JP3677555B2 - Electrical conductivity sensor - Google Patents

Electrical conductivity sensor Download PDF

Info

Publication number
JP3677555B2
JP3677555B2 JP36432897A JP36432897A JP3677555B2 JP 3677555 B2 JP3677555 B2 JP 3677555B2 JP 36432897 A JP36432897 A JP 36432897A JP 36432897 A JP36432897 A JP 36432897A JP 3677555 B2 JP3677555 B2 JP 3677555B2
Authority
JP
Japan
Prior art keywords
electrode
base material
electrical conductivity
cylindrical
conductivity sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36432897A
Other languages
Japanese (ja)
Other versions
JPH11183417A (en
Inventor
義道 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP36432897A priority Critical patent/JP3677555B2/en
Publication of JPH11183417A publication Critical patent/JPH11183417A/en
Application granted granted Critical
Publication of JP3677555B2 publication Critical patent/JP3677555B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シリコンウエハを処理し、洗浄に使用した後の超純水の電気伝導度を測定すめための電気伝導度センサに関する
【0002】
【従来の技術】
半導体製造装置においては、シリコン基板の上に所定の微細なパターンを描くことにより、半導体回路を製造するものであるが、この際、シリコン基板に数ミクロンのゴミが存在すると不良品として廃棄しなければならなくなる。そのため、無塵室内において、シリコンウエハの汚れを落とす作業を行っている。即ち、洗浄工程として、塩酸、硝酸等の強酸、弗酸等の薬液による処理槽で不純物を除去する工程を繰り返し、最後にウエハに付着した薬液を超純水で洗浄する工程を経て乾燥させる。
【0003】
上記シリコンウエハを洗浄、水洗、乾燥する二つ以上の工程を行うのに代えて単一処理槽を備え、シリコンウエハを自動的に洗浄する機能を有する装置が開発されている。即ち、処理槽にシリコンウエハを設置した後にシャッタを閉め、処理槽に洗浄液を供給し、シリコンウエハを洗浄する。次いで汚れた洗浄液の排液を行い、排液の終了後、純水を供給して処理槽に付着した洗浄液を水洗する。水洗後、処理槽に超純水を供給してシリコンウエハの水洗を行う。次ぎに、洗浄に使用した超純水を排出して乾燥空気を供給し乾燥空気により処理槽内のシリコンウエハの乾燥を行う。乾燥工程終了後、シャッタを開き、シリコンウエハのクリーン洗浄を終了する。
【0004】
このような工程を行うに際して、シリコンウエハを処理し、洗浄に使用した後の超純水の電気伝導度、即ち、前記超純水の抵抗率の測定をしていた。
【0005】
【発明が解決しようとする課題】
上記のように、超純水の抵抗率を測定するため、液体中に電極を投入し、電気伝導度を測定するセンサにおいては、その電極として白金等の貴金属を樹脂、セラミック製の骨材に被覆することが行われるが、このような抵抗率センサの使用に際して、上記のような上記の単一槽で洗浄する際、薬液から超純水に代えるとき、センサが薬液に曝されることがある。このとき、白金等の貴金属の層にピンホール等が存在すると、そこから母材が浸食され、電極間隔が広くなり、正しい抵抗率を示さなくなる。そして、従来のセンサでは1年未満しか使用できなく耐久性に欠ける欠点があった。
【0006】
したがって、本発明は、センサの電極が長期間薬液の浸食を受けることがなく正確な測定を行うことができ、且つ安価な電気伝導度センサを提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上記課題を解決するため、円筒状の第1電極と、該第1電極の円筒内表面と間隙を有して円柱状の第2電極からなる純水の純度測定用電気伝導度センサにおいて、前記電極の基材がセラミックからなり、該基材の表面に貴金属を無電解メッキにより被覆してなる純水の純度測定用電気伝導度センサ及び円筒状の第1電極と、該第1電極の円筒内表面と間隙を有して円柱状の第2電極からなる純水の純度測定用電気伝導度センサにおいて、前記電極の基材がセラミックからなり、該基材の表面に貴金属粉末を有機バインダに混練して印刷処理によって塗布し、炉中で高温処理して有機分を除去して貴金属を前記基材表面に被覆してなる純水の純度測定用電気伝導度センサに構成したものである。
【0008】
本発明は、上記のように電極の基材をセラミックにより形成したので、その形状成形は極めて容易であり、且つ安価なものとなる。また、その基材表面に、白金等の貴金属を表面被覆したので、電極の耐浸食性が良く長期間薬液の浸食を受けることがなくなり、正確な測定を持続することができる。特にセラミック製の基材表面に白金等の貴金属を無電解メッキにより表面被覆することにより、基材と被覆材とは確実に一体化した構造とすることができる。
【0009】
【発明の実施の形態】
本発明の電気伝導度センサの実施例を図面に添って説明する。図1は本発明を適用する半導体製造装置の処理槽1を示し、この処理槽1内には、その工程毎に異なった処理液2が供給されている。シリコンウエハの上にスパッタリングにより半導体3を形成したものを処理槽1に設置した後に、排気調整用シャッタを閉め、薬液供給バルブを開き、処理槽1に処理液2として所定の濃度の濃硫酸等の強酸等の薬液を供給する。処理槽内に薬液供給後、図示しない薬液循環濾過装置、ヒータを作動させ、マスキング以外の樹脂部分を洗い流し、不要物を除去シリコンウエハを洗浄する。次いで、処理槽の底部に設けられたドレーンバルブを開き、汚れた洗浄液の排液を行う。排液終了後、処理槽1の上部に設けられた図示しない水洗ノズルより純水を供給して処理槽1に付着した洗浄液を水洗する。水洗後、処理槽1に純水を供給して図示しない薬液循環濾過装置を作動させ、シリコンウエハの水洗を行う。次に、図示しないドレーンバルブを開き、処理槽1の洗浄に使用した純水を排出して、排水終了後、図示しないファンヒータを作動させ、乾燥空気を処理槽内に供給し、乾燥空気により処理槽内のシリコンウエハの乾燥を行う。乾燥工程終了後、シャッタを開き、シリコンウエハのクリーン洗浄を終了する。
【0010】
ここでシリコンウエハの最終処理で処理槽1内に槽内下部より純水を供給し、薬液を処理槽1の上部よりオーバーフローさせて、薬液と純水を置換する。電気伝導度センサは処理槽1で薬液処理をしているときは、薬液には接触せず、純水で処理するときは接触する構造となっている。このため薬液と純水を置換する時に、電気伝導度センサが一時薬液に接触する。
【0011】
本発明の電極4は、図2及び図3に示すように、円筒状の第1電極5と、この第1電極の円筒内表面の間隙を有して円柱状の第2電極6からなり、第1電極5と第2電極6が所定間隙を維持するように、円筒状の第1電極5の上部に挿入した絶縁材からなるスペーサ9によって固定されている。第1電極5及び第2電極6の上端にはリード線が接続され、電流を測定する検出回路に接続されている。
【0012】
第1電極5及び第2電極6は共に同じ基材7とその表面被覆8からなっている。基材7としては、セラミックを用い、これを第1電極5の場合は円筒状に、第2電極6の場合は円柱状に成形する。所定の形状に基材を成形した各電極5、6は、無電解メッキにより貴金属の表面被覆処理を行う。貴金属としては、通常広く用いられている白金のほか、ロジューム、パラジューム、ルテニューム等を用いても良い。
【0013】
無電解メッキは電源を使わないで、基材を表面被覆したい金属溶液中に浸漬するだけでメッキする方法であり、置換メッキ、接触メッキ、非触媒化学メッキ、触媒化学メッキ等の方法が存在するが、基材の種類、及び基材の表面に対する前処理等に応じて任意の方法を使用することができる。特に基材が合成樹脂の場合にその表面に無電解メッキを行う際には、合成樹脂は、普通導電性も親水性も触媒性もないので、最初密着が良くなるように表面調整し、且つ親水性にしてからSnCl を吸着させ、次にPbCl 溶液に浸たしてPbを還元析出させ、その後、無電解メッキ液に入れると触媒のPb上に金属が析出する。このほかの無電解メッキ方法も存在し、また、合成樹脂の種類に応じた表面調整方法が広く用いられているので、これを使用することができる。なお、無電解メッキは剥がれやすく、一定厚さにメッキされない等の欠点も存在するが、樹脂を強酸やアルカリに強いものを選択することによって解決することができる。
【0014】
厚膜印刷は、被覆したい貴金属粉末をワックス等の有機バインダに混練し、これを基材に10μ〜50μ程度に均一に印刷処理によっ塗布し、これを炉の中で高温処理して有機分を除去して所定の金属のみを基材の表面に被覆する方法である。この方法は、特に基材がセラミックの場合、上記の無電解メッキよりも容易に、確実に表面被覆を行うことができる。上記貴金属粉末を混練するワックスは120℃〜130℃で蒸発するものが通常用いられている。
【0015】
電極の形状は、上記のように、円筒状の第1電極5と、この第1電極5の円筒内表面と間隙を有して配置される円柱状の第2電極6から構成したものであるが、このような電極を用いると、半導体の洗浄の際に液中にN2 ガスを供給し、バブリングさせ、それにより洗浄作用を向上させることが広く行われている。このようなバブリングを行うと水面が波立ち、水位の変動により測定する抵抗値が変動することが多いが、上記のような構造の電極を用いると、対向する電極間は円筒状の第1電極の外部と隔離されているので、バブリングにより槽内が波立っても、電極内は何ら影響を受けることなく、抵抗値の変動を極めて少なくすることができる。
【0016】
上記のような電極を用いた伝導率センサを使用すると、洗浄の浴槽を、強酸用、アルカリ用、純水用等複数の槽を用いることなく、1つの洗浄槽によって上記処理を容易に、且つ確実に行うことができる。
【0017】
【発明の効果】
本発明は、特にシリコンウエハ等の被洗浄物を洗浄、水洗、乾燥する複数の工程を行う単一処理槽を備え、シリコンウエハを自動的に洗浄する機能を有する装置において、電極の基材を合成樹脂又はセラミックにより形成したので、その形状成形は極めて容易であり、且つ安価なものとなる。また、その基材表面に、白金等の貴金属を表面被覆したので、電極の耐浸食性が良く、薬液の浸食に耐えるので、正確な測定を持続することができる。特にセラミック製の基材表面に白金等の貴金属を、無電解メッキにより表面被覆することにより、基材と被覆材とは確実に一体化した構造とすることができる。
【0018】
また、電極を、円筒状の第1電極と、この第1電極の円筒内表面と間隙を有した円柱状の第2電極から構成することにより、対向する電極間は円筒状の第1電極の外部と隔離されているので、バブリングにより槽内が波立っても、電極内は何ら影響を受けることなく、抵抗値の変動を極めて少なくすることができる。
【図面の簡単な説明】
【図1】本発明を適用する半導体洗浄槽の使用状態を示す概略断面図である。
【図2】本発明の実施例の電極部分の斜視図である。
【図3】同断面図である。
【符号の説明】
1 液処理槽
2 処理液
3 半導体
4 電極
5 第1電極
6 第2電極
7 基材
8 表面被覆
9 スペーサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrical conductivity sensor for measuring the electrical conductivity of ultrapure water after processing a silicon wafer and using it for cleaning .
[0002]
[Prior art]
In semiconductor manufacturing equipment, a semiconductor circuit is manufactured by drawing a predetermined fine pattern on a silicon substrate. At this time, if dust of several microns exists on the silicon substrate, it must be discarded as a defective product. I will have to. For this reason, the silicon wafer is cleaned in a dust-free room. That is, as a cleaning process, a process of removing impurities in a treatment tank using a chemical solution such as strong acid such as hydrochloric acid or nitric acid, hydrofluoric acid is repeated, and finally a chemical solution attached to the wafer is dried through a process of cleaning with ultrapure water.
[0003]
In place of performing two or more steps of cleaning, washing and drying the silicon wafer, an apparatus having a single processing tank and having a function of automatically cleaning the silicon wafer has been developed. That is, after the silicon wafer is placed in the processing tank, the shutter is closed and the cleaning liquid is supplied to the processing tank to clean the silicon wafer. Next, the dirty cleaning liquid is drained, and after the draining is completed, pure water is supplied to wash the cleaning liquid adhering to the treatment tank. After washing with water, ultrapure water is supplied to the treatment tank to wash the silicon wafer. Next, the ultrapure water used for cleaning is discharged, dry air is supplied, and the silicon wafer in the treatment tank is dried with the dry air. After completion of the drying process, the shutter is opened to finish the clean cleaning of the silicon wafer.
[0004]
In performing such a process, the electrical conductivity of the ultrapure water after processing the silicon wafer and using it for cleaning, that is, the resistivity of the ultrapure water was measured.
[0005]
[Problems to be solved by the invention]
As described above, in order to measure the resistivity of ultrapure water, an electrode is placed in a liquid, and in a sensor for measuring electrical conductivity, a noble metal such as platinum is used as a resin or ceramic aggregate as the electrode. When using such a resistivity sensor, the sensor may be exposed to the chemical solution when the chemical solution is replaced with ultrapure water when washing with the single tank as described above. is there. At this time, if a pinhole or the like is present in a layer of noble metal such as platinum, the base material is eroded from there, and the electrode interval is widened, and the correct resistivity is not exhibited. The conventional sensor can be used for less than one year and has a drawback of lack of durability.
[0006]
Accordingly, an object of the present invention is to provide an inexpensive electrical conductivity sensor that can perform accurate measurement without the sensor electrode being subjected to chemical erosion for a long period of time.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides an electrical conductivity for measuring the purity of pure water comprising a cylindrical first electrode and a cylindrical second electrode having a gap with the cylindrical inner surface of the first electrode. In the sensor, the electrode base material is made of ceramic, and the surface of the base material is coated with a noble metal by electroless plating. In an electrical conductivity sensor for measuring purity of pure water comprising a cylindrical second electrode with a gap between the inner surface of one electrode cylinder, the base material of the electrode is made of ceramic, and a noble metal powder is formed on the surface of the base material. Was mixed with an organic binder and applied by a printing process, and it was processed in a furnace at a high temperature to remove the organic component, and the surface of the base material was coated with a noble metal. Is.
[0008]
In the present invention, since the electrode substrate is formed of ceramic as described above, the shape molding is extremely easy and inexpensive. Further, since the surface of the base material is coated with a noble metal such as platinum, the electrode has good erosion resistance and is not subject to chemical solution erosion for a long time, and accurate measurement can be continued. In particular, by covering the surface of a ceramic base material with a noble metal such as platinum by electroless plating, the base material and the covering material can be reliably integrated.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the electrical conductivity sensor of the present invention will be described with reference to the drawings. FIG. 1 shows a processing tank 1 of a semiconductor manufacturing apparatus to which the present invention is applied, and different processing liquids 2 are supplied into the processing tank 1 for each process. After a semiconductor wafer 3 formed by sputtering on a silicon wafer is installed in the processing tank 1, the exhaust adjustment shutter is closed, the chemical solution supply valve is opened, and the processing tank 1 has a predetermined concentration of concentrated sulfuric acid as the processing liquid 2. Supply chemicals such as strong acid. After supplying the chemical liquid into the processing tank, a chemical liquid circulation filtration device and a heater (not shown) are operated to wash away resin portions other than masking, remove unnecessary materials, and clean the silicon wafer. Next, a drain valve provided at the bottom of the treatment tank is opened, and the dirty cleaning liquid is drained. After the drainage is completed, pure water is supplied from a water washing nozzle (not shown) provided at the top of the processing tank 1 to wash the cleaning liquid adhering to the processing tank 1 with water. After washing with water, pure water is supplied to the treatment tank 1 to operate a chemical circulation filter (not shown) to wash the silicon wafer. Next, a drain valve (not shown) is opened, the pure water used for cleaning the treatment tank 1 is discharged, and after the drainage is completed, a fan heater (not shown) is operated to supply dry air into the treatment tank. The silicon wafer in the processing tank is dried. After completion of the drying process, the shutter is opened to finish the clean cleaning of the silicon wafer.
[0010]
Here, in the final processing of the silicon wafer, pure water is supplied into the processing tank 1 from the lower part of the tank, and the chemical liquid is caused to overflow from the upper part of the processing tank 1, thereby replacing the chemical liquid and pure water. The electrical conductivity sensor has a structure that does not come into contact with the chemical solution when the chemical treatment is performed in the treatment tank 1, but comes into contact with the pure water. For this reason, when substituting a chemical | medical solution and a pure water, an electrical conductivity sensor contacts a temporary chemical | medical solution.
[0011]
As shown in FIGS. 2 and 3, the electrode 4 of the present invention comprises a cylindrical first electrode 5 and a columnar second electrode 6 having a gap between the inner surfaces of the first electrode, The first electrode 5 and the second electrode 6 are fixed by a spacer 9 made of an insulating material inserted above the cylindrical first electrode 5 so as to maintain a predetermined gap. Lead wires are connected to the upper ends of the first electrode 5 and the second electrode 6, and are connected to a detection circuit for measuring current.
[0012]
Both the first electrode 5 and the second electrode 6 are composed of the same base material 7 and its surface coating 8. As the base material 7, ceramic is used , which is formed into a cylindrical shape in the case of the first electrode 5, and is formed into a columnar shape in the case of the second electrode 6. Each of the electrodes 5 and 6 formed of a base material in a predetermined shape is subjected to a surface coating treatment of a noble metal by electroless plating . As the noble metal, in addition to platinum which is usually widely used, rhodium, paradium, ruthenium and the like may be used.
[0013]
Electroless plating is a method of plating by simply immersing the substrate in a metal solution to be coated on the surface without using a power source. There are methods such as displacement plating, contact plating, non-catalytic chemical plating, and catalytic chemical plating. However, any method can be used depending on the type of the base material and the pretreatment of the surface of the base material. In particular, when electroless plating is performed on the surface when the base material is a synthetic resin, since the synthetic resin is not usually conductive, hydrophilic or catalytic, the surface is first adjusted to improve adhesion, and After making it hydrophilic, SnCl 2 is adsorbed, and then immersed in a PbCl 2 solution to reduce and precipitate Pb. Then, when placed in an electroless plating solution, a metal is deposited on the catalyst Pb. Other electroless plating methods exist, and a surface adjustment method corresponding to the type of synthetic resin is widely used, so that it can be used. In addition, although electroless plating is easy to peel off and has defects such as not being plated to a certain thickness, it can be solved by selecting a resin that is strong against strong acid or alkali.
[0014]
In thick film printing, the precious metal powder to be coated is kneaded in an organic binder such as wax, and this is uniformly applied to a substrate to a thickness of about 10 μm to 50 μm by a printing process. In this method, the surface of the base material is coated with only a predetermined metal. In this method, particularly when the base material is ceramic, the surface coating can be performed more easily and reliably than the above electroless plating. As the wax for kneading the noble metal powder, one that evaporates at 120 ° C. to 130 ° C. is usually used.
[0015]
As described above, the shape of the electrode is composed of the cylindrical first electrode 5 and the columnar second electrode 6 arranged with a gap from the cylindrical inner surface of the first electrode 5. However, when such an electrode is used, it is widely performed that N 2 gas is supplied into the liquid during the cleaning of the semiconductor to cause bubbling, thereby improving the cleaning action. When such bubbling is performed, the water surface undulates, and the resistance value to be measured often fluctuates due to fluctuations in the water level. Since it is isolated from the outside, even if the inside of the tank is ruffled by bubbling, the inside of the electrode is not affected at all, and the fluctuation of the resistance value can be extremely reduced.
[0016]
When the conductivity sensor using the electrode as described above is used, the washing bath can be easily treated by one washing tank without using a plurality of tanks such as strong acid, alkali, and pure water. It can be done reliably.
[0017]
【The invention's effect】
In particular, the present invention includes a single processing tank that performs a plurality of steps of cleaning, washing, and drying an object to be cleaned such as a silicon wafer, and an apparatus having a function of automatically cleaning a silicon wafer. Since it is made of synthetic resin or ceramic, its shape molding is very easy and inexpensive. In addition, since the surface of the base material is coated with a noble metal such as platinum, the electrode has good erosion resistance and can withstand erosion of the chemical solution, so that accurate measurement can be continued. In particular, by coating the surface of a ceramic base material with a noble metal such as platinum by electroless plating, the base material and the covering material can be reliably integrated.
[0018]
Further, the electrode is constituted by a cylindrical first electrode and a columnar second electrode having a gap with the inner surface of the first electrode, so that the gap between the opposing electrodes is the same as that of the cylindrical first electrode. Since it is isolated from the outside, even if the inside of the tank is ruffled by bubbling, the inside of the electrode is not affected at all, and the fluctuation of the resistance value can be extremely reduced.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing a use state of a semiconductor cleaning tank to which the present invention is applied.
FIG. 2 is a perspective view of an electrode portion according to an embodiment of the present invention.
FIG. 3 is a sectional view of the same.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Liquid processing tank 2 Processing liquid 3 Semiconductor 4 Electrode 5 1st electrode 6 2nd electrode 7 Base material 8 Surface coating 9 Spacer

Claims (2)

円筒状の第1電極と、該第1電極の円筒内表面と間隙を有して円柱状の第2電極からなる純水の純度測定用電気伝導度センサにおいて、前記電極の基材がセラミックからなり、該基材の表面に貴金属を無電解メッキにより表面被覆してなることを特徴とする純水の純度測定用電気伝導度センサ An electrical conductivity sensor for measuring purity of pure water, comprising a cylindrical first electrode, and a cylindrical second electrode having a gap with a cylindrical inner surface of the first electrode. An electric conductivity sensor for measuring purity of pure water, characterized in that a surface of the base material is coated with a noble metal by electroless plating . 円筒状の第1電極と、該第1電極の円筒内表面と間隙を有して円柱状の第2電極からなる純水の純度測定用電気伝導度センサにおいて、前記電極の基材がセラミックからなり、該基材の表面に貴金属粉末を有機バインダに混練して印刷処理によって塗布し、炉中で高温処理して有機分を除去して貴金属を前記基材表面に被覆してなることを特徴とする純水の純度測定用電気伝導度センサ An electrical conductivity sensor for measuring purity of pure water, comprising a cylindrical first electrode, and a cylindrical second electrode having a gap with a cylindrical inner surface of the first electrode. The noble metal powder is kneaded with an organic binder on the surface of the base material and applied by a printing process, and the base material is coated on the base material surface by removing the organic component by high-temperature treatment in an oven. An electrical conductivity sensor for pure water purity measurement .
JP36432897A 1997-12-19 1997-12-19 Electrical conductivity sensor Expired - Fee Related JP3677555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36432897A JP3677555B2 (en) 1997-12-19 1997-12-19 Electrical conductivity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36432897A JP3677555B2 (en) 1997-12-19 1997-12-19 Electrical conductivity sensor

Publications (2)

Publication Number Publication Date
JPH11183417A JPH11183417A (en) 1999-07-09
JP3677555B2 true JP3677555B2 (en) 2005-08-03

Family

ID=18481549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36432897A Expired - Fee Related JP3677555B2 (en) 1997-12-19 1997-12-19 Electrical conductivity sensor

Country Status (1)

Country Link
JP (1) JP3677555B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056309A (en) * 1999-08-20 2001-02-27 Tic Keisokuki Kogyo Kk Conductivity detection electrode and conductivity measuring apparatus using the same
KR100845343B1 (en) 2007-04-11 2008-07-10 한국표준과학연구원 A miniature electrical conductance sensor using dual concentric ring-disk electrodes with a flat face
JP6553875B2 (en) * 2014-01-17 2019-07-31 株式会社 堀場アドバンスドテクノ Electrical property measuring device

Also Published As

Publication number Publication date
JPH11183417A (en) 1999-07-09

Similar Documents

Publication Publication Date Title
US2757104A (en) Process of forming precision resistor
JP4463416B2 (en) Method for forming semiconductor device
US7465358B2 (en) Measurement techniques for controlling aspects of a electroless deposition process
US20060121200A1 (en) Electroless plating of piezoelectric ceramic
CN107328808B (en) Substrate for testing Seebeck coefficient of semiconductor film and preparation and testing method thereof
JPH08126873A (en) Washing and device for electronic parts and the like
JP3677555B2 (en) Electrical conductivity sensor
EP0257197B1 (en) Method and apparatus for controlling the organic contamination level in an electroless plating bath
JP3886919B2 (en) Plating equipment
US5753128A (en) Self-supporting thin-film filament detector, process for its manufacture and it applications to gas detection and gas chromatography
CN107132497B (en) Substrate for nondestructive testing of Hall effect of semiconductor film and preparation method thereof
US3384556A (en) Method of electrolytically detecting imperfections in oxide passivation layers
JP4064132B2 (en) Substrate processing apparatus and substrate processing method
JP4104465B2 (en) Electrolytic plating equipment
US6150279A (en) Reverse current gold etch
JP3571299B2 (en) Humidity sensor and method of manufacturing humidity sensor
TWI391592B (en) Valve with sensor for process solution, and apparatus and method for treating substrate using the same
US4612094A (en) Electrical conditioning of a platinum electrode useful in measurement in hypochlorite
JP2005146399A (en) Plating device, and method of inspecting contact state in contact point
JPH02140928A (en) Manufacture of semiconductor device
JPS61280539A (en) Apparatus for detecting leakage of liquid
JPS6326537B2 (en)
JP3953904B2 (en) Plating apparatus and plating method
JPH0233980B2 (en) YOKYOKUSANKAARUMIKANSHITSUMAKUNOSEIHO
KR940009600B1 (en) Metal wiring method of semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees