JP3675780B2 - Metal fatigue / deterioration identification device - Google Patents

Metal fatigue / deterioration identification device Download PDF

Info

Publication number
JP3675780B2
JP3675780B2 JP2002196023A JP2002196023A JP3675780B2 JP 3675780 B2 JP3675780 B2 JP 3675780B2 JP 2002196023 A JP2002196023 A JP 2002196023A JP 2002196023 A JP2002196023 A JP 2002196023A JP 3675780 B2 JP3675780 B2 JP 3675780B2
Authority
JP
Japan
Prior art keywords
detection
metal
deterioration
magnetic core
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002196023A
Other languages
Japanese (ja)
Other versions
JP2004037305A (en
Inventor
正喬 大久保
Original Assignee
正喬 大久保
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 正喬 大久保 filed Critical 正喬 大久保
Priority to JP2002196023A priority Critical patent/JP3675780B2/en
Publication of JP2004037305A publication Critical patent/JP2004037305A/en
Application granted granted Critical
Publication of JP3675780B2 publication Critical patent/JP3675780B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁性体または非磁性体を問わず、あらゆる金属の疲労・劣化の進行度合を識別する金属疲労・劣化識別装置に関する。
【0002】
【従来の技術】
渦流式磁気センサを用いて、金属の疲労・劣化の進行度合を定量的に検出しようとする試みは数多く報告されている。
【0003】
その一般的な装置構成の一例を、図1を用いて説明する。金属疲労・劣化識別装置は、渦流式磁気センサ1と、発振部2と、乗算器3と、ローパスフィルタ4と、デジタル表示器5とを有して構成され、試験片6を渦流式磁気センサ1の磁芯13に接触させ、励磁用1次巻線11に所定の周波数の励磁電圧を印加し、試験片6に渦電流を誘起してこの渦電流を検出用2次巻線12で検出して、金属の疲労や劣化を検出している。
【0004】
すなわち、金属の疲労や劣化を検出する基本的な手法は、金属の試験片6が未疲労状態から疲労状態に序々に移行する各段階において、渦流式磁気センサ1から試験片6に磁束を放射し、その結果発生する渦電流の変化による情報を検出し記録して行われる。この変化の推移は、金属の疲労や劣化に伴う、金属の透磁率や導電率の変化が原因と見なしている。このように検出情報の変化推移を金属の疲労や劣化の進行度合として識別することに利用している。
【0005】
金属の疲労や劣化の進行度合を知るために、渦流式磁気センサを用いて現場で測定を実施すると、下記のようにいろいろな問題点が出てくる。
【0006】
1)試験片による形状効果・端末効果が大きい。すなわち、未疲労試験片(基準試験片)6に渦流式磁気センサ1から渦電流を発生させ、検出される信号出力を見ると、試験片の形状や磁芯端面迄の距離により、異なった信号出力が表示され、所謂形状効果・端末効果が大きく、無視することができなくなる。
【0007】
2)金属の疲労や劣化の進行度合による透磁率や導電率の変化を電気信号として検出しても、検出信号のレベル変化は非常に小さく、測定誤差の範囲から抜け出せない場合もある。
【0008】
以上の様に金属の疲労や劣化の進行度合を定量的に検出しようとする場合、金属疲労や劣化の要因による検出レベルの変化よりも、形状効果や端末効果による検出レベルの変化が大きいことから、検出データの再現性を欠き、信頼性を著しく損なう場合がある。
【0009】
したがって、従来の亀裂発生箇所で、インピーダンスが急激に変化することを利用した渦流式磁気センサの仕組を、そのまま金属の疲労や劣化の検出に利用することは無理がある。
【0010】
【発明が解決しようとする課題】
本発明は、上記問題を解決するもので、金属疲労や劣化を、試験片の形状効果や端末効果の影響を受けることなく検出することができる渦流式磁気センサを提供することを目的とする。
【0011】
さらに、本発明は、試験片の形状効果や端末効果の影響を受けずに金属疲労や劣化の変化を大きく検出することができる金属疲労・劣化識別装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は、これらの課題を解決するために、磁気センサの基本的動作を調べ、コイルの設計方法の見直しを行った。
【0013】
すなわち、上記課題を解決するために、本発明は、励磁用1次巻線と、検出用2次巻線と、これらの巻線が表面に巻回される高透磁率の磁芯とを有する金属疲労・劣化識別用渦流式磁気センサにおいて、前記磁芯は、段階的に異なる直径を有する多段円柱形状を有するとともに、最小径部の端面が試験片に接するように構成され、励磁用1次巻線を多段円柱形状を有する磁芯の小径部分に巻回し、検出用2次巻線を前記磁芯の最小径部分及び直径部分が太くなる多段円柱形状の各部分にそれぞれ分けて巻回したことを特徴とする。
【0014】
さらに本発明は、上記段階的に異なる直径を有する多段円柱形状の磁芯を検出用磁芯と参照用磁芯の2組備え、検出用および参照用励磁用1次巻線を各磁芯の小径部分にそれぞれ巻回し、検出用および参照用の検出用2次巻線をそれぞれ各磁芯の最小径部分及び直径部分が太くなる多段円柱形状の各部分にそれぞれ分けて巻回し、それぞれの磁芯は最大径部が参照用巻線と検出用巻線間で磁束の相互干渉を遮る遮蔽金属に接して外覆部内に配置され、検出用磁芯の最小径部の端面が試験片に接するように外覆部内に配置し、上参照用磁芯の最小径部の端面に対向して調整用金属を該端面との距離を変更可能に設け、測定用金属無しのとき2次巻線の出力が0となるように前記調整用金属と前記参照用磁芯の端面との距離を調整するようにした。また、本発明は、上記磁芯を、パーマロイで構成した。
【0015】
上記課題を解決するために、本発明は、上記金属疲労・劣化識別用渦流式磁気センサと、該金属疲労・劣化識別用渦流式磁気センサの励磁用1次巻線に所定の周波数の励磁電圧を印加する発振器と、前記金属疲労・劣化識別用渦流式磁気センサの検出用2次巻線の出力と前記発振器の励磁電圧を乗算する乗算器と、該乗算器の出力の直流成分を取り出すローパスフィルタと、該ローパスフィルタの出力を表示する表示部とからなる金属疲労・劣化識別装置において、測定周波数fを横軸に、前記乗算器出力および検出用2次巻線出力を縦軸にとったときの基準試験片で測定した乗算値のピーク値を示すときの測定周波数foと、検出用2次巻線の出力電圧が飽和前の直線的に右肩上がりで増加する領域においてピーク値を示す測定周波数foが略一致するよう、検出用磁芯のそれぞれの磁芯部分に検出用2次巻線を分けて巻回し、この巻線を縦続接続して電気的にトランスフォーマ機能を持たせて検出用2巻線のインダクタンス値を選定し、測定金属が無いとき、検出用2次巻線の差動出力電圧が零と正しくバランス状態となるようコイルの磁芯の小径部端面と調整用金属の距離を調整することにより、金属の疲労や劣化の進行度合いを検出して金属疲労や劣化を識別する。
【0016】
【発明の実施の形態】
本発明にかかる渦流式磁気センサを用いた金属疲労・劣化識別装置の基本的な実施の形態について図面に基づいて説明する。図1は金属疲労・劣化識別装置の装置構成図、図2〜図6はセンサの電気的特性および等価回路を説明する図、図7は磁芯の形状を説明する図、図8はアンバランス対策を施したセンサ内部の構造を説明する図、図9はセンサ入力周波数対乗算値特性、出力電圧特性、位相特性の関係を説明する図である。
【0017】
図1に示すように、本発明にかかる渦流式磁気センサ1を用いた金属疲労・劣化識別装置は、渦流式磁気センサ1と、発振器2と、乗算器3と、ローパスフィルタ4と、デジタル表示器5とを有して構成され、試験片6をセンサの磁芯13に接触させて、金属疲労・劣化を検出している。本発明にかかる渦流式磁気センサを用いた金属疲労・劣化識別装置の基本的な構成は、図1に示す様に一般に用いられている金属疲労・劣化識別装置の回路方式と同様である。
【0018】
発振器2の信号出力を渦流式磁気センサ1の励磁用1次巻線11に入力し、磁芯13を測定金属(試験片)6に密着させることによって測定金属6に渦電流を発生させる。この渦電流により磁芯13に巻回された検出用2次巻線12に誘起された電圧(出力信号)Vsigを乗算器3に入力する。
【0019】
一方、乗算器3には、発振器2から電圧振幅および位相が一定の基準信号Vrefが供給される。出力信号Vsigおよび基準信号Vrefの信号周波数は同一であるので、センサ回路の同調周波数が測定周波数に近い場合は、出力信号Vsigおよび基準信号Vrefの位相差は小さくなり、乗算器3の出力信号は最大値となる。この出力信号をローパスフィルタ4により直流成分のみ取出し、デジタル表示器5に乗算値として定量的に表示させる。
【0020】
金属の導電率の微小な変化を、最も大きな電気信号として検出する方法を以下に説明する。渦流式磁気センサにおいて、センサ1次側励磁入力周波数(以後、入力周波数fと記す)対センサ2次側出力電圧振幅(以後、出力電圧Voと記す)特性の一般的な傾向を、図2、図3に示す。
【0021】
図2に示すように、入力周波数f対出力電圧Vo特性は、低周波のゼロの領域から入力周波数fが増大するにつれて略直線的に出力電圧Voが増大し、やがて飽和領域に入り出力電圧Voは一定値となる。測定箇所を面積の大、小で比較すると、曲線(測定個所の面積大)と曲線II(測定個所の面積小)に示すように、入力周波数fが高くなり、出力電圧Voが増大するに従って両者I、IIの出力電圧Voの差も大きくなり、形状効果が顕著に出て来る。
【0022】
金属の疲労が進行し、導電率が低下して来ると、曲線、曲線IIは、それぞれ曲線´、曲線II´と下に傾き出力電圧Voが低下して来る。曲線の立上がり傾斜が急激である程、変化を大きく検出することが可能となる。
【0023】
図3を用いて、磁芯13の透磁率μをパラメータとした、入力周波数f対出力電圧Vo特性の傾向を説明する。渦流式磁気センサ1の巻線を巻回する磁芯13は、高透磁率の部材を使用しているが、透磁率μの値を、例えばμ=1,000からμ=100,000に変更すると、立ち上がり傾斜を急傾斜にすることができる。
【0024】
図2および図3から言えることは、金属の疲労や劣化の進行度合により導電率の微小な変化を電気信号として大きく検出するには、磁芯13としてμの高い部材を採用することによって、出力電圧を高くさせ、且つ形状効果の影響が少ない領域の周波数帯が測定周波数となるよう設計することである。
【0025】
金属の透磁率の微小な変化を、最も大きな電気信号として検出する方法を以下に述べる。
【0026】
図4を用いて、入力周波数f対出力電圧Voの位相特性(以後、出力位相φと記す)の一般的な傾向を説明する。出力位相φは、実線IIIで示すように入力周波数fの増加につれて直線的に変化するが、ある周波数以上になると直線性が劣化する。この直線性を破線III´で示すように所定の周波数まで維持させるには、渦流式磁気センサ1の検出用2次巻線12のインダクタンスL2を増加させることが必要となる。
【0027】
図5を用いて、渦流式磁気センサ1の検出用2次巻線12の等価回路を簡単に示す。L2は検出用2次巻線12のインダクタンス、C2は浮遊容量、ΔL2はセンサの磁芯13を測定金属に密着させた時のインダクタンスの変化分を示す。測定金属が無い時はΔL2=0とする。
【0028】
図6を用いて、センサ1における検出用2次巻線12のリアクタンス成分の周波数特性を示す。低い周波数領域では、リアクタンス成分は、図4の曲線IIIに示すように1/jωC2成分によって律せられ、周波数が増大するにつれて曲線IVに示すjωL2成分によって律せられる。
【0029】
図4、図5、図6から以下のことが言える。図4の位相特性は入力周波数fの低い領域で変化が大きい。これは浮遊容量C2の1/jωC2成分が低い周波数で影響している為である。検出用2次巻線12のリアクタンスL2のjωL2成分は図6の曲線▲4▼に見られるように、周波数が比較的高い領域で変化が出て来る。
【0030】
測定周波数帯域にて位相の変化を大きくするには、渦流式磁気センサ1の2次側回路を測定周波数帯に対して同調特性に近づける様にすれば良い。つまり図5に示す検出用2次巻線12のインダクタンスL2を増し、図6に示すように2次側インダクタンスL2の特性を曲線IVから曲線IV´に移行させ、浮遊容量C2によって形成される1/jωC2成分を打ち消すことにより、図4の曲線IIIは曲線III´の特性となる。
【0031】
つまり、透磁率の変化成分を最大に検出する方法として、センサ1の検出用2次コイル12のインダクタンスL2を増し、測定周波数に対して同調特性を形成することにより、位相変化を大きく検出することが可能となる。ただし、これは、2次側回路を集中定数素子のみとして考えた場合は正しいが、ここでは図5における(L2+ΔL2)のインダクタンスの中、変化する成分はΔL2のみである。したがってL2≫ΔL2ならば疲労や劣化の進行によりΔL2が多少変化しても全体としては位相の変化は乏しいものとなる。
【0032】
その対策として、本発明では検出用2次巻線12の磁芯13の直径寸法(太さ)を変えて段差を設け、それぞれの磁芯部分に検出用2次巻線12を複数個に分割して巻回し、この巻線を縦続接続して電気的にはトランスフオーマ機能を持たせることで、検出用2次巻線の巻線数を増加させないで、実効インダクタンスを増大させる手法を試みた。
【0033】
図7を用いて、本発明に使用する渦流式磁気センサ1のコイル磁芯13と励磁用1次巻線11と検出用2次巻線12からなるコイルの形状の一例を説明する。コイル磁芯13は、直径がD1の部分13−1と、D2の部分13−2と、D3の部分13−3とに階段状に変化する形状に構成される。励磁用1次巻線11は、直径がD1の部分13−1の表面に巻回される。検出用2次巻線12は、直径がD1の部分13−1の表面に巻回された第1の二次巻線12−1と、直径がD2の部分13−2の表面に巻回された第2の二次巻線12−2と、直径がD3の部分13−3の表面に巻回された第3の二次巻線12−3とに分けて構成され、これらを縦続接続した状態で2次側の合計インダクタンスL2が所要の値になる様に各巻線の巻線数を決める。
【0034】
図7の例では、磁芯13を3段に構成した場合を示しているが、磁芯13の段数は、2段でも4段でも良い。段数を増せば検出される位相の変化は大きいが、形状効果も表面化するので妥協点がある。
【0035】
さらに、磁芯の直径の比D2/D1、D3/D2、D4/D3、を最適値にするなど、磁性体または非磁性体など測定対象の金属の種類に適応できるよう、最適の設計を行った。
【0036】
以上のように、測定対象の金属の種類により、コイルの部材、形状および最適測定周波数を特定化することにより良い方向性を見出すことができた。しかしこの領域に来ると、検出用2次巻線12の差動トランス機能の僅かなアンバランスが、問題点として浮上してくる。
【0037】
本発明にかかる渦流式磁気センサ1内部の構造は、図7に示したコイルを2個、図8に示すように対称に配置して構成される。重要なことは測定金属の種類によって正しく測定周波数を選定することである。
【0038】
図8を用いて、このようなアンバランスに対処した、センサ内部のコイル配置の一例を説明する。
【0039】
この例では、コイルを2分割し、2つのコイル間で磁束の相互干渉を避ける為、シールド効果を持たせる金属遮蔽物15を配置した。試験片無しの時、出力電圧Voが入力周波数fに対して略ゼロとなる様に磁芯の試験片との接触側と反対側に調整用金属16を配置した点に特徴を有している。
【0040】
すなわち、渦流式磁気センサ1は、励磁用1次巻線11と検出用2次巻線12で構成される。一般に2次側を差動トランス機能としているため、検出用2次巻線12は2分割されて使用するが、製造上のバラツキにより、測定金属なしのとき2次側出力電圧(出力電圧Vo)を零(完全にバランス状態)にすることは難しい。しかも本発明の位相変化を感度良く検出する方式においては、この僅かなアンバランス出力電圧の大小が、位相φ成分の形状効果として無視できなくなる。
【0041】
本発明の渦流式磁気センサ1においては、図8に示す調整用金属16を回転させることにより、磁芯13と調整用金属16の距離Lを変化させ、上記アンバランスを是正している。形状効果を最小とするため、外部から調整可能な機構を施した。
【0042】
本発明にかかる渦流式磁気センサを用いた金属疲労・劣化識別装置は、渦流式磁気センサの動作特性および構造に大きな特徴があるのでその点について詳しく説明する。
【0043】
図9にセンサ入力周波数f対乗算値特性、出力電圧Vo特性、位相特性の関係を示す。この場合、入力周波数fを、図9(C)に示すように乗算値がピーク値を示す1.5kHzに固定することである。図9(A)の入力周波数f−出力位相φの特性図に示すように、測定個所の面積が小さく形状効果が生じる場合は、曲線aの位相特性を示す。測定個所の面積が大きい場合には、曲線cの位相特性を示す。したがって、センサ出力位相特性φが曲線aであるときには、調整用金属16を回転して距離Lを変化させて、曲線aを曲線bに移行させる。形状効果が最も少なく、乗算値がピーク値を示すV−W−X点が直線で交わる点を発明者らはゴールデン・クロスポイントと称し、その周波数のみを測定周波数としている。
【0044】
図9(C)の乗算値特性の示す試験片が未疲労状態dから、疲労・劣化が進行すると、eカーブに移行し、乗算値のピーク点は低い周波数方向にズレ(位相の変化)、乗算値のピーク値自体も低下する(出力電圧の変化)。乗算値のピーク点xからy点に変り、乗算値の低下が表示される。
【0045】
測定対象金属を最初、未疲労試験片(基準試験片)で測定し、乗算値が例えば200と表示したならば、次は疲労試験片で測定し、例えば160と表示したならば、乗算値は20%低下した事を意味する。この低下の度合をデータとして蓄積し、金属の疲労・劣化の進行度合の識別に利用する。
【0046】
【発明の効果】
本発明にかかる渦流式磁気センサを用いた金属疲労・劣化識別装置は、従来非常に困難視されていた、非磁性体金属においても疲労や劣化の進行度合を手軽に検出可能とした。亀裂発生懸念箇所の早期発見、さらに破壊までの測定データ推移を蓄積することにより、余寿命推定の確実さも増し、設備の耐用年数の延伸など経済的メリットは大きなものがある。
【図面の簡単な説明】
【図1】 本発明にかかる渦流式磁気センサを用いた金属疲労・劣化識別装置の構成を説明する構成図。
【図2】 センサ入力周波数対センサ出力電圧振幅特性図。
【図3】 センサ入力周波数対センサ出力電圧振幅特性図。
【図4】 センサ入力周波数対センサ出力電圧の位相特性図。
【図5】 検出用2次コイルの等価回路。
【図6】 検出用2次コイルのリアクタンス成分の一般的な傾向を説明する図。
【図7】 本発明にかかる渦流式磁気センサの磁芯の形状を模式的に説明する図。
【図8】 本発明にかかる渦流式磁気センサ内部のコイル配置の一例を説明する図。
【図9】 入力周波数対乗算値特性、出力電圧特性、位相特性の一般的な傾向を説明する図。
【符号の説明】
1 渦流式磁気センサ
11 励磁用1次巻線
12 検出用2次巻線
13 磁芯
14 外覆部
15 遮蔽金属
16 調整用金属
2 発振器
3 乗算器
4 ローパスフィルタ
5 デジタルディスプレイ
6 試験片(金属片)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal fatigue / deterioration identification device that identifies the progress of fatigue / deterioration of any metal, regardless of whether it is a magnetic material or a non-magnetic material.
[0002]
[Prior art]
Many attempts have been reported to quantitatively detect the progress of metal fatigue / degradation using eddy current magnetic sensors.
[0003]
An example of the general apparatus configuration will be described with reference to FIG. The metal fatigue / deterioration identification device includes an eddy current type magnetic sensor 1, an oscillating unit 2, a multiplier 3, a low pass filter 4, and a digital display 5. The test piece 6 is an eddy current type magnetic sensor. 1 is brought into contact with the magnetic core 13, an excitation voltage having a predetermined frequency is applied to the excitation primary winding 11, an eddy current is induced in the test piece 6, and this eddy current is detected by the detection secondary winding 12. Thus, fatigue and deterioration of the metal are detected.
[0004]
That is, the basic method for detecting fatigue or deterioration of a metal is to radiate magnetic flux from the eddy current magnetic sensor 1 to the test piece 6 at each stage where the metal test piece 6 gradually transitions from an unfatigue state to a fatigued state. Then, the information is detected and recorded by the change of the eddy current generated as a result. This change is considered to be caused by changes in the magnetic permeability and conductivity of the metal accompanying fatigue and deterioration of the metal. Thus, the change transition of the detection information is used to identify the progress degree of metal fatigue or deterioration.
[0005]
In order to know the degree of progress of fatigue and deterioration of the metal, if the measurement is performed on-site using an eddy current type magnetic sensor, various problems will appear as follows.
[0006]
1) The shape effect and terminal effect by the test piece are large. That is, when an eddy current is generated from the eddy current type magnetic sensor 1 in the non-fatigue test piece (reference test piece) 6 and the detected signal output is seen, the signal varies depending on the shape of the test piece and the distance to the end face of the magnetic core. The output is displayed and the so-called shape effect / terminal effect is large and cannot be ignored.
[0007]
2) Even if a change in permeability or conductivity due to the degree of progress of fatigue or deterioration of metal is detected as an electric signal, the level change of the detection signal is very small, and it may not be possible to get out of the measurement error range.
[0008]
As described above, when detecting the progress of metal fatigue and deterioration quantitatively, the change in detection level due to the shape effect and terminal effect is larger than the change in detection level due to factors of metal fatigue and deterioration. In some cases, the reproducibility of the detected data is lacking and the reliability is significantly impaired.
[0009]
Therefore, it is impossible to use the conventional eddy current type magnetic sensor mechanism utilizing the fact that the impedance changes suddenly at the crack occurrence point as it is for detecting the fatigue and deterioration of the metal.
[0010]
[Problems to be solved by the invention]
The present invention solves the above-described problems, and an object thereof is to provide an eddy current type magnetic sensor capable of detecting metal fatigue and deterioration without being affected by the shape effect or terminal effect of a test piece.
[0011]
Furthermore, an object of the present invention is to provide a metal fatigue / deterioration identification device capable of largely detecting changes in metal fatigue and deterioration without being affected by the shape effect and terminal effect of the test piece.
[0012]
[Means for Solving the Problems]
In order to solve these problems, the present invention investigated the basic operation of the magnetic sensor and reviewed the coil design method.
[0013]
That is, in order to solve the above-mentioned problem, the present invention has an excitation primary winding, a detection secondary winding, and a high-permeability magnetic core around which these windings are wound. In the eddy current type magnetic sensor for identifying metal fatigue / deterioration, the magnetic core has a multi-stage cylindrical shape having stepwise different diameters, and is configured such that the end surface of the minimum diameter portion is in contact with the test piece, and the primary for excitation. Winding the winding around the minimum diameter part of the magnetic core having a multi-stage cylindrical shape, and winding the secondary winding for detection separately into each part of the multi-stage cylindrical shape where the minimum diameter part and diameter part of the magnetic core become thicker It is characterized by that.
[0014]
Furthermore, the present invention comprises two sets of multi-stage cylindrical magnetic cores having different diameters as described above, a detection magnetic core and a reference magnetic core, and a primary coil for detection and reference excitation is provided for each magnetic core. Turn respectively around the minimum diameter portion, wound separately respectively detecting secondary winding for detection and reference to each part of the multi-stage cylindrical shape smallest diameter portion and the diameter portion is thicker in the respective core, respectively The magnetic core is placed in the outer cover in contact with the shielding metal that blocks the mutual interference of magnetic flux between the reference winding and the detection winding, and the end surface of the minimum diameter of the magnetic core is the test piece. Arranged in the outer cover so as to be in contact with the end face of the minimum diameter part of the upper reference magnetic core, the adjustment metal is provided so that the distance from the end face can be changed, and the secondary winding when there is no measurement metal The distance between the adjustment metal and the end face of the reference magnetic core is adjusted so that the output of . In the present invention, the magnetic core is made of permalloy.
[0015]
In order to solve the above problems, the present invention provides an eddy current type magnetic sensor for identifying metal fatigue / deterioration and an excitation voltage having a predetermined frequency applied to an excitation primary winding of the vortex type magnetic sensor for identifying metal fatigue / deterioration. A multiplier for multiplying the output of the secondary winding for detection of the eddy current magnetic sensor for identifying metal fatigue / deterioration and the excitation voltage of the oscillator, and a low pass for extracting a DC component of the output of the multiplier In a metal fatigue / deterioration identification device comprising a filter and a display for displaying the output of the low-pass filter, the measurement frequency f 0 is taken on the horizontal axis, and the multiplier output and the detection secondary winding output are taken on the vertical axis. The peak value is measured in the region where the measured frequency fo indicates the peak value of the multiplication value measured with the reference test piece and the output voltage of the secondary winding for detection increases linearly before saturation. Measuring frequency f The secondary winding for detection is separately wound around each magnetic core portion of the detection magnetic core so that o substantially coincides, and this winding is connected in cascade to provide a transformer function electrically for detection 2 When the inductance value of the winding is selected and there is no measurement metal, the distance between the end surface of the minimum diameter of the coil core and the adjustment metal so that the differential output voltage of the secondary winding for detection is properly balanced with zero Is adjusted to detect the degree of progress of fatigue and deterioration of the metal to identify the fatigue and deterioration of the metal.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
A basic embodiment of a metal fatigue / deterioration identification apparatus using an eddy current type magnetic sensor according to the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing the structure of a metal fatigue / deterioration identification device, FIGS. 2 to 6 are diagrams for explaining electrical characteristics and equivalent circuits of a sensor, FIG. 7 is a diagram for explaining the shape of a magnetic core, and FIG. FIG. 9 is a diagram illustrating the relationship between the sensor input frequency versus the multiplication value characteristic, the output voltage characteristic, and the phase characteristic.
[0017]
As shown in FIG. 1, a metal fatigue / deterioration identification apparatus using an eddy current type magnetic sensor 1 according to the present invention includes an eddy current type magnetic sensor 1, an oscillator 2, a multiplier 3, a low-pass filter 4, and a digital display. The test piece 6 is brought into contact with the magnetic core 13 of the sensor to detect metal fatigue / deterioration. The basic configuration of a metal fatigue / deterioration discrimination apparatus using the eddy current type magnetic sensor according to the present invention is the same as the circuit system of a generally used metal fatigue / deterioration discrimination apparatus as shown in FIG.
[0018]
The signal output of the oscillator 2 is inputted to the primary winding 11 for excitation of the eddy current type magnetic sensor 1, and the magnetic core 13 is brought into close contact with the measurement metal (test piece) 6 to generate an eddy current in the measurement metal 6. The voltage (output signal) Vsig induced in the secondary winding for detection 12 wound around the magnetic core 13 by this eddy current is input to the multiplier 3.
[0019]
On the other hand, the multiplier 3 is supplied with a reference signal Vref having a constant voltage amplitude and phase from the oscillator 2. Since the signal frequency of the output signal Vsig and the reference signal Vref is the same, when the tuning frequency of the sensor circuit is close to the measurement frequency, the phase difference between the output signal Vsig and the reference signal Vref is small, and the output signal of the multiplier 3 is Maximum value. Only the DC component is taken out from the output signal by the low-pass filter 4 and is quantitatively displayed on the digital display 5 as a multiplication value.
[0020]
A method for detecting a minute change in the conductivity of a metal as the largest electric signal will be described below. In the eddy current type magnetic sensor, the general tendency of the sensor primary side excitation input frequency (hereinafter referred to as input frequency f) versus the sensor secondary side output voltage amplitude (hereinafter referred to as output voltage Vo) is shown in FIG. As shown in FIG.
[0021]
As shown in FIG. 2, the input frequency f vs. output voltage Vo characteristic shows that the output voltage Vo increases substantially linearly as the input frequency f increases from the low frequency zero region, and eventually enters the saturation region and becomes the output voltage Vo. Is a constant value. Comparing the measurement locations with large and small areas, as shown by curve I (large area of measurement location) and curve II (small area of measurement location), as input frequency f increases and output voltage Vo increases. The difference between the output voltages Vo of both I and II is also increased, and the shape effect is prominent.
[0022]
As the fatigue of the metal progresses and the conductivity decreases, the curves I 1 and II slope down to curves I ′ and II ′, respectively, and the output voltage Vo decreases. The sharper the rising slope of the curve, the greater the change can be detected.
[0023]
The tendency of the input frequency f vs. output voltage Vo characteristic using the magnetic permeability μ of the magnetic core 13 as a parameter will be described with reference to FIG. The magnetic core 13 around which the winding of the eddy current type magnetic sensor 1 is wound uses a high permeability member, but the value of the permeability μ is changed from, for example, μ = 1,000 to μ = 100,000. Then, the rising slope can be made steep.
[0024]
What can be said from FIGS. 2 and 3 is that in order to detect a small change in conductivity as an electric signal due to the progress of fatigue or deterioration of the metal, an output can be obtained by using a member having a high μ as the magnetic core 13. The design is such that the frequency band in the region where the voltage is increased and the influence of the shape effect is small becomes the measurement frequency.
[0025]
A method for detecting a minute change in the magnetic permeability of a metal as the largest electric signal will be described below.
[0026]
A general tendency of the phase characteristic of the input frequency f versus the output voltage Vo (hereinafter referred to as output phase φ) will be described with reference to FIG. The output phase φ changes linearly as the input frequency f increases as shown by the solid line III , but the linearity deteriorates when the frequency exceeds a certain frequency. In order to maintain this linearity up to a predetermined frequency as shown by the broken line III ', it is necessary to increase the inductance L2 of the secondary winding for detection 12 of the eddy current type magnetic sensor 1.
[0027]
An equivalent circuit of the secondary winding for detection 12 of the eddy current type magnetic sensor 1 is simply shown using FIG. L2 represents the inductance of the secondary winding for detection 12, C2 represents stray capacitance, and ΔL2 represents the change in inductance when the magnetic core 13 of the sensor is in close contact with the measurement metal. When there is no measurement metal, ΔL2 = 0.
[0028]
The frequency characteristic of the reactance component of the secondary winding for detection 12 in the sensor 1 will be shown using FIG. In the low frequency region, the reactance component is governed by the 1 / jωC2 component as shown by curve III in FIG. 4, and is governed by the jωL2 component shown by curve IV as the frequency increases.
[0029]
The following can be said from FIG. 4, FIG. 5, and FIG. The phase characteristic of FIG. 4 has a large change in the region where the input frequency f is low. This is because the 1 / jωC2 component of the stray capacitance C2 affects at a low frequency. The jωL2 component of the reactance L2 of the secondary winding for detection 12 changes in a region where the frequency is relatively high, as can be seen from the curve (4) in FIG.
[0030]
In order to increase the phase change in the measurement frequency band, the secondary side circuit of the eddy current type magnetic sensor 1 may be brought closer to the tuning characteristic with respect to the measurement frequency band. That increases the inductance L2 of the detecting secondary winding 12 shown in FIG. 5, 1 the characteristics of the secondary inductance L2 is shifted from the curve IV to the curve IV 'as shown in FIG. 6, is formed by the stray capacitance C2 By canceling out the / jωC2 component, the curve III in FIG. 4 becomes the characteristic of the curve III ′.
[0031]
In other words, as a method of maximally detecting the change component of the magnetic permeability, the phase change is greatly detected by increasing the inductance L2 of the secondary coil for detection 12 of the sensor 1 and forming a tuning characteristic with respect to the measurement frequency. Is possible. However, this is correct when the secondary circuit is considered to be only the lumped constant element, but here, the component that changes in the inductance of (L2 + ΔL2) in FIG. 5 is only ΔL2. Therefore, if L2 >> ΔL2, even if ΔL2 slightly changes due to progress of fatigue or deterioration, the phase change as a whole is poor.
[0032]
As a countermeasure, in the present invention, a step is provided by changing the diameter dimension (thickness) of the magnetic core 13 of the secondary winding for detection 12, and the secondary winding for detection 12 is divided into a plurality of portions in each magnetic core portion. In this way, we tried to increase the effective inductance without increasing the number of secondary windings for detection by cascading these windings and electrically having a transformer function. .
[0033]
With reference to FIG. 7, an example of the shape of a coil composed of the coil magnetic core 13, the exciting primary winding 11 and the detecting secondary winding 12 of the eddy current type magnetic sensor 1 used in the present invention will be described. The coil magnetic core 13 is formed in a shape that changes in a stepped manner into a portion 13-1 having a diameter D1, a portion 13-2 having a diameter D2, and a portion 13-3 having a diameter D3. The exciting primary winding 11 is wound around the surface of the portion 13-1 having a diameter D1. The secondary winding for detection 12 is wound around the surface of the first secondary winding 12-1 wound around the surface of the portion 13-1 having a diameter D1, and the surface of the portion 13-2 having a diameter of D2. The second secondary winding 12-2 and the third secondary winding 12-3 wound around the surface of the portion 13-3 having a diameter D3 are divided into two and are cascade-connected. In this state, the number of turns of each winding is determined so that the total inductance L2 on the secondary side becomes a required value.
[0034]
Although the example of FIG. 7 shows the case where the magnetic core 13 is configured in three stages, the number of stages of the magnetic core 13 may be two or four. If the number of steps is increased, the detected phase change is large, but there is a compromise because the shape effect is also surfaced.
[0035]
In addition, optimal design is performed so that the ratio of the core diameters D2 / D1, D3 / D2, and D4 / D3 can be adjusted to suit the type of metal being measured, such as magnetic or non-magnetic. It was.
[0036]
As described above, it was possible to find a good directionality by specifying the coil member, shape, and optimum measurement frequency according to the type of metal to be measured. However, when this region is reached, a slight imbalance in the differential transformer function of the secondary winding for detection 12 emerges as a problem.
[0037]
The internal structure of the eddy current type magnetic sensor 1 according to the present invention is configured by arranging two coils shown in FIG. 7 symmetrically as shown in FIG. The important thing is to select the correct measurement frequency according to the type of metal being measured.
[0038]
An example of the coil arrangement inside the sensor that deals with such imbalance will be described with reference to FIG.
[0039]
In this example, the coil is divided into two parts, and a metal shield 15 having a shielding effect is disposed in order to avoid mutual interference of magnetic flux between the two coils. It is characterized in that the adjustment metal 16 is arranged on the side opposite to the contact side with the test piece of the magnetic core so that the output voltage Vo becomes substantially zero with respect to the input frequency f when there is no test piece. .
[0040]
That is, the eddy current type magnetic sensor 1 includes an excitation primary winding 11 and a detection secondary winding 12. Generally, since the secondary side has a differential transformer function, the secondary winding for detection 12 is divided into two parts for use. However, due to manufacturing variations, the secondary side output voltage (output voltage Vo) is obtained when there is no measurement metal. Is difficult to achieve zero (fully balanced). Moreover, in the method of detecting the phase change with high sensitivity according to the present invention, this slight unbalanced output voltage cannot be ignored as the shape effect of the phase φ component.
[0041]
In the eddy current type magnetic sensor 1 of the present invention, by rotating the adjusting metal 16 shown in FIG. 8, the distance L between the magnetic core 13 and the adjusting metal 16 is changed to correct the unbalance. In order to minimize the shape effect, an externally adjustable mechanism was provided.
[0042]
The metal fatigue / deterioration identification device using the eddy current type magnetic sensor according to the present invention has a great feature in the operation characteristics and structure of the eddy current type magnetic sensor, and will be described in detail.
[0043]
FIG. 9 shows the relationship between the sensor input frequency f, the multiplication value characteristic, the output voltage Vo characteristic, and the phase characteristic. In this case, as shown in FIG. 9C, the input frequency f is fixed to 1.5 kHz where the multiplication value indicates the peak value. As shown in the characteristic diagram of input frequency f-output phase φ in FIG. 9A, when the area of the measurement portion is small and a shape effect occurs, the phase characteristic of curve a is shown. When the area of the measurement location is large, the phase characteristic of the curve c is shown. Therefore, when the sensor output phase characteristic φ is the curve a, the adjustment metal 16 is rotated to change the distance L, and the curve a is shifted to the curve b. The point where the shape effect is the smallest and the VWX point at which the multiplication value exhibits the peak value intersects with a straight line is referred to as a golden cross point by the inventors, and only that frequency is the measurement frequency.
[0044]
When fatigue / deterioration progresses from the non-fatigue state d of the specimen shown by the multiplication value characteristic in FIG. 9 (C), it shifts to the e curve, and the peak point of the multiplication value shifts in the lower frequency direction (phase change), The peak value of the multiplication value itself also decreases (change in output voltage). The peak value x of the multiplication value changes to the y point, and a decrease in the multiplication value is displayed.
[0045]
If the metal to be measured is first measured with a non-fatigue test piece (reference test piece) and the multiplication value is displayed as 200, for example, then the measurement is performed with a fatigue test piece and is displayed as 160, for example. It means that it has decreased by 20%. The degree of this decrease is accumulated as data and used to identify the progress of metal fatigue / deterioration.
[0046]
【The invention's effect】
The metal fatigue / deterioration identification device using the eddy current type magnetic sensor according to the present invention can easily detect the progress of fatigue and deterioration even in a non-magnetic metal, which has been considered very difficult in the past. Accumulation of measurement data up to the early detection of crack-prone areas and further measurement of damage increases the certainty of remaining life estimation, and there are significant economic benefits such as extending the useful life of the equipment.
[Brief description of the drawings]
FIG. 1 is a configuration diagram illustrating a configuration of a metal fatigue / deterioration identification apparatus using an eddy current type magnetic sensor according to the present invention.
FIG. 2 is a sensor input frequency vs. sensor output voltage amplitude characteristic diagram.
FIG. 3 is a sensor input frequency vs. sensor output voltage amplitude characteristic diagram.
FIG. 4 is a phase characteristic diagram of sensor input frequency versus sensor output voltage.
FIG. 5 is an equivalent circuit of a secondary coil for detection.
FIG. 6 is a diagram for explaining a general tendency of reactance components of a secondary coil for detection.
FIG. 7 is a diagram schematically illustrating the shape of the magnetic core of the eddy current type magnetic sensor according to the present invention.
FIG. 8 is a diagram for explaining an example of a coil arrangement inside the eddy current type magnetic sensor according to the present invention.
FIG. 9 is a diagram for explaining a general tendency of input frequency versus multiplication value characteristics, output voltage characteristics, and phase characteristics.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Eddy current type magnetic sensor 11 Primary winding 12 for excitation Secondary winding 13 for detection 13 Magnetic core 14 Outer part 15 Shielding metal 16 Adjustment metal 2 Oscillator 3 Multiplier 4 Low-pass filter 5 Digital display 6 Test piece (metal piece )

Claims (4)

励磁用1次巻線と、検出用2次巻線と、これらの巻線が表面に巻回される高透磁率の磁芯とを有する金属疲労・劣化識別用渦流式磁気センサにおいて、
前記磁芯は、段階的に異なる直径を有する多段円柱形状を有するとともに、最小径部の端面が試験片に接するように構成され、
励磁用1次巻線を多段円柱形状を有する磁芯の小径部分に巻回し、検出用2次巻線を前記磁芯の最小径部分及び直径部分が太くなる多段円柱形状の各部分にそれぞれ分けて巻回したことを特徴とする金属疲労・劣化識別用渦流式磁気センサ。
In an eddy current magnetic sensor for identifying fatigue / deterioration of metal having a primary winding for excitation, a secondary winding for detection, and a magnetic core having a high permeability around which these windings are wound,
The magnetic core has a multi-stage cylindrical shape having different diameters in stages, and is configured such that the end surface of the smallest diameter portion is in contact with the test piece,
The primary winding for excitation is wound around the minimum diameter portion of the magnetic core having a multistage cylindrical shape, and the secondary winding for detection is placed on each of the multistage cylindrical shape where the minimum diameter portion and the diameter portion of the magnetic core are thickened. An eddy current type magnetic sensor for metal fatigue / deterioration discrimination characterized by winding separately.
上記段階的に異なる直径を有する多段円柱形状の磁芯を検出用磁芯と参照用磁芯の2組備え、検出用および参照用励磁用1次巻線を各磁芯の小径部分にそれぞれ巻回し、検出用および参照用の検出用2次巻線をそれぞれ各磁芯の最小径部分及び直径部分が太くなる多段円柱形状の各部分にそれぞれ分けて巻回し、それぞれの磁芯は最大径部が参照用巻線と検出用巻線間で磁束の相互干渉を遮る遮蔽金属に接して外覆部内に配置され、検出用磁芯の最小径部の端面が試験片に接するように外覆部内に配置し、参照用磁芯の最小径部の端面に対向して調整用金属を該端面との距離を変更可能に設け、測定用金属無しのとき2次巻線の出力が0となるように前記調整用金属と前記参照用磁芯の端面との距離を調整することを特徴とする請求項1に記載の金属疲労・劣化識別用渦流式磁気センサ。There are two sets of multi-stage cylindrical magnetic cores having different diameters in the above-mentioned manner, including a detection magnetic core and a reference magnetic core, and primary windings for detection and reference excitation are provided at the minimum diameter portion of each magnetic core. Winding and winding the detection and reference secondary windings separately into multi-stage cylindrical parts where the minimum diameter part and diameter part of each magnetic core are thickened , and each magnetic core has the maximum diameter. Is placed in the outer cover part in contact with the shielding metal that blocks the mutual interference of magnetic flux between the reference winding and the detection winding, and the outer cover is so that the end surface of the smallest diameter part of the detection core is in contact with the test piece An adjustment metal is disposed in the portion so as to face the end surface of the smallest diameter portion of the reference magnetic core so that the distance from the end surface can be changed. When there is no measurement metal, the output of the secondary winding becomes zero. The distance between the adjustment metal and the end face of the reference magnetic core is adjusted as described above. Metal fatigue and deterioration identification vortex magnetic sensor mounting. 磁芯が、パーマロイで構成されることを特徴とする請求項1または請求項2に記載の金属疲労・劣化識別用渦流式磁気センサ。The eddy current magnetic sensor for identifying metal fatigue / deterioration according to claim 1 or 2, wherein the magnetic core is made of permalloy. 請求項2に記載の金属疲労・劣化識別用渦流式磁気センサと、該金属疲労・劣化識別用渦流式磁気センサの励磁用1次巻線に所定の周波数の励磁電圧を印加する発振器と、前記金属疲労・劣化識別用渦流式磁気センサの検出用2次巻線の出力と前記発振器の励磁電圧を乗算する乗算器と、該乗算器の出力の直流成分を取り出すローパスフィルタと、該ローパスフィルタの出力を表示する表示部とからなる金属疲労・劣化識別装置において、
測定周波数fを横軸に、前記乗算器出力および検出用2次巻線出力を縦軸にとったときの基準試験片で測定した乗算値のピーク値を示すときの測定周波数foと、検出用2次巻線の出力電圧が飽和前の直線的に右肩上がりで増加する領域においてピーク値を示す測定周波数foが略一致するよう、検出用磁芯のそれぞれの磁芯部分に検出用2次巻線を分けて巻回し、この巻線を縦続接続して電気的にトランスフォーマ機能を持たせて検出用2巻線のインダクタンス値を選定し、
測定金属が無いとき、検出用2次巻線の差動出力電圧が零と正しくバランス状態となるようコイルの磁芯の小径部端面と調整用金属の距離を調整する
ことを特徴とする金属の疲労・劣化の進行度合いを検出する金属疲労・劣化識別装置。
An eddy current type magnetic sensor for identifying metal fatigue / deterioration according to claim 2, an oscillator for applying an excitation voltage of a predetermined frequency to a primary winding for excitation of the vortex type magnetic sensor for identifying metal fatigue / deterioration, A multiplier that multiplies the output of the secondary winding for detection of the eddy current magnetic sensor for identifying metal fatigue / deterioration and the excitation voltage of the oscillator; a low-pass filter that extracts a DC component of the output of the multiplier; In the metal fatigue / deterioration identification device consisting of a display unit that displays the output,
Measurement frequency fo indicating the peak value of the multiplication value measured with the reference test piece when the measurement frequency f 0 is taken on the horizontal axis and the multiplier output and the detection secondary winding output is taken on the vertical axis, and detection In the region where the output voltage of the secondary winding increases linearly before saturation, the measurement frequency fo indicating the peak value substantially coincides with each other to detect each 2 The next winding is wound separately, and the windings are cascaded to provide an electrical transformer function, and the inductance value of the two detection windings is selected.
When there is no measurement metal, the distance between the adjustment metal and the small-diameter end face of the coil core is adjusted so that the differential output voltage of the secondary winding for detection is properly balanced with zero. Metal fatigue / deterioration identification device that detects the progress of fatigue / deterioration.
JP2002196023A 2002-07-04 2002-07-04 Metal fatigue / deterioration identification device Expired - Fee Related JP3675780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002196023A JP3675780B2 (en) 2002-07-04 2002-07-04 Metal fatigue / deterioration identification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002196023A JP3675780B2 (en) 2002-07-04 2002-07-04 Metal fatigue / deterioration identification device

Publications (2)

Publication Number Publication Date
JP2004037305A JP2004037305A (en) 2004-02-05
JP3675780B2 true JP3675780B2 (en) 2005-07-27

Family

ID=31704247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002196023A Expired - Fee Related JP3675780B2 (en) 2002-07-04 2002-07-04 Metal fatigue / deterioration identification device

Country Status (1)

Country Link
JP (1) JP3675780B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234535A (en) * 2005-02-24 2006-09-07 Sumitomo Chemical Co Ltd Probe for eddy current test
JP5159193B2 (en) * 2007-07-09 2013-03-06 キヤノン株式会社 Magnetic detection element and detection method

Also Published As

Publication number Publication date
JP2004037305A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
EP1102998B1 (en) Closely-coupled multiple-winding magnetic induction-type sensor
AU695413B2 (en) Monitoring of internal partial discharges on a power transformer
Shafiq et al. Effect of geometrical parameters on high frequency performance of Rogowski coil for partial discharge measurements
US20090189600A1 (en) Metal face inductive proximity sensor
WO1997016722A1 (en) Magnetic sensor, and magnetic flaw detection method and apparatus using the magnetic sensor
WO2006074560A2 (en) Eddy-current sensor and magnetic bearing device
US7298131B2 (en) Current sensors
GB2262346A (en) Detecting defects in steel material
Olszewska et al. Identification of acoustic emission signals originating from the core magnetization of power oil transformer
CA2465767A1 (en) Coin discriminator where frequencies of eddy currents are measured
CN112505388B (en) Current measuring device and current measuring system
JP3675780B2 (en) Metal fatigue / deterioration identification device
US3546580A (en) Magnetic field variometer using a low noise amplifier and a coil-core arrangement of minimum weight and maximum sensitivity
JPH10232259A (en) Current leakage sensor
AU729021B2 (en) Method and apparatus for determining authenticity of coins
US20230135229A1 (en) Very-wide-bandwidth current sensor
JP5034573B2 (en) Coin identification method and identification apparatus
AU753651B2 (en) Induction sensor
JP2003051043A (en) Coin sorter
US20050105669A1 (en) Method for controlling a nuclear fuel pencil
JPH0428059Y2 (en)
RU2292054C1 (en) Alternating magnetic field's measuring device
JP2000187746A (en) Coin selector
RU2085931C1 (en) Flaw detector electromagnetic transducer
CN101769947B (en) Detection impedance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees