JP3674301B2 - Image processing method for carrier medium - Google Patents

Image processing method for carrier medium Download PDF

Info

Publication number
JP3674301B2
JP3674301B2 JP08689398A JP8689398A JP3674301B2 JP 3674301 B2 JP3674301 B2 JP 3674301B2 JP 08689398 A JP08689398 A JP 08689398A JP 8689398 A JP8689398 A JP 8689398A JP 3674301 B2 JP3674301 B2 JP 3674301B2
Authority
JP
Japan
Prior art keywords
medium
image
banknote
angle
rectangular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08689398A
Other languages
Japanese (ja)
Other versions
JPH11283070A (en
Inventor
哲雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Retail Systems Co Ltd
Original Assignee
Fuji Electric Retail Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Retail Systems Co Ltd filed Critical Fuji Electric Retail Systems Co Ltd
Priority to JP08689398A priority Critical patent/JP3674301B2/en
Publication of JPH11283070A publication Critical patent/JPH11283070A/en
Application granted granted Critical
Publication of JP3674301B2 publication Critical patent/JP3674301B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は搬送媒体の画像処理方法に関し、特に矩形媒体を搬送しながらスキャンすることによって得られた画像から搬送中に傾いた状態で撮像された矩形媒体の画像を傾きを正して取り出す搬送媒体の画像処理方法に関する。
【0002】
【従来の技術】
たとえば紙幣を鑑別するような装置では、紙幣を搬送しながら搬送路の途中に配置されたイメージセンサにより紙幣の画像を読み取り、読み取った画像を処理することによって、金種判定および真贋判定を行っている。すなわち、読み取った画像に対して紙幣の所定位置に配置された金種ごとに異なる印刷模様や透かしなどの特徴的な模様部分を抽出し、それを基準となる紙幣が持つ特徴的な模様部分と比較することによって紙幣の鑑別を行っている。したがって、金種などの判定を正確に行うには、紙幣の撮像画像から抽出すべき特徴的な模様部分の座標位置が正確に分かっていなければならない。
【0003】
ところで、紙幣の撮像は紙幣を搬送しながら行うが、その搬送路の幅は、鑑別対象の紙幣の中で最も寸法の大きな紙幣に合わせて設定されているため、寸法の小さい紙幣では、搬送幅に余裕のある分だけ、搬送途中で搬送方向に対して曲がりやすく、斜行状態で搬送されることになる。このような斜行状態で撮像された紙幣画像は、特徴量の抽出を正確に行うことができない。そこで、通常は、実際に紙幣鑑別を行う前に、撮像された画像から紙幣の斜行状態を検出し、紙幣の画像を真っ直ぐな状態にする斜行補正が行われる。
【0004】
たとえば特開平8−212417号公報に記載の技術では、まず、紙幣全体を撮像し、その撮像した紙幣のイメージデータから紙幣の輪郭、すなわち紙幣の短手および長手の4辺の情報を求め、これにより、紙幣の斜行角度を求めている。その後、斜行した画像をその画像の角を原点として斜行量分だけ回転させる処理をして、真っ直ぐな状態の画像にしている。
【0005】
次に、斜行補正された画像をもとに、鑑別処理を行い、その鑑別結果に従って紙幣搬送路の切り替えが行われる。すなわち、鑑別処理によって正しい紙幣と判定された場合は、その紙幣を収納するための収納庫へ向かう搬送路への搬送路切り替えが行われ、正しい紙幣ではない、あるいは鑑別不能と判定された場合は、そのような紙幣を返却するための搬送路への搬送路切り替えが行われる。
【0006】
以上のように、紙幣鑑別の場合、撮像した画像をまず前処理によって斜行補正を行い、その斜行補正された紙幣画像に対して鑑別処理をし、鑑別結果に基づいて搬送路切り替えを行っている。したがって、この鑑別処理は搬送路切り替えを行うまでに完了していなければならない。
【0007】
【発明が解決しようとする課題】
ところで、偽札技術が高級になってくると、鑑別論理のアルゴリズムも複雑になってきており、それにつれて鑑別処理も複雑になってきている。たとえば紙幣を撮像する際に紙幣を照明するものとして発光波長の異なる2種類の光源を使用し、スキャンラインごとに光源を切り替えて撮像することにより2種類の紙幣画像を取得し、各画像に対してそれぞれ鑑別処理を行い、より鑑別精度を向上させることが試みられている。このような場合、鑑別処理の時間は、通常の鑑別処理のほぼ2倍になる。この場合にも、もちろん、搬送路切り替えを行う前に鑑別処理が終わっていなければならない。このように、鑑別精度を向上させるためには、今後、益々処理時間が長くなる傾向にあるが、紙幣の搬送速度と搬送路切り替えを行うまでの搬送路の長さとを維持しつつ、鑑別処理の時間だけを長くすることは困難であるという問題があった。
【0008】
本発明はこのような点に鑑みてなされたものであり、鑑別前処理の時間を短くして、その分、鑑別処理に費やすことができる時間を長くし、複雑な鑑別処理を採用することが可能な搬送媒体の画像処理方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明では上記問題を解決するために、矩形媒体を搬送しながら撮像して得られた画像の傾斜状態を補正するする搬送媒体の画像処理方法において、媒体検出センサが搬送されてきた前記矩形媒体の搬送方向先端を検出後、搬送速度および撮像素子までの距離によって定められた所定時間後に前記矩形媒体のスキャンラインごとの撮像を開始し、前記媒体検出センサが前記矩形媒体の搬送方向後端を検出後、撮像が前記矩形媒体の搬送方向後縁より手前の角度算出不定領域に到達するまでの不定領域到達時間を算出し、前記不定領域到達時間経過後に、その時点まで撮像した画像データに対して傾斜画像の角度補正をしながら、残りの前記角度算出不定領域について撮像および傾斜画像の角度補正を行う、ことを特徴とする搬送媒体の画像処理方法が提供される。
【0010】
このような搬送媒体の画像処理方法によれば、媒体検出センサによる矩形媒体の先端の検出後、矩形媒体の先端から順次撮像していき、媒体検出センサによる矩形媒体後端の検出時に、搬送速度と媒体通過時間とから矩形媒体の長さを算出し、その矩形媒体の長さからあらかじめ定められた矩形媒体の角度算出不定領域に撮像が到達するまでの時間を算出する。その時間が経過して、撮像が矩形媒体の角度算出不定領域に到達した段階で、それまでに得られた画像データに対し、媒体画像の傾斜角度を求め、媒体画像をその傾斜角度で角度補正する。これと並行して、矩形媒体の残りの角度算出不定領域を撮像し、先に求めた傾斜角度で角度補正をする。これにより、矩形媒体の撮像が終了した時点で媒体画像のほとんどの部分で角度補正まで終えていることになる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を、紙幣鑑別のための画像読み取り装置に適用した場合を例に図面を参照して詳細に説明する。
【0012】
図1は紙幣鑑別装置の画像読み取り装置の概略構成を示す平面図である。この図1において、搬送路1上には、紙幣2を搬送するための複数のローラ3a,3b,3cが配置されている。紙幣2は、図の左側から搬送されてくるとすると、搬送路1の上流側には突入センサ4が配置され、下流側には撮像センサ5が配置されている。
【0013】
突入センサ4は、たとえば発光素子と受光素子とからなるフォトカプラによって構成され、発光素子と受光素子との間に搬送されてきた紙幣2が挿入されて受光素子が受けていた発光素子からの光が遮断されることによって、紙幣2の突入が検出され、紙幣2がこの突入センサ4を通過して再び受光素子が発光素子から放射された光を受光することによって紙幣2の突出が検出される。
【0014】
撮像センサ5は、たとえばCCD(charge coupled device )ラインセンサとたとえば複数の発光ダイオード(LED)を一列に並べたLEDアレイの光源とによって構成されている。撮像センサ5は、搬送方向に対して直角な方向にスキャンするよう配置され、紙幣2を搬送しながら光源を点灯制御することによって、紙幣2の画像を順次読み取ることになる。また、光源およびCCDラインセンサは紙幣2を挟むようにしてその両側(上下)に配置されている。このCCDラインセンサは、紙幣2を透過しないで直接入射された光源からの光を飽和した大きな画素値を有する透光画素として検出し、紙幣2を透過して入射された光を画素値の小さな非透光画素として検出する。したがって、あるスキャンライン上での全画素値が飽和した値を示せば、そのCCDラインセンサ上に紙幣2が来ていないか通り過ぎたと判断でき、1画素でも非透光画素の値を示せば、CCDラインセンサ上に紙幣2があると判断できる。
【0015】
図2は紙幣の画像読み取りを説明する図である。紙幣は、撮像センサ5 を通過するときに、搬送方向に対して真っ直ぐな状態ではなく、ほとんどは斜行状態にあり、得られる紙幣画像10も斜行している。また、流通紙幣の場合は、特に四角の部分が傷み易く、折れ曲がっていたり破損していたりすることが多い。そこで、紙幣のたとえば四角から20mmの範囲の領域11a,11b,11c,11dは、鑑別処理には必要であるが、特に角度算出のための画像データとしては信頼性のある領域ではないとし、角度算出不定領域としている。したがって、斜行角度を算出する画像データは、領域11a,11b,11c,11dを含むスキャン領域を除いた中央の領域12から取得する。
【0016】
ここで、紙幣画像10の斜行補正を行って紙幣画像データの切り出しを行うまでの鑑別前処理について簡単に説明する。紙幣2が上流から搬送されて来て、紙幣2の先端(図2の紙幣画像10の上縁)が突入センサ4に差しかかると、突入センサ4は「突入」を検出し、紙幣2の先端が撮像センサ5に差しかかる手前で「撮像」が開始される。紙幣2は搬送されながらその先端から順次スキャンされ、画素データの取得と同時にシェーディング補正が行われる。このシェーディング補正については後述する。紙幣2の後端が突入センサ4から抜けて「突出」が検出されると、ここで紙幣の長手長が計算され、残り20mmの角度算出不定領域までの時間が算出される。引き続き、撮像センサ5によるスキャンが行われ、残り20mmに達した時点で、それまでに取得したスキャンデータから領域12のスキャンデータを対象に、紙幣2の幅および斜行角度が算出される。すなわち、各スキャンライン上でスキャン方向に透光画素から非透光画素に最初に変わる開始座標と最後に非透光画素から透光画素に変わる終了座標とを取得して前記開始座標と終了座標との差から各スキャンライン上の紙幣の幅を取得し、その幅の最頻値を求める。この最頻値は、紙幣2の長手辺の欠損部分を除いた、紙幣の幅を最も代表していると見ることができる値である。次いで、その最頻値を有するスキャンラインの中から、たとえば上位の数本と下位の数本とを組み合わせ、それらの組みのスキャンラインの距離と、それらスキャンラインのたとえば非透光画素の開始座標とから角度を求め、複数組の角度の平均を斜行角度とする。ここで、斜行角度が求まったので、紙幣2の先頭から残り20mmまでに取得したスキャンデータに対して斜行補正、すなわちアフィン変換を行う。この、幅/角度算出と並行して、残り20mmの撮像は続けられ、斜行角度が求まった段階で残り20mmのスキャンデータについてもアフィン変換が行われる。アフィン変換は撮像処理よりも高速で行われるため、紙幣2の後端が撮像センサ5を抜けて、撮像センサ5がすべて透光画素を検出したとき、すなわち1ライン飽和を検出したときに、鑑別前処理のほとんどの処理が既に終了していることになり、その後、紙幣画像10の切り出しが行われて、鑑別前処理が終了することになる。
【0017】
図3はシェーディング補正を説明する図であって、(A)は光源の構成例を示し、(B)は光源の長手方向における明度の変化を示し、(C)はシェーディング補正後の撮像センサ出力特性を示している。搬送されている紙幣を照明する光源としては、(A)に示したようなLEDアレイ20が用いられている。このLEDアレイ20は複数のLED21a,21b,・・・,21nを一列に並べた構成を有している。このようなLEDアレイ20から放射される光は、(B)に示したように、各LED21a,21b,・・・,21nの光軸上では最も明度が高く、光軸から離れるに従って低くなる。したがって、CCDラインセンサの各画素は場所による明度のばらつきによって異なる値を出力することになる。そこで、あらかじめ均一な透過を行う基準となる媒体を用いて、CCDラインセンサの画素ごとに明度差に対応する画素値を係数としてそれぞれ求めておき、CCDラインセンサの各画素出力に対してそれぞれ対応する係数をかけるようにする。この処理をシェーディング補正といい、(C)に示したように、無地の媒体ならば、画素値は均一になる。このシェーディング補正はCCDラインセンサからの画素値出力後、直ちに行われる。
【0018】
図4は鑑別前処理の動作の流れを示すタイムチャートである。まず、時刻t0にて、搬送されて来た紙幣の先端が突入センサ4によって検出されると、突入割込み処理が開始され、突入センサ4と撮像センサとの距離と搬送速度とからあらかじめ決められた時間後の時刻t1にて、撮像センサ5による撮像が開始される。さらに、あらかじめ定められた時間後の時刻t2にて、鑑別前処理が開始される。このとき、既に撮像された画素データについては、ここでシェーディング補正を行う。シェーディング補正は演算負荷があまり大きくないのですぐに終了し、それ以降については撮像とほぼ同時に行われる。
【0019】
突入センサ4が時刻t3にて紙幣の突出を検出すると、突出割込み処理が開始される。突出割込み処理では、まず、紙幣の長手長が計算され、長手長から角度算出不定領域、すなわち紙幣の残り20mmの位置までスキャンが進むのにかかる時間が算出される。このとき、紙幣は搬送されているので、撮像は中断することなく継続される。スキャンが残り20mmの位置に達した時刻t4では、紙幣の幅および斜行角度の算出が行われる。すなわち、残り20mmの位置までに取得したスキャンデータをもとに、各スキャンライン上での非透光画素値の分布から紙幣の幅を算出し、紙幣の幅の最頻値を求め、最頻値を有するスキャンラインからできるだけ離れたスキャンラインの組みを選んで、その組みのスキャンラインの距離と各スキャンライン上での非透光画素の開始座標とから斜行角度が算出される。実際には、複数組みのスキャンラインでそれぞれ角度を求め、それらの角度の平均から斜行角度を求めるようにしている。
【0020】
斜行角度が求まると、すぐに、残り20mmの位置までに取得したスキャンデータに対して、斜行補正をアフィン変換にて行う。アフィン変換は演算負荷が大きいが、それでも紙幣が撮像センサ5を抜けるまでには余裕をもって終了する。この間、残り20mmの撮像では、撮像、シェーディング補正を行いながらアフィン変換を行う。そして、時刻t5にて、撮像センサ5を紙幣が通過することによって撮像センサ5上に紙幣がないことを示す1ライン飽和を撮像センサ5が検出すると、この時点で紙幣画像データのほとんどがアフィン変換まで終えているので、実質的には、1ライン飽和の検出と同時に紙幣画像データの斜行補正が終了することになる。具体的には、搬送速度が500mm/秒、紙幣の最大長手長が172mm、突入センサと撮像センサとの距離が35.8mmであるとすると、突出検出から撮像完了の1ライン飽和まで85.6ミリ秒の時間がある。これに対し、突出検出から幅/角度算出とその時点までの斜行補正に16.2ミリ秒、残り20mmのシェーディング補正と斜行補正に21.8ミリ秒程度の時間で済むことから、突出検出から撮像完了までに十分に処理することができる。その後、紙幣画像データの切り出しを行って処理を鑑別処理に移すことにより、この鑑別前処理は完了する。
【0021】
【発明の効果】
以上説明したように、本発明では、紙幣の突出検出後、媒体の末端側の角度算出不定領域まで撮像後、幅/角度を算出してそれまで撮像した画像データを斜行補正し、幅/角度の算出以降は、残りの角度算出不定領域について、撮像しながら斜行補正するように構成した。これにより、媒体の末端まで撮像した時点ですべての画像データは実質的に斜行補正まで済んでいることになり、従来、撮像後に必要であった、以上の前処理に必要な時間をほとんどなくすことができ、それ以降の処理に十分な時間を割り当てることができる。
【図面の簡単な説明】
【図1】紙幣鑑別装置の画像読み取り装置の概略構成を示す平面図である。
【図2】紙幣の画像読み取りを説明する図である。
【図3】シェーディング補正を説明する図であって、(A)は光源の構成例を示し、(B)は光源の長手方向における明度の変化を示し、(C)はシェーディング補正後の撮像センサ出力特性を示している。
【図4】鑑別前処理の動作の流れを示すタイムチャートである。
【符号の説明】
1 搬送路
2 紙幣
3a,3b,3c ローラ
4 突入センサ
5 撮像センサ
[0001]
BACKGROUND OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image processing method for a conveyance medium, and in particular, a conveyance medium that takes out an image of a rectangular medium captured in a tilted state during conveyance from an image obtained by scanning while conveying the rectangular medium. The present invention relates to an image processing method.
[0002]
[Prior art]
For example, in an apparatus that discriminates banknotes, a denomination and authenticity determination are performed by reading an image of a banknote by an image sensor arranged in the middle of a conveyance path while conveying the banknote, and processing the read image. Yes. That is, a characteristic pattern portion such as a printed pattern or a watermark that is different for each denomination arranged at a predetermined position of the banknote with respect to the read image is extracted, and the characteristic pattern portion of the banknote serving as a reference is extracted from The banknotes are identified by comparison. Therefore, in order to accurately determine the denomination or the like, the coordinate position of the characteristic pattern portion to be extracted from the captured image of the banknote must be accurately known.
[0003]
By the way, although imaging of a banknote is performed while transporting a banknote, the width of the transport path is set in accordance with the banknote having the largest dimension among banknotes to be identified. Therefore, it is easy to bend in the conveyance direction during conveyance, and the sheet is conveyed in a skew state. A banknote image captured in such a skew state cannot accurately extract a feature amount. In view of this, normally, before actually performing banknote discrimination, skew correction of a banknote is detected from a captured image, and skew correction is performed to make the banknote image straight.
[0004]
For example, in the technique described in JP-A-8-212417, first, the entire banknote is imaged, and the outline of the banknote, that is, information on the short side and the long side of the banknote is obtained from the image data of the captured banknote. Thus, the skew angle of the banknote is obtained. Thereafter, the skewed image is rotated by the skew amount with the corner of the image as the origin, so that the image is straight.
[0005]
Next, discrimination processing is performed based on the skew-corrected image, and the banknote transport path is switched according to the discrimination result. That is, when it is determined that the banknote is correct by the discrimination process, the transport path is switched to the transport path toward the storage for storing the banknote, and it is determined that the banknote is not correct or cannot be discriminated. The transfer path is switched to the transfer path for returning such bills.
[0006]
As described above, in the case of banknote discrimination, first, the captured image is skew-corrected by preprocessing, the skew-corrected banknote image is subjected to discrimination processing, and the conveyance path is switched based on the discrimination result. ing. Therefore, this discrimination process must be completed before the conveyance path is switched.
[0007]
[Problems to be solved by the invention]
By the way, as counterfeit bill technology becomes more sophisticated, the algorithm of discrimination logic has become more complex, and the discrimination process has become more complicated accordingly. For example, two types of light sources having different emission wavelengths are used to illuminate a banknote when the banknote is imaged, and two types of banknote images are acquired by switching the light source for each scan line. Attempts have been made to improve discrimination accuracy by performing discrimination processing. In such a case, the time for the discrimination process is almost twice that of the normal discrimination process. Also in this case, of course, the discrimination process must be completed before the conveyance path is switched. Thus, in order to improve the discrimination accuracy, the processing time tends to become longer in the future, but the discrimination processing is performed while maintaining the conveyance speed of the banknote and the length of the conveyance path until the conveyance path is switched. There is a problem that it is difficult to lengthen only the time.
[0008]
The present invention has been made in view of these points, and shortens the pre-discrimination processing time, thereby increasing the time that can be spent on the discrimination processing, and adopting a complicated discrimination process. An object of the present invention is to provide an image processing method for a possible carrier medium.
[0009]
[Means for Solving the Problems]
In the present invention, in order to solve the above-mentioned problem, in the image processing method for a transport medium that corrects the inclination state of an image obtained by capturing an image while transporting the rectangular medium, the rectangular medium on which the medium detection sensor has been transported After the leading edge of the rectangular medium is detected, imaging for each scan line of the rectangular medium is started after a predetermined time determined by the conveying speed and the distance to the image sensor, and the medium detection sensor detects the trailing edge of the rectangular medium in the conveying direction. After detection, the indeterminate area arrival time until the imaging reaches the angle calculation indeterminate area before the trailing edge of the rectangular medium in the transport direction is calculated. Then, while correcting the angle of the tilted image, the imaging of the remaining angle calculation indefinite region and the angle correction of the tilted image are performed. A method is provided.
[0010]
According to such a conveyance medium image processing method, after the leading end of the rectangular medium is detected by the medium detection sensor, images are sequentially picked up from the leading end of the rectangular medium, and the conveyance speed is detected when the trailing end of the rectangular medium is detected by the medium detection sensor. Then, the length of the rectangular medium is calculated from the medium passing time, and the time until the imaging reaches the predetermined rectangular medium angle calculation indefinite region is calculated from the length of the rectangular medium. After that time has passed, when the imaging reaches the angle calculation indefinite region of the rectangular medium, the inclination angle of the medium image is obtained from the image data obtained so far, and the medium image is angle-corrected with the inclination angle. To do. In parallel with this, the remaining angle calculation indefinite region of the rectangular medium is imaged, and angle correction is performed with the previously obtained inclination angle. As a result, the angle correction has been completed in most parts of the medium image when the imaging of the rectangular medium is completed.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings, taking as an example a case where the present invention is applied to an image reading apparatus for banknote discrimination.
[0012]
FIG. 1 is a plan view showing a schematic configuration of an image reading device of a bill validating device. In FIG. 1, a plurality of rollers 3 a, 3 b, 3 c for transporting banknotes 2 are arranged on the transport path 1. If the banknote 2 is conveyed from the left side of the figure, an inrush sensor 4 is disposed on the upstream side of the conveyance path 1 and an imaging sensor 5 is disposed on the downstream side.
[0013]
The intrusion sensor 4 is constituted by, for example, a photocoupler composed of a light emitting element and a light receiving element, and the light from the light emitting element received by the light receiving element after the banknote 2 conveyed between the light emitting element and the light receiving element is inserted. Is interrupted, the entry of the banknote 2 is detected, and the banknote 2 passes through the entry sensor 4 and the light receiving element receives light emitted from the light emitting element again to detect the protrusion of the banknote 2. .
[0014]
The imaging sensor 5 is constituted by, for example, a CCD (charge coupled device) line sensor and, for example, a light source of an LED array in which a plurality of light emitting diodes (LEDs) are arranged in a line. The imaging sensor 5 is arranged so as to scan in a direction perpendicular to the transport direction, and sequentially reads the images of the banknotes 2 by controlling the lighting of the light source while transporting the banknotes 2. Further, the light source and the CCD line sensor are arranged on both sides (upper and lower) so as to sandwich the banknote 2. This CCD line sensor detects light from a light source directly incident without passing through the banknote 2 as a transparent pixel having a large pixel value, and detects the incident light transmitted through the banknote 2 with a small pixel value. It is detected as a non-transparent pixel. Therefore, if all the pixel values on a certain scan line indicate a saturated value, it can be determined that the banknote 2 has not arrived or passed on the CCD line sensor, and even if one pixel indicates the value of a non-translucent pixel, It can be determined that there is a bill 2 on the CCD line sensor.
[0015]
FIG. 2 is a diagram for explaining image reading of banknotes. When the bills pass through the image sensor 5, they are not in a straight state with respect to the transport direction, but are mostly skewed, and the resulting bill image 10 is also skewed. Further, in the case of banknotes in circulation, the square portion is particularly easily damaged, and is often bent or damaged. Therefore, for example, areas 11a, 11b, 11c, and 11d in the range from square to 20 mm of the banknote are necessary for the discrimination process, but are not reliable areas particularly as image data for angle calculation. The calculation is indefinite. Therefore, the image data for calculating the skew angle is acquired from the central region 12 excluding the scan region including the regions 11a, 11b, 11c, and 11d.
[0016]
Here, the pre-discrimination process from the skew correction of the banknote image 10 to the extraction of the banknote image data will be briefly described. When the banknote 2 is conveyed from the upstream and the leading edge of the banknote 2 (upper edge of the banknote image 10 in FIG. 2) reaches the rush sensor 4, the rush sensor 4 detects “rushing” and the leading edge of the banknote 2. “Imaging” is started just before the image sensor 5 approaches the imaging sensor 5. The bill 2 is sequentially scanned from the leading edge while being conveyed, and shading correction is performed simultaneously with the acquisition of pixel data. This shading correction will be described later. When the trailing edge of the banknote 2 comes out of the intrusion sensor 4 and “protrusion” is detected, the longitudinal length of the banknote is calculated here, and the time until the remaining 20 mm angle calculation indefinite region is calculated. Subsequently, when scanning by the imaging sensor 5 is performed and the remaining 20 mm is reached, the width and skew angle of the banknote 2 are calculated for the scan data in the region 12 from the scan data acquired so far. That is, the start coordinates and the end coordinates are obtained by obtaining the start coordinates that first change from the light-transmitting pixels to the non-light-transmitting pixels and the end coordinates that end from the non-light-transmitting pixels to the light-transmitting pixels in the scan direction on each scan line The width of the banknote on each scan line is acquired from the difference between and the mode value of the width. This mode value is a value that can be regarded as representing the width of the banknotes excluding the missing part of the long side of the banknote 2. Next, among the scan lines having the mode value, for example, a combination of several high-order lines and a few low-order lines, the distance between these sets of scan lines, and the start coordinates of the non-transparent pixels, for example, of these scan lines The angle is obtained from the above, and the average of the plural sets of angles is defined as the skew angle. Here, since the skew angle has been obtained, skew correction, that is, affine transformation is performed on the scan data acquired from the top of the banknote 2 to the remaining 20 mm. In parallel with the width / angle calculation, imaging of the remaining 20 mm is continued, and affine transformation is also performed on the remaining 20 mm of scan data when the skew angle is obtained. Since the affine transformation is performed at a higher speed than the imaging processing, when the trailing edge of the banknote 2 passes through the imaging sensor 5 and all the imaging sensors 5 detect the translucent pixels, that is, when one line saturation is detected, the discrimination is performed. Most of the pre-processing has already been completed, and thereafter, the banknote image 10 is cut out and the pre-discrimination processing is completed.
[0017]
3A and 3B are diagrams for explaining shading correction, in which FIG. 3A shows a configuration example of a light source, FIG. 3B shows a change in brightness in the longitudinal direction of the light source, and FIG. 3C shows an image sensor output after shading correction. The characteristics are shown. As a light source for illuminating the bill being conveyed, an LED array 20 as shown in FIG. This LED array 20 has a configuration in which a plurality of LEDs 21a, 21b,. The light emitted from the LED array 20 has the highest brightness on the optical axis of each LED 21a, 21b,..., 21n, and decreases as the distance from the optical axis increases, as shown in FIG. Therefore, each pixel of the CCD line sensor outputs a different value depending on variations in brightness depending on the location. Therefore, using a reference medium that performs uniform transmission in advance, the pixel value corresponding to the brightness difference is obtained as a coefficient for each pixel of the CCD line sensor, and it corresponds to each pixel output of the CCD line sensor. Multiply the coefficient to do. This process is called shading correction. As shown in (C), the pixel values are uniform if the medium is solid. This shading correction is performed immediately after the pixel value is output from the CCD line sensor.
[0018]
FIG. 4 is a time chart showing the flow of the pre-discrimination process. First, at the time t0, when the leading edge of the conveyed banknote is detected by the rush sensor 4, a rush interrupt process is started, which is determined in advance from the distance between the rush sensor 4 and the image sensor and the transport speed. At time t1 after the time, imaging by the imaging sensor 5 is started. Furthermore, pre-discrimination processing is started at time t2 after a predetermined time. At this time, the shading correction is performed on the pixel data already captured. The shading correction is immediately terminated because the calculation load is not so large, and thereafter, the shading correction is performed almost simultaneously with the imaging.
[0019]
When the rush sensor 4 detects the protrusion of the banknote at time t3, the protrusion interrupt process is started. In the protrusion interruption process, first, the longitudinal length of the bill is calculated, and the time required for the scan to proceed from the longitudinal length to the angle calculation indefinite region, that is, the remaining 20 mm of the bill is calculated. At this time, since the banknote is being conveyed, imaging is continued without interruption. At time t4 when the scan reaches the remaining 20 mm position, the bill width and skew angle are calculated. That is, based on the scan data acquired up to the remaining 20 mm position, the width of the banknote is calculated from the distribution of non-transparent pixel values on each scan line, and the mode value of the banknote width is obtained. A set of scan lines as far as possible from a scan line having a value is selected, and the skew angle is calculated from the distance between the scan lines of the set and the start coordinates of the non-translucent pixels on each scan line. Actually, the angle is obtained for each of a plurality of sets of scan lines, and the skew angle is obtained from the average of these angles.
[0020]
As soon as the skew angle is obtained, skew correction is performed on the scan data acquired up to the remaining 20 mm by affine transformation. Although the affine transformation has a large calculation load, it still ends with a margin until the banknote passes through the image sensor 5. During this time, in the remaining 20 mm imaging, affine transformation is performed while performing imaging and shading correction. At time t5, when the imaging sensor 5 detects one line saturation indicating that there is no banknote on the imaging sensor 5 by passing the banknote through the imaging sensor 5, most of the banknote image data is affine transformed at this time. Therefore, the skew correction of the banknote image data is substantially completed simultaneously with the detection of one line saturation. Specifically, if the conveyance speed is 500 mm / second, the maximum longitudinal length of the banknote is 172 mm, and the distance between the intrusion sensor and the imaging sensor is 35.8 mm, 85.6 from the detection of the protrusion to the one-line saturation of the imaging completion. There is a millisecond time. On the other hand, the width / angle calculation from the detection of the protrusion and the skew correction from that point to 16.2 milliseconds, and the remaining 20 mm of the shading correction and the skew correction need only about 21.8 milliseconds. Processing can be sufficiently performed from detection to completion of imaging. Thereafter, the banknote image data is cut out and the process is shifted to the discrimination process, whereby the discrimination pre-processing is completed.
[0021]
【The invention's effect】
As described above, in the present invention, after detecting the protrusion of the banknote, after imaging up to the angle calculation indefinite region on the end side of the medium, the width / angle is calculated, and the image data captured up to that time is skewed to correct the width / After the angle calculation, the remaining angle calculation indefinite region is configured to perform skew correction while imaging. As a result, all the image data has been substantially corrected for skewing at the time of imaging to the end of the medium, and the time required for the above pre-processing, which has been conventionally required after imaging, is almost eliminated. And can allocate sufficient time for further processing.
[Brief description of the drawings]
FIG. 1 is a plan view showing a schematic configuration of an image reading device of a bill validating device.
FIG. 2 is a diagram for explaining image reading of banknotes.
FIGS. 3A and 3B are diagrams for explaining shading correction, in which FIG. 3A shows a configuration example of a light source, FIG. 3B shows a change in brightness in the longitudinal direction of the light source, and FIG. 3C shows an image sensor after shading correction; Output characteristics are shown.
FIG. 4 is a time chart showing a flow of operation of pre-discrimination processing.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Conveyance path 2 Banknote 3a, 3b, 3c Roller 4 Inrush sensor 5 Imaging sensor

Claims (4)

矩形媒体を搬送しながら撮像して得られた画像の傾斜状態を補正するする搬送媒体の画像処理方法において、
媒体検出センサが搬送されてきた前記矩形媒体の搬送方向先端を検出後、搬送速度および撮像素子までの距離によって定められた所定時間後に前記矩形媒体のスキャンラインごとの撮像を開始し、
前記媒体検出センサが前記矩形媒体の搬送方向後端を検出後、撮像が前記矩形媒体の搬送方向後縁より手前の角度算出不定領域に到達するまでの不定領域到達時間を算出し、
前記不定領域到達時間経過後に、その時点まで撮像した画像データに対して傾斜画像の角度補正をしながら、残りの前記角度算出不定領域について撮像および傾斜画像の角度補正を行う、
ことを特徴とする搬送媒体の画像処理方法。
In an image processing method for a conveyance medium that corrects an inclination state of an image obtained by imaging while conveying a rectangular medium,
After detecting the transport direction tip of the rectangular medium that has been transported by the medium detection sensor, start imaging for each scan line of the rectangular medium after a predetermined time determined by the transport speed and the distance to the image sensor,
After the medium detection sensor detects the trailing end of the rectangular medium in the transport direction, calculates an indeterminate area arrival time until imaging reaches an angle calculation indeterminate area in front of the rectangular medium in the transport direction trailing edge;
After the indefinite region arrival time has elapsed, while performing angle correction of the tilt image with respect to the image data captured up to that point, the remaining angle calculation indefinite region is imaged and the tilt image is angle corrected.
An image processing method for a carrier medium.
前記撮像素子による前記矩形媒体のスキャンラインごとの撮像時に、各検出画素に対してシェーディング補正を行うことを特徴とする請求項1記載の搬送媒体の画像処理方法。The image processing method for a transport medium according to claim 1, wherein shading correction is performed on each detection pixel when the image sensor captures each scan line of the rectangular medium. 前記角度算出不定領域までの傾斜画像の角度補正は、前記スキャンライン上でスキャン方向に背景画素から媒体画素に最初に変わる開始座標と最後に媒体画素から背景画素に変わる終了座標とを取得して前記開始座標と終了座標との差から各スキャンライン上の媒体の幅を取得し、前記角度算出不定領域に到達するまでに得られた各スキャンラインの前記媒体の幅の最頻値を求め、前記幅の最頻値を有するスキャンラインに対し、離れた位置にある少なくとも1対のスキャンラインからそれらの距離と前記開始座標または終了座標とを用いて傾斜角度を算出し、前記角度算出不定領域までに得られた画像に対して前記傾斜角度でアフィン変換することを特徴とする請求項1記載の搬送媒体の画像処理方法。The angle correction of the tilted image up to the angle calculation indefinite region is performed by acquiring a start coordinate that first changes from the background pixel to the medium pixel in the scan direction and a last coordinate that finally changes from the medium pixel to the background pixel on the scan line. Obtain the width of the medium on each scan line from the difference between the start coordinates and the end coordinates, obtain the mode value of the width of the medium of each scan line obtained until reaching the angle calculation indefinite region, For the scan line having the mode value of the width, an inclination angle is calculated from at least one pair of scan lines located at a distance from each other and the start coordinate or the end coordinate, and the angle calculation indefinite region The image processing method for a transport medium according to claim 1, wherein the image obtained so far is affine transformed at the tilt angle. 前記角度算出不定領域は、全画像の角度補正処理後の媒体判別の処理にて前記矩形媒体の四角の折れまたは欠けを許容する範囲であることを特徴とする請求項1記載の搬送媒体の画像処理方法。2. The image of a transport medium according to claim 1, wherein the angle calculation indefinite region is a range in which the rectangular medium is allowed to be folded or missing in the medium discrimination process after the angle correction process of all images. Processing method.
JP08689398A 1998-03-31 1998-03-31 Image processing method for carrier medium Expired - Fee Related JP3674301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08689398A JP3674301B2 (en) 1998-03-31 1998-03-31 Image processing method for carrier medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08689398A JP3674301B2 (en) 1998-03-31 1998-03-31 Image processing method for carrier medium

Publications (2)

Publication Number Publication Date
JPH11283070A JPH11283070A (en) 1999-10-15
JP3674301B2 true JP3674301B2 (en) 2005-07-20

Family

ID=13899526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08689398A Expired - Fee Related JP3674301B2 (en) 1998-03-31 1998-03-31 Image processing method for carrier medium

Country Status (1)

Country Link
JP (1) JP3674301B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266284A (en) * 2009-05-13 2010-11-25 Micronics Japan Co Ltd Non-lighting inspection apparatus
JP5830737B2 (en) * 2011-06-17 2015-12-09 名古屋市 Road surface image processing system and road surface image processing method

Also Published As

Publication number Publication date
JPH11283070A (en) 1999-10-15

Similar Documents

Publication Publication Date Title
EP2093990B1 (en) Image reading apparatus, image reading method, and sheet processing apparatus
US9237256B2 (en) Document reading apparatus and image processing method
US20130287264A1 (en) Defect categorisation
JP2009181397A (en) Paper sheet identifying device and paper sheet identifying method
JP2007323501A (en) Paper sheet discriminating device
EP0869659B1 (en) Correction method of document inclination angle
JP2004326547A (en) Method and apparatus for identifying sheet of paper
JP2004265036A (en) Paper sheet identification device and method
JP3674301B2 (en) Image processing method for carrier medium
JP2002109599A (en) Sheet paper differentiation device
JP3777775B2 (en) Inclined image processing method
JP3711737B2 (en) Method for detecting tilt angle of imaging medium
JP3706170B2 (en) Paper sheet image data complement device
JPH09212707A (en) Paper sheets, discriminating device
JP4382579B2 (en) Paper sheet identification apparatus and method
JP5743819B2 (en) Paper sheet processing apparatus and paper sheet processing method
WO2018016365A1 (en) Paper sheet identification device and paper sheet identification method
JP3353613B2 (en) Paper sheet identification device
JP4534819B2 (en) Media identification device
JP3651177B2 (en) Paper sheet identification device
JP3614122B2 (en) Reading surface dust detection device for sheet-through document reading system
WO2020217789A1 (en) Paper sheet processing apparatus and paper sheet processing method
JP5249353B2 (en) Paper sheet identification device and paper sheet identification method
JP5377397B2 (en) Paper sheet identification device, paper sheet identification method, and paper sheet identification program
JP3544779B2 (en) Method and apparatus for extracting image data of paper sheets

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees