JP3677378B2 - Pneumatic friction joint device for winding core installation - Google Patents
Pneumatic friction joint device for winding core installation Download PDFInfo
- Publication number
- JP3677378B2 JP3677378B2 JP24336397A JP24336397A JP3677378B2 JP 3677378 B2 JP3677378 B2 JP 3677378B2 JP 24336397 A JP24336397 A JP 24336397A JP 24336397 A JP24336397 A JP 24336397A JP 3677378 B2 JP3677378 B2 JP 3677378B2
- Authority
- JP
- Japan
- Prior art keywords
- winding shaft
- friction
- winding
- annular
- annular friction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Winding Of Webs (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、スリッター等において、所定幅に切断されたウエッブを紙管等の巻取コアに巻取るための巻取コア装着用の空気圧摩擦継手装置に関するものである。さらに詳しくは、この発明は、所定幅の薄ものフィルム等のウエッブを巻取る巻取コアを巻取軸上に並列して装着し、該巻取軸の回転を前記巻取コアに伝達し、所定張力でウエッブを巻き取るために使用される巻取コア装着用の空気圧摩擦継手装置に関するものである。
【0002】
【従来の技術】
スリッターは、図10に示されるように、原反シート(51)をカッター(52)によって所定幅の多数条のウエッブ(51a)に切断し、各ウエッブ(51a)を所定の張力で巻取軸(53)に装着された紙管等の巻取コア(図示せず)に巻取る装置である。巻取軸に巻取コアを装着し、巻取軸(53)の回転力を巻取コアに伝達する巻取コア装着用の空気圧摩擦継手装置として、従来より図11、図12に示されるようなものが知られている。
【0003】
図11に示される装置は、巻取軸(61)の軸心に圧縮空気の通路(62)が設けられているとともに、この通路(62)に接続して半径方向の通路(63)が設けられ、これらの通路(62)、(63)を通って膨張パッキン室(64)に及ぶ空気圧によって膨張パッキン(65)が膨張されて、外筒(66)の爪孔(67)に遊嵌された爪体(68)をこの爪孔(67)から突出させ、これにより爪体(68)が紙管(69)の内周に圧接して、紙管(69)を保持することができるようになっている。一方、前記各通路(62)、(63)を通ってパッキン室(71)に及ぶ空気圧によって、このパッキン室(71)に収容されているパッキン(72)が巻取軸(61)の外周面に押し付けられ、これにより気密を保持するとともに、その摩擦力により巻取軸(61)の回転力(トルク)が紙管(69)に伝達されるようになっている。この装置は、空気圧の制御によって伝達トルクを制御できるため、ウエッブの巻取張力を自在に調整できる利点を有しているが、パッキン(72)が摩耗して空気漏れが生じ易く、紙管(69)への伝達トルクにムラが生じたり、紙管(69)の爪体(68)による保持に不均一が生じたりし、そのため、紙管(69)コアへのウエッブ巻取の不良が生じ易い。
【0004】
また、図12に示される装置は、軸(81)上に軸方向に所定の間隔をおいて配設された複数のコアホルダー(82)を有し、前記コアホルダー(82)のそれぞれが、前記軸に軸方向及び回転方向に不動に固定配置されこの軸とともに回転可能な複数の固定円板(83)の隣り合う各一対の間において、前記軸上に軸方向に所定の間隔をおいて軸方向に摺動可能に配置され、かつ、各固定円板の軸方向端面に対面した摩擦面(84a)を有する回転可能な一対のフリクションリング(84)と、前記各コアホルダー(82)の周壁の円周方向の複数箇所に穿設した窓(85)から出没自在な爪(86)と、前記各コアホルダー(82)内において前記一対のフリクションリング(84)間に形成された気密室(87)とを有し、前記軸を通して前記各コアホルダー(82)の気密室(87)内への圧縮空気導入路(88)を設け、この導入路(88)を介して前記各コアホルダー(82)の前記気密室(87)に圧縮空気を導入しその空気圧によって前記爪(86)を前記窓(85)から押出し前記コアホルダー(82)に嵌着したコア(図示せず)の内面に圧接させてこのコアを拘止するとともに、同じ空気圧によって前記各一対のフリクションリング(84)を前記軸上で軸方向に押し拡げその摩擦面(84a)を前記固定円板(83)の軸方向端面に押圧してフリクショントルクを前記各コアホルダー(82)について他のコアホルダーから独立して発生させるようにするため、前記フリクションリング(84)をゴム製のダイヤフラム(89)によって前記固定円板(83)を除く前記各コアホルダー(82)の構成部材に対し非接触に支持させたものである。この装置も図11に示された装置と同様に、空気圧の制御によって伝達トルクを制御でき、ウエッブの巻取張力を自在に調整できる利点を有しているが、部品点数が多いことからコストが高くなる。また、フリクションリングをゴム製のダイヤフラムによって前記固定円板を除くコアホルダーの構成部材に対し非接触に支持させるといった複雑な構造を採用していることから、組立やメンテナンスに高度な組立技術や特殊な治具を用いることが必要とされ、組立や補修コストが高くつくことになる。また、フリクションリングをゴム製のダイヤフラムによってフローティングさせて固定円板に接触させ、空気圧によって一対のフリクションリングを軸上で軸方向に押し拡げその摩擦面を前記固定円板の軸方向端面に押圧してフリクショントルクを発生させており、発生したフリクショントルクがゴム製のダイヤフラムを介して伝達されることから、ダイヤフラムの材質の不均一性、摩擦発熱による温度変化に伴う特性の変化、経年変化による特性の劣化等により伝達されるトルクが変化する可能性がある。また、操作ミス等により気密室内に高圧エアーが供給されるとダイヤフラムがパンクし破損する恐れがある。
また、コアホルダーの部品点数が多く重量が大きくなることから慣性モーメントが大きく、慣性重量の不均一による巻取ムラが発生しやすく、巻取速度をアップできない。さらに、重量のあるコアホルダーが軸方向に多数並列配置されることで、軸が撓み易く、巻取不良につながりやすい。
【0005】
【発明が解決しようとする課題】
この発明は、上記のような実情に鑑み鋭意研究の結果創案されたものであり、構造が簡単で、軽量であり、巻取軸からの回転トルクの摩擦伝達が良好であってムラが生ぜず、高速巻取を可能とする巻取コア装着用の空気圧摩擦継手装置を提供することを目的としている。
【0006】
【課題を解決するための手段】
上記課題を解決するために、この発明の巻取コア装着用の空気圧摩擦継手装置は、巻取軸上に所定間隔をおいて複数の軸受が固定配置され、該軸受の隣り合う各一対の軸受間において、一対の環状摩擦体がそれぞれ回り止めされるとともに巻取軸方向に沿って所定のクリアランスを持って摺動可能に配設され、前記各軸受の外輪にはフランジが外輪と一体回転可能に支持され、該フランジの内側面の前記環状摩擦体との対向面が環状摩擦体の摩擦面を介して巻取軸からの回転トルクを伝達する摩擦伝達面となっており、前記フランジ間には、外筒がフランジと一体回転可能に取り付けられ、該外筒には、円周方向に沿って所定間隔に爪孔が穿設され、該爪孔から出没可能な爪体が外筒に内装された拡張パッキンに支持されており、該拡張パッキンと前記環状摩擦体との間の空間が、巻取軸に設けられた空気導入孔と連通した気密室を形成しており、巻取軸の空気導入孔を介して前記気密室に導入される空気の圧力によって、前記環状摩擦体の摩擦面をフランジの内側面の環状摩擦体との摩擦伝達面に押圧させ、巻取軸からの回転トルクを外筒に摩擦伝達させるとともに、前記拡張パッキンを巻取軸の半径方向に拡張させ、爪体を外筒の爪孔から外方に突出させ、外筒の外側に遊嵌されている巻取コアの内周面に爪体を押し付けて、外筒に巻取コアを装着するようにしたことを特徴とするものである。
【0007】
これによれば、フランジの内側面の摩擦伝達面と環状摩擦体の摩擦面との間での空気漏れの恐れが少なく、また、軸受の隣り合う各一対の軸受間において、一対の環状摩擦体がそれぞれ回り止めされるとともに巻取軸方向に沿って所定のクリアランスを持って摺動可能に配設され、フランジの内側面の前記環状摩擦体との対向面が環状摩擦体の摩擦面を介して巻取軸からの回転トルクを伝達する摩擦伝達面となっていることから、空気の圧力によって、前記環状摩擦体の摩擦面をフランジの内側面の環状摩擦体との摩擦伝達面に押圧させ、巻取軸からの回転トルクを外筒に摩擦伝達させることで、トルクの伝達が良好に行われ、しかも故障の恐れが少ない。そして、巻取軸の空気導入孔を介して前記気密室に導入される空気の圧力を制御することで、前記環状摩擦体の摩擦面のフランジの内側面の摩擦伝達面への押圧力を変化させ、巻取軸から外筒への摩擦伝達トルクを調整し、所定張力でウエッブを巻取コアに巻き取ることができる。
また、空気圧摩擦継手装置の部品点数が比較的少なく軽量となることから慣性モーメントが大きくならず、高速巻取が可能となる。
さらに、個々の空気圧摩擦継手装置が軽量なことから、空気圧摩擦継手装置を軸方向に多数並列配置しても、軸が撓むことがなく、良好な巻取が可能となる。
一対の環状摩擦体にはスリーブシールが被着されるとともに、巻取軸の外周面側の一対の環状摩擦体の間は前記スリーブシールで被覆されていると、環状摩擦体側のシールが良好であって、空気漏れが少ない。
【0008】
環状摩擦体の回り止め構造として、前記環状摩擦体の内周に巻取軸の軸方向に沿った凹溝が形成され、該凹溝に巻取軸側に植設されたピンが挿入される構造、環状摩擦体の内周に巻取軸の軸方向に沿ったキー遊嵌溝が形成され、該キー遊嵌溝に巻取軸側に固設されたキーが遊嵌されている構造、または、環状摩擦体の内周に巻取軸の軸方向に沿った断面円弧状凹溝が形成され、該円弧状凹溝に巻取軸側に埋設固定された球が遊嵌されている構造が採用できる。
【0009】
【発明の実施の形態】
以下、実施の形態を示し、さらに詳しくこの発明について説明する。もちろんこの発明は以下の実施の形態によって限定されるものではない。
図1は、この発明の空気圧摩擦継手装置の一例を示す要部の縦断面図で、圧縮空気が供給されていない状態を示す。図2は図1の装置において圧縮空気が供給されている状態を示す。図3は、図1の装置の横部分断面図、図4は図2の横部分断面図である。
図1から図2に示されるように、紙管などの巻取コアを装着するための多数の空気圧摩擦継手装置(1)は巻取軸(2)の軸方向に沿って並設されるものである。図1から図4に示されるように、巻取軸(2)には軸心に沿って圧縮空気の通路(3)が形成されており、該通路(3)は図示していない圧縮空気供給装置に接続され、圧縮空気が供給されるようになっている。そして、前記通路(3)に直交して空気導入孔(4)がその半径方向に所定間隔ごとに設けられている。巻取軸(2)には多数の玉軸受(5)が外嵌されており、これら玉軸受(5)の内の隣り合う一対の玉軸受(5)、(5)は、巻取軸(2)に外嵌された固定カラー(6)によって所定間隔離間され、他の一対の玉軸受(図示せず)とは間隔カラー(7)によって所定間隔隔てられている。なお、図1におけるように間隔カラー(7)、玉軸受(5)、固定カラー(6)、玉軸受(5)、間隔カラー(7)の順に巻取軸(2)に外嵌され、玉軸受(5)の内輪(5a)と、固定カラー(6)、間隔カラー(7)は当接され、巻取軸(2)の一端に設けられたフランジ(図示せず)と、他端に設けられたネジとの間でナットによって締め付け一体固定されている。
【0010】
前記固定カラー(6)には、そのほぼ中央に接続孔(8)が穿設されており、巻取軸(2)に設けられた空気導入孔(4)と接続されている。一対の玉軸受(5)、(5)からそれぞれ所定距離内側において固定カラー(6)に植設されたピン(9)、(9)が、巻取軸(2)の半径方向に突出している。固定カラー(6)には一対の環状摩擦体(10)、(10)が所定距離離れてすきまばめ状態に遊嵌されており、その内周の巻取軸の軸方向に形成された凹溝(11)に前記ピン(9)が挿入・係合され、環状摩擦体(10)の巻取軸の円周方向への回動を阻止するとともに、巻取軸の軸方向に沿って所定のクリアランスを持って摺動するようになっている。これにより、環状摩擦体(10)、(10)は巻取軸(2)と一体となって回転するようになっている。前記環状摩擦体(10)、(10)にはシリコンゴム等からなる柔軟で弾力性のあるスリーブシール(12)が被着されるとともに、固定カラー(6)の外周表面がスリーブシール(12)で被覆されている。該スリーブシール(12)には固定カラー(6)の接続孔(8)に連通する連通孔(13)が設けられ、圧縮空気が巻取軸(2)の空気導入孔(4)から固定カラーの接続孔(8)を経、スリーブシール(12)の連通孔(13)を介して供給されるようになっている。スリーブシール(12)は両端部の内周側に沿ってそれぞれ環状凸部(12a)、(12a)が形成され、環状摩擦体(10)の外周面に刻設された環状凹溝に嵌入されている。
【0011】
各環状摩擦体(10)の玉軸受側の外側面は、玉軸受(5)の外輪(5b)に嵌合されたフランジ(14)の内側面の摩擦伝達面(14a)と対向した摩擦面(10a)となっており、一対の玉軸受(5)、(5)の外輪(5b)、(5b)に嵌合されたフランジ(14)、(14)間には外筒(15)が止め輪(18)、(18)を介して固定・支持され、フランジ(14)、(14)と外筒(15)とが図示していないネジ等の固定手段によって一体化されている。巻取軸(2)の回転トルクが環状摩擦体(10)の摩擦面(10a)を介し前記フランジ(14)に伝達されることで、外筒(15)がフランジ(14)、(14)と一体になって回転されることになる。環状摩擦体(10)の摩擦面(10a)は、黒鉛、カーボン等の材料が使用され、フランジ(14)に密着してスリップしながら摩擦により伝達がなされるようになっており、一種のメカニカルシールを形成している。
【0012】
外筒(15)の内側には、筒状の拡張パッキン(19)が設けられており、該拡張パッキン(19)の両端は環状凸条(19a)とされ、外筒(15)とフランジ(14)の段部(14b)とで圧着固定されている。外筒(15)には、円周方向に沿って等間隔に所定数(通常3個)の爪孔(20)が穿設され、各爪孔(20)の中には、爪体(21)が皿ネジ(22)でボス(23)に固定され、該ボス(23)は、拡張パッキン(19)に支持された復帰用板バネ(24)にリベット(25)で固定されている。該復帰用板バネ(24)は、前記爪体(21)を爪孔(20)内に収容し、爪体(21)が外筒(15)の外周表面から突出しないようにするものである。
【0013】
拡張パッキン(19)、一対のフランジ(14)、(14)、該フランジに当接している環状摩擦体(10)、(10)、および、スリーブシール(12)によって気密室(26)が形成され、該気密室(26)内に、圧縮空気が供給されるようになっている。前記スリーブシール(12)は環状摩擦体(10)を被着するとともに固定カラー(6)の外周表面を被覆していることから、固定カラー(6)と環状摩擦体(10)との間の気密を確保しここからのエアーの漏洩を防止することができるようになっている。また、エアーが気密室(26)内に供給されていない無圧状態において、スリーブシール(12)の弾性により環状摩擦体(10)、(10)が互いに軸方向に沿って離間し、環状摩擦体の摩擦面(10a)とフランジ(14)の内側面の摩擦伝達面(14a)とが軽く接触するようになっており、エアーが気密室内に供給された初期段階での環状摩擦体の摩擦面(10a)とフランジ(14)の内側面の摩擦伝達面(14a)との間の気密を確保しここからのエアーの漏洩を防止することができるようになっている。これにより気密室(26)の気密状態を良好とすることができる。なお、環状摩擦体の摩擦面(10a)とフランジ(14)の内側面の摩擦伝達面(14a)との間の気密を確保するためにスリーブシール(12)の外周にコイルスプリングを設け、環状摩擦体(10)、(10)が互いに軸方向に沿って離間し、環状摩擦体の摩擦面(10a)とフランジ(14)の内側面の摩擦伝達面(14a)とが軽く接触するようにしてもよいことはいうまでもない。
【0014】
図1、図3に示される状態において、圧縮空気が巻取軸(2)の通路(3)、空気導入孔(4)、接続孔(8)、連通孔(13)を経て気密室(26)内に供給されると、図2、図4に示されるように、復帰用板バネ(24)に抗して拡張パッキン(19)が巻取軸の半径方向に拡張し、爪体(21)が押し上げられて、外筒(15)の爪孔(20)から外方に突出し、外筒(15)の外側に遊嵌されている巻取コア(29)の内周面に爪体(21)を押し付けて、外筒(15)に巻取コア(29)を装着する。また、気密室(26)に供給された圧縮空気によって、環状摩擦体(10)の摩擦面(10a)がフランジ(14)の内側面の摩擦伝達面(14a)に押し付けられ、空気圧に応じた摩擦力が生じ、巻取軸(2)の回転トルクが外筒(15)に伝達されるようになる。環状摩擦体(10)の摩擦面(10a)と、該摩擦面(10a)が押し付けられたフランジ(14)の内側面の摩擦伝達面(14a)とは常時一定のスリップが生じており、巻取コア(29)に巻取られるウエッブを所定の張力で巻き取ることができる。
【0015】
気密室(26)内への圧縮空気の供給を断つと、復帰用板バネ(24)の作用によって、爪体(21)は爪孔(20)内に引っ込み、環状摩擦体(10)の摩擦面(10a)とフランジ(14)の内側面の摩擦伝達面(14a)との押圧が解除され、巻取軸(2)の回転トルクの外筒(15)への伝達が遮断され、巻取コア(29)に巻取られたウエッブを巻取軸(2)から取り出すことが可能となる。
【0016】
環状摩擦体(10)の巻取軸(2)の円周方向への回動を阻止するとともに、巻取軸の軸方向に沿って所定のクリアランスを持って摺動するような機構としては、図1から図4に示されたピン(9)を用いた機構に限られず、図5、図6に示されるように巻取軸(2)の軸方向に沿ってキー(31)を固定カラー(6)に固設し、環状摩擦体(10)の内周には巻取軸の軸方向に沿ったキー遊嵌溝(32)が形成されている機構であってもよく、または、図7、図8に示されるように固定カラー(6)に球(33)を埋設固定し、環状摩擦体(10)の内周には巻取軸の軸方向に沿った断面円弧状凹溝(34)が形成されている機構であってもよい。
上記したピン(9)、キー(31)、球(33)はいずれも固定カラー(6)に設けられているが、これに限られるものではなく、巻取軸と一体に回転するようにして巻取軸側に設けられていればよいものであり、例えば、ピンを巻取軸に植設し、固定カラーに穿設されたピン挿通孔からピンを突出させる構造、キーを巻取軸に固設し、固定カラーに穿設されたキー挿通孔からキーを突出させる構造、または、球を巻取軸に埋設固定し、固定カラーに穿設された球挿通孔から球を突出させる構造等の態様であってもよいことはいうまでもない。
【0017】
また、図9に示されるように、固定カラー(6)の内周に円周方向にOリング(36)用の凹溝(37)を設け、該凹溝(37)内にOリング(36)を配設し、巻取軸(2)との間の気密性を高めることで、圧縮空気の漏洩をより完全に遮断するようにすることが好ましい。
【0018】
なお、図5から図9において、図1から図4と同一部材、部分については、同一番号を付し詳細な説明は省略する。
【0019】
【発明の効果】
この発明は、以上詳しく説明したように構成されているので、以下に記載されるような効果を奏する。
この発明の巻取コア装着用の空気圧摩擦継手装置は、巻取軸上に所定間隔をおいて複数の軸受が固定配置され、該軸受の隣り合う各一対の軸受間において、一対の環状摩擦体がそれぞれ回り止めされるとともに巻取軸方向に沿って所定のクリアランスを持って摺動可能に配設され、前記各軸受の外輪にはフランジが外輪と一体回転可能に支持され、該フランジの内側面の前記環状摩擦体との対向面が環状摩擦体の摩擦面を介して巻取軸からの回転トルクを伝達する摩擦伝達面となっており、前記フランジ間には、外筒がフランジと一体回転可能に取り付けられ、該外筒には、円周方向に沿って所定間隔に爪孔が穿設され、該爪孔から出没可能な爪体が外筒に内装された拡張パッキンに支持されており、該拡張パッキンと前記環状摩擦体との間の空間が、巻取軸に設けられた空気導入孔と連通した気密室を形成しており、巻取軸の空気導入孔を介して前記気密室に導入される空気の圧力によって、前記環状摩擦体の摩擦面をフランジの内側面の環状摩擦体との摩擦伝達面に押圧させ、巻取軸からの回転トルクを外筒に摩擦伝達させるとともに、前記拡張パッキンを巻取軸の半径方向に拡張させ、爪体を外筒の爪孔から外方に突出させ、外筒の外側に遊嵌されている巻取コアの内周面に爪体を押し付けて、外筒に巻取コアを装着するようにされていることから、フランジの内側面の摩擦伝達面と環状摩擦体の摩擦面との摩耗による空気漏れの恐れが少ない。また、部品点数が少なくコストを低く抑えることができる。また、比較的簡単な構造を採用していることから、組立やメンテナンスに高度な組立技術や特殊な治具を用いる必要がなく、組立や補修コストを低く抑えることができる。
そして、軸受の隣り合う各一対の軸受間において、一対の環状摩擦体がそれぞれ回り止めされるとともに巻取軸方向に沿って所定のクリアランスを持って摺動可能に配設され、フランジの内側面の前記環状摩擦体との対向面が環状摩擦体の摩擦面を介して巻取軸からの回転トルクを伝達する摩擦伝達面となっていること、および、環状摩擦体が回り止めされていることから、空気の圧力によって、前記環状摩擦体の摩擦面をフランジの内側面の環状摩擦体との摩擦伝達面に押圧させ、巻取軸からの回転トルクを外筒に摩擦伝達させることで、トルクの伝達が良好に行われ、しかも故障の恐れが少ない。
また、巻取軸の空気導入孔を介して前記気密室に導入される空気の圧力を制御すれば、前記環状摩擦体の摩擦面のフランジの内側面の摩擦伝達面への押圧力を変化させ、巻取軸から外筒への摩擦伝達トルクを調整し、所定張力でウエッブを巻取コアに巻き取ることができる。
また、空気圧摩擦継手装置の部品点数が比較的少なく軽量となることから慣性モーメントが大きくならず、高速巻取が可能となる。
さらに、個々の空気圧摩擦継手装置が軽量なことから、空気圧摩擦継手装置を軸方向に多数並列配置しても、軸が撓むことがなく、良好な巻取が可能となる。
前記一対の環状摩擦体にはスリーブシールが被着されるとともに、巻取軸の外周面側の一対の環状摩擦体の間は前記スリーブシールで被覆されていると、環状摩擦体側のシールが良好であって、空気漏れが少ない。
【図面の簡単な説明】
【図1】この発明の空気圧摩擦継手装置の一例を示す要部の縦断面図で、圧縮空気が供給されていない状態を示す。
【図2】図1に示す空気圧摩擦継手装置において圧縮空気が供給されている状態を示す要部の縦断面図である。
【図3】図1に示す空気圧摩擦継手装置の横部分断面図である。
【図4】図2の横部分断面図である。
【図5】この発明の空気圧摩擦継手装置の他の例を示す要部の縦断面図である。
【図6】図5に示す空気圧摩擦継手装置の横部分断面図である。
【図7】この発明の空気圧摩擦継手装置のさらに他の例を示す要部の縦断面図である。
【図8】図7に示す空気圧摩擦継手装置の横部分断面図である。
【図9】この発明の空気圧摩擦継手装置のさらに他例を示す要部の縦断面図である。
【図10】スリッターの概略斜視図である。
【図11】従来の巻取コア装着用の空気圧摩擦継手装置の一例を示す縦断面図である。
【図12】従来の他の巻取コア装着用の空気圧摩擦継手装置の一例を示す縦断面図である。
【符号の説明】
1 空気圧摩擦継手装置
2 巻取軸
4 空気導入孔
5 玉軸受
9 ピン
10 環状摩擦体
12 スリーブシール
14 フランジ
15 外筒
19 拡張パッキン
21 爪体
24 復帰用板バネ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pneumatic friction joint device for mounting a winding core for winding a web cut to a predetermined width on a winding core such as a paper tube in a slitter or the like. More specifically, the present invention has a winding core for winding a web such as a thin film having a predetermined width mounted in parallel on the winding shaft, and transmits the rotation of the winding shaft to the winding core. The present invention relates to a pneumatic friction coupling device for mounting a winding core used for winding a web with a predetermined tension.
[0002]
[Prior art]
As shown in FIG. 10, the slitter cuts the original fabric sheet (51) into a plurality of webs (51a) having a predetermined width by a cutter (52), and winds each web (51a) with a predetermined tension. (53) is a device for winding around a winding core (not shown) such as a paper tube. As shown in FIGS. 11 and 12, a pneumatic friction joint device for mounting a winding core, in which the winding core is mounted on the winding shaft and the rotational force of the winding shaft (53) is transmitted to the winding core, is conventionally shown. What is known.
[0003]
The apparatus shown in FIG. 11 is provided with a compressed air passage (62) at the axis of the winding shaft (61) and a radial passage (63) connected to the passage (62). Then, the expansion packing (65) is expanded by the air pressure passing through the passages (62) and (63) and reaching the expansion packing chamber (64), and is loosely fitted into the claw hole (67) of the outer cylinder (66). The nail body (68) is protruded from the nail hole (67) so that the nail body (68) is pressed against the inner periphery of the paper tube (69) so that the paper tube (69) can be held. It has become. On the other hand, the packing (72) accommodated in the packing chamber (71) is caused by the air pressure reaching the packing chamber (71) through the passages (62), (63), and the outer peripheral surface of the winding shaft (61). Thus, airtightness is maintained, and the rotational force (torque) of the take-up shaft (61) is transmitted to the paper tube (69) by the frictional force. Since this device can control the transmission torque by controlling the air pressure, it has the advantage that the winding tension of the web can be adjusted freely. However, the packing (72) is easily worn and air leakage is likely to occur. 69) uneven transmission torque to the paper tube (69) and non-uniform holding of the paper tube (69) by the claw body (68), which results in poor web winding around the paper tube (69) core. easy.
[0004]
The apparatus shown in FIG. 12 has a plurality of core holders (82) disposed on the shaft (81) at predetermined intervals in the axial direction, and each of the core holders (82) Between each adjacent pair of a plurality of fixed disks (83) which are fixedly fixed to the shaft in an axial direction and a rotational direction and are rotatable together with the shaft, a predetermined interval is provided on the shaft in the axial direction. A pair of rotatable friction rings (84) which are arranged so as to be slidable in the axial direction and have friction surfaces (84a) facing the axial end surfaces of the respective fixed disks, and the core holders (82) An airtight chamber formed between a pair of friction rings (84) in each core holder (82), and a claw (86) which can be moved in and out from windows (85) drilled at a plurality of locations in the circumferential direction of the peripheral wall. (87) A compressed air introduction path (88) into the airtight chamber (87) of each core holder (82) is provided, and the airtight chamber (87) of each core holder (82) is provided through the introduction path (88). The claw (86) is pushed out from the window (85) by the compressed air and is pressed against the inner surface of a core (not shown) fitted to the core holder (82) to hold the core. At the same time, each pair of friction rings (84) is expanded in the axial direction on the shaft by the same air pressure, and the friction surface (84a) is pressed against the axial end surface of the fixed disk (83) to thereby generate the friction torque. In order to generate each core holder (82) independently from the other core holders, the friction ring (84) is fixed to the fixed disk (8) by a rubber diaphragm (89). ) Wherein excluding those that are supported in non-contact with respect to the components of each core holder (82). Similar to the device shown in FIG. 11, this device has the advantage that the transmission torque can be controlled by controlling the air pressure and the web winding tension can be adjusted freely, but the cost is high due to the large number of parts. Get higher. In addition, a complex structure is adopted in which the friction ring is supported by a rubber diaphragm in a non-contact manner on the core holder components excluding the fixed disk. It is necessary to use a simple jig, and the assembly and repair costs are high. Further, the friction ring is floated by a rubber diaphragm and brought into contact with the fixed disk, and a pair of friction rings are axially expanded on the shaft by air pressure to push the friction surface against the axial end surface of the fixed disk. The friction torque is generated, and the generated friction torque is transmitted through the rubber diaphragm. Therefore, the material of the diaphragm is not uniform, the characteristics change due to temperature change due to frictional heat generation, and the characteristics due to secular change. There is a possibility that the transmitted torque may change due to deterioration or the like. Further, if high-pressure air is supplied into the hermetic chamber due to an operation error or the like, the diaphragm may be punctured and damaged.
In addition, since the number of parts of the core holder is large and the weight is large, the moment of inertia is large, winding unevenness due to uneven inertia weight is likely to occur, and the winding speed cannot be increased. Furthermore, since a large number of heavy core holders are arranged in parallel in the axial direction, the shaft is likely to be bent, and winding failure is likely to occur.
[0005]
[Problems to be solved by the invention]
The present invention was devised as a result of intensive research in view of the above circumstances, and has a simple structure, is lightweight, has good frictional transmission of rotational torque from the winding shaft, and does not cause unevenness. An object of the present invention is to provide a pneumatic friction coupling device for mounting a winding core that enables high-speed winding.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, a pneumatic friction joint device for mounting a winding core according to the present invention includes a plurality of bearings fixedly arranged on a winding shaft at a predetermined interval, and each pair of bearings adjacent to each other. A pair of annular friction bodies are respectively prevented from rotating and slidable with a predetermined clearance along the take-up shaft direction, and a flange can rotate integrally with the outer ring of each bearing. The inner surface of the flange facing the annular friction body is a friction transmission surface that transmits rotational torque from the winding shaft via the friction surface of the annular friction body. The outer cylinder is attached to the flange so as to rotate together with the flange, and the outer cylinder is provided with a claw hole at a predetermined interval along the circumferential direction, and a claw body that can be projected and retracted from the claw hole is provided in the outer cylinder. Supported by the expanded packing. The space between the ring and the annular friction member forms an airtight chamber communicating with an air introduction hole provided in the winding shaft, and is introduced into the airtight chamber through the air introduction hole of the winding shaft. The frictional surface of the annular frictional body is pressed against the frictional transmission surface of the inner surface of the flange with the annular frictional body by the pressure of the air to transmit the rotational torque from the winding shaft to the outer cylinder, and the expansion packing Is expanded in the radial direction of the winding shaft, the claw body is protruded outward from the claw hole of the outer cylinder, and the claw body is pressed against the inner peripheral surface of the winding core loosely fitted on the outer side of the outer cylinder, A winding core is attached to the outer cylinder.
[0007]
According to this, there is little fear of air leakage between the friction transmission surface of the inner surface of the flange and the friction surface of the annular friction body, and a pair of annular friction bodies between each pair of adjacent bearings. Are respectively slidably disposed with a predetermined clearance along the winding axis direction, and the surface of the inner surface of the flange facing the annular frictional body is interposed via the frictional surface of the annular frictional body. Therefore, the friction surface of the annular friction body is pressed against the friction transmission surface of the inner surface of the flange with the annular friction body by the pressure of air. By transmitting the rotational torque from the winding shaft to the outer cylinder, the torque can be transmitted satisfactorily and there is little risk of failure. Then, by controlling the pressure of the air introduced into the hermetic chamber through the air introduction hole of the winding shaft, the pressing force of the friction surface of the annular friction body to the friction transmission surface of the inner surface of the flange is changed. By adjusting the frictional transmission torque from the winding shaft to the outer cylinder, the web can be wound around the winding core with a predetermined tension.
Further, since the number of parts of the pneumatic friction joint device is relatively small and lightweight, the moment of inertia does not increase and high-speed winding is possible.
Furthermore, since each pneumatic friction coupling device is light, even if a large number of pneumatic friction coupling devices are arranged in parallel in the axial direction, the shaft does not bend and good winding is possible.
A pair of annular friction bodies is covered with a sleeve seal, and if the gap between the pair of annular friction bodies on the outer peripheral surface side of the winding shaft is covered with the sleeve seal, the seal on the annular friction body side is good. There is little air leakage.
[0008]
As an anti-rotation structure for the annular friction body, a concave groove along the axial direction of the winding shaft is formed on the inner periphery of the annular friction body, and a pin implanted on the winding shaft side is inserted into the concave groove. Structure, a structure in which a key loose fitting groove along the axial direction of the winding shaft is formed on the inner periphery of the annular friction body, and a key fixed on the winding shaft side is loosely fitted in the key loose fitting groove, Alternatively, a structure in which an arcuate groove having a cross-section along the axial direction of the winding shaft is formed on the inner periphery of the annular friction body, and a ball embedded and fixed on the winding shaft side is loosely fitted in the arcuate groove. Can be adopted.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments will be shown and the present invention will be described in more detail. Of course, the present invention is not limited to the following embodiments.
FIG. 1 is a longitudinal sectional view of an essential part showing an example of a pneumatic friction coupling device of the present invention, and shows a state where compressed air is not supplied. FIG. 2 shows a state in which compressed air is supplied in the apparatus of FIG. 3 is a lateral partial cross-sectional view of the apparatus of FIG. 1, and FIG. 4 is a lateral partial cross-sectional view of FIG.
As shown in FIGS. 1 to 2, a large number of pneumatic friction coupling devices (1) for mounting a winding core such as a paper tube are arranged in parallel along the axial direction of the winding shaft (2). It is. As shown in FIGS. 1 to 4, the winding shaft (2) is formed with a compressed air passage (3) along the axial center, and the passage (3) is supplied with a compressed air supply (not shown). It is connected to the device and is supplied with compressed air. In addition, air introduction holes (4) are provided at predetermined intervals in the radial direction orthogonal to the passage (3). A large number of ball bearings (5) are fitted on the winding shaft (2), and a pair of adjacent ball bearings (5) and (5) among these ball bearings (5) 2) is spaced apart by a fixed collar (6) fitted outside, and is separated by a spacing collar (7) from the other pair of ball bearings (not shown). As shown in FIG. 1, the collar (7), the ball bearing (5), the fixed collar (6), the ball bearing (5), and the collar (7) are externally fitted to the winding shaft (2) in this order. The inner ring (5a) of the bearing (5), the fixed collar (6), and the spacing collar (7) are in contact with each other, a flange (not shown) provided at one end of the winding shaft (2), and the other end It is fastened and fixed integrally with a nut between the provided screw.
[0010]
A connection hole (8) is formed in the fixed collar (6) at substantially the center thereof, and is connected to an air introduction hole (4) provided in the winding shaft (2). Pins (9) and (9) planted on the fixed collar (6) are projected in the radial direction of the take-up shaft (2) at a predetermined distance from the pair of ball bearings (5) and (5), respectively. . A pair of annular friction bodies (10), (10) are loosely fitted into the fixed collar (6) at a predetermined distance in a clearance fit state, and are formed in the axial direction of the winding shaft on the inner periphery thereof. The pin (9) is inserted / engaged into the groove (11) to prevent the annular friction body (10) from rotating in the circumferential direction of the annular friction body (10) and to be predetermined along the axial direction of the winding shaft. It is designed to slide with a clearance of. Thereby, the annular friction bodies (10) and (10) rotate together with the winding shaft (2). A flexible and elastic sleeve seal (12) made of silicon rubber or the like is attached to the annular friction bodies (10) and (10), and the outer peripheral surface of the fixed collar (6) is a sleeve seal (12). It is covered with. The sleeve seal (12) is provided with a communication hole (13) communicating with the connection hole (8) of the fixed collar (6), and compressed air is supplied from the air introduction hole (4) of the winding shaft (2). It is supplied through the communication hole (8) and the communication hole (13) of the sleeve seal (12). The sleeve seal (12) is formed with annular convex portions (12a) and (12a) along the inner peripheral side of both end portions, and is fitted into an annular concave groove formed on the outer peripheral surface of the annular friction body (10). ing.
[0011]
The outer surface on the ball bearing side of each annular friction body (10) is a friction surface facing the friction transmission surface (14a) on the inner surface of the flange (14) fitted to the outer ring (5b) of the ball bearing (5). The outer cylinder (15) is between the flanges (14) and (14) fitted to the outer rings (5b) and (5b) of the pair of ball bearings (5) and (5). It is fixed and supported via retaining rings (18) and (18), and the flanges (14) and (14) and the outer cylinder (15) are integrated by a fixing means such as a screw (not shown). The rotational torque of the winding shaft (2) is transmitted to the flange (14) via the friction surface (10a) of the annular friction body (10), whereby the outer cylinder (15) is flanged (14), (14). And will be rotated together. The friction surface (10a) of the annular friction body (10) is made of a material such as graphite or carbon, and is adapted to be transmitted by friction while slipping in close contact with the flange (14). A seal is formed.
[0012]
A cylindrical expansion packing (19) is provided inside the outer cylinder (15), and both ends of the expansion packing (19) are annular ridges (19a), and the outer cylinder (15) and flange ( 14) and a step (14b). A predetermined number (usually three) of claw holes (20) are formed at equal intervals along the circumferential direction in the outer cylinder (15), and each claw hole (20) has a claw body (21 ) Is fixed to the boss (23) with a countersunk screw (22), and the boss (23) is fixed to the return leaf spring (24) supported by the expansion packing (19) with a rivet (25). The return leaf spring (24) accommodates the claw body (21) in the claw hole (20) so that the claw body (21) does not protrude from the outer peripheral surface of the outer cylinder (15). .
[0013]
An airtight chamber (26) is formed by the expansion packing (19), the pair of flanges (14), (14), the annular friction bodies (10), (10) and the sleeve seal (12) in contact with the flanges. Thus, compressed air is supplied into the hermetic chamber (26). Since the sleeve seal (12) covers the annular friction body (10) and covers the outer peripheral surface of the fixed collar (6), the sleeve seal (12) is provided between the fixed collar (6) and the annular friction body (10). Airtightness can be secured and leakage of air from here can be prevented. In the non-pressure state where air is not supplied into the hermetic chamber (26), the annular friction bodies (10) and (10) are separated from each other along the axial direction by the elasticity of the sleeve seal (12), and the annular friction is caused. The friction surface (10a) of the body and the friction transmission surface (14a) on the inner surface of the flange (14) are in light contact with each other, and the friction of the annular friction body at the initial stage when air is supplied into the airtight chamber Airtightness between the surface (10a) and the friction transmission surface (14a) on the inner surface of the flange (14) can be ensured, and air leakage from here can be prevented. Thereby, the airtight state of an airtight chamber (26) can be made favorable. In order to ensure airtightness between the friction surface (10a) of the annular friction body and the friction transmission surface (14a) on the inner surface of the flange (14), a coil spring is provided on the outer periphery of the sleeve seal (12), The friction bodies (10) and (10) are separated from each other in the axial direction so that the friction surface (10a) of the annular friction body and the friction transmission surface (14a) on the inner surface of the flange (14) are in light contact with each other. Needless to say, it may be.
[0014]
In the state shown in FIGS. 1 and 3, the compressed air passes through the passage (3), the air introduction hole (4), the connection hole (8), and the communication hole (13) of the winding shaft (2). 2), the expansion packing (19) expands in the radial direction of the take-up shaft against the return leaf spring (24), as shown in FIGS. ) Is pushed up, protrudes outward from the claw hole (20) of the outer cylinder (15), and engages with the claw body (29) on the inner peripheral surface of the winding core (29) loosely fitted on the outer side of the outer cylinder (15). 21) is pressed and the winding core (29) is mounted on the outer cylinder (15). The frictional surface (10a) of the annular frictional body (10) is pressed against the frictional transmission surface (14a) on the inner surface of the flange (14) by the compressed air supplied to the hermetic chamber (26). A frictional force is generated, and the rotational torque of the winding shaft (2) is transmitted to the outer cylinder (15). A constant slip always occurs between the friction surface (10a) of the annular friction body (10) and the friction transmission surface (14a) of the inner surface of the flange (14) against which the friction surface (10a) is pressed. The web wound around the take-up core (29) can be taken up with a predetermined tension.
[0015]
When the supply of compressed air into the hermetic chamber (26) is cut off, the claw body (21) is retracted into the claw hole (20) by the action of the return leaf spring (24), and the friction of the annular friction body (10). The pressing of the surface (10a) and the frictional transmission surface (14a) on the inner surface of the flange (14) is released, the transmission of the rotational torque of the winding shaft (2) to the outer cylinder (15) is interrupted, and the winding It becomes possible to take out the web wound around the core (29) from the winding shaft (2).
[0016]
As a mechanism that prevents the annular friction body (10) from rotating in the circumferential direction of the winding shaft (2) and slides with a predetermined clearance along the axial direction of the winding shaft, The mechanism using the pin (9) shown in FIGS. 1 to 4 is not limited to the mechanism, and as shown in FIGS. 5 and 6, the key (31) is fixed along the axial direction of the winding shaft (2). (6) may be a mechanism in which a key loosely fitting groove (32) is formed along the axial direction of the winding shaft on the inner periphery of the annular friction body (10). 7, a ball (33) is embedded and fixed in a fixed collar (6) as shown in FIG. 8, and a circular groove having a cross section along the axial direction of the winding shaft is formed on the inner periphery of the annular friction body (10). 34) may be formed.
The pin (9), the key (31), and the sphere (33) are all provided on the fixed collar (6). However, the present invention is not limited to this. It is only necessary to be provided on the take-up shaft side. For example, a structure in which a pin is implanted in the take-up shaft and the pin protrudes from a pin insertion hole formed in the fixed collar, and a key is used as the take-up shaft. A structure in which a key is protruded from a key insertion hole drilled in a fixed collar, or a ball is embedded and fixed in a winding shaft, and a ball is projected from a ball insertion hole drilled in a fixed collar. It goes without saying that this embodiment may be used.
[0017]
Further, as shown in FIG. 9, a concave groove (37) for an O-ring (36) is provided in the circumferential direction on the inner periphery of the fixed collar (6), and an O-ring (36) is provided in the concave groove (37). ) And the airtightness between the winding shaft (2) is preferably improved so that the leakage of the compressed air is more completely blocked.
[0018]
5 to 9, the same members and parts as those in FIGS. 1 to 4 are denoted by the same reference numerals and detailed description thereof is omitted.
[0019]
【The invention's effect】
Since the present invention is configured as described in detail above, the following effects can be obtained.
In the pneumatic friction joint device for mounting a winding core according to the present invention, a plurality of bearings are fixedly arranged on a winding shaft at a predetermined interval, and a pair of annular friction bodies are disposed between a pair of adjacent bearings. Are respectively slidably disposed with a predetermined clearance along the winding axis direction, and a flange is supported on the outer ring of each bearing so as to be rotatable together with the outer ring. The surface of the side facing the annular friction body is a friction transmission surface that transmits rotational torque from the winding shaft via the friction surface of the annular friction body, and the outer cylinder is integrated with the flange between the flanges. A claw hole is bored in the outer cylinder at a predetermined interval along the circumferential direction, and a claw body that can be projected and retracted from the claw hole is supported by an expansion packing built in the outer cylinder. Between the expansion packing and the annular friction body The space forms an airtight chamber in communication with an air introduction hole provided in the winding shaft, and the annular friction body is formed by the pressure of air introduced into the airtight chamber through the air introduction hole of the winding shaft. The frictional surface of the flange is pressed against the frictional transmission surface of the inner surface of the flange with the annular friction body to transmit the rotational torque from the winding shaft to the outer cylinder, and the expansion packing is expanded in the radial direction of the winding shaft. The nail body protrudes outward from the nail hole of the outer cylinder, and the nail body is pressed against the inner peripheral surface of the winding core loosely fitted on the outer side of the outer cylinder so that the winding core is attached to the outer cylinder. Therefore, there is little risk of air leakage due to wear of the friction transmission surface on the inner surface of the flange and the friction surface of the annular friction body. In addition, the number of parts is small and the cost can be kept low. In addition, since a relatively simple structure is adopted, it is not necessary to use advanced assembly techniques and special jigs for assembly and maintenance, and assembly and repair costs can be kept low.
And between each pair of bearings adjacent to each other, a pair of annular friction bodies are respectively prevented from rotating and slidably disposed with a predetermined clearance along the winding shaft direction, and the inner surface of the flange The surface facing the annular friction body is a friction transmission surface that transmits rotational torque from the winding shaft via the friction surface of the annular friction body, and the annular friction body is prevented from rotating. From the above, the frictional surface of the annular frictional body is pressed against the frictional transmission surface with the annular frictional body on the inner surface of the flange by the pressure of air, and the torque is transmitted by rotating torque from the winding shaft to the outer cylinder. Is transmitted well and there is little risk of failure.
Further, if the pressure of the air introduced into the hermetic chamber through the air introduction hole of the winding shaft is controlled, the pressing force of the friction surface of the annular friction body to the friction transmission surface of the inner surface of the flange is changed. By adjusting the frictional transmission torque from the winding shaft to the outer cylinder, the web can be wound around the winding core with a predetermined tension.
Further, since the number of parts of the pneumatic friction joint device is relatively small and lightweight, the moment of inertia does not increase and high-speed winding is possible.
Furthermore, since each pneumatic friction coupling device is light, even if a large number of pneumatic friction coupling devices are arranged in parallel in the axial direction, the shaft does not bend and good winding is possible.
A sleeve seal is attached to the pair of annular friction bodies, and the seal on the annular friction body side is good when the pair of annular friction bodies on the outer peripheral surface side of the winding shaft is covered with the sleeve seal. And there are few air leaks.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an essential part showing an example of a pneumatic friction coupling device of the present invention, showing a state where compressed air is not supplied.
FIG. 2 is a longitudinal sectional view of a main part showing a state in which compressed air is supplied in the pneumatic friction coupling device shown in FIG.
3 is a transverse partial cross-sectional view of the pneumatic friction coupling device shown in FIG. 1. FIG.
4 is a horizontal partial cross-sectional view of FIG. 2. FIG.
FIG. 5 is a longitudinal sectional view of an essential part showing another example of the pneumatic friction coupling device of the present invention.
6 is a transverse partial cross-sectional view of the pneumatic friction coupling device shown in FIG. 5. FIG.
FIG. 7 is a longitudinal sectional view of an essential part showing still another example of the pneumatic friction coupling device of the present invention.
8 is a transverse partial cross-sectional view of the pneumatic friction coupling device shown in FIG.
FIG. 9 is a longitudinal sectional view of an essential part showing still another example of the pneumatic friction coupling device of the present invention.
FIG. 10 is a schematic perspective view of a slitter.
FIG. 11 is a longitudinal sectional view showing an example of a conventional pneumatic friction joint device for mounting a winding core.
FIG. 12 is a longitudinal sectional view showing an example of another conventional pneumatic friction joint device for mounting a winding core.
[Explanation of symbols]
DESCRIPTION OF
Claims (4)
該軸受の隣り合う各一対の軸受間において、一対の環状摩擦体がそれぞれ回り止めされるとともに巻取軸方向に沿って所定のクリアランスを持って摺動可能に配設され、
前記一対の環状摩擦体にはスリーブシールが被着されるとともに、巻取軸の外周面側の一対の環状摩擦体の間は前記スリーブシールで被覆され、
前記各軸受の外輪にはフランジが外輪と一体回転可能に支持され、該フランジの内側面の前記環状摩擦体との対向面が環状摩擦体の摩擦面を介して巻取軸からの回転トルクを伝達する摩擦伝達面となっており、
前記フランジ間には、外筒がフランジと一体回転可能に取り付けられ、
該外筒には、円周方向に沿って所定間隔に爪孔が穿設され、該爪孔から出没可能な爪体が外筒に内装された拡張パッキンに支持されており、
該拡張パッキンと前記環状摩擦体との間の空間が、巻取軸に設けられた空気導入孔と連通した気密室を形成しており、
巻取軸の空気導入孔を介して前記気密室に導入される空気の圧力によって、前記環状摩擦体の摩擦面をフランジの内側面の環状摩擦体との摩擦伝達面に押圧させ、巻取軸からの回転トルクを外筒に摩擦伝達させるとともに、前記拡張パッキンを巻取軸の半径方向に拡張させ、爪体を外筒の爪孔から外方に突出させ、外筒の外側に遊嵌されている巻取コアの内周面に爪体を押し付けて、外筒に巻取コアを装着するようにしたことを特徴とする巻取コア装着用の空気圧摩擦継手装置。A plurality of bearings are fixedly arranged at predetermined intervals on the winding shaft,
Between each pair of bearings adjacent to the bearing, a pair of annular friction bodies are respectively prevented from rotating and are slidably disposed with a predetermined clearance along the winding shaft direction.
A sleeve seal is attached to the pair of annular friction bodies, and a space between the pair of annular friction bodies on the outer peripheral surface side of the winding shaft is covered with the sleeve seal,
A flange is supported on the outer ring of each of the bearings so as to be able to rotate integrally with the outer ring, and a surface of the inner surface of the flange facing the annular friction body receives rotational torque from the winding shaft via the friction surface of the annular friction body. It is a friction transmission surface to transmit,
Between the flanges, an outer cylinder is attached so as to be rotatable integrally with the flange,
A claw hole is formed in the outer cylinder at a predetermined interval along the circumferential direction, and a claw body that can be projected and retracted from the claw hole is supported by an expansion packing that is built in the outer cylinder.
A space between the expansion packing and the annular friction body forms an airtight chamber communicating with an air introduction hole provided in the winding shaft;
By the pressure of the air introduced into the airtight chamber through the air introduction hole of the winding shaft, the friction surface of the annular friction body is pressed against the friction transmission surface of the inner surface of the flange with the annular friction body, and the winding shaft And the expansion packing is expanded in the radial direction of the take-up shaft so that the claw body protrudes outward from the claw hole of the outer cylinder and is loosely fitted to the outside of the outer cylinder. A pneumatic friction coupling device for mounting a winding core, wherein a claw body is pressed against an inner peripheral surface of the winding core, and the winding core is mounted on an outer cylinder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24336397A JP3677378B2 (en) | 1997-08-24 | 1997-08-24 | Pneumatic friction joint device for winding core installation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24336397A JP3677378B2 (en) | 1997-08-24 | 1997-08-24 | Pneumatic friction joint device for winding core installation |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1159982A JPH1159982A (en) | 1999-03-02 |
JP3677378B2 true JP3677378B2 (en) | 2005-07-27 |
Family
ID=17102735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24336397A Expired - Fee Related JP3677378B2 (en) | 1997-08-24 | 1997-08-24 | Pneumatic friction joint device for winding core installation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3677378B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100897944B1 (en) * | 2008-08-28 | 2009-05-18 | 금오공과대학교 산학협력단 | Mechanical chuck for a winding machine |
JP6286099B1 (en) * | 2017-09-15 | 2018-02-28 | 萩原工業株式会社 | Sheet take-up shaft |
-
1997
- 1997-08-24 JP JP24336397A patent/JP3677378B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1159982A (en) | 1999-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4793722A (en) | Flexible damped bearing assembly | |
KR101893514B1 (en) | Friction Shaft For Slitter | |
KR20030074095A (en) | Roll holder device of recording paper | |
US4026488A (en) | Apparatus for holding cylindrical winding cores | |
CN110304477B (en) | Friction shaft for cutting machine | |
KR101232728B1 (en) | Friction shaft | |
JP3677378B2 (en) | Pneumatic friction joint device for winding core installation | |
KR102248117B1 (en) | Friction shaft structure | |
US2621769A (en) | Flexible plate clutch or brake | |
JPS6337020B2 (en) | ||
JP2023044662A (en) | Friction shaft for slitter implementing high strength clamp and wide variable torque simultaneously using one air pressure supply channel | |
JP3632175B2 (en) | Clamp mechanism and winding shaft using this clamp mechanism | |
US2744597A (en) | Clutch mechanism | |
JP2002316750A (en) | Friction winding shaft | |
CA2016907A1 (en) | Expanding shaft assembly | |
CN212893258U (en) | One-gas dual-purpose slip shaft | |
JPH0733194B2 (en) | Core support device | |
JPS6214029Y2 (en) | ||
US11248683B2 (en) | Transmission and compressor system | |
JP2020033112A (en) | Film take-up device | |
JPH0357010B2 (en) | ||
KR102656335B1 (en) | Friction shaft for slitter dedicated for high density clamp and wide variable torque by using one air pressure channel | |
JPS6214030Y2 (en) | ||
JPS6221654A (en) | Lug installation structure for tape taking-up apparatus | |
JP2006131359A (en) | Expandable and retractable winding disk mounted with elastic body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041124 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050124 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050419 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050509 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110513 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110513 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140513 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |