JP3675691B2 - Steel pipe column manufacturing method - Google Patents

Steel pipe column manufacturing method Download PDF

Info

Publication number
JP3675691B2
JP3675691B2 JP2000073197A JP2000073197A JP3675691B2 JP 3675691 B2 JP3675691 B2 JP 3675691B2 JP 2000073197 A JP2000073197 A JP 2000073197A JP 2000073197 A JP2000073197 A JP 2000073197A JP 3675691 B2 JP3675691 B2 JP 3675691B2
Authority
JP
Japan
Prior art keywords
steel pipe
semi
column
square steel
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000073197A
Other languages
Japanese (ja)
Other versions
JP2001262775A (en
Inventor
伸 中島
教雄 中島
拓 中島
功雄 中島
Original Assignee
ナカジマ鋼管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナカジマ鋼管株式会社 filed Critical ナカジマ鋼管株式会社
Priority to JP2000073197A priority Critical patent/JP3675691B2/en
Publication of JP2001262775A publication Critical patent/JP2001262775A/en
Application granted granted Critical
Publication of JP3675691B2 publication Critical patent/JP3675691B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、たとえば鉄骨構造物の支柱として使用される鋼管柱の製造方法および鋼管柱に関するものである。
【0002】
【従来の技術】
従来、支柱側に対してダイヤフラムを取り付ける方式として、たとえば通しダイヤフラム方式や内ダイヤフラム方式などが提供されている。
【0003】
このうち通しダイヤフラム方式は、たとえば図9に示されるように、支柱が、その長さ方向において下部支柱31とパネルゾーン用のコラム32と上部支柱33とに切断(分断)されている。そして下部支柱31の上端に、裏当て材を介して下部ダイヤフラム34が溶接されるとともに、この下部ダイヤフラム34上に裏当て材を介してコラム32の下端が溶接される。さらにコラム32の上端に、裏当て材を介して上部ダイヤフラム35が溶接されるとともに、この上部ダイヤフラム35上に裏当て材を介して上部支柱33の下端が溶接される。
【0004】
このようにして形成された支柱36に対する梁材(主にH形鋼材)37の連結は、この梁材37の遊端を、両ダイヤフラム34,35やコラム32に溶接することで行っていた。そして両ダイヤフラム34,35は、応力の伝達の役目を成していた。
【0005】
また内ダイヤフラム方式は、たとえば図10に示されるように、支柱が、その長さ方向において下部支柱41と上部支柱42とに切断(分断)されている。そして下部支柱41内の上部と上部支柱42内の下部とに、それぞれ裏当て材を介してダイヤフラム43が溶接結合されている。これら下部支柱41と上部支柱42とは、直線状に位置されたのち、その遊端間が溶接結合されている。
【0006】
このようにして形成された支柱44に対する梁材45の連結は、この梁材45の遊端を、上下のダイヤフラム43に対向させた状態で、下部支柱41と上部支柱42との外面に溶接結合することで行われていた。
【0007】
【発明が解決しようとする課題】
上記した従来の構成において、図9に示される通しダイヤフラム方式によると、支柱(鋼管)36は、短く切断するとともに溶接のための開先加工を行い、そして両ダイヤフラム34,35は、それぞれ上下の二箇所、合計四箇所を溶接することから、組立て工数が多くかつ溶接長さは長くなり、以て全体作業が複雑化するとともに製作費が高くなる。
【0008】
また図10に示される内ダイヤフラム方式によると、両ダイヤフラム43のそれぞれの溶接と、下部支柱41と上部支柱42との溶接との、合計三箇所の溶接が必要となることから、組立て工数が多くかつ溶接長さは長くなり、以て全体作業が複雑化するとともに製作費が高くなる。さらにダイヤフラム43は、下部支柱41と上部支柱42との端部近くにしか配置できず、また下部支柱41と上部支柱42との溶接結合部46を跨いで梁材45が溶接結合されることから、支柱44は、梁材45の連結位置に応じて短く切断され、長い一本ものの支柱にはできなかった。
【0009】
さらに両方式ともに、ダイヤフラム34,35やダイヤフラム43の存在によって、強度や耐火のためのコンクリートを、その中に充填することは容易に行えない。また、充填したコンクリートは、風などにより支柱36、44が揺れたときの変形で、下部支柱31、コラム32、上部支柱33や、下部支柱41、上部支柱42などの内面から剥離し易いものとなり、以て所期の強度や耐火の作用が十分に発揮されない状態になる。
【0010】
なお、別に外ダイヤフラム方式もあるが、これによると支柱外部の構造物が大型、重量大となり、しかも溶接長さが長いものとなる。
そこで本発明のうち請求項1記載の発明は、その全長において外周形状を整形し、しかも突き合わせ溶接部が傾斜状になるなどの変形は生ぜず、さらに各溶接を母材に一体化し得、しかもコンクリートを剥離し難く充填し得る鋼管柱の製造方法を提供することを目的としたものである。
【0012】
【課題を解決するための手段】
前述した第1の目的を達成するために、本発明のうちで請求項1記載の鋼管柱の製造方法は、所定の板厚の半成形長尺鋼管と、この半成形長尺鋼管よりも板厚が厚くかつ梁材連結部を形成する長さの半成形短尺鋼管とを有し、この半成形短尺鋼管の内面に突起体群が溶接結合され、前記半成形長尺鋼管と半成形短尺鋼管とは、その周方向の少なくとも一箇所に突き合わせ溶接による突き合わせ溶接部が形成されるとともに、その外周形状は、最終製品形状よりも大きくして同一状に形成されており、これら半成形長尺鋼管と半成形短尺鋼管とを、半成形短尺鋼管を梁材連結位置として長さ方向で溶接結合して半成形鋼管柱を形成し、この半成形鋼管柱を加熱手段において加熱したのち、その外周形状が最終製品形状になるように成形手段において熱間成形することを特徴としたものである。
【0013】
したがって請求項1の発明によると、加熱手段において加熱した半成形鋼管柱に対して成形手段において熱間成形を行うことで、その全長において外周形状を整形した鋼管柱を製造し得る。また熱間成形によって、均質化した鋼管柱を製造し得るとともに、各溶接が母材に一体化されて、突起体の結合は強固に行われるとともに、塑性変形性能に優れ、脆性破壊を未然に防止し得る。
【0014】
また本発明の請求項2記載の鋼管柱の製造方法は、上記した請求項1記載の構成において、半成形長尺角形鋼管と半成形短尺角形鋼管とが使用され、これら半成形長尺角形鋼管と半成形短尺角形鋼管とのコーナ部は、最終製品の曲率半径よりも大きい曲率半径に形成されており、溶接結合して形成した半成形角形鋼管柱を加熱手段において加熱したのち、そのコーナ部が最終製品の曲率半径になるように成形手段において熱間成形することを特徴としたものである。
【0015】
したがって請求項2の発明によると、溶接結合を行った半成形角形鋼管柱に対して熱間成形を行うことで、その全長において各コーナ部の曲率半径を揃え、しかも平板部とコーナ部とを均質化した角形鋼管柱を製造し得る。さらに突き合わせ溶接部が傾斜せず直線状のままであるなどの変形が生じない角形鋼管柱を製造し得る。
【0018】
【発明の実施の形態】
以下に、本発明の第1の実施の形態を、四角形の角形鋼管を採用した状態として、図1〜図8に基づいて説明する。
【0019】
図1、図2に示されるように、所定の板厚tでかつ各コーナ部が大きい曲率半径Rに成形された半成形長尺角形鋼管(半成形長尺鋼管)1と、この半成形長尺角形鋼管1の板厚tよりも厚い板厚Tでかつかつ同様に各コーナ部が大きい曲率半径Rに成形された半成形短尺角形鋼管(半成形短尺鋼管)2とが準備される。
【0020】
その際に半成形長尺角形鋼管1と半成形短尺角形鋼管2とは、その一つの平板部に、突き合わせ溶接による突き合わせ溶接部1a,2aが形成されており、そして少し長めの外寸W+αとして半成形されている。さらに半成形短尺角形鋼管2は、梁材連結部を形成する長さ(高さ)Lとされている。
【0021】
ここで所定の板厚tとは、鉄骨構造物の規模に応じて採用される鋼管柱の外寸Wなどにより決定されるもので、たとえば外寸Wが600mmのときに板厚tは25mmである。また半成形長尺角形鋼管1の板厚tと半成形短尺角形鋼管2の板厚Tとは、たとえば2t≒Tとされている。また半成形長尺角形鋼管1と半成形短尺角形鋼管2とは、各コーナ部を大きい曲率半径Rとしかつ少し長めの外寸W+αとすることで、その外周形状は、最終製品形状(角形鋼管柱)よりも大きくして同一状に形成されている。
【0022】
そして半成形短尺角形鋼管2の内面2bに、突起体3群が溶接結合4されている。ここで突起体3としてTボルト状のものが使用されているが、その際に突起体3間の間隔(隙間)Sや、内面2bと突起体対向面との間隔Sなどは、コンクリートの粒状物(最大で約50mm)が入り込めるように設定されている。
このような半成形長尺角形鋼管1と半成形短尺角形鋼管2とを、その外周形状を同一状として、かつ突き合わせ溶接部1a,2aを同一直線状として位置させる。そして、半成形長尺角形鋼管1と半成形短尺角形鋼管2との相当接間を溶接結合5することで、図3、図4(a)に示されるように、半成形短尺角形鋼管2を梁材連結位置として半成形角形鋼管柱(半成形鋼管柱)7を構成する。
【0023】
ここで半成形短尺角形鋼管2の両端で内面には、その厚さを半成形長尺角形鋼管1の板厚tに合わせるための段部2cが形成されている。そして溶接結合5を施工する際に、その段部2cを利用して溶接箇所の内側には、必要に応じてリング状のフラットバー6がセットされる(図7参照。)。なお、フラットバー6を使用しないときには、内外からの溶接結合が採用される。
【0024】
次いで、大きい曲率半径Rの半成形角形鋼管柱(原鋼管)7に対して熱間成形(整形)を行う。すなわち、半成形角形鋼管柱7が加熱手段(加熱炉など)15において加熱され、そして成形手段(成形ロール装置など)16において熱間成形(熱間絞り成形)される。
【0025】
このように外周形状を熱間成形することにより、図3、図4(b)に示すように、全長に亘って所望の外寸Wであり、かつ各コーナが同様な曲率半径rであり、そして所定の板厚tの長尺角形鋼管(長尺鋼管)1Aと、厚い板厚Tの梁材連結部を形成しかつ内面に突起体3群を有する短尺角形鋼管(短尺鋼管)2Aとを、長さ方向で溶接結合5して構成してなる角形鋼管柱(鋼管柱)10、すなわち、外周形状を最終製品形状とした角形鋼管柱10が得られる。
【0026】
このような角形鋼管柱10は、所定本数が建築現場などに運搬され、そして図5〜図7に示すように、梁材連結部を形成する長さLの短尺角形鋼管2Aの外面に、梁材11が溶接結合12によって連結される。なお角形鋼管柱10は、図5の仮想線に示すように、積上げ状に配置されたのち、その上下間が溶接結合12されることで、所定長さ(高さ)に構成される。そして積上げ溶接の前後において、角形鋼管柱10の中にコンクリート13が充填される。
【0027】
したがって角形鋼管柱10は、中にコンクリート13を充填させることで、強度や耐火に対処し得る。その際に梁材連結部では、突起体3間の間隔(隙間)Sや、内面2bと突起体対向面との間隔Sなどを通して、コンクリー13が内面2bまで十分に充填される。
【0028】
上述した角形鋼管柱10の製造方法によると、半成形短尺角形鋼管2の両端に半成形長尺角形鋼管1を溶接結合5したことで、この半成形短尺角形鋼管2Aによって梁材連結部を形成し得る。したがって、二箇所の溶接でよいことから組立て工数を削減し得るとともに溶接長さは短くなり、以て全体を簡略化して経済的となり、かつ溶接歪などが生じ難いものとなる。
【0029】
また半成形長尺角形鋼管1と半成形短尺角形鋼管2とを、その外周形状を同一状(同様な少し長めの外寸W+α、同様な大きい曲率半径R)として相当接間を長さ方向で溶接結合5することで、その溶接結合5は十分に強固にかつ綺麗に行える。
【0030】
そして半成形角形鋼管柱7に対して熱間成形を行うことで、その全長において各コーナ部の曲率半径rを揃え、しかも突き合わせ溶接部1a,2aが傾斜せず直線状のままであるなどの変形が生じない角形鋼管柱10を製造し得る。さらに熱間成形によって、平板部とコーナ部とを均質化した角形鋼管柱10を製造し得るとともに、各溶接(1a,2a,4,5)が母材(半成形短尺角形鋼管や半成形長尺角形鋼管)に一体化され、以て突起体3の結合を強固に行えるとともに、塑性変形性能に優れ、脆性破壊を未然に防止し得る。
【0031】
また、梁材連結部は、予めの厚い板厚Tによって十分な強度を確保し得、梁材11の溶接結合12は何ら支障なく行える。そして角形鋼管柱10はパイプジョイント形式で得られ、内蔵リブや裏当て金などがない状態に仕上げ得る。したがって、中にコンクリート13を充填させる構成も容易に採用し得る。
【0032】
そして角形鋼管柱10は、中にコンクリート13を充填させることで、強度や耐火に対処し得る。その際に梁材連結部では、突起体3間の間隔(隙間)Sや、内面2bと突起体対向面との間隔Sなどを通して、コンクリー13が内面2bまで十分に充填させ得る。また、充填したコンクリート13は、風などにより角形鋼管柱10が揺れて変形したときでも、突起体3群によって内面2bから剥離し難いものとなり、以て所期の強度や耐火の作用を十分に発揮し得る。
【0033】
なお、上記した第1の実施の形態において、半成形長尺角形鋼管1や半成形短尺角形鋼管2は、鋼板をプレス成形したのち突き合わせ溶接することで得たり、あるいは、鋼板を曲げ成形したのち突き合わせ溶接することで丸形鋼管を成形したのち、この丸形鋼管をプレス方式やロール方式により成形することで得ている。
【0034】
次に、本発明の第2の実施の形態を、図8に基づいて説明する。
すなわち図8(a)に示すように、所定の板厚tの半成形長尺丸形鋼管(半成形長尺鋼管)21と、この半成形長尺丸形鋼管21の板厚tよりも厚い板厚Tでかつ梁材連結部を形成する長さ(高さ)Lの半成形短尺丸形鋼管(半成形短尺鋼管)22とからなる。これら半成形長尺丸形鋼管21と半成形短尺丸形鋼管22とは、その周方向の一箇所に、突き合わせ溶接による突き合わせ溶接部21a,22aが形成されており、少し大きめの直径D+αとして半成形されている。そして半成形短尺丸形鋼管22の内面22bに、突起体23群が溶接結合24されている。
【0035】
次いで、突き合わせ溶接部20b,21bを同一直線状として、半成形長尺丸形鋼管21と半成形短尺丸形鋼管22との相当接間を溶接結合することで、半成形短尺丸形鋼管22を梁材連結位置として半成形丸形鋼管柱(半成形鋼管柱)25を構成する。
【0036】
次いで半成形丸形鋼管柱25に対して熱間成形(整形)を行うことにより、図8(b)に示すように、全長に亘って所望の直径Dであり、かつ梁材連結位置が厚い板厚Tの丸形鋼管柱(鋼管柱)26、すなわち、外周形状を最終製品形状とした丸形鋼管柱26が得られる。
【0037】
このような丸形鋼管柱26は、所定本数が建築現場などに運搬され、そして積上げ状に配置されたのち、その上下間が溶接結合されることで、所定長さ(高さ)に構成される。そして積上げ溶接の前後において、角形鋼管柱10の中にコンクリート27が充填される。
【0038】
したがって丸形鋼管柱26は、中にコンクリート27を充填させることで、強度や耐火に対処し得る。その際に梁材連結部では、突起体23間の間隔(隙間)Sや、内面22bと突起体対向面との間隔Sなどを通して、コンクリート27が内面22bまで十分に充填される。
【0039】
上記した各実施の形態においては、突起体3,23としてTボルト状のものが使用されているが、これは、頭部が円板体のIボルト状やL字ブラケット状のものなど、種々な形状の突起体が使用されるものである。また、たとえば図7の仮想線に示されるように、短尺角形鋼管2Aにおける段部2cよりも外の両端で板厚の薄い部分に、突起体3a群が追加して設けられる形式であってもよい。
【0040】
上記した各実施の形態において、鋼管としては、たとえば、ロール成形によるワンシーム角形鋼管、プレス成形による一対のみぞ形材を向き合わせて突き合わせ溶接したツーシーム角形鋼管、一対の圧延みぞ形材を溶接してなるツーシーム角形鋼管、圧延山形材を一対、向き合わせて溶接したツーシーム角形鋼管、四面ボックスなど、いずれも既製の鋼管が適宜に使用される。
【0041】
上記した実施の形態では、角形鋼管として断面で正四角形状の鋼管を採用しているが、これは断面で長方形の鋼管も同様に採用し得るものである。さらには、正五角形や正六角形など、各種の多角形の鋼管にも同様に採用し得るものである。
【0042】
上記した各実施の形態では、エレクトロスラグ溶接機やエレクトロガスアーク溶接機による溶接であり、これによると、短時間で高品質の溶接を行うことができる。なお、レーザなど他の溶接方式であってもよい。
【0043】
【発明の効果】
上記した本発明の請求項1によると、加熱手段において加熱した半成形鋼管柱に対して成形手段において熱間成形を行うことで、その全長において外周形状を整形でき、しかも均質化した鋼管柱を製造できる。また熱間成形によって、各溶接を母材に一体化できて、突起体の結合を強固に行うことができるとともに、塑性変形性能に優れ、脆性破壊を未然に防止できる。
【0044】
また上記した本発明の請求項2によると、溶接結合を行った半成形角形鋼管柱に対して熱間成形を行うことで、その全長において各コーナ部の曲率半径を揃え、しかも平板部とコーナ部とを均質化した角形鋼管柱を製造できる。さらに突き合わせ溶接部が傾斜せず直線状のままであるなどの変形が生じない角形鋼管柱を製造できる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を示し、鋼管柱の製造方法における半成形角型鋼管柱の溶接結合前の一部切り欠き斜視図である。
【図2】同鋼管柱の製造方法における半成形短尺角型鋼管を示し、(a)は縦断正面図、(b)は平面図である。
【図3】同鋼管柱の製造方法における熱間成形の工程説明図である。
【図4】同鋼管柱の製造方法における説明図で、(a)は半成形角形鋼管柱の横断平面図、(b)は角形鋼管柱の横断平面図である。
【図5】同鋼管柱の縦断正面図である。
【図6】同鋼管柱の一部切り欠き斜視図である。
【図7】同鋼管柱の要部の縦断正面図である。
【図8】本発明の第2の実施の形態を示し、鋼管柱の製造方法の説明図で、(a)は半成形丸形鋼管柱の横断平面図、(b)は丸形鋼管柱の横断平面図である。
【図9】従来例を示し、鋼管柱の一部切り欠き斜視図である。
【図10】別の従来例を示し、鋼管柱の一部切り欠き斜視図である。
【符号の説明】
1 半成形長尺角形鋼管(半成形長尺鋼管)
1a 突き合わせ溶接部
1A 長尺角形鋼管(長尺鋼管)
2 半成形短尺角形鋼管(半成形短尺鋼管)
2a 突き合わせ溶接部
2b 内面
2A 短尺角形鋼管(短尺鋼管)
3 突起体
4 溶接結合
5 溶接結合
7 半成形角形鋼管柱(半成形鋼管柱)
10 角形鋼管柱(鋼管柱)
11 梁材
13 コンクリート
15 加熱手段
16 成形手段
21 半成形長尺丸形鋼管(半成形短尺鋼管)
21a 突き合わせ溶接部
22 半成形短尺丸形鋼管(半成形短尺鋼管)
22a 突き合わせ溶接部
22b 内面
23 突起体
24 溶接結合
25 半成形丸形鋼管柱(半成形鋼管柱)
26 丸形鋼管柱(鋼管柱)
27 コンクリート
t 半成形長尺角形鋼管の板厚
T 半成形短尺角形鋼管の板厚
L 梁材連結部を形成する長さ
W 鋼管柱の外寸
W+α 半成形角形鋼管柱の外寸
R 半成形角形鋼管の曲率半径
r 鋼管柱の曲率半径
D+α 半成形丸形鋼管の直径
D 丸形鋼管柱の直径
S 間隔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a steel pipe column used as a column of a steel structure, for example, and a steel pipe column.
[0002]
[Prior art]
Conventionally, as a method of attaching a diaphragm to the support column side, for example, a through diaphragm method and an inner diaphragm method have been provided.
[0003]
Among these, in the through diaphragm method, as shown in FIG. 9, for example, the column is cut (divided) into a lower column 31, a panel zone column 32, and an upper column 33 in the length direction. The lower diaphragm 34 is welded to the upper end of the lower column 31 via a backing material, and the lower end of the column 32 is welded to the lower diaphragm 34 via the backing material. Further, the upper diaphragm 35 is welded to the upper end of the column 32 via a backing material, and the lower end of the upper column 33 is welded to the upper diaphragm 35 via the backing material.
[0004]
The beam material (mainly H-shaped steel material) 37 is connected to the column 36 formed in this way by welding the free ends of the beam material 37 to both the diaphragms 34 and 35 and the column 32. Both diaphragms 34 and 35 served to transmit stress.
[0005]
In the inner diaphragm system, for example, as shown in FIG. 10, the support column is cut (divided) into a lower support column 41 and an upper support column 42 in the length direction. A diaphragm 43 is welded to the upper portion of the lower support column 41 and the lower portion of the upper support column 42 via a backing material. After these lower support column 41 and upper support column 42 are positioned in a straight line, their free ends are joined by welding.
[0006]
The beam member 45 is connected to the column 44 formed in this manner by welding and joining the outer surface of the lower column 41 and the upper column 42 with the free end of the beam member 45 facing the upper and lower diaphragms 43. It was done by doing.
[0007]
[Problems to be solved by the invention]
In the conventional configuration described above, according to the through-diaphragm system shown in FIG. 9, the strut (steel pipe) 36 is cut short and grooved for welding, and both diaphragms 34 and 35 are respectively connected to the upper and lower sides. Since the welding is performed at two locations, that is, a total of four locations, the number of assembling steps is increased and the welding length is increased, which complicates the overall operation and increases the production cost.
[0008]
Further, according to the inner diaphragm system shown in FIG. 10, a total of three points of welding of each of the diaphragms 43 and the welding of the lower column 41 and the upper column 42 are necessary. In addition, the welding length becomes long, which complicates the whole operation and increases the production cost. Furthermore, the diaphragm 43 can be disposed only near the end portions of the lower support column 41 and the upper support column 42, and the beam member 45 is welded and joined across the welded joint portion 46 between the lower support column 41 and the upper support column 42. The struts 44 were cut short according to the connection positions of the beam members 45, and could not be made into a single long strut.
[0009]
Furthermore, in both types, due to the presence of the diaphragms 34 and 35 and the diaphragm 43, it is not easy to fill the concrete for strength and fire resistance. The filled concrete is deformed when the columns 36 and 44 are shaken by wind or the like, and is easily peeled off from the inner surfaces of the lower column 31, the column 32, the upper column 33, the lower column 41, and the upper column 42. Thus, the desired strength and fire resistance are not fully exhibited.
[0010]
In addition, there is another outer diaphragm system, but according to this, the structure outside the column becomes large and heavy, and the weld length is long.
Therefore, the invention according to claim 1 of the present invention is shaped such that the outer peripheral shape is shaped over its entire length, the butt weld is not inclined, and each weld can be integrated with the base material. An object of the present invention is to provide a method of manufacturing a steel pipe column that can be filled with concrete without peeling off.
[0012]
[Means for Solving the Problems]
In order to achieve the first object described above, a method of manufacturing a steel pipe column according to claim 1 of the present invention includes a semi-formed long steel pipe having a predetermined plate thickness, and a plate more than the semi-formed long steel pipe. A semi-formed short steel pipe having a thickness that forms a beam connecting portion, and a projection group is welded to the inner surface of the semi-formed short steel pipe, and the semi-formed long steel pipe and the semi-formed short steel pipe Means that a butt weld is formed by butt welding in at least one place in the circumferential direction, and the outer peripheral shape is larger than the final product shape and is formed in the same shape. These semi-formed long steel pipes and a semi-molded short steel pipe, the semi-molded short steel pipe and welded together in the longitudinal direction as a beam member connecting position to form a semi-molded tubular columns, after heating in the heating means of this semi-molded tubular columns, the outer peripheral shape All the molding means so but a final product shape Be hot formed Te is obtained by it said.
[0013]
Therefore, according to the invention of claim 1, by performing hot forming in the forming means on the semi-formed steel tube column heated in the heating means, it is possible to manufacture a steel tube column whose outer shape is shaped over its entire length. In addition, by hot forming, it is possible to produce a homogenized steel pipe column, each weld is integrated with the base material, the projections are firmly bonded, and the plastic deformation performance is excellent, so that brittle fracture is obviated. Can be prevented.
[0014]
According to a second aspect of the present invention, there is provided a method of manufacturing a steel pipe column in which the semi-formed long square steel pipe and the semi-formed short square steel pipe are used in the configuration described in the first aspect. And the semi-formed short square steel pipe are formed with a radius of curvature larger than the radius of curvature of the final product. After the semi-formed square steel pipe column formed by welding is heated by the heating means , the corner Is characterized in that hot forming is performed in the forming means so as to be the radius of curvature of the final product.
[0015]
Therefore, according to the invention of claim 2, by performing hot forming on the semi-formed square steel pipe column which has been welded, the curvature radius of each corner portion is made uniform over the entire length, and the flat plate portion and the corner portion are A homogenized square steel pipe column can be produced. Further butt deformation such as weld remains straight without inclination that obtained by preparing RHS Column not occur.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Below, the 1st Embodiment of this invention is described based on FIGS. 1-8 as the state which employ | adopted the square square steel pipe.
[0019]
As shown in FIG. 1 and FIG. 2, a semi-formed long rectangular steel pipe (semi-formed long steel pipe) 1 having a predetermined plate thickness t and each corner portion formed into a large curvature radius R, and this half-formed length A semi-formed short square steel pipe (semi-formed short steel pipe) 2 having a thickness T larger than the thickness t of the square steel pipe 1 and a corner radius of curvature R which is similarly large is prepared.
[0020]
At that time, the semi-formed long square steel pipe 1 and the semi-formed short square steel pipe 2 have butt welds 1a and 2a formed by butt welding on one flat plate portion, and have a slightly longer outer dimension W + α. Semi-molded. Further, the semi-formed short square steel pipe 2 has a length (height) L that forms a beam connecting portion.
[0021]
Here, the predetermined thickness t is determined by the outer dimension W of the steel pipe column employed according to the scale of the steel structure. For example, when the outer dimension W is 600 mm, the thickness t is 25 mm. is there. Further, the plate thickness t of the semi-formed long rectangular steel pipe 1 and the plate thickness T of the semi-formed short square steel pipe 2 are set to 2t≈T, for example. The semi-formed long square steel pipe 1 and the semi-formed short square steel pipe 2 have each corner portion having a large radius of curvature R and a slightly longer outer dimension W + α, so that the outer peripheral shape is the final product shape (square steel pipe). It is larger than the column and is formed in the same shape.
[0022]
A group of protrusions 3 are welded 4 to the inner surface 2 b of the semi-formed short square steel pipe 2. Here, a T-bolt shape is used as the protrusion 3, and at this time, the interval (gap) S between the protrusions 3, the interval S between the inner surface 2 b and the protrusion-opposing surface, etc. It is set to allow objects (up to about 50mm) to enter.
The semi-formed long rectangular steel pipe 1 and the semi-formed short rectangular steel pipe 2 are positioned so that their outer peripheral shapes are the same, and the butt welds 1a and 2a are the same straight line. Then, by joining the equivalent contact between the semi-formed long rectangular steel pipe 1 and the semi-formed short square steel pipe 2 as shown in FIG. 3 and FIG. A semi-formed square steel pipe column (semi-formed steel pipe column) 7 is configured as a beam connecting position.
[0023]
Here, step portions 2 c for adjusting the thickness to the thickness t of the semi-formed long square steel pipe 1 are formed on the inner surfaces at both ends of the semi-formed short square steel pipe 2. And when constructing the welding joint 5, the ring-shaped flat bar 6 is set as needed inside the welding location using the step 2c (see FIG. 7). When the flat bar 6 is not used, welding connection from the inside and outside is employed.
[0024]
Next, hot forming (shaping) is performed on the semi-formed square steel pipe column (raw steel pipe) 7 having a large curvature radius R. That is, the semi-formed square steel pipe column 7 is heated by the heating means (heating furnace or the like) 15 and hot-formed (hot drawing) by the forming means (formation roll device or the like) 16.
[0025]
By hot forming the outer peripheral shape in this way, as shown in FIG. 3 and FIG. 4 (b), the desired outer dimension W over the entire length, and each corner has a similar curvature radius r, Then, a long rectangular steel pipe (long steel pipe) 1A having a predetermined thickness t, and a short rectangular steel pipe (short steel pipe) 2A having a beam member connecting portion having a thick plate thickness T and having three protrusions on the inner surface are provided. A rectangular steel pipe column (steel pipe column) 10 formed by welding connection 5 in the length direction, that is, a rectangular steel pipe column 10 having an outer peripheral shape as a final product shape is obtained.
[0026]
A predetermined number of such square steel pipe columns 10 are transported to a construction site or the like, and, as shown in FIGS. 5 to 7, on the outer surface of the short square steel pipe 2 </ b> A having a length L that forms a beam material connecting portion, The material 11 is connected by a weld joint 12. In addition, as shown in the phantom line of FIG. 5, the square steel pipe column 10 is arrange | positioned in a pile-up form, and is comprised by predetermined length (height) by the welding coupling 12 between the upper and lower sides. And before and after stacking welding, the concrete 13 is filled in the square steel pipe column 10.
[0027]
Therefore, the square steel pipe column 10 can cope with strength and fire resistance by filling the concrete 13 therein. At that time, in the beam member connecting portion, the concrete 13 is sufficiently filled up to the inner surface 2b through the interval (gap) S between the protrusions 3 and the interval S between the inner surface 2b and the protrusion opposing surface.
[0028]
According to the manufacturing method of the square steel pipe column 10 described above, the semi-formed long square steel pipe 1 is welded and bonded to both ends of the semi-formed short square steel pipe 2 to form a beam connecting portion by the semi-formed short square steel pipe 2A. Can do. Therefore, since it is sufficient to weld at two locations, the number of assembling steps can be reduced, and the welding length is shortened. Therefore, the whole is simplified and economical, and welding distortion is hardly generated.
[0029]
Further, the semi-formed long rectangular steel pipe 1 and the semi-formed short rectangular steel pipe 2 have the same outer peripheral shape (similar slightly longer outer dimension W + α, similar large curvature radius R) in the longitudinal direction. By making the welded connection 5, the welded connection 5 can be made sufficiently strong and clean.
[0030]
And by carrying out hot forming with respect to the semi-formed square steel pipe column 7, the curvature radius r of each corner part is aligned in the entire length, and the butt welds 1a and 2a remain straight without being inclined. A square steel pipe column 10 that does not deform can be manufactured. Furthermore, a square steel pipe column 10 in which the flat plate portion and the corner portion are homogenized can be manufactured by hot forming, and each weld (1a, 2a, 4, 5) is made of a base material (half-formed short square steel pipe or half-formed length). And the projections 3 can be firmly bonded, and the plastic deformation performance is excellent, so that brittle fracture can be prevented in advance.
[0031]
Further, the beam member connecting portion can ensure sufficient strength by the thick plate thickness T in advance, and the welding connection 12 of the beam member 11 can be performed without any trouble. The square steel pipe column 10 is obtained in the form of a pipe joint and can be finished without a built-in rib or backing metal. Therefore, a configuration in which the concrete 13 is filled therein can be easily adopted.
[0032]
And the square steel pipe pillar 10 can cope with intensity | strength and fire resistance by filling the concrete 13 in it. At that time, in the beam member connecting portion, the concrete 13 can be sufficiently filled up to the inner surface 2b through the interval (gap) S between the protrusions 3 and the interval S between the inner surface 2b and the protrusion opposing surface. In addition, the filled concrete 13 is difficult to peel off from the inner surface 2b by the projections 3 group even when the square steel pipe column 10 is swayed and deformed by wind or the like, so that sufficient strength and fire resistance can be obtained. Can demonstrate.
[0033]
In the first embodiment described above, the semi-formed long rectangular steel pipe 1 and the semi-formed short square steel pipe 2 are obtained by press-forming the steel plate and then butt welding, or after bending the steel plate. It is obtained by forming a round steel pipe by butt welding and then forming the round steel pipe by a press method or a roll method.
[0034]
Next, a second embodiment of the present invention will be described with reference to FIG.
That is, as shown in FIG. 8 (a), a semi-formed long round steel pipe (semi-formed long steel pipe) 21 having a predetermined thickness t is thicker than the plate thickness t of the semi-formed long round steel pipe 21. It consists of a semi-formed short round steel pipe (semi-formed short steel pipe) 22 having a plate thickness T and a length (height) L that forms a beam connecting part. The semi-formed long round steel pipe 21 and the semi-formed short round steel pipe 22 have butt welds 21a and 22a formed by butt welding at one place in the circumferential direction, and have a slightly larger diameter D + α. Molded. A projection 23 group is welded 24 to the inner surface 22 b of the semi-formed short round steel pipe 22.
[0035]
Next, the butt welds 20b and 21b are made to be the same straight line, and the semi-formed short round steel pipe 22 is welded and joined between the corresponding contacts of the semi-formed long round steel pipe 21 and the semi-formed short round steel pipe 22. A semi-formed round steel pipe column (semi-formed steel pipe column) 25 is configured as a beam connecting position.
[0036]
Next, by hot forming (shaping) the semi-formed round steel pipe column 25, as shown in FIG. 8B, the desired diameter D is achieved over the entire length, and the beam connecting position is thick. A round steel pipe column (steel pipe column) 26 having a plate thickness T, that is, a round steel pipe column 26 having an outer peripheral shape as a final product shape is obtained.
[0037]
Such a round steel pipe column 26 is transported to a construction site or the like and arranged in a stacked shape, and then is welded between the upper and lower sides thereof to be configured to have a predetermined length (height). The And before and after stacking welding, the concrete 27 is filled in the square steel pipe column 10.
[0038]
Therefore, the round steel pipe column 26 can cope with strength and fire resistance by filling the concrete 27 therein. At that time, in the beam member connecting portion, the concrete 27 is sufficiently filled up to the inner surface 22b through the interval (gap) S between the protrusions 23 and the interval S between the inner surface 22b and the protrusion-facing surface.
[0039]
In each of the above-described embodiments, a T-bolt shape is used as the protrusions 3 and 23, but this may be various, such as an I-bolt shape having a disc-shaped head or an L-shaped bracket shape. A projection having a different shape is used. Further, for example, as shown by the phantom line in FIG. 7, the projection 3a group may be additionally provided in a portion having a thin plate thickness at both ends outside the step portion 2c in the short rectangular steel pipe 2A. Good.
[0040]
In each of the above-described embodiments, as the steel pipe, for example, a one-seam square steel pipe by roll forming, a two-seam square steel pipe formed by facing and welding a pair of groove-shaped members by press forming, and a pair of rolled grooves are welded. Tsushimu RHS made, Tsushimu RHS with a welded rolled angle bar pair and opposed, etc. tetrahedral box, either ready-made steel pipes are used appropriately.
[0041]
In the above-described embodiment, a square steel pipe having a square shape in cross section is adopted as the square steel pipe, but a steel pipe having a rectangular shape in cross section can also be adopted. Furthermore, it can be similarly applied to various polygonal steel pipes such as regular pentagons and regular hexagons.
[0042]
In each of the above-described embodiments, welding is performed by an electroslag welder or an electrogas arc welder, and according to this, high-quality welding can be performed in a short time. Other welding methods such as laser may be used.
[0043]
【The invention's effect】
According to the first aspect of the present invention described above, by performing hot forming in the forming means on the semi-formed steel tube column heated in the heating means , the outer peripheral shape can be shaped over its entire length, and the homogenized steel tube pillar is Can be manufactured. Also, by hot forming, each weld can be integrated with the base material, the projections can be firmly bonded, and the plastic deformation performance is excellent, and brittle fracture can be prevented in advance.
[0044]
According to the second aspect of the present invention described above, by performing hot forming on the semi-formed square steel pipe column which has been welded, the curvature radii of the respective corner portions are made uniform over the entire length, and the flat plate portion and the corner are provided. A square steel pipe column with a uniform part can be manufactured. Furthermore, it is possible to manufacture a rectangular steel pipe column in which deformation such as a butt weld is not inclined and remains linear.
[Brief description of the drawings]
FIG. 1 shows a first embodiment of the present invention and is a partially cutaway perspective view of a half-formed square steel pipe column before welding joining in a method for manufacturing a steel pipe column.
FIG. 2 shows a semi-formed short square steel pipe in the method for producing the same steel pipe column, wherein (a) is a longitudinal front view and (b) is a plan view.
FIG. 3 is a process explanatory diagram of hot forming in the method for manufacturing the steel pipe column.
4A and 4B are explanatory views in the method of manufacturing the steel pipe column, wherein FIG. 4A is a cross-sectional plan view of a semi-formed square steel tube column, and FIG. 4B is a cross-sectional plan view of the square steel tube column.
FIG. 5 is a longitudinal front view of the steel pipe column.
FIG. 6 is a partially cutaway perspective view of the steel pipe column.
FIG. 7 is a longitudinal sectional front view of a main part of the steel pipe column.
FIG. 8 shows a second embodiment of the present invention, and is an explanatory view of a method for manufacturing a steel pipe column, wherein (a) is a cross-sectional plan view of a semi-formed round steel pipe column, and (b) is a round steel pipe column. FIG.
FIG. 9 is a partially cutaway perspective view of a steel pipe column showing a conventional example.
FIG. 10 is a partially cutaway perspective view of a steel pipe column, showing another conventional example.
[Explanation of symbols]
1 Semi-formed long square steel pipe (Semi-formed long steel pipe)
1a Butt weld 1A Long square steel pipe (long steel pipe)
2 Semi-formed short square steel pipe (Semi-formed short steel pipe)
2a Butt weld 2b Inner surface 2A Short square steel pipe (short steel pipe)
3 Protrusions 4 Welded joint 5 Welded joint 7 Semi-formed square steel pipe column (Semi-formed steel pipe column)
10 Square steel pipe column (steel pipe column)
11 Beam material 13 Concrete 15 Heating means 16 Forming means 21 Semi-formed long round steel pipe (Semi-formed short steel pipe)
21a Butt weld 22 Semi-formed short round steel pipe (Semi-formed short steel pipe)
22a Butt weld 22b Inner surface 23 Projection body 24 Welded joint 25 Semi-formed round steel pipe column (Semi-formed steel tube column)
26 Round steel pipe columns (steel pipe columns)
27 Concrete t Thickness of semi-formed long square steel pipe T Thickness of semi-formed short square steel pipe L Thickness to form beam connecting part W External dimension of steel pipe column W + α External dimension of semi-formed square steel pipe column R Semi-formed square Curvature radius of steel pipe r Curvature radius of steel pipe column D + α Diameter D of semi-formed round steel pipe Diameter D of round steel pipe column S Interval

Claims (2)

所定の板厚の半成形長尺鋼管と、この半成形長尺鋼管よりも板厚が厚くかつ梁材連結部を形成する長さの半成形短尺鋼管とを有し、この半成形短尺鋼管の内面に突起体群が溶接結合され、前記半成形長尺鋼管と半成形短尺鋼管とは、その周方向の少なくとも一箇所に突き合わせ溶接による突き合わせ溶接部が形成されるとともに、その外周形状は、最終製品形状よりも大きくして同一状に形成されており、これら半成形長尺鋼管と半成形短尺鋼管とを、半成形短尺鋼管を梁材連結位置として長さ方向で溶接結合して半成形鋼管柱を形成し、この半成形鋼管柱を加熱手段において加熱したのち、その外周形状が最終製品形状になるように成形手段において熱間成形することを特徴とする鋼管柱の製造方法。A semi-formed long steel pipe having a predetermined plate thickness, and a semi-formed short steel pipe having a thickness greater than that of the semi-formed long steel pipe and a length that forms a beam connecting portion. A protrusion group is welded and joined to the inner surface, and the semi-formed long steel pipe and the semi-formed short steel pipe have a butt weld portion formed by butt welding in at least one place in the circumferential direction, and the outer peripheral shape is final. The semi-formed long steel pipe and the semi-formed short steel pipe are welded and joined in the length direction with the semi-formed short steel pipe as a beam connecting position. A method of manufacturing a steel pipe column, comprising: forming a column, heating the semi-formed steel tube column with a heating unit, and then hot forming with a molding unit so that an outer peripheral shape thereof becomes a final product shape. 半成形長尺角形鋼管と半成形短尺角形鋼管とが使用され、これら半成形長尺角形鋼管と半成形短尺角形鋼管とのコーナ部は、最終製品の曲率半径よりも大きい曲率半径に形成されており、溶接結合して形成した半成形角形鋼管柱を加熱手段において加熱したのち、そのコーナ部が最終製品の曲率半径になるように成形手段において熱間成形することを特徴とする請求項1記載の鋼管柱の製造方法。Semi-formed long square steel pipes and semi-formed short square steel pipes are used, and the corners of these semi-formed long square steel pipes and semi-formed short square steel pipes are formed with a radius of curvature larger than the radius of curvature of the final product. 2. The semi-formed square steel pipe column formed by welding and joining is heated in the heating means, and then hot- formed in the forming means so that the corner portion has a curvature radius of the final product. Manufacturing method for steel pipe columns.
JP2000073197A 2000-03-16 2000-03-16 Steel pipe column manufacturing method Expired - Lifetime JP3675691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000073197A JP3675691B2 (en) 2000-03-16 2000-03-16 Steel pipe column manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000073197A JP3675691B2 (en) 2000-03-16 2000-03-16 Steel pipe column manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002162276A Division JP2003034986A (en) 2002-06-04 2002-06-04 Steel pipe column

Publications (2)

Publication Number Publication Date
JP2001262775A JP2001262775A (en) 2001-09-26
JP3675691B2 true JP3675691B2 (en) 2005-07-27

Family

ID=18591482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000073197A Expired - Lifetime JP3675691B2 (en) 2000-03-16 2000-03-16 Steel pipe column manufacturing method

Country Status (1)

Country Link
JP (1) JP3675691B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103938799A (en) * 2014-04-10 2014-07-23 北京工业大学 Ribbed steel plate composite gigantic column and manufacturing method
CN104405081A (en) * 2014-10-30 2015-03-11 沈阳建筑大学 Steel skeleton-steel tube recycled concrete T-shaped section compound column
CN104453095A (en) * 2014-11-05 2015-03-25 沈阳建筑大学 L-shaped steel tube-steel rib glass concrete combination column
CN104526175B (en) * 2014-12-24 2016-08-31 沈阳航天新星机电有限责任公司 A kind of method controlling welding deformation
CN106337532A (en) * 2016-08-25 2017-01-18 广东工业大学 Double-toothed-connection-component inner double-walled pipe combination member and manufacturing method thereof
CN111395654B (en) * 2020-04-20 2024-03-22 中铁四局集团第一工程有限公司 Multi-section nested steel rib side column and construction method thereof
CN112726958B (en) * 2020-12-27 2022-03-08 江苏沪宁钢机股份有限公司 Manufacturing process of round tube and taper tube combined inclined column

Also Published As

Publication number Publication date
JP2001262775A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
JP2000334581A (en) Structure and its manufacture
JP3675691B2 (en) Steel pipe column manufacturing method
JP3632964B1 (en) Adaptable mandrel for rotational molding
JPS63107648A (en) Floor panel and its production
JP3625785B2 (en) Method for manufacturing rectangular steel pipe and rectangular steel pipe
JP3801586B2 (en) Manufacturing method of square steel pipe column
JP2011132745A (en) Steel structure
US20070033794A1 (en) Method of producing honeycomb structure
JP2001303661A (en) Steel pipe column and manufacturing method thereof
JP3497057B2 (en) Forming press equipment for producing square steel pipes
JP2003034986A (en) Steel pipe column
JP3599626B2 (en) Manufacturing method of steel pipe column
JP2002160076A (en) Manufacturing method for structural body
JP3717450B2 (en) Method for manufacturing curved surface structure and curved surface structure
JPH11336189A (en) Column core with bulge section and steel structural unit utilizing column core
JP2004308168A (en) Beam-column connection core and beam-column connecting structure
JPS639481Y2 (en)
JP3529360B2 (en) Steel pipe column
JP2604511B2 (en) How to join columns and beams
JP2003268877A (en) Square steel pipe column
JP4545309B2 (en) Welded joint structure
JP3784378B2 (en) Steel pipe column
JP2002213018A (en) Steel pipe column
JPH0985861A (en) Light-gauge structural sheet
JP3801577B2 (en) Steel structure using steel pipe columns

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050203

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050426

R150 Certificate of patent or registration of utility model

Ref document number: 3675691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term