JP3676943B2 - Yeast mutant for alcoholic beverage production and method for producing alcoholic beverages using the yeast mutant - Google Patents

Yeast mutant for alcoholic beverage production and method for producing alcoholic beverages using the yeast mutant Download PDF

Info

Publication number
JP3676943B2
JP3676943B2 JP16526099A JP16526099A JP3676943B2 JP 3676943 B2 JP3676943 B2 JP 3676943B2 JP 16526099 A JP16526099 A JP 16526099A JP 16526099 A JP16526099 A JP 16526099A JP 3676943 B2 JP3676943 B2 JP 3676943B2
Authority
JP
Japan
Prior art keywords
strain
yeast
wine
mutant
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16526099A
Other languages
Japanese (ja)
Other versions
JP2000350575A (en
Inventor
宗和 岸本
政一 袖山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sapporo Breweries Ltd
Original Assignee
Sapporo Breweries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sapporo Breweries Ltd filed Critical Sapporo Breweries Ltd
Priority to JP16526099A priority Critical patent/JP3676943B2/en
Publication of JP2000350575A publication Critical patent/JP2000350575A/en
Application granted granted Critical
Publication of JP3676943B2 publication Critical patent/JP3676943B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、酒類の製造に用いる酵母に関し、また、酵母を用いた酒類の製造方法に関する。
【0002】
【従来の技術】
一般に、アミノ酸はワインをはじめとする酒類の呈味成分の一つであり、品質を左右する重要な要素であると考えられている。そのため、製造される酒類中のアミノ酸含有量をコントロールすることが酒類の製造において重要である。
【0003】
しかしながら、例えば、ワインの製造においては、製造されるワイン中のアミノ酸の大部分はブドウ果汁からの移行によるが、ブドウ果汁中のアミノ酸の多くは酵母の栄養源として発酵中に消費されるために、ワイン中のアミノ酸含有量をコントロールすることは極めて困難である。
【0004】
我が国で生産されるブドウの代表的品種である甲州種ブドウから製造されるワインは比較的平板な味であり、アミノ酸をはじめとする窒素化合物の含有量が少ないことがその原因の一つと考えられている。従って、甲州ワインは、平板な味を補うために糖分を残した甘口のワインが主流で、辛口のワインを製造する場合にはシュール・リー法、すなわち、ワインと澱を接触することにより酵母の自己消化からアミノ酸等の成分を溶出させてワインにボディー感を与える方法が採用されている(K. Ariizumi et al.: Am. J. Enol. Vitic., vol.45, pp.312, 1994)。しかし、シュール・リー法は、ワインと澱の接触期間が長期にわたり、さらには酵母の自己消化によるワイン中のアミノ酸の増加量は必ずしも多いとは言えないという問題がある。また、昨今、酒質の多様化が求められており、それに応じるためにも、製造される酒類中のアミノ酸含有量をコントロールできる新たな酒類の製造方法の開発が望まれる。
【0005】
ところで、酵母が細胞外に存在するアミノ酸を栄養源として利用するためにアミノ酸を菌体内に取り込むことが必須である。かかるアミノ酸の取込みを行なう酵素として、基質特異性の異なる多くのアミノ酸透過酵素、例えば、GAP1遺伝子にコードされるgeneral amino acid permeaseやCAN1遺伝子にコードされるarginine permeaseをはじめとする多くのアミノ酸透過酵素が存在することが明らかにされている(B. Andre: Yeast, vol.11, pp.1575, 1995, B. Nelissen et al.: FEBS Letters, vol.377, pp.232, 1995, M. Grenson: In De Pont, J. J. H. H. M. (ed.), Molecular Aspects of Transport Proteins, Chapter 7, "Amino acid transporters in yeast; structure, function and regulation", Elsevier, Amsterdam, pp.219, 1992,他)。
【0006】
これまでに、酵母のアミノ酸透過酵素に関与する遺伝子に変異を付与した変異株の取得方法や該変異のアミノ酸の取込みに及ぼす影響についても数多くの報告がある。例えば、gap1変異株はD-アミノ酸に耐性を示す菌株の中から取得でき、シトルリンをはじめとする多くのアミノ酸の取込みが抑制されることが知られている(J. Rytka: J. Bacteriol., vol.121, pp.562, 1975)。また、can1変異株はアルギニンのアナログであるL-カナバニンに耐性を示す菌株の中から取得でき、アルギニンの取込みが抑制されることが知られている(M. Grenson et al.: Biochim. Biophys. Acta, vol.127, pp.325, 1966, M. Grenson, Molecular Aspects of Transport Proteins, Chapter7, "Amino acid transporters in yeast: structure, function and regulation, Elsevier Science Publishers, 1992他)。また、apf1変異株はプロリンのアナログであるL-アゼチジン-2-カルボキシレートあるいは3,4-ジヒドロ-DL-プロリンに耐性を示す菌株の中から取得でき、プロリンの取込みが抑制されること、及び種々のアミノ酸透過酵素の活性が抑制されることが知られており、さらに、gap1apf1の二重変異を有する酵母においては、グルタミン酸をはじめとする多くのアミノ酸を単一窒素源として生育できないことが知られている(M. Grenson and C. Hennaut: J. Bacteriol., vol.105, pp.477, 1971, P. F. Lasko and M. C. Brandriss: J. Bacteriol., vol.148, pp.241, 1981)。
【0007】
なお、SHR3遺伝子は小胞体からのアミノ酸透過酵素のプロセシングと輸送に不可欠なタンパク質をコードし、shr3apf1変異は互いに相補しない対立遺伝子であることが報告されている(P. O. Ljungdahl et al.: Cell, vol.71, pp.463, 1992, J. Horak and A. Kotyk: Biochemistry and Molecular Biology International, vol. 29, pp. 907, 1993)。
【0008】
【発明が解決しようとする課題】
本発明の課題は、酒類の製造、特にワインの製造において、酒類の重要な呈未成分の一つであるアミノ酸含有量を改善する方法を提供することである。
【0009】
【課題を解決するための手段】
本発明は、アミノ酸の取り込みに関与する遺伝子に二重の変異、特にはgap1及びapf1(shr3)あるいはgap1及びcan1に変異を有する、サッカロミセス属(好ましくはサッカロミセス・セレビシエ)に属する酒類製造用酵母変異株に関する。
【0010】
本発明はまた、サッカロミセス・セレビシエに属し、アミノ酸の取り込みに関与する遺伝子の変異として、gap1及びapf1(shr3)の変異を有する酵母変異株MA2504株(FERM P-17407号)に関する。
【0011】
本発明はまた、サッカロミセス・セレビシエに属し、アミノ酸の取り込みに関与する遺伝子の変異として、gap1及びcan1の変異を有する酵母変異株MA2601株(FERM P-17408号)に関する。
【0012】
本発明はまた、上記酒類製造用酵母変異株を用いた、酒類{好ましくはワイン又は麦芽アルコール飲料(例えばビール、発泡酒)}の製造方法に関し、特には、製造される酒類中のアミノ酸含有量が改善された酒類の製造方法に関する。
【0013】
本発明はまた、上記酒類製造用酵母変異株を用いたワインの製造方法に関し、特には、製造されるワイン中のアミノ酸含有量が改善されたワインの製造方法に関する。
【0014】
【発明の実施の形態】
本発明は、サッカロミセス属に属し、アミノ酸取込みに関与する遺伝子に二重の変異を付与した酵母変異株、特にはgap1及びapf1あるいはgap1及びcan1の二重変異を付与した酵母変異株に関する。
【0015】
本発明はまた、上記二重変異を付与した酵母変異株を酒母として接種し、発酵を行なうことを特徴とするアミノ酸含有量が改善された酒類、特にはワインの製造方法に関する。
【0016】
本発明に用いられる酵母はサッカロミセス属に属する酵母であり、例えば、The Yeasts A Taxonomic Study, 4th ed. C. P. Kurtzman and J. W. Fell (ed.), Elsewier (1998)に従って分類されるサッカロミセス・セレビシエ(Saccharomyces cerevisiae)、サッカロミセス・バイアナス(Saccharomyces bayanus)、サッカロミセス・パストリアヌス(Saccharomyces pastorianus)等に属するワイン酵母及び/又はビール酵母が挙げられる。サッカロミセス・セレビシエに属する酵母としては、例えば、サッカロミセス・セレビシエOC-2、W3、Prise de Mousse等のワイン酵母を挙げることができる。
【0017】
酵母の変異方法としては、紫外線照射等の物理的方法あるいは変異剤(例えば、エチルメタンサルフォネート等の溶液)に懸濁させる化学的方法があり、既知の方法が適宜使用できる。
【0018】
変異株の選抜方法について説明する。gap1変異株は、酵母に変異を誘発した後、D-アミノ酸、例えば、D-ヒスチジンに耐性を示す菌株の中から取得できる。すなわち、D-ヒスチジン耐性を示す変異株から、シトルリンを単一窒素源として添加した最少培地(グルコース0.5%、ディフコ社製バクト・イーストナイトロジェンベース(アミノ酸と硫酸アンモニウムを含まない)0.17%、寒天2%)(%=w/v%)に生育できないこと、及び既知のgap1変異の菌株を用いた相補試験において、相補能がない株を選抜することにより取得できる。can1変異株はアルギニンのアナログであるL-カナバニン耐性を示す菌株の中から取得でき、既知のcan1変異の菌株を用いた相補試験において、相補能がない株を選抜することにより取得できる。apf1変異株は、プロリンのアナログであるL-アゼチジン-2-カルボキシレートあるいは3,4-ジヒドロ-DL-プロリンに耐性を示す菌株の中から取得でき、β-2-チエニル-DL-アラニンに耐性を示し、プロリンを単一窒素源として添加した培地に生育できず、かつ既知のapf1変異の菌株を用いた相補試験において、相補能がない株を選抜することにより取得できる。
【0019】
次に、このようにして取得した変異株から、二重変異の菌株を取得するためには、再度の変異処理による方法あるいは変異株間で交雑株を取得して、交雑株由来の単胞子株の中から選抜する方法を用いることができる。再度の変異処理から目的の変異株を選抜する際には、前記の方法が使用できる。例えば、gap1及びapf1の変異を有する変異株は、すでにgap1変異を有する株を用いて再度変異処理を行い、上記のapf1変異株を得るための方法を行えば良い。交雑により二重変異株を得る方法においては、交雑株は、酵母の接合型や倍数性を考慮して適宜、胞子-胞子、胞子-細胞あるいは細胞-細胞間での接合により取得でき、McClaryらの培地(酢酸ナトリウム0.82%,グルコース0.1%,酵母エキス0.25%,塩化カリウム0.18%,寒天2%)(%=w/v%)で子嚢胞子形成を誘導した後に胞子を分離、コロニーを形成させて単胞子株を得、目的とする変異株を選択するのに適した前記の方法を組み合わせることにより目的の変異株を選抜できる。
【0020】
本発明の変異酵母は、酒類、例えば、ワイン、麦芽アルコール飲料(例えばビール、発泡酒)等の製造に好適に使用でき、特に、ワインの製造に好ましく用いられる。
【0021】
本発明においてワインを製造するには、取得した酵母変異株を酒母として用い、通常行われているワインの製造法と同様の方法、例えば、葡萄酒醸造法(山梨県工業技術センター編)に記載の方法でワインを製造できる。
【0022】
また、本発明においてワイン以外の酒類を製造するには、取得した酵母変異株を用い、通常行われている酒類の製造法と同様の方法、例えば、"Technology Brewing and Malting", Kunze著, VLB, 1996年;"Die Bierbrauerei, Band I,II",(第7版), Narziss著, Enke, 1992年;「麦酒醸造学」松山茂助著、東洋経済新報社、1969年に記載の方法でビールを製造できる。
【0023】
本発明の酵母変異株を使用する酒類の製造では、アミノ酸の取込みが抑制されていることから安定的にアミノ酸含有量が改善された酒類の製造が可能となる。また、本発明の酵母変異株を使用するワインの製造では、アミノ酸の取込みが抑制されていることから安定的に、さらには、従来のシュール・リー法の如くワインと澱の接触を必要とせずに短期間でアミノ酸含有量が改善されたワインの製造が可能である。
【0024】
【実施例】
以下に、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
【0025】
(実施例1) 二重酵母変異株の取得
ワイン酵母として、ホモタリック、2倍体で、高い子嚢胞子形成率と発芽率を示すサッカロミセス・セレビシエOC-2(IAM4274)を親株として用いた。McClaryらの培地(酢酸ナトリウム0.82%,グルコース0.1%,酵母エキス0.25%,塩化カリウム0.18%,寒天2%)(%=w/v%)に接種して子嚢胞子の形成を誘導させ、子嚢壁溶解酵素(商品名:ザイモリエース20T、生化学工業製)250ppmを含むりん酸緩衝液(pH7.5)中で子嚢壁を溶解の後に滅菌水で洗浄し、りん酸緩衝液(pH8.0)を加えて胞子懸濁液4.6mlを得た。これに、40w/v%グルコース溶液0.25ml及びエチルメタンサルフォネート0.15mlを添加して30℃で80分間変異処理を行ない、等量の10w/v%チオ硫酸ナトリウム溶液を加えて変異処理を停止した後に滅菌水で洗浄し、滅菌水に懸濁して変異処理胞子懸濁液とした。
【0026】
変異処理胞子懸濁液をD-ヒスチジン10mM及びプロリン0.1w/v%を含む最少培地(グルコース0.5%、イーストナイトロジェンベース(アミノ酸及び硫酸アンモニウムを含まない)0.17%、寒天2%)(%=w/v%)に塗布して3〜7日間培養後に生育するコロニーの中から、シトルリンを単一窒素源とする最少培地に生育が認められず、かつ、既知のgap1変異を有する菌株、例えば2512c-2A(agap1)株を用いた相補試験において、D-ヒスチジン耐性及びシトルリンを単一窒素源とする最少培地に生育が認められない性質を示す、すなわち、相補能がない株(MA1007株)をgap1変異株として選抜した。
【0027】
同様に、L-アゼチジン-2-カルボキシレート0.5mM及び尿素0.1w/v%を含む最少培地に生育するコロニーの中から、β-2-チエニル-DL-アラニン(100mg/l)および尿素0.1w/v%を含む最少培地に生育し、プロリンを単一窒素源とする最少培地に生育が認められず、かつ、既知のapf1変異を有する菌株、例えば、30967c(apf1ura3)を用いた相補試験において、L-アゼチジン-2-カルボキシレート耐性及びプロリンを単一窒素源とする最少培地に生育が認められない性質を示す、すなわち、相補能がない株(MA1325株)をapf1変異株として選抜した。
【0028】
また、L-カナバニン40mg/l及び硫酸アンモニウム0.5w/v%を含む最少培地に生育するコロニーの中から、既知のcan1変異を有する菌株、例えばAH-22(a leu2-3,112his4can1)を用いた相補試験において、L-カナバニン耐性を示す、すなわち、相補能がない株(MA1205株)をcan1変異株として選抜した。
【0029】
次に、MA1007株とMA1325株のそれぞれの株を用いて、McClaryらの培地で子嚢胞子を形成し、前記と同様にしてザイモリエースで子嚢壁を溶解させた後に、ミクロマニピュレータを用いて胞子-胞子間で有性交雑を行い、得られた交雑株由来の単胞子株の表現型及び相補性試験から、gap1apf1の二重変異を有する株(MA2504株)を取得した。本菌株は平成11年6月1日付けで工業技術院生命工学工業技術研究所に寄託されており、その受託番号はFERM P-17407である。また、同様の方法により、MA1007株とMA1205株から、gap1can1の二重変異を有する株(MA2601株)を取得した。本菌株は工業技術院生命工学工業技術研究所に平成11年6月1日付けで寄託されており、その受託番号はFERM P-17408である。
【0030】
上記に示した手順を説明のため、図1にフローチャートとして記す。
【0031】
上記の如くして取得した変異株について、各種アミノ酸を単一窒素源として添加した最少培地における生育について検討した。結果を、表1に示す。gap1変異のMA1007株はシトルリンを単一窒素源とする最少培地に生育が認められず、apf1変異のMA1325株はプロリンを単一窒素源とする最少培地に生育が認められなかったが、両株ともにグルタミン酸あるいはアラニンを単一窒素源とする最少培地に生育が可能であった。しかし、gap1apf1二重変異のMA2504株では、シトルリン、プロリンだけでなくグルタミン酸、アラニンを単一窒素源とする最少培地においても生育が認められなかった。一方、can1変異のMA1205株はアルギニンを単一窒素源とする最少培地に生育が可能であったが、gap1can1二重変異のMA2601株ではアルギニンを単一窒素源とする最少培地に生育が認められず、これらの二重変異を付与することにより特定のアミノ酸の取込みが抑制され、生育ができなくなることが示された。
【0032】
【表1】

Figure 0003676943
【0033】
(実施例2) ワインの製造試験
実施例1において取得した二重変異を有するMA2504株及びMA2601株並びにこれらの親株であるサッカロミセス・セレビシエOC-2を使用し、グラニュー糖にて糖度を23度に調整した甲州種ブドウ果汁を原料として常法によりワイン製造を実施した。製造されたワインの一般成分分析結果を表2に示す。MA2504株及びMA2601株の発酵速度は、親株に比較してやや遅くなったが、アルコール濃度、エキス分、総酸、pH、有機酸組成の分析値に大きな差は認められなかった。また、アミノ酸分析結果を表3に示す。親株により製造したワインはそのアミノ酸の大部分がプロリンであったが、MA2504株により製造したワインは、プロリン含有量が多く、さらには、アスパラギン酸、トレオニン、セリン、アスパラギン、グルタミン酸、グルタミン、アラニン、バリン、イソロイシン、ロイシン、チロシン、フェニルアラニン及びヒスチジンのアミノ酸も多く含まれ、総アミノ酸量は親株により製造したワインの約1.9倍であった。MA2601株により製造したワインは、プロリン含有量がやや少なくなったが、アルギニンが果汁中の含有量と同程度含まれており、総アミノ酸量は親株により製造したワインの約1.3倍であった。
【0034】
【表2】
Figure 0003676943
【0035】
【表3】
Figure 0003676943
【0036】
上記の如くして製造されたワインについて、ワイナリーの熟練した7名のパネラーにより官能試験を行った。その結果、MA2504株及びMA2601株により製造したワインは親株により製造したワインに比較して味に厚みがあるとの評価が得られた。
【0037】
【発明の効果】
本発明によれば、酵母によるアミノ酸の取込みを抑制して、安定的にアミノ酸含有量が改善された酒類、特にはワインを製造できる方法を提供することが可能となる。
【図面の簡単な説明】
【図1】図1は、本発明の酵母変異株を得る工程の好適な実施形態を示すフローチャートである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a yeast used for producing alcoholic beverages, and also relates to a method for producing alcoholic beverages using yeast.
[0002]
[Prior art]
In general, amino acids are one of the taste components of wine and other liquors, and are considered to be important factors affecting quality. Therefore, it is important in the production of alcoholic beverages to control the amino acid content in the produced alcoholic beverages.
[0003]
However, for example, in the production of wine, most of the amino acids in the wine produced are from the grape juice, but many of the amino acids in the grape juice are consumed during fermentation as a nutrient source for yeast. It is extremely difficult to control the amino acid content in wine.
[0004]
The wine produced from Koshu grape, which is a typical grape varieties produced in Japan, has a relatively flat taste and is thought to be caused by the low content of nitrogen compounds including amino acids. ing. Therefore, Koshu wines are mainly sweet wines that leave sugar to supplement the flat taste. When producing dry wines, the Shu-Lee method, that is, by contacting the wine with starch, The method of giving a body feeling to wine by eluting components such as amino acids from self-digestion is adopted (K. Ariizumi et al .: Am. J. Enol. Vitic., Vol.45, pp.312, 1994) . However, the Sur-Lee method has a problem that the contact period between wine and starch is long, and further, the increase in amino acids in wine due to yeast autolysis is not always large. In recent years, diversification of liquor quality has been demanded, and in order to meet this demand, development of a new liquor production method capable of controlling the amino acid content in the produced liquor is desired.
[0005]
By the way, in order for yeast to use the amino acid which exists outside a cell as a nutrient source, it is essential to take in an amino acid into a microbial cell. As an enzyme to perform the incorporation of such amino acids, many amino acids transmission enzymes having different substrate specificities, for example, many amino acids transmission enzymes, including arginine permease encoded by the general amino acid permease and CAN1 gene encoded the GAP1 gene (B. Andre: Yeast, vol.11, pp.1575, 1995, B. Nelissen et al .: FEBS Letters, vol.377, pp.232, 1995, M. Grenson : In De Pont, JJHHM (ed.), Molecular Aspects of Transport Proteins, Chapter 7, "Amino acid transporters in yeast; structure, function and regulation", Elsevier, Amsterdam, pp.219, 1992, etc.).
[0006]
To date, there have been many reports on the method of obtaining mutant strains in which mutations have been made in genes involved in the amino acid permease of yeast and the effect of the mutations on amino acid uptake. For example, gap1 mutant strains can be obtained from strains resistant to D-amino acids, and it is known that incorporation of many amino acids including citrulline is suppressed (J. Rytka: J. Bacteriol., vol.121, pp.562, 1975). The can1 mutant can be obtained from a strain resistant to L-canavanine, an analog of arginine, and is known to suppress arginine uptake (M. Grenson et al .: Biochim. Biophys. Acta, vol. 127, pp. 325, 1966, M. Grenson, Molecular Aspects of Transport Proteins, Chapter 7, “Amino acid transporters in yeast: structure, function and regulation, Elsevier Science Publishers, 1992, etc. ) and apf1 mutants Can be obtained from strains resistant to L-azetidine-2-carboxylate or 3,4-dihydro-DL-proline, which are proline analogs, and the inhibition of proline uptake and various amino acid permeases activity is known to be inhibited, further, in the yeast with a double mutation gap1 the APF 1, it is known to not grow a number of amino acids, including glutamic acid as the sole nitrogen source (M. Grenson and C. Hennaut: J. Bacteriol, vol.105, pp.477, 1971, PF Lasko and MC Brandriss:.. J. Bacteriol, vol.148, pp.241, 1981).
[0007]
The SHR3 gene encodes a protein essential for the processing and transport of amino acid permeases from the endoplasmic reticulum, and shr3 and apf1 mutations have been reported to be non-complementary alleles (PO Ljungdahl et al .: Cell , vol. 71, pp. 463, 1992, J. Horak and A. Kotyk: Biochemistry and Molecular Biology International, vol. 29, pp. 907, 1993).
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for improving the amino acid content, which is one of the important unexposed components of alcoholic beverages, in the production of alcoholic beverages, particularly wine.
[0009]
[Means for Solving the Problems]
The present invention relates to a yeast mutation for producing alcoholic beverages belonging to the genus Saccharomyces (preferably Saccharomyces cerevisiae) having double mutations in genes involved in amino acid incorporation, in particular gap1 and apf1 (shr3) or gap1 and can1. Regarding stocks.
[0010]
The present invention also relates to a yeast mutant MA2504 strain (FERM P-17407) belonging to Saccharomyces cerevisiae and having a mutation of gap1 and apf1 (shr3) as a mutation of a gene involved in amino acid incorporation.
[0011]
The present invention also relates to a yeast mutant MA2601 strain (FERM P-17408) belonging to Saccharomyces cerevisiae and having gap1 and can1 mutations as mutations of genes involved in amino acid incorporation.
[0012]
The present invention also relates to a method for producing a liquor {preferably wine or malt alcoholic beverage (for example, beer, happoshu)} using the above-mentioned yeast mutant strain for liquor production, and in particular, the amino acid content in the produced liquor. The present invention relates to a method for producing alcoholic beverages.
[0013]
The present invention also relates to a method for producing wine using the above-described liquor-producing yeast mutant, and more particularly to a method for producing wine with an improved amino acid content in the produced wine.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a yeast mutant strain belonging to the genus Saccharomyces and having a double mutation in a gene involved in amino acid uptake, and particularly to a yeast mutant strain having a double mutation of gap1 and apf1 or gap1 and can1 .
[0015]
The present invention also relates to a method for producing an alcoholic beverage with improved amino acid content, particularly a wine, characterized by inoculating the yeast mutant to which the double mutation has been added as a liquor and performing fermentation.
[0016]
The yeast used in the present invention is a yeast belonging to the genus Saccharomyces, for example, Saccharomyces cerevisiae classified according to The Yeasts A Taxonomic Study, 4th ed. CP Kurtzman and JW Fell (ed.), Elsewier (1998). ), Saccharomyces bayanus, Saccharomyces pastorianus, and the like, and wine yeast and / or beer yeast. Examples of yeast belonging to Saccharomyces cerevisiae include wine yeasts such as Saccharomyces cerevisiae OC-2, W3, and Prize de Mousse.
[0017]
As a method for mutating yeast, there are a physical method such as ultraviolet irradiation or a chemical method of suspending in a mutating agent (for example, a solution such as ethylmethane sulfonate), and a known method can be appropriately used.
[0018]
A method for selecting mutants will be described. The gap1 mutant strain can be obtained from strains that are resistant to D-amino acids such as D-histidine after mutagenesis in yeast. That is, from a mutant exhibiting D-histidine resistance, a minimal medium supplemented with citrulline as a single nitrogen source (glucose 0.5%, Difco Bacto yeast nitrogen base (without amino acids and ammonium sulfate) 0.17%, agar 2 %) (% = W / v%) and in a complementation test using a known gap1 mutant strain, the strain can be obtained by selecting a strain having no complementarity. The can1 mutant can be obtained from a strain exhibiting resistance to L-canavanine, which is an analog of arginine, and can be obtained by selecting a strain having no complementarity in a complementation test using a known can1 mutant. apf1 mutant strains can be obtained from strains resistant to proline analogs L-azetidine-2-carboxylate or 3,4-dihydro-DL-proline, and resistant to β-2-thienyl-DL-alanine In a complementation test using a known apf1 mutant strain, which is unable to grow in a medium supplemented with proline as a single nitrogen source, it can be obtained by selecting a strain having no complementarity.
[0019]
Next, in order to obtain a double mutant strain from the mutant strain thus obtained, a method of remutation or a cross strain between mutant strains is obtained, and a single spore strain derived from the cross strain is obtained. A method of selecting from among them can be used. The above-described method can be used when selecting a target mutant strain from the subsequent mutation treatment. For example, the mutant strain having gap1 and apf1 mutations may be subjected to the mutation treatment again using the strain already having the gap1 mutation, and the above-described method for obtaining the apf1 mutant strain may be performed. In the method of obtaining double mutant strains by hybridization, the hybrid strain can be obtained by spore-spore, spore-cell, or cell-cell junction as appropriate in consideration of yeast mating type and ploidy. Induction of ascospores in the culture medium (sodium acetate 0.82%, glucose 0.1%, yeast extract 0.25%, potassium chloride 0.18%, agar 2%) (% = w / v%) followed by spore isolation and colony formation Thus, a single spore strain is obtained, and the target mutant strain can be selected by combining the above-described methods suitable for selecting the target mutant strain.
[0020]
The mutant yeast of the present invention can be suitably used for the production of alcoholic beverages such as wine and malt alcoholic beverages (for example, beer and happoshu), and is particularly preferably used for the production of wine.
[0021]
In order to produce wine in the present invention, the obtained yeast mutant strain is used as a liquor mother, and a method similar to the usual wine production method, for example, the sake brewing method (edited by Yamanashi Prefectural Industrial Technology Center) You can make wine by the method.
[0022]
Further, in order to produce alcoholic beverages other than wine in the present invention, the obtained yeast mutant strain is used, and a method similar to the usual method for producing alcoholic beverages, for example, “Technology Brewing and Malting”, by Kunze, VLB , 1996; "Die Bierbrauerei, Band I, II", (7th edition), Narziss, Enke, 1992; "Brew brewing science" by Matsuyama Shigesuke, Toyo Keizai Shinposha, 1969. Can be manufactured.
[0023]
In the production of alcoholic beverages using the yeast mutant of the present invention, since the incorporation of amino acids is suppressed, it is possible to produce alcoholic beverages having a stable improved amino acid content. Further, in the production of wine using the yeast mutant of the present invention, since the incorporation of amino acids is suppressed, it is not necessary to contact wine and starch stably as in the conventional surreal method. In addition, it is possible to produce wine with improved amino acid content in a short period of time.
[0024]
【Example】
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[0025]
(Example 1) Acquisition of a double yeast mutant As a wine yeast, Saccharomyces cerevisiae OC-2 (IAM4274), which is homothallic, diploid, and shows a high ascospore formation rate and germination rate, was used as a parent strain. McClary et al.'S medium (sodium acetate 0.82%, glucose 0.1%, yeast extract 0.25%, potassium chloride 0.18%, agar 2%) (% = w / v%) (% = w / v%) to induce the formation of ascospores, The sac wall lysing enzyme (trade name: Zymolyce 20T, manufactured by Seikagaku Corporation) was dissolved in a phosphate buffer solution (pH 7.5) containing 250 ppm, washed with sterilized water, and then washed with phosphate buffer (pH 8. 0) was added to obtain 4.6 ml of a spore suspension. To this, add 0.25 ml of 40 w / v% glucose solution and 0.15 ml of ethyl methanesulfonate and perform mutation treatment at 30 ° C. for 80 minutes, and add an equal amount of 10 w / v% sodium thiosulfate solution to carry out mutation treatment. After stopping, it was washed with sterilized water and suspended in sterilized water to obtain a mutation-treated spore suspension.
[0026]
Mutation-treated spore suspension was prepared using a minimal medium containing 10 mM D-histidine and 0.1 w / v% proline (glucose 0.5%, yeast nitrogen base (without amino acids and ammonium sulfate) 0.17%, agar 2%) (% = w / v%), a strain having no known gap1 mutation, such as 2512c, which does not grow on a minimal medium containing citrulline as a single nitrogen source, and grows after 3-7 days of culture -2A (a gap1 ) strain in a complementation test, showing D-histidine resistance and no growth in minimal medium with citrulline as a single nitrogen source, that is, a strain with no complementarity (MA1007 strain) Was selected as a gap1 mutant.
[0027]
Similarly, among colonies growing on minimal medium containing 0.5 mM L-azetidine-2-carboxylate and 0.1 w / v urea, β-2-thienyl-DL-alanine (100 mg / l) and urea 0.1 w In a complementary test using a strain having a known apf1 mutation, such as 30967c ( apf1ura3 ), which grows in a minimal medium containing / v%, does not grow in a minimal medium containing proline as a single nitrogen source, and L-azetidine-2-carboxylate resistance and the property that growth was not observed in a minimal medium containing proline as a single nitrogen source, that is, a strain having no complementarity (MA1325 strain) was selected as an apf1 mutant.
[0028]
Complementation using a strain having a known can1 mutation, for example, AH-22 (a leu2-3,112his4can1 ), from colonies growing on a minimal medium containing L-canavanine 40 mg / l and ammonium sulfate 0.5 w / v% In the test, a strain (MA1205 strain) exhibiting L-canavanine resistance, ie, having no complementarity, was selected as a can1 mutant.
[0029]
Next, each of the strains MA1007 and MA1325 was used to form ascospores in the medium of McClary et al., And after the ascomytes wall was lysed with zymolyce in the same manner as described above, the spores were used using a micromanipulator. -A sexual cross between spores was obtained, and a strain (MA2504 strain) having a double mutation of gap1 and apf1 was obtained from the phenotype and complementation test of the obtained single spore strain derived from the cross. This strain was deposited with the Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology on June 1, 1999, and its deposit number is FERM P-17407. In addition, a strain (MA2601 strain) having a double mutation of gap1 and can1 was obtained from the MA1007 strain and the MA1205 strain by the same method. This strain has been deposited with the Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology on June 1, 1999, and the deposit number is FERM P-17408.
[0030]
The procedure shown above is described as a flowchart in FIG. 1 for explanation.
[0031]
The mutant strains obtained as described above were examined for growth in a minimal medium supplemented with various amino acids as a single nitrogen source. The results are shown in Table 1. The gap1 mutant MA1007 strain did not grow on a minimal medium with citrulline as a single nitrogen source, and the apf1 mutant MA1325 strain did not grow on a minimal medium with proline as a single nitrogen source. Both were able to grow on a minimal medium with glutamic acid or alanine as the single nitrogen source. However, the gap1 and apf1 double mutant MA2504 strains did not grow in a minimal medium containing glutamate and alanine as a single nitrogen source as well as citrulline and proline. On the other hand, the can1 mutant MA1205 strain was able to grow on a minimal medium using arginine as a single nitrogen source, whereas the gap1 and can1 double mutant MA2601 strains could grow on a minimal medium using arginine as a single nitrogen source. It was not recognized, and it was shown that incorporation of these double mutations suppressed the uptake of specific amino acids and prevented growth.
[0032]
[Table 1]
Figure 0003676943
[0033]
(Example 2) Wine production test MA2504 and MA2601 strains having double mutations obtained in Example 1 and their parent strain Saccharomyces cerevisiae OC-2 were used, and the sugar content was increased to 23 degrees with granulated sugar. Wine production was carried out in a conventional manner using the adjusted Koshu grape juice as a raw material. Table 2 shows the results of general component analysis of the wines produced. The fermentation rates of MA2504 and MA2601 strains were slightly slower than the parent strain, but no significant differences were found in the analytical values of alcohol concentration, extract content, total acid, pH, and organic acid composition. In addition, Table 3 shows the results of amino acid analysis. Most of the amino acids in the wine produced by the parent strain were proline, but the wine produced by the MA2504 strain has a high proline content, and further, aspartic acid, threonine, serine, asparagine, glutamic acid, glutamine, alanine, A lot of amino acids such as valine, isoleucine, leucine, tyrosine, phenylalanine and histidine were contained, and the total amino acid amount was about 1.9 times that of the wine produced by the parent strain. The wine produced with the MA2601 strain had a slightly lower proline content, but contained arginine as much as the content in the fruit juice, and the total amino acid content was about 1.3 times that of the wine produced with the parent strain.
[0034]
[Table 2]
Figure 0003676943
[0035]
[Table 3]
Figure 0003676943
[0036]
The wine produced as described above was subjected to a sensory test by seven panelists skilled in the winery. As a result, it was evaluated that the wine produced by the MA2504 strain and the MA2601 strain had a thicker taste than the wine produced by the parent strain.
[0037]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the method which can manufacture alcoholic beverages by which the uptake of the amino acid by yeast and the amino acid content were improved stably, especially wine.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a preferred embodiment of a process for obtaining a yeast mutant of the present invention.

Claims (5)

サッカロミセス・セレビシエに属し、アミノ酸の取り込に関与する遺伝子の変異としてgap1及びapf1(shr3)の変異を有する酵母変異株MA2504(FERM P−17407号)。Yeast mutant MA2504 (FERM P-17407) belonging to Saccharomyces cerevisiae and having a mutation of gap1 and apf1 (shr3) as a mutation of a gene involved in amino acid incorporation. サッカロミセス・セレビシエに属し、アミノ酸の取り込に関与する遺伝子の変異としてgap1及びcan1の変異を有する酵母変異株MA2601(FERM P−17408号)。A yeast mutant MA2601 (FERM P-17408) belonging to Saccharomyces cerevisiae and having a mutation of gap1 and can1 as a mutation of a gene involved in amino acid incorporation. 酵母を用いて酒類を製造する方法において、請求項1又は2に記載の酵母変異株を用いることを特徴とする酒類の製造方法。A method for producing alcoholic beverages using the yeast mutant according to claim 1 or 2 in a method for producing alcoholic beverages using yeast. 前記酒類が、ワイン又は麦芽アルコール飲料である請求項に記載の酒類の製造方法。The method for producing an alcoholic beverage according to claim 3 , wherein the alcoholic beverage is a wine or a malt alcoholic beverage. ブドウ果汁にワイン酵母株を酒母として接種して発酵するワインの製造方法において、請求項1又は2に記載の酵母変異株を用いることを特徴とするワインの製造方法。A method for producing wine, wherein the yeast mutant according to claim 1 or 2 is used in a method for producing wine by inoculating a grape juice with a wine yeast strain as a liquor and fermenting it.
JP16526099A 1999-06-11 1999-06-11 Yeast mutant for alcoholic beverage production and method for producing alcoholic beverages using the yeast mutant Expired - Lifetime JP3676943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16526099A JP3676943B2 (en) 1999-06-11 1999-06-11 Yeast mutant for alcoholic beverage production and method for producing alcoholic beverages using the yeast mutant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16526099A JP3676943B2 (en) 1999-06-11 1999-06-11 Yeast mutant for alcoholic beverage production and method for producing alcoholic beverages using the yeast mutant

Publications (2)

Publication Number Publication Date
JP2000350575A JP2000350575A (en) 2000-12-19
JP3676943B2 true JP3676943B2 (en) 2005-07-27

Family

ID=15808956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16526099A Expired - Lifetime JP3676943B2 (en) 1999-06-11 1999-06-11 Yeast mutant for alcoholic beverage production and method for producing alcoholic beverages using the yeast mutant

Country Status (1)

Country Link
JP (1) JP3676943B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021090398A (en) * 2019-12-12 2021-06-17 日本盛株式会社 Yeast having high ornithine productivity, and method for producing liquors or food products

Also Published As

Publication number Publication date
JP2000350575A (en) 2000-12-19

Similar Documents

Publication Publication Date Title
Rainieri et al. Selection and improvement of wine yeasts
Benítez et al. Development of new strains for the food industry
Casey Yeast selection in brewing
JP2530650B2 (en) Method for producing low alcohol or no alcohol beer
JP3822415B2 (en) Yeast mutant for alcoholic beverage production and method for producing alcoholic beverages using the yeast mutant
JP3676943B2 (en) Yeast mutant for alcoholic beverage production and method for producing alcoholic beverages using the yeast mutant
JP3831400B2 (en) Yeast mutant for alcoholic beverage production and method for producing alcoholic beverages using the yeast mutant
KR101777555B1 (en) Distilled liquor using Saccharomyces cerevisiae N9 and method for preparation thereof
Stewart et al. Current developments in the genetic manipulation of brewing yeast strains—A review
Yalçin et al. Determination of growth and glycerol production kinetics of a wine yeast strain Saccharomyces cerevisiae Kalecik 1 in different substrate media
JP2004215644A (en) Thyrosol-producing mutant yeast strain having high productivity, and method for producing fermented alcoholic beverage using the yeast
CN101407768B (en) Saccharomyces cerevisiae mutant bacterial strain and use thereof in glutathion production by fermentation
JP2802718B2 (en) Low alcohol concentration sake
Subden Current developments in wine yeasts
JP3899363B2 (en) Yeast mutant for alcoholic beverage production and method for producing alcoholic beverages using the yeast mutant
JP2001103958A (en) Novel yeast capable of producing a large amount of organic acids and use thereof
JP4008539B2 (en) New yeast with high organic acid production and its use
JP2001346573A (en) Yeast having assimilativity of proline
JPH0515420B2 (en)
CN113584023B (en) Metal ion induced aspergillus oryzae gene promoter, preparation method and application thereof
JP4059454B2 (en) Liquor, food production method
CA3235163A1 (en) Co-cultures for efficiently producing a fermented beverage
JP3942718B2 (en) Liquor, food production method
JP3972123B2 (en) Novel mutant yeast and its use
JPH0642826B2 (en) Manufacturing method of brewed vinegar

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050502

R150 Certificate of patent or registration of utility model

Ref document number: 3676943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term