JP3676425B2 - Light guide plate - Google Patents

Light guide plate Download PDF

Info

Publication number
JP3676425B2
JP3676425B2 JP11048395A JP11048395A JP3676425B2 JP 3676425 B2 JP3676425 B2 JP 3676425B2 JP 11048395 A JP11048395 A JP 11048395A JP 11048395 A JP11048395 A JP 11048395A JP 3676425 B2 JP3676425 B2 JP 3676425B2
Authority
JP
Japan
Prior art keywords
guide plate
light
light guide
light source
reflecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11048395A
Other languages
Japanese (ja)
Other versions
JPH08304629A (en
Inventor
真一郎 斉藤
義則 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11048395A priority Critical patent/JP3676425B2/en
Publication of JPH08304629A publication Critical patent/JPH08304629A/en
Application granted granted Critical
Publication of JP3676425B2 publication Critical patent/JP3676425B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、例えば、液晶表示面を照明する面光源装置に用いられる導光板に関する。
【0002】
【従来の技術】
平面ディスプレイとして注目を浴びている液晶は、それ自身は非発光であるので何らかの方法で照明しなければならない。照明方法として外光の反射を利用する反射型、またバックライト等を利用する透過型が知られている。中でも輝度や、薄型の点で透過型、特に導光板の側面近傍に光源を配置するエッジライト方式の導光板を用いるのが一般的である。
【0003】
先に本出願人らは、部品点数の少ない構成で、光輝度且つ薄型の導光板として特開平6-3529号を提案した。図8は特開平6-3529号での導光板の構成図である。図において、81は透過面82と透過面82と対向し光を透過面82に反射する反射面83とを具備する導光板である。導光板81の反射面83と略直交する入射面89には、導光板81内に光を出射する線状の光源84が配設されている。85は光源84より出射する光を導光板81方向に反射する反射板である。
【0004】
導光板81の透過面82側には、透過面82より出射する光を拡散する拡散シート86が配設されている。一方、導光板81の反射面83側には、光源84に対向する同一形状の突条87が0.1mm以上5mm以下の間隔で複数条形成されている。突状87は、透過面82となす角90°である反射斜面a92と透過面82となす角33°である反射斜面b91とから構成されている。図において、左方から右方へ通過する光線が突条87に入射する場合には、反射斜面b91に当たる構成となっている。更に、導光板81の反射面83には、反射蒸着膜88が形成されている。
【0005】
次に、上記構成の動作を説明する。光源84から出射された光線のうち一部は、反射板85に反射され、他の一部はダイレクトに入射面89から導光板81内に入射する。突条87に入射する光線は突条87の形状から反射斜面b91に当り、反射蒸着膜88で透過面82方向に鏡面反射され、透過面82より出射する。透過面82を出射した光は、拡散シート86で拡散される。
【0006】
【発明が解決しようとする課題】
しかしながら、各突条87の反射斜面b91へ入射する光線群の角度分布は、光源からの距離によって異なる。図9は本発明の第一実施例の導光板において入射面から20mmの位置の突条の反射斜面bに入射する光線の角度分布を示す図、図10は本発明の第一実施例の導光板において入射面から150mmの位置の突条の反射斜面bに入射する光線の角度分布を示す図である。これらの図よりわかるように、光源84から離れれば、離れるほど、突条87へ入射する光線の角度分布のピーク角は0°方向に移動する。つまり光源84から遠い突条87に入射する光線は0°に近い光線の割合が多くなっている。尚、これらの図における光線角度定義は、図8に示す。
【0007】
しかし、上記構成の導光板81は、どの突条87も同じ形状、つまり、反射斜面b91の透過面82に対するなす角はどの突条87も等しいので、各突条87で反射され導光板81の透過面82方向に進む光線群の進行方向は光源84からの距離によって異なってくる。つまり、透過面82での光線群の出射特性が場所により異なり、すべての場所で輝度のピークが正面方向(透過面82に直交する方向)には向かない。
【0008】
また、上記構成の導光板81の突条87の配設ピッチが0.1mm以上5mm以下と大きいため、突条87だけが明るく、突条87の周りが暗くなり、ピッチが大となる場所では明暗の縞が見えてしまい、面光源として好ましくない。よって、図8に示す構成では、面光源としての視覚影響を考え、導光板81の透過面82に拡散シート86を配設し、光線群を拡散している。しかし、この拡散シート86を設けることにより、正面方向の輝度が下がるという別の問題点が発生する。
【0009】
本発明は、上記問題点に鑑みてなされたもので、その目的は、輝度ムラがなく、正面方向の輝度が高く、構成が簡単な導光板を提供することを目的としている。
【0010】
【課題を解決するための手段】
上記課題を本発明は、線状の光源に対向する入射面から入射した光を、該入射面と略直交する透過面を介して、外部に導く導光板において、
前記透過面と対向し、光を前記透過面に反射する反射面に突条あるいは溝を形成した反射部を設け、
前記反射部と前記透過面とのなす傾斜角度を光源から遠ざかるにつれて大きくし、
隣り合う反射部の間隔を100μm以下としたものである。
【0011】
上記発明において、導光板は、プラスチック材料から成ることが望ましい。
又、導光板の各面および溝または突起の各面は、略平滑面であることが望ましい。
【0012】
反射面の単位面積に占める前記反射部の前記反射面への投影面積が、光源から遠ざかるにつれて増加していることが望ましい。
【0013】
導光板は、光源から遠ざかるにつれてその厚さが薄くなることが望ましい。
【0014】
【作用】
本発明の導光板において、光源からの光は、光源から離れるほど、図9及び図10に示すように角度分布のピーク角が0°方向に移動する。よって、光源から遠ざかるにつれて反射部と透過面とのなす傾斜角を大きくすることにより、光の角度分布のピーク角度が同一方向に向かうように反射部で反射され、透過面を透過する光線群の輝度の最大値が正面方向に向かう。
【0015】
又、隣り合う反射部の間隔を100μm以下にしたことにより、明暗の縞が見えなくなる。また乱数的なピッチで反射部を形成したことにより、広い範囲でモアレが発生するのを防ぐことができる。これらにより、面光源装置の拡散シートを不要とすることができる。
【0016】
更に、導光板内の光は、光源から遠ざかる程反射部への到達光量は少なくなるが、図11に示すように反射面の単位面積に占める反射部の反射面への投影面積(図の斜線で囲んだ部分の面積)を増加させることで光量の減少分をカバーしているので、透過面を透過する光量は光源からの位置に関わらず略一定する。
【0017】
【実施例】
次に、図面を用いて本発明の実施例を説明する。図1は本発明の第一実施例を説明する構成図、図2は図1における反射部を説明する図、図3は図1におけるA方向矢視図、図4は図1における反射斜面bの傾斜角度と反射部の入射面からの距離との関係を説明する図、図5は図1における反射面の単位面積に占める反射部の反射面への投影面積の割合と入射面からの距離を説明する図、図6は図1における構成の導光板の光源からの距離とその場所での正面輝度との関係を説明する図、図7は突条の他の実施例の構成図、図12は図1における乱数的なピッチを説明する図、図13は本発明の第二実施例を説明する構成図、図14は図13における反射部を説明する図である。
【0018】
先ず、図1において、1は透過面2と、透過面2と対向し透過面2に光を反射する反射面3とを具備する導光板である。導光板1の反射面3と略直交する入射面11には、発散光を出射する線状の光源4が配置されている。5は光源4より出射する発散光を導光板1方向に反射する反射板である。尚、本実施例の導光板1は光源4からの距離に応じて漸次的に厚さが薄くなるように形成されている。ここでいう厚さとは、透過面2と反射面3との間隔のことであり、突条8部分はこの限りではない。
【0019】
導光板1の反射面3側には、光源4と略平行に反射斜面a9および反射斜面b10を持つ反射部6である突条8が形成されている。反射部6とは、反射面3に対し凹凸である形状であればよく、反射部6で鏡面反射した光線が透過面から透過させる働きを持つ。
【0020】
尚、図1に示す本実施例の導光板1の大きさは、下記の通りである。
L = 160mm
h1= 3mm
h2= 2mm
d = 20μm以上60μm以下
突条8は100μm以下の乱数的なピッチで複数条形成されている。尚、ここでいう乱数的なピッチとは、図12にあるようにピッチを数列で表した場合全く無相関な数列であるようなピッチという意味である。更に、導光板1の反射面3には、アルミ・銀などの光の吸収の少ない反射膜としての反射蒸着膜7が形成されている。凹凸のある面に対して膜厚均一性の制限がない条件下では、蒸着法により反射膜を形成すると大量生産に有利となる。更に、導光板1の透過面2側には、液晶表示面14が配設されている。
【0021】
図2は反射部としての突条を説明する図である。各突条8は反射斜面a9および反射斜面b10を持ち、各突条8に入射する光線は突条8の形状すなわち反射斜面a9の傾斜角度a12および反射斜面b10の傾斜角度b13により反射後の光線経路が求まる。
【0022】
導光板1内の光線群は、光源4から離れるほど、図9、図10に示したように突条8への入射光線の角度分布のピーク角が0°方向に移動している。従って、図2に示す透過面2と反射斜面b10とのなす角である傾斜角度b13を光源4から離れるほど大きくし、各反射部6である反射斜面b10で反射される光線の角度分布のピーク角を同一方向(正面方向)に向くように設定している。こうすることで、光源4からの位置に関わらず透過面2を透過する光線群の輝度のピークが正面方向に向かう。
【0023】
更に、光源4から離れるほど突条8の配設ピッチを狭めて、ないしは、突条8の幅dを大きくして、図11の斜線部分に示す反射面3の単位面積に占める突条8の反射面3への投影面積の割合を、図5に示すように光源4から離れるほど大きくしている。
【0024】
尚、本実施例の導光板1は微幅な突条8を形成することから圧縮成形等の成形品であり、コストや光線の内部透過率及び生産品の再現性などから、アクリル・ポリカーボネイトなどの光学プラスチック材料を用いた。導光板の金型を平滑面加工しておけば、光線追跡法にて導光板1の入射面11から入射した光線が透過面2のどこの位置からどんな角度で出射するのかがシミュレーションできる。特開平6-3529号等のように、拡散作用を持つシートまたは形状が導光板の中に存在すると、光線追跡法にて正確にシミュレーションできなくなる。導光板1の反射面3の金型は、平面研磨した金型に先端がV字型形状をしたダイヤモンドバイト、Rバイト、鋭角バイトで切削加工を行い、突条8を形成した。
【0025】
反射斜面a9および反射斜面b10の傾斜角度を変化させる方法として、バイトの取り付け角度を場所毎で変える方法や、また、先端形状の異なる複数のバイトを場所毎で適宜使用する方法等がある。
【0026】
次に、上記構成の動作を説明する。光源4から出射された光線のうち一部は、反射板5に反射され、他の一部はダイレクトに入射面11から導光板1内に入射する。
【0027】
そして、光線の一部はダイレクトに反射面3の反射部6である突条8に、他の一部は導光板1内の透過面2や反射面3で何回か全反射した後、反射面3の反射部6である突条8に入射する。本実施例では反射斜面b10と透過面2とのなす角である傾斜角度b13を32°以上36°以下、突条の頂角を90°にしているため、突条8に入射する光線は反射斜面b10に当たる。入射した光線は反射蒸着膜7があるため反射部6である反射斜面b10で鏡面反射され透過面2方向に反射し、液晶表示面14を照明する。
【0028】
上記構成によれば、次のような効果を得ることができた。
(1) 各突条8に入射する光線の角度分布をシミュレーションにより求め、反射部6である反射斜面b10と透過面2とのなす角である傾斜角度b13を、光源4からの距離によって、変化させたことにより、場所によらず輝度の最大値が観察者方向である正面方向で得られる。
【0029】
(2) 又、隣り合う反射部6の間隔を100μm以下にしたことにより、明暗のムラがなくなる。これにより、拡散シートが不要となり、更に、正面方向の輝度の低下を防止できる。
【0030】
(3) 導光板1内の光は、光源4から遠ざかる程到達光量は少なくなるが、反射部の反射面への投影面積を光源4から遠ざかるにつれて増加させたことにより、光源4からの位置に関わらず透過面2を透過する光量は略一定となり、図6に示すように輝度ムラがなくなる。
【0031】
(4) 突条8の配設ピッチを乱数的なピッチとしたことにより、たとえ、ある2つの突条8で光線の屈折が干渉を強め合う条件であったとしても、その隣の突条8との光線に対して干渉を強め合う確率は低いので、広い範囲でのアモレの発生が防止できる。
【0032】
尚、本発明は上記実施例に限るものではない。上記実施例において、光源4は発散光を出射するので、反射板5を用いて導光板1内に光を導くようにしたが、指向性のある光源であるならば、反射板5は不要である。
【0033】
重量の軽減、IC等の配置スペースが確保等の理由により、導光板1の厚さを光源4からの距離に応じて漸次的に薄くなるように形成したが、このようなニーズがなければ、均一な厚さでもよいことはいうまでもない。
【0034】
導光板1を左方から右方へ通過する光線が突条8に当たる場合、反射斜面b10にだけ当たる構成としたが、反射斜面a9にもあたるような突条8の構成にしてもよい。この場合は、傾斜角度a12または傾斜角度b13の少なくともどちらか一方を光源4から遠ざかるにつれて変化させればよい。
【0035】
上記実施例の突条8は光源4と略平行に形成したが、これに限定するものではない。例えば、図7(a)に示すように、円弧状に突条17を形成してもよいし、図7(b)に示すように、折れ線状の突条18を形成してもよいし、図7(c)に示すように、斜めに交差する突条19でもよい。この様な突条を光源と非平行の形状にすることにより、光線の干渉により発生するモアレ縞の影響を低減できる。
【0036】
更に、上記実施例では、反射蒸着膜7は導光板1の反射面3全域に形成したが、最小限反射斜面b10に反射蒸着膜を形成することで足りる。この場合は、反射面での光線の反射率が上がるため、より輝度の高い導光板が得られる。
【0037】
更に又、上記実施例は反射部を突条としたが、図13に示すように逆に反射部を溝としてもよい。この場合は、図14にあるように、溝57の頂角65を90°、反射斜面a55の傾斜角度a63を図4のように光源53から離れるほど大きくすればよい。
【0038】
【発明の効果】
以上述べたように、本発明によれば、導光板の反射面に光源からの光の角度分布のピーク角度が同一方向になる反射部を設けたことにより、輝度の最大値が正面方向にどの場所でも向かう。隣り合う反射部の間隔を100μm以下にしたことにより、明暗の縞が見えなくなる。また、乱数的なピッチで反射部を形成したことにより、広い範囲でモアレが発生することを防ぐことができる。これらにより、拡散シートを省略可能となり構成が簡単となる。
【0039】
導光板内の光は、光源から遠ざかる程到達光量は少なくなるが、反射部の反射面への投影面積が光源から遠ざかる程大きくすることで光量の減少分をカバーしているので、光源からの位置に関わらず、透過面を透過する光量は略一定する。
【図面の簡単な説明】
【図1】本発明の第一実施例を説明する構成図である。
【図2】図1における反射部を説明する図である。
【図3】図1におけるA方向矢視図である。
【図4】図1における反射斜面bの傾斜角度と反射部の入射面からの距離との関係を説明する図である。
【図5】図1における反射面の単位面積に占める反射部の反射面への投影面積の割合と入射面からの距離を説明する図である。
【図6】図1における構成の導光板の光源からの距離とその場所での正面輝度との関係を説明する図である。
【図7】突条の他の実施例の構成図でである。
【図8】特開平6-3529号での導光板の構成図である。
【図9】本発明の第一実施例の導光板において入射面から20mmの位置の突条の反射斜面bに入射する光線の角度分布を示す図である。
【図10】本発明の第一実施例の導光板において入射面から150mmの位置の突条の反射斜面bに入射する光線の角度分布を示す図である。
【図11】反射面の単位面積に占める反射部の反射面への投影面積を説明する図である。
【図12】図1における乱数的なピッチを説明する図である。
【図13】本発明の第二実施例を説明する構成図である。
【図14】図13における反射部を説明する図である。
【符号の説明】
1 導光板
2 透過面
3 反射面
4 光源
5 反射板
6 反射部
7 反射蒸着膜
8 突条
9 反射斜面a
10 反射斜面b
[0001]
[Industrial application fields]
The present invention relates to a light guide plate used in, for example, a surface light source device that illuminates a liquid crystal display surface.
[0002]
[Prior art]
Liquid crystal, which has been attracting attention as a flat display, does not emit light itself and must be illuminated in some way. As an illumination method, a reflection type using reflection of external light and a transmission type using a backlight or the like are known. Among them, it is common to use a transmissive type, particularly an edge light type light guide plate in which a light source is arranged in the vicinity of the side surface of the light guide plate in terms of brightness and thinness.
[0003]
Previously, the present applicants proposed Japanese Patent Application Laid-Open No. 6-3529 as a light guide plate having a low luminance and a low luminance. FIG. 8 is a configuration diagram of a light guide plate in Japanese Patent Laid-Open No. 6-3529. In the figure, reference numeral 81 denotes a light guide plate including a transmission surface 82 and a reflection surface 83 that faces the transmission surface 82 and reflects light to the transmission surface 82. A linear light source 84 that emits light into the light guide plate 81 is disposed on an incident surface 89 that is substantially orthogonal to the reflection surface 83 of the light guide plate 81. Reference numeral 85 denotes a reflector that reflects light emitted from the light source 84 toward the light guide plate 81.
[0004]
A diffusion sheet 86 that diffuses light emitted from the transmission surface 82 is disposed on the transmission surface 82 side of the light guide plate 81. On the other hand, on the reflecting surface 83 side of the light guide plate 81, a plurality of strips 87 having the same shape facing the light source 84 are formed at intervals of 0.1 mm or more and 5 mm or less. The protrusion 87 is composed of a reflective slope a 92 having an angle of 90 ° with the transmission surface 82 and a reflection slope b 91 having an angle of 33 ° with the transmission surface 82. In the figure, when a light beam passing from the left to the right is incident on the protrusion 87, the light strikes the reflecting slope b91. Further, a reflective vapor deposition film 88 is formed on the reflective surface 83 of the light guide plate 81.
[0005]
Next, the operation of the above configuration will be described. Part of the light emitted from the light source 84 is reflected by the reflecting plate 85, and the other part directly enters the light guide plate 81 from the incident surface 89. The light beam incident on the ridge 87 hits the reflection inclined surface b91 from the shape of the ridge 87, is specularly reflected in the direction of the transmission surface 82 by the reflective vapor deposition film 88, and is emitted from the transmission surface 82. The light emitted from the transmission surface 82 is diffused by the diffusion sheet 86.
[0006]
[Problems to be solved by the invention]
However, the angular distribution of the light beam incident on the reflecting slope b91 of each protrusion 87 differs depending on the distance from the light source. FIG. 9 is a diagram showing the angular distribution of light rays incident on the reflective inclined surface b of the ridge at a position 20 mm from the incident surface in the light guide plate of the first embodiment of the present invention, and FIG. 10 is the guide of the first embodiment of the present invention. It is a figure which shows the angle distribution of the light ray which injects into the reflective slope b of the protrusion of the position of 150 mm from the entrance plane in an optical plate. As can be seen from these figures, the further away from the light source 84, the more the peak angle of the angular distribution of the light rays incident on the protrusion 87 moves in the 0 ° direction. That is, the ratio of the light rays incident on the protrusion 87 far from the light source 84 is close to 0 °. The definition of the ray angle in these figures is shown in FIG.
[0007]
However, in the light guide plate 81 configured as described above, all the protrusions 87 have the same shape, that is, the angle formed by the reflection inclined surface b91 with respect to the transmission surface 82 is the same for each protrusion 87. The traveling direction of the light beam traveling in the direction of the transmission surface 82 varies depending on the distance from the light source 84. That is, the emission characteristics of the light group on the transmission surface 82 vary depending on the location, and the luminance peak is not suitable for the front direction (direction orthogonal to the transmission surface 82) at all locations.
[0008]
In addition, since the arrangement pitch of the protrusions 87 of the light guide plate 81 having the above configuration is as large as 0.1 mm or more and 5 mm or less, only the protrusions 87 are bright, the periphery of the protrusions 87 is dark, and the place where the pitch becomes large is dark and dark. This is not preferable as a surface light source. Therefore, in the configuration shown in FIG. 8, in consideration of the visual influence as a surface light source, a diffusion sheet 86 is disposed on the transmission surface 82 of the light guide plate 81 to diffuse the light beam group. However, the provision of the diffusion sheet 86 causes another problem that the luminance in the front direction decreases.
[0009]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a light guide plate that has no luminance unevenness, has high luminance in the front direction, and has a simple configuration.
[0010]
[Means for Solving the Problems]
The present invention provides a light guide plate that guides light incident from an incident surface facing a linear light source to the outside through a transmission surface substantially orthogonal to the incident surface.
A reflective portion is provided that has a protrusion or groove formed on a reflective surface that faces the transmissive surface and reflects light to the transmissive surface.
Increasing the inclination angle formed by the reflecting portion and the transmission surface as the distance from the light source increases.
The interval between adjacent reflecting portions is set to 100 μm or less.
[0011]
In the above invention, the light guide plate is preferably made of a plastic material.
Further, it is desirable that each surface of the light guide plate and each surface of the groove or the protrusion is a substantially smooth surface.
[0012]
It is desirable that the projected area of the reflecting portion on the reflecting surface in the unit area of the reflecting surface increases as the distance from the light source increases.
[0013]
It is desirable that the thickness of the light guide plate decreases as the distance from the light source increases.
[0014]
[Action]
In the light guide plate of the present invention, as the light from the light source moves away from the light source, the peak angle of the angular distribution moves in the 0 ° direction as shown in FIGS. Therefore, by increasing the inclination angle between the reflecting portion and the transmitting surface as the distance from the light source increases, the light beam reflected by the reflecting portion so that the peak angle of the light angle distribution is directed in the same direction and transmitted through the transmitting surface. The maximum value of brightness goes in the front direction.
[0015]
In addition, when the interval between the adjacent reflecting portions is set to 100 μm or less, bright and dark stripes cannot be seen. In addition, by forming the reflection portions at a random pitch, it is possible to prevent moiré from occurring in a wide range. By these, the diffusion sheet of a surface light source device can be made unnecessary.
[0016]
Furthermore, as the light in the light guide plate gets farther from the light source, the amount of light reaching the reflecting portion decreases, but as shown in FIG. 11, the projected area on the reflecting surface of the reflecting portion occupying the unit area of the reflecting surface (the hatched line in the figure Since the decrease in the light amount is covered by increasing the area of the portion surrounded by (), the light amount transmitted through the transmission surface is substantially constant regardless of the position from the light source.
[0017]
【Example】
Next, embodiments of the present invention will be described with reference to the drawings. 1 is a block diagram for explaining a first embodiment of the present invention, FIG. 2 is a diagram for explaining a reflecting portion in FIG. 1, FIG. 3 is a view in the direction of arrow A in FIG. 1, and FIG. FIG. 5 is a diagram for explaining the relationship between the inclination angle of the reflecting portion and the distance from the incident surface of the reflecting portion, and FIG. 5 shows the ratio of the projected area of the reflecting portion to the reflecting surface in the unit area of the reflecting surface in FIG. FIG. 6 is a diagram for explaining the relationship between the distance from the light source of the light guide plate configured as shown in FIG. 1 and the front luminance at that location, and FIG. 7 is a diagram showing the configuration of another embodiment of the ridge. 12 is a diagram for explaining the random pitch in FIG. 1, FIG. 13 is a block diagram for explaining the second embodiment of the present invention, and FIG. 14 is a diagram for explaining the reflection part in FIG.
[0018]
First, in FIG. 1, reference numeral 1 denotes a light guide plate including a transmission surface 2 and a reflection surface 3 that faces the transmission surface 2 and reflects light to the transmission surface 2. A linear light source 4 that emits divergent light is disposed on an incident surface 11 that is substantially orthogonal to the reflecting surface 3 of the light guide plate 1. Reference numeral 5 denotes a reflecting plate that reflects divergent light emitted from the light source 4 toward the light guide plate 1. In addition, the light guide plate 1 of the present embodiment is formed so that the thickness is gradually reduced according to the distance from the light source 4. The thickness here is the distance between the transmission surface 2 and the reflection surface 3, and the protrusion 8 portion is not limited to this.
[0019]
On the reflective surface 3 side of the light guide plate 1, a ridge 8 is formed that is a reflective portion 6 having a reflective slope a9 and a reflective slope b10 substantially parallel to the light source 4. The reflection part 6 may have any shape that is concave and convex with respect to the reflection surface 3, and has a function of transmitting the light beam specularly reflected by the reflection part 6 from the transmission surface.
[0020]
In addition, the magnitude | size of the light-guide plate 1 of a present Example shown in FIG. 1 is as follows.
L = 160mm
h1 = 3mm
h2 = 2mm
d = 20 μm or more and 60 μm or less The plurality of protrusions 8 are formed with a random pitch of 100 μm or less. Here, the random pitch means a pitch that is a completely uncorrelated sequence when the pitch is expressed by a sequence as shown in FIG. Further, a reflective vapor deposition film 7 is formed on the reflective surface 3 of the light guide plate 1 as a reflective film that absorbs less light, such as aluminum or silver. Under the condition that there is no limitation on the film thickness uniformity on the uneven surface, it is advantageous for mass production to form a reflective film by vapor deposition. Further, a liquid crystal display surface 14 is disposed on the light transmission plate 2 side of the light guide plate 1.
[0021]
FIG. 2 is a view for explaining a protrusion as a reflecting portion. Each ridge 8 has a reflection slope a9 and a reflection slope b10, and light rays incident on each ridge 8 are reflected by the shape of the ridge 8, that is, the inclination angle a12 of the reflection slope a9 and the inclination angle b13 of the reflection slope b10. A route is obtained.
[0022]
As the light ray group in the light guide plate 1 moves away from the light source 4, the peak angle of the angular distribution of the light ray incident on the ridge 8 moves in the 0 ° direction as shown in FIGS. Therefore, the inclination angle b13, which is the angle formed between the transmission surface 2 and the reflection slope b10 shown in FIG. 2, is increased as the distance from the light source 4 increases, and the peak of the angular distribution of the light beam reflected by the reflection slope b10 that is each reflector 6 is obtained. The corners are set to face in the same direction (front direction). By doing so, the luminance peak of the light beam that passes through the transmission surface 2 is directed in the front direction regardless of the position from the light source 4.
[0023]
Further, as the distance from the light source 4 increases, the pitch of the protrusions 8 is narrowed, or the width d of the protrusions 8 is increased, and the protrusions 8 occupy the unit area of the reflecting surface 3 shown by the hatched portion in FIG. The ratio of the projected area onto the reflecting surface 3 is increased as the distance from the light source 4 increases as shown in FIG.
[0024]
The light guide plate 1 of the present embodiment is a molded product such as compression molding because it forms the narrow protrusions 8. From the cost, the internal transmittance of light, and the reproducibility of the product, acrylic, polycarbonate, etc. The optical plastic material was used. If the mold of the light guide plate is processed with a smooth surface, it is possible to simulate from which position on the transmission surface 2 and at what angle the light incident from the incident surface 11 of the light guide plate 1 is emitted by the ray tracing method. If a sheet or shape having a diffusing action exists in the light guide plate as in Japanese Patent Laid-Open No. 6-3529, the simulation cannot be performed accurately by the ray tracing method. The metal mold of the reflecting surface 3 of the light guide plate 1 was cut with a diamond tool, R tool, and sharp tool with a V-shaped tip on a flat-polished tool to form a ridge 8.
[0025]
As a method of changing the inclination angle of the reflective slope a9 and the reflective slope b10, there are a method of changing the attachment angle of the cutting tool for each place, a method of using a plurality of cutting tools having different tip shapes appropriately for each place, and the like.
[0026]
Next, the operation of the above configuration will be described. A part of the light emitted from the light source 4 is reflected by the reflecting plate 5, and the other part directly enters the light guide plate 1 from the incident surface 11.
[0027]
Then, a part of the light beam is directly reflected on the protrusion 8 which is the reflecting portion 6 of the reflecting surface 3 and the other part is totally reflected several times on the transmitting surface 2 and the reflecting surface 3 in the light guide plate 1 and then reflected. The light enters the ridge 8 that is the reflecting portion 6 of the surface 3. In this embodiment, the inclination angle b13, which is the angle formed between the reflective inclined surface b10 and the transmission surface 2, is set to 32 ° to 36 °, and the apex angle of the ridge is set to 90 °, so that the light incident on the ridge 8 is reflected. It hits slope b10. Since the incident light beam has the reflective vapor deposition film 7, it is specularly reflected by the reflective inclined surface b 10 which is the reflective portion 6 and reflected in the direction of the transmissive surface 2 to illuminate the liquid crystal display surface 14.
[0028]
According to the above configuration, the following effects could be obtained.
(1) The angular distribution of the light rays incident on each protrusion 8 is obtained by simulation, and the inclination angle b13, which is the angle formed by the reflective inclined surface b10 that is the reflecting portion 6 and the transmitting surface 2, is changed depending on the distance from the light source 4. By doing so, the maximum luminance value can be obtained in the front direction, which is the viewer direction, regardless of the location.
[0029]
(2) Further, since the interval between the adjacent reflecting portions 6 is set to 100 μm or less, unevenness in brightness and darkness is eliminated. Thereby, a diffusion sheet becomes unnecessary and can further prevent a decrease in luminance in the front direction.
[0030]
(3) Although the amount of light reaching the light guide plate 1 decreases as the distance from the light source 4 increases, the projected area onto the reflection surface of the reflecting portion increases as the distance from the light source 4 increases, so Regardless, the amount of light transmitted through the transmission surface 2 is substantially constant, and uneven brightness is eliminated as shown in FIG.
[0031]
(4) Since the arrangement pitch of the ridges 8 is a random pitch, even if the refraction of light rays intensifies the interference between two ridges 8, the adjacent ridges 8 are adjacent to each other. The probability of intensifying interference with the light beam is low, so that the generation of amore in a wide range can be prevented.
[0032]
The present invention is not limited to the above embodiment. In the above embodiment, since the light source 4 emits diverging light, the light is guided into the light guide plate 1 using the reflection plate 5. However, if the light source is directional, the reflection plate 5 is unnecessary. is there.
[0033]
The thickness of the light guide plate 1 is formed so as to be gradually reduced according to the distance from the light source 4 for reasons such as weight reduction and securing of an arrangement space for an IC or the like. Needless to say, the thickness may be uniform.
[0034]
When a light beam passing through the light guide plate 1 from the left to the right hits the ridge 8, it hits only the reflecting slope b 10. However, the ridge 8 may also hit the reflecting slope a 9. In this case, at least one of the inclination angle a12 and the inclination angle b13 may be changed as the distance from the light source 4 increases.
[0035]
Although the protrusion 8 of the said Example was formed substantially parallel to the light source 4, it is not limited to this. For example, as shown in FIG. 7 (a), the ridges 17 may be formed in an arc shape, or as shown in FIG. 7 (b), the ridges 18 may be formed as a broken line, As shown in FIG. 7 (c), the ridges 19 intersecting at an angle may be used. By making such protrusions non-parallel to the light source, it is possible to reduce the influence of moire fringes generated by light beam interference.
[0036]
Further, in the above embodiment, the reflective vapor deposition film 7 is formed over the entire reflective surface 3 of the light guide plate 1, but it is sufficient to form the reflective vapor deposition film on the minimum reflective slope b10. In this case, since the reflectance of the light beam on the reflecting surface is increased, a light guide plate with higher luminance can be obtained.
[0037]
Furthermore, in the above embodiment, the reflecting portion is a protrusion, but the reflecting portion may be a groove, as shown in FIG. In this case, as shown in FIG. 14, the apex angle 65 of the groove 57 may be increased by 90 °, and the inclination angle a63 of the reflective inclined surface a55 may be increased as the distance from the light source 53 increases as shown in FIG.
[0038]
【The invention's effect】
As described above, according to the present invention, the reflection portion of the light guide plate is provided with the reflection portion in which the peak angle of the angle distribution of the light from the light source is in the same direction. Head in place. By making the interval between adjacent reflecting portions 100 μm or less, bright and dark stripes are not visible. In addition, by forming the reflection portions at a random pitch, it is possible to prevent moiré from occurring in a wide range. Accordingly, the diffusion sheet can be omitted and the configuration is simplified.
[0039]
The amount of light that reaches the light guide plate decreases as it moves away from the light source, but the projected area on the reflecting surface of the reflecting part increases as the distance from the light source increases so that the decrease in light amount is covered. Regardless of the position, the amount of light transmitted through the transmission surface is substantially constant.
[Brief description of the drawings]
FIG. 1 is a configuration diagram illustrating a first embodiment of the present invention.
FIG. 2 is a diagram for explaining a reflecting portion in FIG. 1;
3 is a view in the direction of arrow A in FIG.
4 is a diagram for explaining a relationship between an inclination angle of a reflective slope b in FIG. 1 and a distance from an incident surface of a reflective portion.
5 is a diagram for explaining a ratio of a projected area of a reflecting portion to a reflecting surface in a unit area of the reflecting surface in FIG. 1 and a distance from an incident surface. FIG.
6 is a diagram for explaining the relationship between the distance from the light source of the light guide plate configured as shown in FIG. 1 and the front luminance at that location. FIG.
FIG. 7 is a configuration diagram of another embodiment of a ridge.
FIG. 8 is a configuration diagram of a light guide plate in Japanese Patent Laid-Open No. 6-3529.
FIG. 9 is a diagram showing the angular distribution of light rays incident on the reflective inclined surface b of the protrusion at a position 20 mm from the incident surface in the light guide plate of the first embodiment of the present invention.
FIG. 10 is a diagram showing the angular distribution of light rays incident on the reflective inclined surface b of the ridge at a position 150 mm from the incident surface in the light guide plate of the first embodiment of the present invention.
FIG. 11 is a diagram for explaining a projected area of a reflecting portion on a reflecting surface in a unit area of the reflecting surface.
12 is a diagram for explaining a random pitch in FIG. 1; FIG.
FIG. 13 is a configuration diagram illustrating a second embodiment of the present invention.
FIG. 14 is a diagram for explaining a reflection part in FIG. 13;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Light guide plate 2 Transmission surface 3 Reflection surface 4 Light source 5 Reflection plate 6 Reflection part 7 Reflection vapor deposition film 8 Projection 9 Reflection slope a
10 Reflective slope b

Claims (5)

線状の光源に対向する入射面から入射した光を、該入射面と略直交する透過面を介して、外部に導く導光板において、
前記透過面と対向し、光を前記透過面に反射する反射面に突条あるいは溝を形成した反射部を設け、
前記反射部と前記透過面とのなす傾斜角度を光源から遠ざかるにつれて大きくし、
隣り合う反射部の間隔を100μm以下としたことを特徴とする導光板。
In the light guide plate that guides the light incident from the incident surface facing the linear light source to the outside through the transmission surface substantially orthogonal to the incident surface,
A reflective portion is provided that has a protrusion or groove formed on a reflective surface that faces the transmissive surface and reflects light to the transmissive surface.
Increasing the angle of inclination between the reflecting portion and the transmitting surface as the distance from the light source increases,
A light guide plate, wherein an interval between adjacent reflecting portions is 100 μm or less.
前記導光板は、プラスチック材料から成ることを特徴とする請求項1に記載の導光板。  The light guide plate according to claim 1, wherein the light guide plate is made of a plastic material. 前記導光板の各面および溝または突条の各面は、略平滑面であることを特徴とする請求項1又は2記載の導光板。The light guide plate according to claim 1, wherein each surface of the light guide plate and each surface of the groove or the ridge are substantially smooth surfaces. 前記反射面の単位面積に占める前記反射部の前記反射面への投影面積が、光源から遠ざかるにつれて増加していることを特徴とする請求項1乃至3のいずれかに記載の導光板。The light guide plate according to any one of claims 1 to 3, wherein a projected area of the reflecting portion on a unit area of the reflecting surface onto the reflecting surface increases as the distance from the light source increases . 前記導光板は、光源から遠ざかるにつれてその厚さが薄くなることを特徴とする請求項1乃至4のいずれかに記載の導光板。The light guide plate according to claim 1 , wherein the thickness of the light guide plate decreases as the distance from the light source increases .
JP11048395A 1995-05-09 1995-05-09 Light guide plate Expired - Fee Related JP3676425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11048395A JP3676425B2 (en) 1995-05-09 1995-05-09 Light guide plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11048395A JP3676425B2 (en) 1995-05-09 1995-05-09 Light guide plate

Publications (2)

Publication Number Publication Date
JPH08304629A JPH08304629A (en) 1996-11-22
JP3676425B2 true JP3676425B2 (en) 2005-07-27

Family

ID=14536880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11048395A Expired - Fee Related JP3676425B2 (en) 1995-05-09 1995-05-09 Light guide plate

Country Status (1)

Country Link
JP (1) JP3676425B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170916A (en) * 1996-12-12 1998-06-26 Hitachi Ltd Illuminator and liquid crystal display device using the illuminator
JPH10282497A (en) * 1997-04-08 1998-10-23 Minebea Co Ltd Surfacewise light source device for liquid crystal
JP2001154025A (en) * 1999-11-24 2001-06-08 Nippon Leiz Co Ltd Light transmission plate and planar illumination device
JP5061409B2 (en) * 2001-05-08 2012-10-31 日本電気株式会社 Liquid crystal display
JP2003098356A (en) * 2001-09-20 2003-04-03 Pioneer Electronic Corp Light transmission plate
JP2004200128A (en) * 2002-12-20 2004-07-15 Koninkl Philips Electronics Nv Auxiliary light source and front light using it

Also Published As

Publication number Publication date
JPH08304629A (en) 1996-11-22

Similar Documents

Publication Publication Date Title
KR100483209B1 (en) Apparatus of surface light source
US5608550A (en) Front-lit liquid crystal display having brightness enhancing film with microridges which directs light through the display to a reflector
JP3891387B2 (en) Surface light source device and display device
JP3427636B2 (en) Surface light source device and liquid crystal display device
US7507011B2 (en) Surface light source equipment and apparatus using the same
US5997148A (en) Surface light source device of side light type
JP3843393B2 (en) Surface lighting device
JP3944816B2 (en) Surface lighting device
KR100882626B1 (en) Backlight device and liquid crystal display
JPH1048629A (en) Side light type surface light source device
JP2002203416A (en) Surface lighting system
JP2005085671A (en) Light guide plate and plane light source device
JPH0627327A (en) Illuminating device
JP3676425B2 (en) Light guide plate
JP2000082313A (en) Side light type plane light source device and liquid crystal display device
JP2007066865A (en) Light guide plate
JP4389529B2 (en) Surface illumination device and light guide plate
JPH08304607A (en) Backlight
JP4363758B2 (en) Light guide plate, surface light source device and display device
JP3549919B2 (en) Planar light emitting device
JPH09251111A (en) Side light type surface light source device
JP3696095B2 (en) Illumination device and display device
JP2004127745A (en) Surface light source device
JPH09258029A (en) Illuminating device
WO1995006889A1 (en) Surface light emitting device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees