283B (en) 1997-03-31 1998-03-31 Vehicle follow-up control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23065197A JP3677959B2 (en) 1997-08-27 1997-08-27 Preceding vehicle tracking control device

Publications (2)

Publication Number Publication Date
JPH1159222A true JPH1159222A (en) 1999-03-02
JP3677959B2 JP3677959B2 (en) 2005-08-03

Family

ID=16911146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23065197A Expired - Fee Related JP3677959B2 (en) 1997-03-31 1997-08-27 Preceding vehicle tracking control device

Country Status (1)

Country Link
JP (1) JP3677959B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0982172A2 (en) 1998-08-26 2000-03-01 Nissan Motor Co., Ltd. Automatic velocity and spacing control apparatus for automotive vehicle
DE19953890B4 (en) * 1998-11-10 2007-01-11 Nissan Motor Co., Ltd., Yokohama Device for determining a relative speed for vehicles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0982172A2 (en) 1998-08-26 2000-03-01 Nissan Motor Co., Ltd. Automatic velocity and spacing control apparatus for automotive vehicle
US6330507B1 (en) 1998-08-26 2001-12-11 Nissan Motor Co., Ltd. Automatic vehicular velocity control apparatus for automotive vehicle
US6473686B2 (en) 1998-08-26 2002-10-29 Nissan Motor Co., Ltd. Automatic vehicular velocity control apparatus for automotive vehicle
DE19953890B4 (en) * 1998-11-10 2007-01-11 Nissan Motor Co., Ltd., Yokohama Device for determining a relative speed for vehicles

Also Published As

Publication number Publication date
JP3677959B2 (en) 2005-08-03

Similar Documents

Publication Publication Date Title
EP0982172B1 (en) Automatic velocity and spacing control apparatus for automotive vehicle
Pananurak et al. Adaptive cruise control for an intelligent vehicle
JP3838048B2 (en) Vehicle travel control device
JP3518286B2 (en) Leading vehicle follow-up control device
JP3690185B2 (en) Preceding vehicle tracking control device
JP2000355235A (en) Preceding vehicle follow-up controller
JPH10181382A (en) Car-to-car distance controller
JP3788240B2 (en) Vehicle tracking control device
JPH10338055A (en) Vehicular follow-up running control device
JP2004114906A (en) Follow-up drive control device
JP2002067734A (en) Following travelling control device for vehicle
JP4371001B2 (en) Travel control device
JP3649108B2 (en) Vehicle tracking control device
JPH1159222A (en) Preceding car following control device
JPH1120503A (en) Control device for following-up preceding car
JP3675168B2 (en) Preceding vehicle tracking control device
JP2000071807A (en) Preceding vehicle following control device
JPH07160995A (en) Automatic steering device for vehicle
JPH0840231A (en) Traveling controller for vehicle
JPH07160994A (en) Automatic steering device for vehicle
JP3814997B2 (en) Preceding vehicle tracking control device
JP2002029284A (en) Follow-up travel control device for vehicle
JP3531447B2 (en) Leading vehicle follow-up control device
JP4622414B2 (en) Travel control device
JP2004161175A (en) Travel speed control device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees